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Abstract:  Grandmont (1985) found that the parameter space of the most classical dynamic 

general-equilibrium macroeconomic models are stratified into an infinite number of subsets supporting 

an infinite number of different kinds of dynamics, from monotonic stability at one extreme to chaos at 

the other extreme, and with all forms of multiperiodic dynamics between.     

But Grandmont provided his result with a model in which all policies are Ricardian 

equivalent, no frictions exist, employment is always full, competition is perfect, and all solutions are 

Pareto optimal.  Hence he was not able to reach conclusions about the policy relevance of his dramatic 

discovery.   As a result, Barnett and He (1999, 2001, 2002) investigated a Keynesian structural model, 

and found results supporting Grandmont’s conclusions within the parameter space of the Bergstrom-

Wymer continuous-time dynamic macroeconometric model of the UK economy.  That prototypical 

Keynesian model was produced from a system of second order differential equations.  The model 

contains frictions through adjustment lags, displays reasonable dynamics fitting the UK economy’s 

data, and is clearly policy relevant.  In addition, results by Barnett and Duzhak (2008,2009) 

demonstrate the existence of Hopf and flip (period doubling) bifurcation within the parameter space of 

recent New Keynesian models.   

Lucas-critique criticism of Keynesian structural models has motivated development of Euler 

equations models having policy-invariant deep parameters, which are invariant to policy rule changes.  

Hence, we continue the investigation of policy-relevant bifurcation by searching the parameter space of 

the best known of the Euler equations general-equilibrium macroeconometric models:  the path-

breaking Leeper and Sims (1994) model.  We find the existence of singularity bifurcation boundaries 

within the parameter space.  Although never before found in an economic model, singularity 

bifurcation may be a common property of Euler equations models, which often do not have closed form 

solutions.  Our results further confirm Grandmont’s views.   

Beginning with Grandmont’s findings with a classical model, we continue to follow the path 

from the Bergstrom-Wymer policy-relevant Keynesian model, to New Keynesian models, and now to 

Euler equations macroeconomic models having deep parameters.    
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1.  Introduction 

 

 1.1.  The History 

 

Grandmont (1985) found that the parameter space of even the simplest, 

classical general-equilibrium macroeconomic models are stratified into bifurcation 

regions.  This result changed the prior common view that different kinds of economic 

dynamics can only be produced by different kinds of structures. But he provided that 

result with a model in which all policies are Ricardian equivalent, no frictions exist, 

employment is always full, competition is perfect, and all solutions are Pareto 

optimal.  Hence he was not able to reach conclusions about the policy relevance of his 

dramatic discovery.  Years of controversy followed, as evidenced by papers appearing 

in Barnett, Deissenberg, and Feichtinger (2004) and Barnett, Geweke, and Shell 

(2005).  The econometric implications of Grandmont’s findings are particularly 

important, if bifurcation boundaries cross the confidence regions surrounding 

parameter estimates in policy-relevant models.  Stratification of a confidence region 

into bifurcated subsets seriously damages robustness of dynamical inferences.
1
 

The dramatic transformation of views precipitated by Grandmont’s paper was 

criticized for lack of policy relevance.  As a result, Barnett and He (1999, 2001, 2002) 

investigated a continuous-time traditional Keynesian structural model and found 

results supporting Grandmont’s conclusions.  Barnett and He found transcritical, 

codimension-two, and Hopf bifurcation boundaries within the parameter space of the 

Bergstrom-Wymer continuous-time dynamic macroeconometric model of the UK 

economy.  That highly regarded Keynesian model was produced from a system of 

second order differential equations.  The model contains frictions through adjustment 

lags, displays reasonable dynamics fitting the UK economy’s data, and is clearly 

policy relevant.  See Bergstrom and Wymer (1976), Bergstrom (1996), Bergstrom, 

Nowman, and Wandasiewicz (1994), Bergstrom, Nowman, and Wymer (1992), and 

Bergstrom and Nowman (2006).  Barnett and He found that bifurcation boundaries 

cross confidence regions of parameter estimates in that model, such that both stability 

and instability are possible within the confidence regions.   

Barnett and Duzhak (2008,2009) have explored bifurcation within the more 

                                                 
1
 We assume that parameters are fixed and focus on the implications of bifurcation for robustness of 

inferences.  But if parameters can move over time, as in Swamy, Tavlas, and Chang (2005), the 

implications of bifurcation are even more serious. 
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recent class of New Keynesian models.  Those two papers included forward-looking 

and current-looking models, as well as hybrid models having both forward and 

current-looking features.  They found Hopf and flip (period doubling) bifurcation, 

with the setting of the policy parameters influencing the existence and location of the 

bifurcation boundary.   No other forms of bifurcation were found within the three-

equations log-linearized New Keynesian models.  One surprising result is the finding 

that a common setting of a parameter in the future-looking New-Keynesian model can 

put the model directly onto a Hopf bifurcation boundary. 

The Lucas critique has motivated development of Euler-equations general-

equilibrium macroeconometric models.  Hence, we continue the investigation of 

policy relevant bifurcation by searching the parameter space of the best known of the 

policy relevant Euler-equations macroeconometric models:  the path-breaking Leeper 

and Sims (1994) model.  The results further confirm Grandmont’s views, but with the 

finding of an unexpected form of bifurcation:  singularity bifurcation.  Although 

known in engineering and mathematics, singularity bifurcation has not previously 

been encountered in economics.  Barnett and He (2004, 2006) have made clear the 

mathematical nature of singularity bifurcation and why it is likely to be common in 

the class of modern Euler equation models rendered important by the Lucas critique.    

Leeper and Sims’ model consists of differential equations with a set of 

algebraic constraints.  Our analysis reveals the existence of a singularity bifurcation 

boundary within a small neighborhood of the estimated parameter values.  When the 

parameter values approach the singularity boundary, one eigenvalue of the linearized 

part of the model moves rapidly to infinity, while other eigenvalues remain bounded.  

On the singularity boundary, the number of differential equations will decrease, while 

the number of algebraic constraints will increase.  Such change in the order of 

dynamics has not previously been found with macroeconometric models.  But we find 

from the relevant theory that singularity bifurcation may be a common property of 

Euler equations models.  The dramatic implications of singularity bifurcation are not 

limited to the change in the dimension of the dynamics on the bifurcation boundary.  

