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Abstract: In this paper we highlight the necessity of new criteria for evaluation of performance of unit 

root tests. We suggest focusing directly on the reasons that create ambiguity in unit root test’s results. 

Two reasons for unsatisfactory properties of unit root tests can be found in the literature (i) the model 

misspecification and (ii) observational equivalence.  Regarding first reason, there is immense literature 

on several components of model specification covering specification techniques, consequence of 

misspecification and robust methods. However complete model specification involves multiple 

decisions and most of studies on performance of unit root tests do not address issue of multiple 

specification decisions simultaneously. The Monte Carlo studies are conditional on some of implicit 

specification and for Monte Carlo; these specifications are by construction valid. But for real data, the 

implicit decisions are often not true and specification decisions need to be endogenized. A closer 

match with real case is possible if multiple specification decisions are endogenized, thus providing 

more reliable measure of performance of unit root tests. Second problem in differentiating trend and 

difference stationary process is the observational equivalence between two processes. We suggest 

exploring data generating processes with different long run dynamics and small sample equivalence so 

that a researcher should have an idea about other plausible models for a data set for which he has 

estimated some model. 
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1. Introduction 

Perhaps the issue discussed most in the history of econometric literature is the debate 

on trend versus difference stationarity, initiated by Nelson and Plosser (1982). Due to highly 

important implication of information about stationarity in the empirical econometric 

modeling, this issue got attention of hundreds of econometricians during the past quarter 

century, but consensus on several important issues and implications seems not to appear to 

date (Libanio, 2005). Huge stock of unit root tests emerged during past quarter century, but 

the certainty about inference can not be achieved. Consider a typical example of US real 

GNP; following are views on stationarity of this series presented in different papers:  

Difference stationary; Nelson and Plosser (1982), Trend Stationary; Perron (1989), 

Trend Stationary; Zivot and Andrews (1992), don’t know; Rudebusch (1993), Trend 

stationary; Diebold and Senhadji (1996), Difference stationary; Murray and Nelson (2002), 

Kilian and Ohanian (2002), Trend stationary; Papell and Prodan (2003). 

Different views on stationarity of same series are result of adopting different 

procedures for testing unit root stationarity. So, there is ambiguity on what procedure of 

testing should be adopted and how much this procedure is reliable. We review the reasons that 

are responsible for ambiguity in the inference from a unit root test, and propose new 

procedure for evaluating the performance of unit root test.  

Two important reasons that can be traced in literature for unsatisfactory performance 

of unit root tests are the model misspecification and the observational equivalence.  

The performance of unit root tests depends on several specification decisions prior to 

application of unit root test. The Monte Carlo experiments for evaluating the performance of 

unit root tests often overestimate the performance of tests because the experiments condition 
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on some implicit specifications and the design of data generating process supports the implicit 

assumptions, whereas for the real data series, implicit assumptions/arbitrary specification 

decisions are often unjustifiable and sometimes incompatible with data. To measure the 

performance of unit root tests in real data sets, the specification decisions should be 

endogenized.  

The second reason for uncertainty in the inference from unit root tests is the problem 

of observational equivalence between trend and difference stationary process. The trend 

stationary and difference stationary process have quite different long run dynamics but may 

have similar small sample distribution, see Spanos and McGuirk (2006) for example. We 

propose to explore data generating process with different long run dynamics and small sample 

equivalence, so that an investigator should have an idea of other plausible models for a data 

series for which he have fitted some model.  

Next sections of this paper are organized as follows: In section 2, we discuss nature 

and strength of the reasons that create ambiguity in the inference from unit root. In section 3, 

we summarize the discussion and recommend the strategy for more reliable inference.  

2. Inference from unit root tests; the reasons of uncertainty 

 

To achieve the goal of greater confidence in the inference from unit root tests, we 

propose to focus directly on the reasons that create ambiguity in the inference. Two major 

reasons that are discussed in the literature for undesirable properties of unit root tests are the 

model misspecification and the observational equivalence. Brief history of literature on these 

two reasons is given and their significance is highlighted by (i) evidences found in literature 

(ii) real life examples and (iii) artificially generated data. We highlight the deficiency in 
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procedure for evaluating performance of unit root test and present our suggestion for 

improvement. Below we discuss the two reasons separately. 

