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Abstract

Since 1950, U.S. educational attainment has increased substantially. While the

median student in 1950 dropped out of high school, the median student today at-

tends some college. In an environment with ability heterogeneity and positive sorting

between ability and school tenure, the expansion of education implies a decrease in

the average ability of students conditional on school attainment. Using a calibrated

model of school choice under ability heterogeneity, we investigate the quantitive im-

pact of rising attainment on ability and measured wages. Our findings suggest that

the decline in average ability depressed wages conditional on schooling by 31-58 per-

centage points. We also find that the entire rise in the college wage premium since

1950 can be attributed to the rising mean ability of college graduates relative to high

school graduates.

JEL: I2, J24.

Key words: Education. Ability. Skill premium.

∗For helpful comments we thank seminar participants at the Cleveland Fed, the University of Georgia,
the Clemson University Bag Lunch, and the Triangle Dynamic Macro Workshop. The usual disclaimer
applies.

†University of North Carolina, Chapel Hill, CESifo, Munich, and CFS, Frankfurt; lutz@lhendricks.org
‡Clemson University; tschoel@clemson.edu

1



1 Introduction

The question. Over the course of the 20th century, the U.S. experienced a large increase

in educational attainment. Figure 1 illustrates this trend. For each cohort born between

1896 and 1965, Figure 1 displays the fraction of men completing each of four education

categories.1 Of the men born in 1900, only about 25% completed high school. By 1965,

high school graduation had become all but universal and the median person attended at

least some college.

This dramatic increase in education raises the possibility that the average ability of

students at a given level of schooling may have declined (Juhn et al. 2005). In the 1920’s,

the typical college student belonged to a small elite. Today, half of all students attend at

least some college. Motivated by these observations, this paper attempts to answer the

question: How much did the changing ability of students affect the growth rates of wages

and human capital?

Figure 1: Education by Birth Cohort
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Motivation. We think of measured hourly wages as the product of human capital and

unobserved skill prices. If student abilities decline over time, conditional on schooling, skill

1See section A1 for details on how these statistics are constructed. The education categories are high
school dropouts (<HS), high school graduates (HS), some college (SC), and college graduates (C+). Goldin
& Katz (2008) summarize the expansion of U.S. education.
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prices grow faster than measured wages. Existing measures of wage growth, which abstract

from changing student abilities, are then downward biased. The main purpose of this paper

is to measure the magnitude of this bias.

Similarly, existing measures of skill premia abstract from changing abilities. A large

literature has documented a dramatic increase in the wages of college graduates relative

to high school graduates since 1950 (Goldin & Katz 2008). If the ability composition of

college graduates rises relative to high school graduates, existing measures of skill biased

wage growth are upward biased. The second purpose of this paper is to measure the

magnitude of this bias.

Since measured wages are the product of human capital and skill prices, any bias in

the estimation of skill price growth implies an offsetting bias in the growth rate of human

capital. Our third objective is to measure the magnitude of this bias.

Approach. Comparable, high quality measures of student abilities by education that

span long time periods do not exist. Moreover, given that ability is measured with error,

the effect of ability on wages is difficult to estimate. We therefore use a quantitative model

of school choice to measure the dispersion of ability, the correlation between ability and

schooling, and the effect of ability on wages.

Our model features finitely lived individuals of heterogeneous abilities. Ability deter-

mines the returns to schooling, but workers observe only a noisy signal of their own ability.

They then choose between discrete schooling levels. Obtaining a higher level of schooling

involves foregoing current earnings and paying some costs, but leads to higher future earn-

ings. Our model is structured so that, with perfect information, higher ability workers go

to school longer. However, we assume that students are imperfectly informed about their

own ability, so that educational sorting by ability is imperfect.

The key model parameters are the dispersion of ability and of the ability signal observed

by students. Conventional measures of wage and human capital growth are biased if abil-

ity is highly dispersed and educational sorting is strong (the students’ ability signals are

precise).

In our model, two exogenous driving forces lead to rising educational attainment over

time: (i) changes in the costs of schooling and (ii) changes in the skill specific wages. As

education rises, the ability composition of each education level changes.

We calibrate the model to match data on U.S. educational attainment, wages, and

abilities over the period 1950 to 2000. Specifically, using U.S. Census data, we estimate
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the educational attainment and wages earned by the cohorts born between 1916 and 1965.