The nature of the dynamics on one side of a singularity bifurcation boundary is very 

different from the nature of the dynamics on the other side, although of the dimension 

of the dynamics is the same on both sides.  Knowledge of the location of a bifurcation 

boundary is very important, even if there is no chance that the economy will drop into 

the lower dimensional dynamics directly on that boundary. 
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 Beginning with Grandmont’s findings with a classical model, we continue to 

follow the path from the Bergstrom-Wymer policy-relevant Keynesian model, to New 

Keynesian macroeconometric models, and now to Euler equations models having 

deep parameters.  At this stage of our research, we believe that Grandmont’s 

conclusions appear to hold for all categories of dynamic macroeconomic models, 

from the oldest to the newest.    

 1.2  The Leeper and Sims Model 

 Various relevant dynamic macroeconometric models have been established in 

the literature.
2
  Of particular importance is the Leeper and Sims (1994) Euler 

equations stochastic-dynamic general-equilibrium model intended to address such 

issues as the Lucas critique (Lucas (1976)) for the US economy.  Similar models are 

developed in Kim (2000) and others, but the Leeper and Sims model was the seminal 

model in that literature.   

 The dimension of the state space in the Leeper and Sims model is substantially 

lower than in the Bergstrom, Norman, and Wymer UK model. However, the 

dimension is still too high for complete analysis by generally available analytical 

approaches.  By numerical methods complementing theoretical analysis, we find that 

the dynamics of the Leeper and Sims model is complicated by its structure as an Euler 

equations model, since such models usually have no closed form algebraic solution. 

 In this paper, we are interested in how the dynamic behavior of the model is 

affected by its parameter settings.  We find that the order of the dynamics of the 

Leeper and Sims model can change within a small neighborhood of the estimated 

parameter values.  As parameters change within that neighborhood, one eigenvalue of 

the linearized part of the model can move quickly from finite to infinite and back 

again to finite.  A large stable eigenvalue characterizes the case in which some 

variables can respond rapidly to changes of other variables, while a large unstable 

                                                 
2
 Among those models that have direct relevance to this research are the high-dimensional continuous-

time macroeconometric models of Bergstrom, Nowman and Wymer (1992), Bergstrom, Nowman, and 

Wandasiewicz (1994), Bergstrom and Wymer (1976), Bergstrom and Nowman (2006), Grandmont 

(1998), Leeper and Sims (1994), Powell and Murphy (1997) and Kim (2000).  Surveys of relevant 

macroeconomic models are available in Bergstrom (1996) and in several textbooks such as Gandolfo 

(1996) and Medio (1992).  General theory of economic dynamics is provided, in Boldrin and Woodford 

(1990) and Gandolfo (1996).  Various bifurcation phenomena are reported in Bala (1997), Benhabib 

(1979), Medio (1992), Gandolfo (1996), and Nishimura and Takahashi (1992).  Focused studies of 

stability are conducted in Grandmont (1998), Scarf (1960), and Nieuwenhuis and Schoonbeek (1997).  

Barnett and Chen (1988) empirically found chaotic dynamics in economics.  Bergstrom, Nowman, and 

Wandasiewicz (1994) investigate stabilization of macroeconomic models using policy control. Wymer 

(1997) describes several mathematical frameworks for the study of the structural properties of 

macroeconometric models. 
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eigenvalue corresponds to the case in which rapid diversion occurs of one variable 

from other variables.  Infinity eigenvalue implies existence of pure algebraic 

relationships among the variables.  This sensitivity to the setting of the parameters 

presents serious challenges to the robustness of dynamical inferences.  The source of 

the problem is the nature of the mapping from the Euclidean parameter space to the 

function space of dynamical solutions. 

 Change in the order of the dynamic part of the system in response to small 

changes in parameter settings is a fundamental property of the Leeper and Sims model 

and corresponds to a class of bifurcations known to engineers and mathematicians as 

“singularity” bifurcations.  To our knowledge, this is the first discovery of singularity 

bifucation in macroeconometric models; but appears to be closely connected with the 

structure of Euler equations models. 

2.  The Model 

 The Leeper and Sims (1994) Euler-equations, stochastic, general-equilibrium 

model includes the dynamic behavior of consumers, firms, and government.  With the 

parameters of consumer and firm behavior being the deep parameters of tastes and 

technology, those parameters are invariant to government policy rule changes.
3
  These 

models contain dynamic subsystems consisting of ordinary differential equations and 

algebraic constraints. Such systems are called differential/algebraic systems in 

systems theory. 

 In the Leeper and Sims model, both consumers and firms maximize their 

respective objective functions. The government provides monetary and tax policies to 

satisfy an intertemporal government budget constraint and to the pursuit of 

countercyclical policy objectives. The detailed derivation of the models is available in 

Leeper and Sims (1994).  The resulting model is summarized in this section.  

 The model contains the following 12 state variables.  

 

L = labor supply 

C* = consumption net of transactions costs 

M = consumer demand for non-interest-bearing money 

D = consumer demand for interest-bearing money  

K = capital 

                                                 
3
 Several similar models have been developed in Kim (2000) and in Binder and Pesaran (1999). 
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Y = factor income from capital and labor, excluding interest on government debt. 

C = gross consumption 

Z = investment 

X = consumer goods aggregate price 

Q = investment goods price 

V = income velocity of money 

P = general price level 

 

 The model assumes that the consumer maximizes
4
 

 

1 1

0 0

( (1 ) )
[ ( ) ) ]

1

t C L
E exp( s ds dt

  




  
 

 


 

subject to  

 
M D iD

XC QZ Y
P P




    
 

, 

 

 XC VY XC   , 

 

 K Z K  , 

 

 Y rK wL S   , 

 

 
PY

V
M

 , 

where (0 1)    and 0   are parameters; 0  (s) 1 is the subjective rate of time 

preference at time s,   is the level of lump-sum taxes paid by the representative 

consumer; i  is the nominal rate of return earned on government bonds; S  is the sum 

of dividends received by the representative consumer, w is the wage rate;  >0 is the 

transaction cost per unit of VY; δ 0 is the rate of depreciation of capital; and r = 

rental rate of return on capital.
5
  As we shall see below, parameters in this stochastic 

                                                 
4
 Leeper and Sims describe the model’s consumer as a “representative consumer” maximizing utility 

subject to constraints in total consumption of goods and leisure.  This convention is unusual, since in 

aggregation theory, Gorman’s  representative consumer makes decisions in per capita variables, not 

totals.  But as used empirically by Leeper and Sims, the resulting Euler equations are equivalent to 

those that would have resulted from a per capita decision for the representative consumer.   
5
 Transactions are assumed by Leeper and Sims to be proportional to V and Y, with  being the 

proportionality constant.  The overdot is used throughout to designate time derivative. 
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dynamic general-equilibrium model are not necessarily assumed to be constant or 

deterministic. 