2.1 Model misspecification 

Prior to the application of unit root test, the investigator has to make number of 

specification decisions which might be implicit. These specification decisions play significant 

role in the final output of a unit root test. Since very beginning of debate on unit root, one can 

trace the significance of proper specification in unit root testing e.g. Dickey and Fuller (1979) 

presented different tests for unit root with three specifications of deterministic part in a unit 

root model, i.e. unit root without drift and linear trend, with drift and with drift plus linear 

trend. Afterward the significance of several other types specifications were discussed in the 

literature e.g. the specification of autoregressive lags (Dickey and Fuller, 1981), specification 

of distribution of innovation (Said and Dickey, 1984), presence of structural breaks (Perron, 

1989, 1990) etc. However, putting these specifications altogether and study of the impact of 

multiple decisions has little literature in its credit.  When we have a real data series, we do not 

have access to its true DGP. Before choosing a test for unit root, we have to make number of 

specification decisions which may be arbitrary, data based or based on previous information. 

This is the situation which is quite different from usual Monte Carlo experiment. In Monte 

Carlo experiments, even when studying the consequences of some endogenized specification 

decision, we are conditioning on several implicit specifications. For example, Perron (1989), 

Zivot and Andrew (1992)’s analysis of unit root tests in presence of structural break is 

conditional on the implicit assumption of homoskedasticity of the innovations. In Monte 

Carlo, the implicit specification, built in the assumptions of a model is by construction valid. 

However, when working with real data series, the validity of implicit assumptions should be 
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justified. But there is lack of study on the properties of unit root tests when overall 

specification of model is data dependent. The importance of data based specification decisions 

is further enhanced due to number of evidences against validity of implicit specification e.g. 

evidences collected by Andreou and Spanos
∗
 (2003).  The inference from a unit root test is 

ambiguous until we are confident that the model we specified is appropriate. And in our 

opinion, data dependent specification is the best way to ensure the appropriateness of the 

specification of model prior to application of unit root test. 

 It is important to note that no serious problem in properties in properties of unit root 

test arises if the model is properly specified. The size or power problem of unit root tests 

arises due to misspecification of testing scenario prior to application of unit root test. Even the 

second problem, i.e. observational equivalence also arises (at least some times) due to the 

misspecification of testing scenario e.g. Spanos and McGuirk (2006). We focus on four 

specification decisions and analyze their role in the inference from unit root tests. These four 

specification decisions are: (i) choice of deterministic part (ii) choice of autoregressive lags 

(iii) the structural breaks and (iv) distribution of innovation process. Following are the 

motivational factors behind choice of these four decisions we mentioned above: 

1. Unit root tests are sensitive to each of four specification decisions mentioned above  

2. None of existing study on performance of unit root tests focus on all these decisions 

simultaneously 

3. There are evidences of violation of the conventional implicit specification in real data 

sets. 

                                                 
∗
 In later sections we present more detail of this study  
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4. For the real data sets, except in few cases, the arbitrary priori specification is not 

justifiable. This necessitates the endogenous decisions about these specifications. 

 

We present few evidences in favor of the statements given above. Let us discuss the four 

specification decisions separately. 

2.1.1 The specification of deterministic part (drift and trend) 

As stated earlier, the significance of specification of trend and drift is recognized since 

very beginning of research on unit root tests. Since then, a lot of literature emerged on various 

aspects of specification of trend and drift. Hamilton (1994) summarizes the distribution theory 

of unit root tests statistics under various specifications of trend and drift. However, unlike the 

lag length selection and the structural change, little literature is there addressing the issue that 

how to specify drift and trend while applying unit root test to real data sets. Some 

recommendations in this regard are provided by Perron (1988), Perman (1994), Ayat and 

Burridge (2000), Elder and Kennedy (2001) and Enders (2004). The two streams of these 

strategies can be identified from literature. First of these is sequential testing strategy latest 

advocated by Ender (2004). The other strategy is utilization of priori information on growth 

properties of underlying time series and is advocated by Elder and Kennedy (2001). Since the 

significance of appropriate specification of deterministic component is recognized at earliest, 

so one would expect valuable work on its relevant aspects. But there is lack of empirical 

studies on comparison of the strategies for specification of deterministic component. A 

relevant study is due to Hacker and Hatemi (2006), who compare Ender’s strategy to Elder 

and Kennedy’s strategy with the conclusion that the later strategy is superior. However the 

study is restricted to Dickey-Fuller environment which is subject to serious critique by later 
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authors. What strategy of specification of deterministic component works better in framework 

of recently recommended tests like Ng and Perron (2001) test; there is no proper guideline 

available on this question in the literature.  