Using NLSY79 data, we estimate the joint distribution of schooling, measures of ability, and

wages for the 1960 cohort. Finally, we estimate the dispersion of the persistent component

of wages from PSID data. These form our calibration targets.

Findings. In our preferred calibration, ability heterogeneity implies a standard deviation

of log wages near 0.5. This large ability dispersion, together with the dramatic expansion

in U.S. education observed in the data, implies substantial declines in the mean abilities of

students at all education levels. Except for college graduates, the model implies that unob-

served skill prices grew at least twice as fast as measured wages. We also find substantial

changes over time in the relative abilities of workers with different education. Notably, our

model attributes the entire growth in the college wage premium since 1950 to the rising rel-

ative abilities of college graduates versus high school graduates. The role of ability changes

is smaller for the relative wages of high school dropouts and college dropouts.

We find that our results remain robust when we vary the dispersion of abilities and

the degree of educational sorting by ability. Our results are only overturned when ability

dispersion is so small that wage variation is mostly due to luck rather than ability. However,

in that case the model is at odds with the empirical relationships between wages, schooling,

and abilities that we document in the paper.

Outline. The paper is structured as follows. Section 2 describes the model and derives

its implications for the relationship between individual abilities and school choices. The

calibration procedure and targets are presented in Section 3, followed by our findings and

the sensitivity analysis in Section 4. The final section concludes.

1.1 Related Literature

A small number of previous studies have addressed the question we pose. Finch (1946)

and Taubman & Wales (1972) collect aptitude or achievement test score data from several

studies to identify changes in student abilities over time. We discuss their findings further

in Section 4. Juhn et al. (2005) have questioned the comparability of these studies on

the grounds that they pool data based on different aptitude tests and covering different

samples.

Bishop (1989) addresses the comparability problem by using the Iowa Test of Educa-
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tional Development, which has been administered to 95% of Iowa schools since 1940. For

students attending grades 8, 9, and 12, his data show test scores rising until about 1965

before they start to decline. Unfortunately, Bishop’s data contain no information about

the relative scores of different education groups.

A related literature documents that students with higher test scores are more likely to

continue their education (Heckman & Vytlacil 2001; Cunha et al. 2005).

A fundamental problem with all of the test scores reported in the literature is that they

partly measure human capital produced in school rather than innate abilities. Even IQ

scores are strongly affected by schooling (Winship & Korenman 1997). Moreover, students

arguably know far more about their abilities than only their test scores (see Cunha et al.

2005, who also propose methods for identifying students’ information). Our model addresses

these issues by explicitly modeling test scores as noisy signals of students’ information about

their abilities.

Juhn et al. (2005) propose an approach that avoids measuring abilities entirely. They

investigate whether more educated cohorts earn lower wages in a given Census year and

find a weak effect. Juhn et al.’s approach faces a number of challenges. Given that cohort

education rises smoothly over time, it is difficult to disentangle the effects of experience,

cohort quality and time varying skill prices. The identifying variation in their approach

comes from the relative wage movements of young (educated) and old (less educated) co-

horts. An alternative interpretation for such wage movements has been proposed by Card

& Lemieux (2001). They show that the rising skill premium during the 1980s affected

young and old workers differently and interpret this as evidence in favor of imperfect sub-

stitutability between young and old workers. We avoid this issue by focusing our analysis

on workers within a 10 year age window.

Our work is also related to the large literature that documents the evolution of skill

premia in the U.S. and proposes a range of explanations. We refer the reader to Goldin &

Katz (2008) for references. Our analysis complements this literature. It suggests that the

changing ability composition of workers masks some movements of relative wages during

the post-war period.

Finally, our work has implications for why U.S. educational attainment increased dra-

matically since 1950. We plan to explore this question in more detail in future work.

Rangazas (2002) and Restuccia & Vandenbroucke (2008) present alternative macroeco-

nomic studies of this issue, which abstract from heterogeneity in student ability.
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2 A Model of School Choice

Outline. We develop a model of school choice to measure the changing ability composition

of workers with different educational attainment since 1950. A broad outline of the model

is as follows. The economy is inhabited by cohorts of finitely lived individuals. At birth,

each individual is endowed with an ability to learn. Based on a noisy signal of ability,

students choose among a discrete number of schooling levels. Choosing more schooling

raises expected lifetime earnings, but incurs higher schooling costs. A key assumption is

that highly able students produce more human capital per year of schooling. This leads

students who receive a favorable signal of their ability to choose longer schooling. However,

since information about ability is noisy, workers do not always choose the ex-post optimal

level of education and the correlation between ability and schooling is less than perfect.