 The firms’ optimization problem is  

 
1 1{ ( ) ( ) (( ) ) }max X C g QI A K L rK wL C g I                  , 

where g  is the level of government purchases.  The following are parameters:  A>0, 

>0, θ>0, μ 0, and 0σ 1.  Investment goods produced by the firm, I  , include 

both those bought by the existing population, Z, and those purchased by the 

government for distribution to the newborn. Thus, a market-clearing condition is 

I Z nK   , where n = the fraction of existing capital purchased by the government 

for distribution to the newborn.
6
 

 In this model, the state variables satisfy the following differential equations: 

 
1

( )
iD

M D Y XC QZ
P P

       , (1) 

 

 K Z K  , (2) 

 

 (1 (1 )) (1 )(1 ) (1 ) log( )
1 1

L X P CC i
C L X P L


      



 


           

 

   
 , (3) 

 (1 2 )
P Q r

i V
P Q Q

     


, (4) 

where equation (1) represents the consumers’ budget constraint, (2) is the law of 

motion for capital, and (3)and (4) are first-order conditions from the consumers’ 

optimization decision.   

 In addition to satisfying the four dynamic equations, the state variables satisfy 

the following algebraic constraints:  

 

1
Y

X
C g


 

  
 

, (5) 

 

 

1
Y

Q
Z nK






 
  

 
, (6) 

 

                                                 
6
 We are using Leeper and Sims’ definitions, which we ourselves are not advocating.  Another view 

could equate n with population growth rate so that nK could be interpreted to include capital endowed 

to the young generation by the old. 
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, (8) 

 

 XC VY XC   , (9) 

 

 Y rK wL S   , (10) 

 

 
PY

V
M

 , (11) 

 

 ( ) ( )X C g Q Z nK Y    , (12) 

 

 
1

(1 2 )
1

w C
V

X L







 


, (13) 

 

 2i V . (14) 

 

 The relations (5)-(8) are obtained from the first-order conditions by 

maximizing the firms’ objective function. Equation (9) defines consumption net of 

transactions costs, with total output serving as a measure of the level of transactions at 

a given point in time.  Equation (10) defines income.  Equation (11) is the income 

velocity of money.  Equation (12) is the social resources constraint.  Equations 

((13),(14)) are obtained from the first-order conditions for the consumers’ decision.  

 The control variables are the government policy variables, consisting of the 

nominal rate of return on government bonds, i, and the level of lump-sum taxes, τ.  

Leeper and Sims (1994) introduced the following monetary and tax policies into the 

model.  The monetary policy rule is  

                          
1

𝑖

𝑑𝑖

𝑑𝑡
= 𝑎𝑝 log  

𝑃

𝑃 
 + 𝑎𝑖𝑛𝑡  

𝑃 

𝑃
 + 𝑎𝑖 log  

𝑖

𝛽
 + 𝑎𝐿log  

𝐿

𝐿 
 + 𝜀𝑖 ,            (15) 

and the tax policy is  

 log( )L inf x
d L P D D

b b b b
dt C C C L P PY PY

 
  


  

         
   


.            (16) 

The overscored variables denote steady state values, so that D Y  is the steady state 

debt-to-income level, where income is measured by Leeper and Sims as GNP.  The 
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free parameters are D Y , the steady state price level, P , the a ’s, and the b ’s.  The 

disturbance noises are i  and  .  

 In this model, it is conventional to use c C   , rather than  , as a control. 

Therefore, the two control variables are i  and c .  The parameters and exogenous 

variables, n , g ,  ,  ,  ,  , A , and  , are specified by Leeper and Sims to follow 

logarithmic first-order autoregressive (AR) processes in continuous time, while   is 

specified to be a logarithmic first-order AR in unlogged form.  However, we analyze 

the structural properties of (1)-(14) without external disturbances.  As a result, in 

equation (3), we set 0   and treat   as a fixed parameter, along with the model’s 

other parameters, which are all treated as fixed.  We treat the exogenous variables as 

realized at their measured values.  The extension of our analysis to the case of 

stochastic bifurcation is a subject for future research.  

 The original form (1)-(14) has 12 state variables and 14 equations.  For 

analytical investigation, it is best to have as few state variables as possible.  For this 

purpose, we next reduce the dimension of the problem by temporarily eliminating 

some state variables.  We contract to the following 7 state variables  

 

D

P

C

L

K

Z

Y

 
 
 
 
 

  
 
 
 
 
 

x . (17) 

The remaining state variables can be written as unique functions of x.  

 By eliminating M C V Q X     from the independent state variables, we can 

determine directly from (1)-(14) that x satisfies the following equations.  

 
1

( )
Y i

D P i Y
P P





      

 

1 1

22
c

Y iiD Y Y
Y C L C i

P C g Z nK V

 


 


 
   

        
   

 , (18) 

 
  

 
1

1 (1 )( ) 1
(1 (1 ))( )

( )

VY C g
C

C gC VY C g
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1 1

1

(1 (1 )) ( ) 1 (1 )(1 )
( )

1( )

V Y C g P
Y L

Y P LC VY C g

 

 

      



 



     
   

 


   

 

1

1

( ) 1

( ) 2

Y C g
i i

C VY C g i

 

 


 






  

 
, (19) 

 

 
1 1(1 )( ) (1 2 ) ( )

P Y Z nK a
V Y Z nK K i

P Y Z nK


   

  


  
        



   
, (20) 

 

 K Z K  , (21) 

 

 0 ( ) ( )C g Z nK Y       , (22) 

 

 0 K L a Y        , (23) 

 

 

1
1

1

( ) 1 1
0 (1 2 ) ( )

1 1

a Y C g V C
V Y C g

L LL

   
 



  


 

 




  
    

 
. (24) 

 

 

 For the ease of notation, we denote equations (18)-(24) as  

 

 ( ) ( )  h x u x f x u , (25) 

 ( ) 0 g x u , (26) 

 

Where equations (25) contain the four equations, (18) – (21), and equations (26) 

contain the three equations, (22), (23), and (24).  We define x to be the 7-dimensional 

state vector, and u to be the 2-dimensional control vector.  The functions h(x,u) 

comprise a matrix having dimension 4 7 , while f(x,u) is a 4 1  vector of functions.  

The dimension of the vector of functions g(x,u) is 3 × 1.  Equation (25) describes the 

nonlinear dynamical behavior of the model, and (26) represents the algebraic 

constraints, which are nonlinear.  Many systems can be described in the form of (25) 

and (26).  Models in that form are called nonlinear descriptor systems in the 

mathematical literature on nonlinear dynamics.
7
   

 We shall use m , 1m , 2m , and l  (with 1 2m m m  ),  to denote respectively 

the dimension of x, the number of differential equations in (25), the number of 

algebraic constraints in (26), and the dimension of the vector of control variables, u.  