However, the practical significance of specification of deterministic component; is 

clear by following example. We apply set of Ng and Perron tests to US real GNP data from 

1909 to 1970 obtained from Nelson and Plosser’s data set.  Logic behind choice of Ng-Perron 

test is that, it accumulates intellectual heritage of many previous test e.g. Elliot et al. (1996)’s 

point optimal test etc. The results of two specifications of deterministic components are 

summarized below. 

Table 1. Output of Ng-Perron test applied to US real GNP  

Null Hypothesis: LUSGNP_R has a unit root 

Sample:1909-1970 

Exogenous Constant Constant + trend 

 MZa MZt MSB MPT MZa MZt MSB MPT 

Ng-Perron test 

statistics* 

1.34 1.01 0.75 45.64 -15.5 -2.771 0.177 5.967 

Asymptotic 

Critical 

Values** 

1% -13.80 -2.58 0.17 1.78 -23.80 -3.42 0.14 4.03 

5% -8.10 -1.98 0.23 3.17 -17.30 -2.91 0.16 5.48 

10% -5.70 -1.62 0.27 4.45 -14.20 -2.62 0.18 6.67 

*Automatic Lag Length Selection Procedure: Spectral GLS-detrended AR based on MAIC, MAXLAG=10 

**Ng-Perron (2001, Table 1)  

 

When working without linear trend, the unit root hypothesis is nowhere rejected and 

when working with linear trend, all four tests reject unit root at 10% significance level. 

Remember that for specification of lag length we are using MAIC according to 

recommendation of Ng and Perron (2001). The reason for such result is perhaps, Ng-Perron’s 

emphasis is to adjust unit root tests for specification of lag length, so they designed a test 
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optimal in choosing lag length, but the test thus designed is more sensitive to specification of 

deterministic part. Researcher is again facing similar problem, how to choose deterministic 

part. No justification for some arbitrary choice of deterministic component is available in 

present setup. 

 One more example we will present by computer generated dataset. Since we know 

exact data generating process for computer generated data set, it is more suitable to know 

what is exactly happening. We generate a time series of length 62 (equal to length of US real 

GNP series used by Nelson and Plosser) with following DGP: 

 
ttt uyy ++= −18.02.0   

 )1,0(~ �ut  (1) 

Coefficient of lag term is 0.8, much below unity and therefore generated time series is trend 

stationary. We apply unit root tests to this series in two scenarios; (i) drift without linear trend 

(ii) linear trend plus drift. The result of estimation is as follows:  

Table 2. Ng-Perron test applied to artificial data 

Null Hypothesis: X has a unit root 

Sample:1909-1970 

Exogenous Constant Constant + trend 

 MZa MZt MSB MPT MZa MZt MSB MPT 

Ng-Perron test 

statistics* 

-10.55 -2.29 0.21 2.33 -12.04 -2.44 0.20 7.62 

Asymptotic 

Critical 

Values** 

1% -13.80 -2.58 0.17 1.78 -23.80 -3.42 0.14 4.03 

5% -8.10 -1.98 0.23 3.17 -17.30 -2.91 0.16 5.48 

10% -5.70 -1.62 0.27 4.45 -14.20 -2.62 0.18 6.67 

*Automatic Lag Length Selection Procedure: Spectral GLS-detrended AR based on MAIC, MAXLAG=10 

**Ng-Perron (2001, Table 1)  

 



Model Specification, Observational Equivalence and Performance of Unit Root Tests 

9 

 

We did not selected series for this type of output; this output is for the first data series 

generated by Microsoft Excel and three more consecutive attempts yield similar results. 

Remember that the true data generating process is without linear trend. When we apply test in 

appropriate scenario, the test result provide us right message about stationarity of series and 

unit root is rejected at 5% significance level. But when the scenario is misspecified, set of Ng-

Perron test fails to reach the right conclusion. 