The model accommodates two driving forces for the increase in schooling attainment

over time: changes in the relative costs of different education levels, and changes in the

relative wages earned by different school levels. The change in average ability will depend

on the source of the underlying change in attainment.

Demographics. Time is discrete, starts at year t = 0, and continues forever. Each year,

a cohort of new workers of unit measure is born. Workers live for T periods. They are

indexed by their birth cohort τ and their age v, with period t then given by t = τ + v − 1.

Timing. The timing of events over an individual’s lifetime is as follows. At birth, each

worker is endowed with an ability to learn or generate human capital from time spent in

school (A). Ability is not directly observed. Instead, the worker draws a noisy signal of A,

denoted A∗. Based on this signal, the worker chooses one of S schooling levels, indexed by

s.

She then spends Ts periods in school producing human capital, after which she enters

the labor market and works an exogenous number of hours in each period of life, earning

an exogenous hourly wage. The remainder of her time endowment is consumed as leisure.

Students sell the expected present value of lifetime earnings in an actuarially fair asset

market. The resulting payment is spent on consumption over the life-cycle.

The choice of schooling is irreversible. Students cannot return to school upon learning

their true ability. We view this assumption as a simplified version of an environment where

workers slowly learn about the true value of their education while on the job. As long
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as ability is not revealed too quickly, older workers will find returning to school generally

undesirable. This assumption also motivates why our analysis focuses on 35-44 year old

workers.

We assume that the ability distribution is log-Normal: a ≡ log (A) ∼ N (µa, σa). Con-

ditional on a, the distribution of the signal is also log-Normal: a∗ ≡ log(A∗) ∼ N (a, σa∗).

We refer to the special case σa∗ = 0 as the perfect information case. The dispersions of

ability σa and noise σa∗ are key parameters of the model.

Schooling. Upon completing school level s, a worker with ability A is endowed with

h(s, A) = (A)ηs (1)

units of skill s human capital. ηs > 0 determines the elasticity of human capital with respect

to learning ability. This human capital production function matches two key facts in the

data. First, if wages are proportional to human capital then wages are log-Normally dis-

tributed in our model, which is roughly consistent with the data. Second, if ηs is increasing

in s, then wage gains from schooling and schooling attainment increase with ability. This

leads to a positive correlation between ability and schooling (see Section 2.2), consistent

with the positive correlation between aptitude test scores and schooling we document in

U.S. data (see Section 3.1.2).

Work. At ages 1 through Ts, students are in school and do not work. After graduation,

the worker supplies h (s, A) es,v ls,v units of type s labor. es,v is an exogenous age-efficiency

profile. ls,v is an exogenous age hours profile. ls,v = 0 while in school. 1 − ls,v is consumed

as leisure.

A worker with school type s earns a wage of xtzs,t per efficiency unit of work time.

Wages are in units of the consumption good. Alternatively, we may think of workers

as producing xtzs,t units of consumption. xt is a skill neutral level of wages (or labor

productivity). It grows exogenously at the constant rate g (x).2 zs,t determines the relative

wage (or productivity) of type s labor. It grows at the constant rate g (zs). Movements in

relative wages (differences in g (zs) across skill levels) are often associated with skill-biased

technological change (e.g., Bound et al. 1992).

2In our calibrated model we allow for a trend break in skill neutral wage growth in 1975.
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Preferences. Individuals order paths of consumption (cs,q,v) and leisure according to

T
∑

v=1

βv [log(cs,q,v) + ξ log(1 − ls,v)] − χs,τ (2)

where q = (A∗, τ) denotes the worker’s type, β > 0 is the discount factor, and ξ > 0

determines the relative weight of leisure in the period utility function. χs,τ is the utility

cost of schooling. School costs measure the relative preferences of workers for time spent

in school versus work, the relative preferences of workers for college versus high school

occupations, and the relative financial costs of different education levels. Since workers have

access to complete consumption insurance, we need not specify preferences over uncertain

consumption streams.