                                                 
7
 The model developed in Kim (2000) is also in that form. 
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With the Leeper and Sims model, 7m  , 1 4m  , 2 3m  , and 2l  .  

 The steady state of the system ((25),(26)) for the 7 state variables, x, 

conditionally on the setting of the controls, u, can be solved from the following 

system of 7 equations equations:  

 ( ) 0 f x u , (27) 

 ( ) 0 g x u . (28) 

The existence and uniqueness of the steady state follows from Leeper and Sims 

(1994).  We denote the steady states of x and u by x  and u , respectively, where u  is 

found from (15) and (16) in the steady state to be    

 

,

0,

.
c

i

i

C












  (29) 

In particular, the first equation of (29) is found from (15) in the steady state, the 

second equation from the definition of steady state, and the third equation from (16) 

in the steady state.  The joint values of x  and u  are solutions to (27)-(28), and (29). 

The resulting steady state is the equilibrium of (25)-(26), when the control variables 

are set at their steady state.  

 The vector of 10 parameters in the steady state system is  

 [ ]a          p  

where the prime denotes transpose.  Leeper and Sims (1994) estimate the parameters 

with quarterly data from 1959 to 1992.  Although g is not a parameter of tastes or 

technology, it is taken as a fixed value by the private sector at its setting by the 

government.  

 The constraints on the parameter values and g are:  

 0 1  , 0  , 0 1  , 1  , 0  , 0 1  , 0   0g  .   (30) 

3.  Singularity Bifurcation in the Leeper and Sims Model 

 We explore the structural properties of the Leeper and Sims model in a small 

neighborhood of the steady state, ( )x u , by using local linearization around the 

steady state. The linearized version of the system ((25),(26)) is  

 

 1 1 1 E x A x B u  (31) 
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 2 2 0 A x B u  (32) 

where  

𝐄1 = 𝐡 𝐱 , 𝐮  ∈ ℝ𝑚1×𝑚 = ℝ4×7, 

𝐀1 =
𝜕𝐟(𝐱,𝐮)

𝜕𝐱
|𝐱=𝐱 ,𝐮=𝐮 ∈ ℝ𝑚1×𝑚 = ℝ4×7, 

𝐀2 =
𝜕𝐠(𝐱,𝐮)

𝜕𝐱
|𝐱=𝐱 ,𝐮=𝐮 ∈ ℝ𝑚2×𝑚 = ℝ3×7, 

𝐁1 =
𝜕𝐟(𝐱,𝐮)

𝜕𝐮
|𝐱=𝐱 ,𝐮=𝐮 ∈ ℝ𝑚1×𝑙 = ℝ4×2, 

𝐁2 =
𝜕𝐠(𝐱,𝐮)

𝜕𝐮
|𝐱=𝐱 ,𝐮=𝐮 ∈ ℝ𝑚2×𝑙 = ℝ3×2.  

 

Equation (31) has 4 equations, and equation (32) has 3 equations.  

The linearized system ((31),(32)) is solvable if it is regular.  Using the relevant 

regularity condition from Gantmacher (1974), we have the following solvability 

condition, which must hold for some values of the determinant’s parameter, s: 

 
1 1

2

det( ) 0
s  

  
 

E A

A
 

If that regularity condition is violated for all s, the linearized system either has 

multiple solutions or no solution. We randomly chose parameter values within the 

theoretically feasible region and observed that the Leeper and Sims model, as 

expected, is regular.  

 To study the structural properties of the Leeper and Sims model, we further 

transform the linearized system ((31),(32)) into the following form.  

 

Definition 3.1 Two systems  

  Ex Ax Bu  (33) 

and  

  Ey Ay Bu   (34) 

are said to be restricted system equivalent (r.s.e.) if there exist two nonsingular 

matrices, 1T  and 2T , such that  

𝐓1𝐄𝐓2 = 𝐄 , 

𝐓1𝐀𝐓2 = 𝐀 , 

𝐓1𝐁 = 𝐁 , 

𝐱 = 𝐓2𝐲. 
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 The transformed system (34) can be obtained by substituting the coordinate 

transform, 𝐱 = 𝐓2𝐲, into (33) and then multiplying both sides by 1T  from the left.  

The relationship of r.s.e. permits transforming a system into a convenient form, while 

preserving important properties.  

 We next transform (31)-(32) into a suitable r.s.e. form.  First, denote  

 1( )Er rank E , 

where rE  {1,2,3,4}.  Then there exist nonsingular matrices 𝐓1 ∈ ℝ4×4 and 𝐓2 ∈

ℝ7×7 such that  

 1 1 2

0

0 0

Er
 

  
 

I
T E T , 

which is a 4×7 matrix.  Consider the following coordinate transform:  

𝐱 = 𝐓2  𝐲1
𝐲2
 ,  

where 𝒚1 ∈ ℝ𝑟𝐸  and 𝒚2 ∈ ℝ𝑚−𝑟𝐸 = ℝ7−𝑟𝐸 . 

Substituting that form of x into (31)-(32) and then multiplying both sides of 

(31) by 1T , we find that (31)-(32) is r.s.e. to  

                    𝐲 1 = 𝐀11𝐲1 + 𝐀12𝐲2 + 𝐁11𝐮,                                                 (35a) 

                    0 = 𝐀21𝐲1 + 𝐀22𝐲2 + 𝐁12𝐮,                                                  (35b) 

                    0 = 𝐀31𝐲1 + 𝐀32𝐲2 + 𝐁2𝐮,                                                    (35c) 

where  

 
𝐀11 𝐀12

𝐀21 𝐀22
 = 𝐓1𝐀1𝐓2,  

𝐁11

𝐁12
 = 𝐓1𝐁1,  𝐀31 𝐀32 = 𝐀2𝐓2.  

Note that in acquiring (35c) from (32), we did not premultiply by T1.  

Differential equation system, (35a), contains rE equations, (35b) contains 4-rE 

equations, and (35c) contains 3 equations.  Also note that 𝐀11 ∈ ℝ𝑟𝐸×𝑟𝐸 , 𝐀12 ∈

ℝ𝑟𝐸×(7−𝑟𝐸), 𝐀21 ∈ ℝ(4−𝑟𝐸)×𝑟𝐸 , 𝐀22 ∈ ℝ(4−𝑟𝐸)×(7−𝑟𝐸), 𝐀31 ∈ ℝ3×𝑟𝐸 , 𝐀32 ∈ ℝ3×(7−𝑟𝐸), 

𝐁11 ∈ ℝ𝑟𝐸×2, and 𝐁12 ∈ ℝ(4−𝑟𝐸)×2, while y1 is an rE dimensional vector and y2 is a 7 - 

rE dimensional vector. 