For the artificial data series, we know what the true data generating process is, and we 

found that if pre-test scenario is misspecified, unit root test fail to detect right data generating 

process. But for the real time series, we do not know what scenario is generating data, so we 

cannot guess whether we are getting right message from the test. Now, if we make 

endogenous decision of inclusion of trend for both artificial and real time series, a closer 

resemblance is possible and whatever the result about performance of unit root test we get, 

will be more worthwhile.  

2.1.2 Specification of lag length  

There is a consensus on the view that inappropriate specification of autoregressive lag 

leads to undesirable properties of unit root tests. Therefore the choice of autoregressive lag 

length got due attention of econometricians (unlike deterministic component). Dickey and 

Fuller (1981) modify their test to incorporate autoregressive specification in the model. Their 

modified test is usually called augmented Dickey Fuller test. Said and Dickey (1984) study 

impact of moving average root on unit root tests. They suggest including sufficient lags in 

autoregressive specification in augmented Dickey Fuller test which can approximate any 

moving average process. However, the appropriate choice of lag length remains an important 

question for econometricians. Several criteria have been recommended in literature for 
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choosing appropriate lag length e.g. AIC, BIC, SIC etc. Ng and Perron (2001) summarize 

literature on this issue. Ng and Perron’s study reveals that modified Akaike information 

criterion (MAIC) outperform other procedures for choice of appropriate lag length. To this 

point, the goal specification of lag length looks to be achieved but when combined with other 

specifications, different conclusions can be reached. Recall set of four specification decisions 

we are studying, there are evidences that wrong decision about one specification may result in 

failure of procedure for specification of another decision. For example, for US real GNP, in 

augmented DF setup, we analyze choice of lag by MAIC recommended by Ng and Perron. 

The results are summarized in table 3. 

Table 3: Lag length selected for US real GNP in different 

scenarios  

Scenario 
Lag length chosen by using 

MAIC 

Without drift and trend 1 

With drift 1 

With drift and trend 0 

     

The results favor our supposition that misspecification of one member of set of 

specification discussed above may lead to wrong result in specification for some other 

member of the same set. Hence the resulting inference from unit root test gains smaller 

advantage of well designed procedure of selection of lag length. 

2.1.3 Structural breaks  

The debate of structural breaks in macroeconomic time series has been a major area in 

unit root research. Perron (1989) suggested that Nelson and Plosser’s strong evidence in 

support of the unit root hypothesis rested on a failure to account for structural change in the 



Model Specification, Observational Equivalence and Performance of Unit Root Tests 

11 

 

data, and demonstrated this through incorporating an exogenous structural break for the 1929 

crash. In doing so he reversed the Nelson-Plosser (1982) conclusions for 10 of the 13 series. 

Perron’s study can be regarded as an attempt to respecify the model of Nelson and Plossor, 

however his method for incorporating structural breaks is based on knowledge of historical 

events and is not a data based respecification. At the beginning of the 1990s, Banerjee et al. 

(1992), Christiano (1992) and Zivot and Andrews (1992) argued that selecting the structural 

break a priori based on an ex post examination or knowledge of the data could lead to an 

over-rejection of the unit root hypothesis. To address this issue, these studies incorporated a 

single endogenous structural break. Endogenizing structural breaks, Zivot and Andrews 

(1992) were unable to reject unit root for four series that Perron concluded to be stationary. 

This debate is continuous to date and many methods for endogenizing, selecting and testing 

structural breaks have been developed and analyzed so far. Recent survey of literature on this 

issue is provided by Byrne and Perman (2006) and Perron (2006). We do not feel necessity to 

present evidences for loss of desirable properties of unit root tests due to misspecification of 

structural break, because literature contains so many evidences and there is no considerable 

disagreement on the issue. However, there was controversary on testing and incorporating 

techniques of structural breaks in a model. This controversary lead to rapid growth in the 

literature. Now, there are well documented techniques available for endogenizing structural 

breaks and testing for unit root in presence of structural breaks however these techniques 

usually condition on other implicit specification. Again we emphasis that misspecification of 

one assumption may reveal itself in the specification procedure for the some other 

assumption. For example it is possible that apparent structural break in deterministic 
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component is due to break in innovation variance.  We plot residual from regression equation 

of Nelson and Plosser (1982) for US real GNP.  

 

Fig 1. Residuals from regression equation of Nelson and Plosser for US real GNP 

 

The break in variance of the residual is evident from the above graph. It might be 

possible that apparent structural break that investigators found in the series is a reflection of 

break in the innovation variance that we observe in the fig above.   