Discussion. Our notion of ability encompasses any endowment that affects an individ-

ual’s wages or returns to schooling. It includes cognitive skills, noncognitive skills that are

valued in the labor market, preferences that affect learning effort in school, and more. We

do not take a position on which of these individual endowments are important or how they

are developed.

A number of our modeling assumptions deserve comment. Complete consumption insur-

ance simplifies the analysis without affecting the findings in an obvious direction. Whether

borrowing constraints are important for school choice is a controversial issue in the lit-

erature. Cameron & Taber (2004) find no evidence of borrowing constraints in the U.S.

However, their evidence does not apply to the early cohorts contained in our data.

The assumption that students do not perfectly observe their abilities generates imper-

fect educational sorting. The degree of sorting is important for the quantitative results

(see Section 4.2). Other forms of heterogeneity could generate imperfect sorting, such as

dispersion in school costs. We lack clear evidence to distinguish these alternatives. This

issue should be explored in future work.

We assume that hours worked vary across education groups. This is necessary so that

the model can simultaneously account for variation in wages and lifetime earnings.

The distribution of abilities is assumed to be time invariant. We are not aware of data

that speak to changes in the dispersion of abilities. However, the Flynn effect (Flynn 1984)

suggests that intelligence test scores trend up at a rate of around one standard deviation

every fifty years. As discussed in Flynn (1999), it is not clear whether the trend in test

8



scores represents a trend in intelligence or in test taking skills. We discuss the role of trends

in mean ability further in Section 2.3.

2.1 Worker’s Problem

Workers choose schooling s and a consumption path cs,q,v to maximize (2) subject a budget

constraint which equates the present value of consumption to the expected value of lifetime

earnings:
T

∑

v=1

cs,q,v

Rv
=

∫

q′
Pr(A|A∗) Y (s, A) dA (3)

where

Y (s, A) =

T
∑

v=Ts+1

xτ+v−1zs,τ+v−1 ls,ves,v h (s, A)

Rv
(4)

denotes the present value of lifetime earnings. At birth, individuals have access to complete

markets where they can buy and sell instruments that pay off conditional on the different

realizations of true ability. We assume these instruments have actuarially fair prices in the

sense that the price of a state A contingent bond equals Pr(A|A∗). R is the exogenous gross

interest rate.

2.2 Optimal Consumption and Schooling

Next, we derive expressions that characterize the worker’s consumption and schooling deci-

sions. We can solve the worker’s problem in two steps: first, we find the optimal allocation

of consumption over time given school choice; then we find the school choice that maximizes

lifetime utility.

The lifetime consumption profile obeys the standard Euler equation

cs,q,v+1 = βRcs,q,v (5)

which implies a present value of lifetime consumption given by cs,q,1Λ where Λ =
∑T

v=1 βv−1/R

is a present value factor. The budget constraint then implies a level of consumption given

by

cs,q,1 = Λ−1 E {Y (s, A) |A∗} (6)
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Lifetime utility is then given by

V (s, q) =

T
∑

v=1

βv [log (cs,q,1) + (v − 1) log (βR) + ξ log (1 − ls,v)] − χs,τ (7)

= RΛβ log
(

Λ−1 E {Y (s, A) |A∗}
)

− χ̂s,τ (8)

where

χ̂s,τ = χs,τ −

T
∑

v=1

βv(v − 1) log(βR) + ξ

T
∑

v=1

βv log(1 − ls,v) (9)

is an aggregate of all the school-specific terms that are constant across workers. Optimal

school choice satisfies

s = arg maxV (s, q) (10)

Educational sorting. We derive conditions under which the model implies positive sort-

ing. Each worker’s school choice is determined by the value gap V (s + 1, q) − V (s, q). If

this gap is positive, the worker prefers s + 1 over s. How does the gap change with the

ability signal? Note that Y (s, A) equals h (s, A) times a constant that does not depend on

ability. Therefore

∂V (s, q)

∂a∗

= RΛβ
∂ log (E {Y (s, A) |A∗})

∂a∗

(11)

= RΛβ
∂ log (E{Aηs |A∗})

∂a∗

(12)

Consider first the case of perfect information where A = A∗. In this case

∂V (s, q)

∂a
= RΛβηs (13)

The gains to higher levels of schooling are increasing in ability if and only if ηs+1 > ηs.