 Combining equations (35a) and (35b), we have 

                    𝐲 1 = 𝐀11𝐲1 + 𝐀12𝐲2 + 𝐁11𝐮,                                                 (36a) 

                    0 = 𝐀 21𝐲1 + 𝐀 22𝐲2 + 𝐁 12𝐮,                                                  (36b) 

where  

𝐀 21 =  
𝐀21

𝐀31
 , 𝐀 22 =  

𝐀22

𝐀32
 , 𝐁 12 =  

𝐁12

𝐁2
 . 
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Note that 𝐀 22  is a square matrix of dimension (7 – rE) × (7 – rE). 

If 𝐀 22  is nonsingular, it is possible to solve for y2 from the algebraic constraint 

equation (36b). In this case, we have  

                    𝒚2 = −(𝐀 22)−1(𝐀 21𝐲1 + 𝐁 12𝐮).                                              

Substituting this form of y2 into (36a), we obtain  

                        𝒚 1 =  𝐀11 − 𝐀12𝐀 22
−1𝐀 21 𝒚𝟏 +  𝐁11 − 𝐀12𝐀 22

−1𝐁 12 𝐮,                    

or equivalently, 

                        𝒚 1 = 𝐂𝒚𝟏 + 𝐃𝐮,                                                                                (37) 

where 𝐂 = 𝐀11 − 𝐀12𝐀 22
−1𝐀 21 ∈ ℝ𝑟𝐸×𝑟𝐸  and 𝐃 = 𝐁11 − 𝐀12𝐀 22

−1𝐁 12 ∈ ℝ𝑟𝐸×2. 

Hence, if 𝐀 22  is nonsingular, the dynamics of y1 can be explained entirely in terms the 

system of ordinary differential equations, (37).  The algebraic relationship between y1 

and y2 in equation (36b) is needed solely to determine the derived dynamics of y2. 

 However, this transformation would not be possible, if 𝐀 22  were singular.  

Hence, it also is true that the untransformed linear system ((31),(32)) is equivalent to 

((37),(36c)), only when 𝐀 22  is nonsingular.  Settings of the parameters of 𝐀 22  that 

cause that matrix to become singular produce a “singularity bifurcation” boundary 

within the parameter space, as we demonstrate and explore further below.   

As explained in Barnett and He (2001,2004,2006), the dimension of dynamics 

change, when parameters move onto a singularity bifurcation boundary.  Even if the 

parameters do not move onto the bifurcation boundary, but instead cross that 

boundary between two regions within which the matrix is nonsingular, the nature of 

the dynamics will change dramatically.   Consequently, the dynamics of the system 

((31),(32)) could be dramatically different from those of ordinary linear differential 

equations, if 𝐀 22  were singular.  The dynamics also would change substantially, if 

𝐀 22  moves between two settings located on opposite sides of a singularity bifurcation 

boundary.  But the dimension of the dynamics will change, only if 𝐀 22  becomes 

exactly singular, putting the model directly on a singularity bifurcation boundary.  

 To see further what could happen when 𝐀 22  is singular, we rewrite the 

linearized system ((36a),(36b)) as  

                                          
𝐈𝑟𝐸

𝟎

𝟎 𝟎
  

𝐲 1
𝐲 2

 =  
𝐀11 𝐀12

𝐀 21 𝐀 22
  

𝐲1

𝐲2
 +  

𝐁11

𝐁 12
 𝐮.                (38) 

If the Leeper and Sims model is regular, so is the matrix pair  
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𝐈𝑟𝐸

𝟎

𝟎 𝟎
 ,  

𝐀11 𝐀12

𝐀 21 𝐀 22
  , 

which is in the form of a matrix pencil. 

 For a regular matrix pencil, there exist nonsingular matrices 1T  and 2T  such 

that
8
  

𝐓 1  
𝐈𝑟𝐸

𝟎

𝟎 𝟎
 𝐓 2 =  

𝐈𝑚 1
𝟎

𝟎 𝐍
  and 𝐓 1  

𝐀11 𝐀12

𝐀 21 𝐀 22
 𝐓 2 =  

𝐀 1 𝟎
𝟎 𝐈𝑚 2

 , 

where 1 2 mm m    and N is a nilpotent matrix.  By the definition of nilpotent matrix, 

there exists a positive integer 1d   such that 

 
d N 0 . 

The smallest such integer d  is called the nilpotent index of N.  

 Clearly N = 0 satisfies the definition of nilpotence.  The following is another 

example of a nilpotent matrix:  

 

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

0 0 0 0 0

 
 


 
   
 

 
  

N . (39) 

 Consider the coordinate transform  

 
𝐲1

𝐲2
 = 𝐓 2  

𝐳1

𝐳2
 . 

Substituting for y in equation (38) and multiplying both sides of (38) by 1T  from the 

left, we have another r.s.e. form of ((31),(32)),  

                                                                 𝒛 1 = 𝐀 1𝐳1 + 𝐁 1𝐮,                                                       (40) 

                                                                 𝐍𝒛 2 = 𝐳2 + 𝐁 2𝐮,                                                        (41) 

where  

 
𝐁 𝟏

𝐁 𝟐

 = 𝐓 1  
𝐁11

𝐁 12
 .  

 The solutions to (40) and (41) are respectively,  

 1 0

0

( )
1 1 1 1(0) ( ) ( )

t t t
te e t d  

  
A Ay y B u
    

 

                                                 
8
 See Gantmacher (1974). 
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1 1

( 1) ( )
2 2 12

1 0

( ) (0) ( )
d d

k k k k

k k

t t
 



 

   y N y N B u , 

where 0 0t   is the initial time, ( 1)k  (t) is the derivative of order k-1 of the  

Dirac delta function, and ( )ku  denotes the k -th order derivative of u.
9
   

 Unless N 0  or the initial state 2(0) y 0 , there exist the impulse terms in the 

first summation in the solution for 2y , as well as the smooth derivative terms of u in 

the second summation.  In fact when N 0 , the above solution for y2 does not apply, 

although the solution for y1 above remains valid.  This solution structure with nonzero 

N is very different from that of ordinary differential equations, such as (40), for y1.  