2.1.4 The distributional assumptions: 

Among the distributional assumption, the most common assumption is normality of 

innovation process. However many authors note that violation of this assumption does not 

have serious impact on unit root tests. Another assumption is that the innovations should be 

serially independent. Several authors have documented that if innovations are serially 

dependent i.e. innovation creates moving average roots, and the moving average roots can be 

approximated by sufficient autoregressive lags. Hence this problem is not serious because we 

have well documented procedures for selection of autoregressive lags. A rejection of the 
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normality assumption could be due to some other factors, in particular due to outliers. In that 

case, it is also well documented that the presence of outliers induces a strong finite sample 

bias towards not rejecting the unit root too often. This is because outliers produce large 

moving average roots. This problem can be handled by appropriate choice of lag length. For 

detail of discussion on these assumptions see Perron (2003) and references cited there.   

However another distributional assumption is homoskedasticity of innovation process. 

Recent studies reveal that non-constant variances can both inflate and deflate the rejection 

frequency of the commonly used unit root tests, both under the null and under the alternative. 

This assumption needs further attention due to the fact noted by many authors including 

Pagan and Schwert (1990), Loretan and Phillips (1994), Watson (1999) McConnell and 

Quiros (2000) and van Dijk et al. (2002) who provide evidences of non-constant variances of 

many macroeconomic time series. Kim et al (2002) shown that change in the innovation 

variance of an integrated process can generate spurious rejections of the unit root null 

hypothesis in routine applications of Dickey Fuller tests. They develop and investigate 

modified test statistics, based on unit root tests of Perron (1989) which are applicable when 

there is a change in innovation variance of an unknown magnitude at an unknown location. 

Cavaliere (2004) show that non-constant variances can both inflate and deflate the rejection 

frequency of the unit root tests, with early negative and late positive variance changes having 

the strongest impact. They show that that the locally best invariant (LBI) test of a unit root 

against level stationarity is robust to heteroskedasticity of any form under the null hypothesis. 

However, the conclusion of author is valid conditioning on the other implicit assumptions of 

the model. The cross dependence of this assumptions with violations of other assumptions 
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have not been discussed so far. Below we plot a quadratic trend fitted to US real GNP. The 

evidence of variability of the variance is quite clear here. 

  

Fig 2. Quadratic trend fitted to US real GNP 

 

So, the problem that arises due to misspecification lead to ambiguous inference from unit 

root tests. If we summarize the evidences presented so far, following conclusions can be 

drawn: 

1. The specification decisions we selected effect the output of unit root tests 

2. The arbitrary/implicit specification in conventional methodology is often opposed by 

data, so the specification decisions need to be justified  

3. Violation of one of assumption/implicit specification may reveal itself in wrong 

conclusion of some other specification procedure 

2.2 Observational Equivalence 

The second thing which creates ambiguity in the inference from unit root test is the 

problem of observational equivalence. Although the trend stationary and difference stationary 

process have quite different long run dynamics, in finite sample these may be observationally 
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equivalent. Cochrane (1991) argues that in Beveridge-Nelson (1982) decomposition of a time 

series into transitory and permanent components, the random walk component may have 

arbitrarily small variance. In that case unit root tests may have arbitrarily low power in small 

samples. He also shows that there are some difference stationary processes whose likelihood 

is arbitrarily close to unit root process. Further investigation of observational equivalence 

between trend and difference stationary process is due to Blough (1992) and Faust (1993). 

Presenting reasons similar to Cocharane, Blough argues that none of unit root test can have 

high power for stationary process except having high probability of false rejection for the 

nearby member of unit root null. However the arguments of Blough does not decrease the 

importance of unit root testing, because if some component of data generating has arbitrarily 

small weight/variance, we do not bother to detect it because in the finite time horizon this 

component with small variance/weight will not create a larger influence. We still need to 

determine dynamics of dominant portion of data generating process.       

 Andreou and Spanos (2003) recommend using the ‘statistical adequacy’ as a guide to 

specify model while testing for unit root test. According to the authors, by statistical adequacy 

they mean empirical validity of the probabilistic assumptions associated with the model. The 

statistical adequacy provides sufficient condition for validity of the model in that there is no 

violation of the assumption of the model found in the data. They test models of Nelson and 

Plosser (1982) and Perron (1989) for statistical adequacy and found that most of their models 

are not adequate. After re-specification of the models, they found result different from both 

Nelson-Plosser and Perron.   