We assume this property through the rest of the paper. The properties of the model are

then as follows: if a student with ability A is indifferent between s and s + 1, students

with higher ability prefer s + 1, and students with lower ability prefer s. Depending on

parameters it is possible that no student is indifferent between two education categories and

hence no students choose, for instance, to attend college. However, given that we study

broad education categories, we do not consider such parameter configurations. Therefore,

we conclude: students perfectly sort by their ability. Students with higher ability go to
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school longer.

Consider next the case of imperfect information. Maintaining the assumption that

ηs+1 > ηs, students segment on expected ability, which in this model is driven by their

ability signal. Given a student with expected ability E(A|A∗) who is indifferent between

schooling levels s and s+1, students with higher expected ability prefer s+1, and students

with lower expected ability prefer s. Since the ability signal is the only determinant of

expected ability, and expected ability is strictly increasing in the signal, students segment

perfectly by ability signal. Students who receive higher ability signals go to school longer.

2.3 The Rise in Schooling

Our model offers two reasons why schooling may rise over time: changes in the relative costs

of schooling (χs,τ ) and changes in relative wages (zs,t).To gain insight into the determinants

of educational attainment, consider the indifference condition

V (s + 1, q) − V (s, q) = (14)

RΛβ [log (E [Y (s + 1, A) |A∗]) − log (E [Y (s, A) |A∗])] + χ̂s,τ − χ̂s+1,τ = 0 (15)

This determines the ability level of the marginal household who is just indifferent between

choosing s or s + 1. It is useful to write lifetime earnings as

Y (s, A) = (A)ηs xτ+34 zs,τ+34 es,35 Ms (16)

where

Ms =
T

∑

v=Ts+1

xτ+v−1zs,τ+v−1ls,ves,v

Rvxτ+34zs,τ+34es,35

(17)

Lifetime earnings have three components: human capital (A)ηs , the wage earned per unit

of human capital at age 35 (an arbitrary, fixed age), and the time invariant ratio of lifetime

earnings to the wage per hour at age 35, Ms. The model therefore implies that schooling is

time invariant if (i) schooling costs grow at the same rate for all levels, so that χ̂s+1,τ−χ̂s,τ is

constant over time, and (ii) relative skill prices do not change, so that log (zs+1,t)−log (zs,t) is

constant over time. Skill neutral wage growth (g (x) > 0) does not affect schooling decisions.

However, if χ̂s+1,τ−χ̂s,τ falls over time, then attainment level s+1 will become relatively

less costly and students will tend to go to school longer. Similarly, if g (zs+1) > g (zs),

relative wages of more skilled workers rise over time and workers remain longer in school.
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Lacking data on the relative importance of the school costs and wage growth for changes

in U.S. educational attainment, we calibrate the processes governing χ̂s,τ and zs,t.

The model can accommodate two alternative causes of rising education. First, an in-

crease in the average ability of students (µa) is isomorphic to a particular parameterization

of skill biased wage growth in our model. That is, increasing µa by ∆µa,t and reducing

log (zs,t) by η−1
s ∆µa,t leaves all wages and therefore schooling decision unchanged. Since all

ηs in our calibrated model are close to each other, the implied changes in relative skill prices,

(ηs+1 − ηs)∆µa,t are small. Growth in µa therefore has approximately the same effect as

skill neutral wage growth (g (x)). It does not affect our conclusions about the changes in

relative wages and relative human capital growth rates.

Increases in education quality (ηs) are isomorphic to skill biased wage growth. In (14),

an increase in ηs+1 − ηs has a similar effect to an increase in log (zs+1,t) − log (zs,t). Both

increase the incentives to attend schooling and both raise the relative wages paid to skilled

labor. The difference is that rising school quality has a stronger effect on the highly able,

while rising wages affect all workers symmetrically. Therefore, the implications for the

dispersion of wages within school groups differ. However, since we calibrate our model to

match data on mean wages, we cannot distinguish school quality growth from relative wage

growth.

3 Calibration of the Model

Qualitatively, our model implies that the expansion of education has led to a decline in the

average ability of students for each schooling level. The quantitative importance of this

channel depends on the dispersion of abilities (σa) and the degree of sorting between ability

and schooling, controlled by the noise of the signal (σa∗). We measure these parameters by

calibrating our model.