 The first summation in the solution for 2y could produce shock effects to the 

state response of 2y .  The Dirac delta, which is ( 1)k   when k=1, is often called the 

unit impulse function.
10

  But if N 0 , we have from (41) that 

𝐳2 = −𝐁 2𝐮, 

which is a smooth algebraic relationship between 2y  and u. This bifurcation 

phenomenon at N 0  is consistent with the following theorem, proving equivalence 

between bifurcation at 𝐍 ≠ 𝟎 and at singularity of 𝐀 22 .  

 

Theorem 3.1.  If both systems ((40),(41)) and ((36a),(36b)) are r.s.e. forms of the 

same linearized system ((31),(32)), then  

 N 0 , 

if and only if 𝐀 22  is nonsingular, i.e., 𝑑𝑒𝑡(𝐀 22) ≠ 0. 

 

Proof.  If N 0 , then ((40),(41)) and ((36a),(36b)) are r.s.e. forms with 𝐀 22 = 𝐈𝑚 2
, 

which is nonsingular. 

                                                 
9
 We use e raised to a matrix power to designate the matrix of e to the power of each element of the 

matrix power.  Regarding the form of the solutions to (40) and (41), see Cobb (1982, 1983).  The 

discrete analog of the delta function is the Kronecker delta. 
10

 The Lebesgue  integral of the Dirac delta function from minus infinity to plus infinity is 1.0.  

Formally the Dirac delta, δ(t), is not a function but the limit of a sequence of functions (the nascent 

delta functions).  In that limit, the Dirac delta is a measure with unit mass at the origin and is often 

called the unit impulse function.  The antiderivative of the Dirac delta is the Heaviside (unit) step 

function, so that the Dirac delta can be viewed as the derivative of the step function.  Since the Dirac 

delta is a measure, its derivatives require careful definition.  Those derivatives are higher order 

“singularity functions” called “doublets,” “triplets,” etc.  It can be shown that the n’th derivative of δ(t) 

is δ
(n) 

= (-1)
n
n! δ(t)/t

n
.  Note that if δ(x) is the unit impulse at t=0, then δ

(n)
(t) is a rescaled impulse at 

t=0. 
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 Conversely, assume 𝐀 22  is nonsingular.  Then choose  

                            𝐓 1 =  
𝐈𝑚 1

−𝐀12𝐀 22
−1

𝟎 𝐈𝑚 2

 , 𝐓 2 =  
𝐀11 − 𝐀12𝐀 22

−1𝐀 21 𝐀12𝐀 22
−1

𝟎 𝐈𝑚 2

 .    (42) 

Direct verification confirms that  

𝐓 1  
𝐈𝑟𝐸

𝟎

𝟎 𝟎
 𝐓 2 =  

𝐈𝑚 1
𝟎

𝟎 𝟎
  and 𝐓 1  

𝐀11 𝐀12

𝐀 21 𝐀 22
 𝐓 2 =  

𝐀 1 𝟎
𝟎 𝐈𝑚 2

 , 

with  

𝐀 1 = 𝐀11 − 𝐀12𝐀 22
−1𝐀 21. 

Therefore, we have that N 0 .  This completes the proof.                                          █ 

 

 With the linearized model ((31),(32)) singularity of 𝐀 22  results in completely 

different dynamical solution behavior.  As a result, we say a singularity bifurcation 

occurs, when  

 𝑑𝑒𝑡(𝐀 22) ≠ 0. (43) 

The preceding condition has another form in terms of the original coefficient matrices 

of ((31),(32)), as shown in the following theorem.  

 

Theorem 3.2.  Assume that 1E  has full row rank, so that 

 1 1( )rank mE . (44) 

Then 𝐀 22  is nonsingular if and only if the m×m (i.e., 7×7) matrix 

 
1

2

 
 
  

E

A
 

is nonsingular, so that 

 
1

2

( )rank m
 
 
  


E

A
. (45) 

 

Proof.  Denote  

 
1 2

1 2
1 2

ˆ ˆ
   

     
   

T 0 T 0
T T

0 T 0 T

 

 
, 

where 1T  and 2T  are defined as in (42).  Then both 1T  and 2T  are non-singular.  

 Consider the following matrix  
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1 1

2

1

 
 
 
 
 
 

E A

0 A
Λ

0 E

0 0

. 

Then we have   

𝐓 1𝚲𝐓 2 =  
𝐓 1  

𝐄1

𝟎
 𝐓 2 𝐓 1  

𝐀1

𝐀2
 𝐓 2

𝟎 𝐓 1  
𝐄1

𝟎
 𝐓 2

 =  

𝐈𝑚 1
𝟎

𝟎 𝟎

𝐀11 𝐀12

𝐀 21 𝐀 22

𝟎 𝟎
𝟎 𝟎

𝐈𝑚 1
𝟎

𝟎 𝟎

 , 

with 

                               𝑟𝑎𝑛𝑘(𝐓 1𝚲𝐓 2) = 2𝑚 1 + 𝑟𝑎𝑛𝑘(𝐀 22).                                         (46) 

But if 1E  has full row rank, 11m m  , then 

 1 1 1( )rank m m  E   

and  

 

1 1

22
1

1 1

( ) ( ) ( ) ( )rank rank rank rank
 
 
  

 
 
   
 
 
 

E A

A0 A
Λ E

E0 E

0 0

 

 
1

1
2

( )m rank
 
 
  

 
E

A
. 

 Combining the previous equation with (42), we obtain  

                                                   𝑟𝑎𝑛𝑘  
𝐄1

𝐀2
 = 𝑚1 + 𝑟𝑎𝑛𝑘(𝐀 22).                             (47) 

Note that 𝐀 22 ∈ ℝ𝑚 2×𝑚 2  and 𝑚 2 = 𝑚2.  Hence equation (47) says that 𝐀 22  is 

nonsingular if and only  

 
1

2

 
 
  

E

A
 

is nonsingular.                █ 

 

 Therefore, the following condition for singularity bifurcation is provided by 

Theorem 3.2: 

 
1

2

det( ) 0
 
 
  


E

A
.                                                                                                                    (48) 

Note that 2x  is solvable from (37) alone if 𝐀 22  is nonsingular. Therefore, singularity 
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condition implies the case in which 2x  is not readily solvable from the algebraic (37) 

alone. We need to take into account of the dynamic constraint (36).  

 We next introduce another property to have a closer look at the singularity 

condition.  

 

Corollary 3.1.  Consider the following system describing the dynamics of (x,v), 

where v ∈ ℝ𝑚3  for arbitrary m3. 