Spanos and McGuirk (2006) note an important shortcoming of strategy of Andreou 

and Spanos (2003) by noting that two different types of models i.e. difference stationary and 
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trend stationary, when fitted to same data set, may be both statistically adequate in that their 

respective probabilistic assumptions are not opposed by data. In particular they note if true 

data generating process is random walk with drift, a trend stationary model with drift plus 

trend may provide a statistically adequate approximation. The authors consider following 

three scenarios: 

S1 
ttt yy εδ += −1    

S2 
ttt yy εδα ++= −1  ),0(~ 2σε IID�t  (2) 

S3 
ttt yty εδβα +++= −1    

The authors note that if data is generated by S2 with δ = 1, (random walk with drift) and 

fitted model belong to S3, one may get a trend stationary statistically adequate approximation 

to the data.   

The study of Spanos and McGuirk can be the basis for new direction of the research in 

unit root. Following conclusion can be drawn from the study of Spanos and McGuirk: 

1. For a real data series, there may be more than one statistically adequate models with 

quite opposite long run dynamics 

2.  At least in some cases, the observational equivalence can be observed due to 

misspecification of scenario that we use for testing unit root   

Spanos and McGuirk present just one example of observational equivalence between 

models with different long run dynamics. Now it is plausible to assume that some other types 

of trend and difference stationary models may be observationally equivalent in that their 

respective probabilistic assumptions are not opposed by the data. If it is so, investigator needs 

to know what other types of models may be supported by the series for which he has fitted 

some particular model. We present here an example of observational equivalence between 
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integrated ARIMA(0,1,1) model and stationary AR(1) model. We had a Monte Carlo 

experiment in which data was generated by following data generating process: 

 
ttt uyy += −1   

 
ttt ekuu += −1   

 )1,0(~ �et  (3) 

Dickey Fuller unit root test was applied to the generated data series. The decision 

about inclusion of trend and drift was based on the significance of their estimated coefficient 

starting from general model and reducing successively.  Final selection of model was verified 

for statistical adequacy by testing for the assumptions i.e. autocorrelation and 

homoskedasticity of residuals. We test for first, second and third order autocorrelation of 

residual to ensure no evidence of correlation is there since moving averages should reveal 

them in autocorrelation. The true data generating process is difference stationary. For a data 

series of length 100, following percentage of statistically adequate stationary model was 

obtained. 2000 simulations were carried out for each value of k. 

Table 4: Percentage rejection of unit root null when true DGP is according to eq. (3)  

Value of k % of stationary models 

 
-0.5 29 

-0.6 37 

-0.7 45 

-0.8 62 

-0.9 84 



Atiq-ur-Rehman and Asad Zaman 

18 

 

This is one more evidence of observational equivalence between trend and difference 

stationary. Similarly if we look at other types of data generating processes one can search the 

observationally equivalent process in the class with different long run dynamics. Knowledge 

of model with observational equivalence will provide a guide to investigator, about other 

plausible models for a data set for which he have found some statistically adequate model.   

3. Measuring strength of reasons of uncertainty; a step forward to more 

reliable inference 

The results and evidences presented so far to can be summarized into following:  

1.  Each specification decisions discussed in the study effect the output of unit root test 

2.  The arbitrary/implicit specification decisions are often incompatible or unjustifiable 

for the real data 

3. Invalid decision on one specification may effect other specification decisions 

negatively 

4. Even with data supported specifications, there may be more than one models with 

quite opposite long run dynamics but having compatibility with data 

The results 1-3 motivate us to revisit criteria for evaluation of procedures for testing 

stationarity/unit root in real data sets. The performance of procedure with endogenized 

specification decisions has a closer resemblance with real data sets. So the more reliable 
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measure of performance of unit root tests is possible when multiple specification decisions are 

endogenized. Whatever performance of a testing procedure is measured via this criterion 

would be more reliable and more realistic. 

The result 4 motivate us to explore the models with different long run dynamics and small 

sample equivalence so that an investigator would be able to guess what other types of model 

may be plausible for a data set for which he has fitted some model.  
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