    𝐄1𝐱 + 𝐄1𝐯𝐯 = 𝐀1𝐱 + 𝐀1𝐯𝐯 + 𝐁1𝐮,           (49a) 

     𝐯 = 𝐀𝐯𝐯 + 𝐁𝐯𝐮,                       (49b) 

          𝟎 = 𝐀2𝐱 + 𝐀2𝐯𝐯 + 𝐁2𝐮,              (49c) 

where 𝐄𝟏𝐯, 𝐀1𝐯, 𝐀𝐯 , Bv , 𝐀𝟐𝐯 are arbitrary matrices of dimension m1× m3, m1× m3, 

m3×m3, m3×l, and m2×m3, respectively, and the other matrices are as defined above.  

Then the singularity condition for ((49a),(49b),(49c)) is the same as that for 

((31),(32)).  

 

Proof.  According to Theorem 3.2, the singularity condition for ((49a),(49b),(49c)) is  

  

det 
𝐄1 𝐄1𝐯

𝟎 𝐈
𝐀2 𝐀2𝐯

 . 

By eliminating the second column, that determinant condition is equivalent to (48), 

which is the singularity condition for ((31),(32)).                                 █ 

 

 Corollary 3.1 says that adding (or deleting) state variables that can be modeled 

by ordinary differential equations does not change the singularity condition.  This 

property is useful in reducing the dimension of the problem under consideration.  For 

example, we could drop the Leeper and Sims’ model’s state variable, K , from its 

state vector, (17), in the system ((31),(32)), without affecting the singularity 

condition.  

 By thereby dropping the state variable, K , the singularity condition becomes  

 
1

2

det( ) 0
  

 
 

E

A
, (50) 

where 
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 1 23 26

1 1
0 0 0

1 (1 )(1 )
0 0

1

1 1 1
0 0 0

Y

P PV V

e e
P L

P Z nK Y

 

 

 
 
 

  
 
 

  
  

E  

and  

 

1 1 1

2 23 2624

1 1

0 0 ( ) 0 ( )

0 0 0

0 0 0 0

C g Z nK Y

a a a

L A Y

  

  

  

 

  
 
 
 
   
  

 

A , 

with 

 
2

23
1 (1 ) 1

[1 ( 1)( ) ]e VY C g
C gC

   
  



  
    


, 

 

 
1

26
1 (1 ) 1

[ ( ) ]e VY C g
YC

   
  



  
    , 

 

 
1

23
1 1

(1 2 ) (1 )( )
1

a V A Y L C g
L

     
 



   
    


, 

 

 
2 1

24 2

1
(1 2 ) ( 1) ( )

(1 )

C
a V A Y L C g

L

     
 



   
    


, 

 

 
1 1 1

26 (1 2 ) ( ) ( )a V A Y L C g              . 

Note that the prime does not designate transpose but rather deletion of the state 

variable, K, from the vector x in equation (17) and deletion of equation (21), which is 

the corresponding differential equation for capital.  

 Direct calculation shows that (50) is equivalent to  

 0 = 

2623

1 1 1

2623 24

1 1

1(1 )(1 )

1

( ) 0 ( )det( )

0

0 0

ee
Z nKL

C g Z nK Y

a a a

L A Y

  

  

 

  

 

 
 
 
   
 
 
 
 

    

 




   ,           (51) 

where  
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1

26
1 (1 )

[ ( ) ]VY C ge
C

  
  



 
   . 

 

As we shall demonstrate later, singularity does occur within the theoretically feasible 

parameter regions.  

 In systems theory, bifurcation is said to occur if change of structural dynamic 

solution properties occurs, when a parameter crosses a certain value.  Such a critical 

value is called a bifurcation point.  Many types of bifurcation are known, such as 

saddle-node bifurcation, transcritical bifurcation, and Hopf bifurcation.  Bifurcation 

analysis is particularly useful in locating subsets of the parameter space supporting 

various dynamical behaviors of a system, such as the existence of limit cycles, 

multiperiodic instability, monotonic stability, or damped stability.  

 We find that the Leeper and Sims model has structural changes in its 

dynamics, and the boundary determined by (51) is a singularity-induced bifurcation 

boundary.  To the best of our knowledge, this is the first time that this type of 

bifurcation has been found in a macroeconometric model.  

 Leeper and Sims (1994) proposed government policy control using the 

monetary policy (15) and the tax policy (16). To investigate bifurcation of the closed-

loop system under the control of government policies, let us augment the state 

variable to include the two controls, as follows: 

 c

C

D

P

C

L

K

Z

Y

i



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x . (52) 

With this new augmented state vector, the linearized system ((31),(32)) becomes  

 c1 1
c c

cE A xx , (53) 

 𝟎 = [𝐀2 𝟎]𝐱𝑐 , (54)  

where  𝐄1
𝑐 ∈ ℝ𝑚1

𝑐 ×𝑚𝑐
= ℝ6×9, 𝐀1

𝑐 ∈ ℝ𝑚1
𝑐 ×𝑚𝑐

= ℝ6×9, 1 1 2cm m  , and 2cm m  .  
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4.  Numerical Results 

 In this section, we numerically locate the singularity-induced bifurcation 

boundaries.  We use the condition (51) applied to the closed-loop system (54).
11

   

 We first test all pairs of parameters to determine those pairs that reach 

bifurcation boundaries, when the pair is varied with all other parameters set at their 

point estimates.
12

 Pairs of parameters permitted to vary about their point estimates are 

allowed to take values within the intersection of their theoretically feasible ranges and 

their 95% confidence intervals of their estimated values.  In particular, the 

intersection, H,  of (30) and 

 ( ) [ ( ) , ( ) ]i ip i p i c p i c    ,  

where ( )p i  is the estimated value of parameter ( )p i , i  is the standard error of the 

estimate, and c  is the critical value of the 95th-percentile confidence interval for 

N(0,1).
13

   

 Figures 4.1  and 4.2 show some of the sections of the singularity-induced 

bifurcation boundary that we located.  Figure 4.1 displays 2-dimensional sections with 

the other parameters set at their point estimates, while figure 4.2 displays 3-

dimensional sections with the other parameters set at their point estimates.
14

  In the 

first section of figure 4.2, we display a section varying μ and g, while in the second 

section, we display μ versus β.  The range of the plots’ axes are within the H intervals 

about each parameter’s estimate.  Table 1 provides the point estimates, standard 

errors, and H intervals used in producing figures 4.1 and 4.2.
15

 

                                                 
11

 Regarding numerical stability, we limited our computations to the theoretical procedure mentioned 

earlier.  We did not use additional algorithms to check for numerical stability.  But since we 

encountered no stability problems with MatLab software, we had no indication of the need for 

redundant checks of numerical stability. 
12

 Hyperplanes along which only two parameters vary can fail to intersect bifurcation boundaries, even 

if they exist at other settings of some parameters. 
13

 For some parameters, standard errors are not provided in Leeper and Sims (1994).  In such 

unfortunate cases, we permitted parameter values to take values within 50% of the point estimates.  

Such a range of parameter values keep the parameters well within the theoretically feasible region.  

Another complication is produced by the fact that Leeper and Sims did not report covariances of 

parameter estimators.  Hence, in our three dimensional searches we do not have 3-dimensional 

confidence regions, but rather use the Cartesian products of the pairwise confidence intervals. 
14

 Since the parameter space is a high dimensional space, we investigated many sections of the space 

within H.  We display only the sections that we found to be particularly informative about the location 

and nature of the singularity boundary. 
15

 While β and μ are parameters, g is an exogenous variable.  What we display as “estimate” and 

“standard error” for g is the sample mean and standard deviation of g. 
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Figure 4.1.  Two-dimensional sections of a singularity-induced bifurcation 

boundary. 
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Figure 4.2. Three-dimensional sections of a singularity-induced bifurcation 

boundary. 
 

  

 

 The estimation information for the parameters  , g , and   used in figures 

4.1 and 4.2 are in Table 1.  All estimation information is taken directly from the 

Leeper and Sims paper.  We make no changes in their models, in their reported point 

estimates, or their reported standard errors.  Our experiments are conditional upon 

what Leeper and Sims have published, without modification. 

 

Table 1.  Estimation of  , g , and   

parameter  estimate  standard error  H interval   
   1.0248  0.324  [1,1.6598]   
g   0.0773*  0.292*  [0, 0.6496]   

   0.1645  0.288  [0, 0.7290]   

 *Since g is an exogenous variable, rather than a parameter, the “estimate” is the sample  

 mean and the “standard error” is the sample standard deviation. 

 

 To illustration what happens when parameter values cross the singularity 

boundary, consider the parameter  .  Table 2 displays the changes of finite 

eigenvalues, 1 8  , when   varies.  
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Table 2.  Eignevalue changes 

 

   0.080  0.120  0.160  0.165  0.170  0.200  0.240   

1   1.002  1.002  1.002  1.002  1.002  1.002  1.002   

2   0.080  0.120  0.160  0.165  0.170  0.200  0.240   

3   -0.303  -0.262  -0.220  -0.215  -0.210  -0.178  -0.135   

4   -3.558  -3.559  -3.561  -3.561  -3.561  -3.563  -3.566   

5   -0.098  -0.084  -0.077  -0.076  -0.075  -0.072  -0.069   

6   -0.002  -0.003  -0.003  -0.003  -0.003  -0.004  -0.004   

7   3.101  5.177  8.237  8.682  9.254  13.416  28.401   

8   -117.790  -204.703  -1811.413     1456.294  195.888  58.059   

   

 The first row in Table 2 contains the settings of   that we explore.  The 

second through the ninth rows are the corresponding finite eigenvalues of the 

linearized model at each setting of  . There are three more eigenvalues, which are 

not shown in the table.  Those eigenvalues are infinite.  The table shows that when the 

value of   increases and crosses the bifurcation boundary, 8  decreases rapidly to 

 , spikes suddenly from   to  , and then decreases from  .   

 Table 2 clearly shows that the Leeper and Sims model has a structural change 

in dynamics, when   crosses the singularity-induced bifurcation boundary.  The two 

regions separated by the boundary exhibit drastically different dynamical behaviors.  

Also note the very small range of values of   displayed along its axis in figures 4.1 

and 4.2.  That displayed range consists of a small subset of values within the interval 

H.  Clearly, very small changes in   can cause bifurcation, independently of the 

settings of g or  .   

 As shown by Table 2, such singularity bifurcations can have dramatic effects.  

The number of dynamic equations and the number of algebraic equations change, 

when the singularity-induced bifurcation boundary is reached.   

5. Conclusions 

 The Leeper and Sims Euler-equations macroeconometric model is 

representative of a larger class of systems, designed to address the Lucas critique.  

The most distinguishing characteristic of this class of system is the models’ form,  

 ( )Ex f x , 
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in which the matrix E could become singular at some settings of the parameters.  In 

this paper, we have examined the basic properties of such a model:  the important 

Leeper and Sims model.  We propose an approach for bifurcation analysis of such 

models, and most importantly discover the existence of singularity-induced 

bifurcations for the first time in a macroeconometric model.  

 Within a small region of the estimated parameter values, we locate and 

characterized the nature of the singularity-induced bifurcation.  The dynamic order of 

the system changes in a dramatic manner, when parameter values reach or cross the 

bifurcation boundary.  In a theoretical survey paper of various types of bifurcation, 

Barnett and He (2006) have argued that singularity bifurcation may not be unusual in 

Euler equations models; and we have, in the current paper, illustrated that theoretical 

speculation in a well known model from that class.  

 With the policy-relevant Bergstrom Keynesian second-order differential-

equations macroeconometric model of the UK economy, Barnett and He (1998,1999, 

2001, 2002) found three types of bifurcation boundaries within the parameters’ 

confidence regions.  Subsequently with New Keynesian models, Barnett and Duzhak 

(2008,2009) have found Hopf and flip (period doubling) bifurcation boundaries.  Now 

in the current paper, we have found a particularly dramatic type of bifurcation with an 

Euler equations model, having deep parameters that are invariant to policy rule 

changes and thereby immune to the Lucas critique.   

 In all of these studies, the models used are highly policy-relevant and were not 

modified from their influential previously-published forms.  While Grandmont’s 

model has been criticized for its lack of policy relevance, we believe from the 

accumulating evidence that Grandmont’s conclusions are correct and are highly 

relevant to policy.  In particular, these results cast into doubt the dynamical inferences 

acquired in the traditional manner by simulating macroeconometric models solely at 

their parameter point-estimates.  To be able to achieve robustness of dynamical 

inferences, such simulations should be made at various settings throughout the 

parameters’ confidence region.  

 Although the Leeper and Sims model is specified as a closed economy model, 

it is implicitly open economy as estimated by Leeper and Sims, since the US data 

used in the model includes imported and exported goods.  A logical extension of this 

experiment would be to apply our procedure to an explicitly open-economy Euler-

equations model.  Because of the connection between Euler-equation implicit 
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functions and singularity bifurcation, we would expect similar results with an 

explicitly open-economy Euler-equations model. 
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