Model parameters. The parameters to be calibrated determine worker preferences (β),

schooling technologies (ηs) and costs (χ̂s), prices (R, x2000, g (x) , zs,2000, g (zs)), and the mo-

ments of the ability related distributions (µa, σa, σa∗ , σAFQT ). For all level parameters that

grow over time, we take the base year to be 2000. Since our data show a marked slowdown

in wage growth during the 1970s, we assume that x grows at rate g1 (x) until 1975 and at

rate g2 (x) thereafter.

12



Calibration approach. Some of the parameters are fixed on the basis of outside evi-

dence. We let a model period correspond to one year, and assume that workers live for

T = 70 years. We set the interest rate to 5% (R = 1.05) and fix β = 1/R.

A number of parameters may be normalized. Since zs,t determines only relative wages,

we can normalize z1 = 1 and g (z1) = 0. Since abilities have no units until converted into

productivities, ηs and σa always appear as the product ηsσa. We may therefore normalize

η1 = 1. Finally, choosing units of A allows us to normalize µa = 1.

The remaining parameters are chosen to match the following observations:

1. From the 1950-2000 waves of the U.S. Census, we estimate the educational attainment

and wages earned by the cohorts born between 1906 and 1965.

2. From the NLSY79, we estimate the joint distribution of schooling, wages, and a noisy

measure of ability for the 1960 birth cohort (AFQT scores).

3. From the PSID, we estimate the dispersion of the permanent component of wages.

Our calibration algorithm simulates life histories for the cohorts born between 1906 and

1965. The algorithm searches over the space of the parameters to minimize the weighted sum

of squared deviations between model and data moments. The school cost parameters χ̂s,τ

are chosen as residuals to replicate exactly the educational attainment of each cohort. This

method attributes short-term variation in attainment to costs rather than to relative wage

changes, which seems plausible for events such as the Vietnam War. Fitting educational

attainment exactly is important since variations in ability by cohort-education status are

the focus of our interest. The remainder of this section describes how the data moments

are constructed.

3.1 Data Moments

3.1.1 Cohort Education and Wages

We estimate educational attainment and wages by cohort from the 1950 to 2000 waves of

the IPUMS database (Ruggles & Sobeck 1997). We do not include 1940 because it is a war

year. The sample includes all men aged 15-70 who are not in school, who do not live in

group quarters, and who report positive wage and salary income. We construct measures

of educational attainment and of real hourly wages for each cohort born between 1906 and
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1965. Each cohort is observed exactly once between the ages of 35 and 44. See Appendix

A1 for details.

Cohort educational attainment. Figure 1 in the Introduction shows the fraction of

persons in each birth cohort that reports a given schooling level. Similar data have been

reported, for example, by Goldin & Katz (2008). The solid lines represent Hodrick-Prescott

filtered data. To highlight the long-run trends, we include 1940 data in this figure, even

though we do not use them in the calibration.

The main point we take away from Figure 1 is the following. Among those born around

1900, only a select few finished high school, let alone college. By 1965, more than half of the

cohort attained at least some college. If the most able persons attain the highest degrees,

the data suggest that high school graduates in 1900 represented the right tail of the ability

distribution. By 1965, this is clearly no longer the case. This raises the possibility that the

ability levels of students in high school and above may have declined substantially. One

goal of this paper is to measure this change in ability.

Relative wages. For each Census year, Figure 2 shows the mean log wage of each school

group relative to high school graduates. Our data replicate the main features previously

documented by Goldin & Katz (2008). Since 1950, we observe a sharp increase in the

college wage premium and a decline in the relative wages of high school dropouts.

The rise in relative college wages is often interpreted as an increase in the relative price

of skilled labor, possibly driven by skill biased technical change (Bound & Johnson 1992).

One question we address is: To what extent is this rise due to the changing ability levels

of college and high school graduates?

3.1.2 Education and Aptitudes

We use NLSY79 data to measure the degree of educational sorting by ability and the

covariation of wages with ability. The NLSY79 is a representative, ongoing sample of

persons born between 1957 and 1964. We retain all men who participated in the ASWAB

battery of aptitude tests, which we interpret as a noisy signal of ability. We include members

of the minority samples, but use weights in our analysis to offset the oversampling of

minorities. For each person, we construct measures of real hourly wages at age 35 and of

educational attainment. The details are given in Appendix A2.
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Figure 2: Skill Premia by Census Year
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Aptitudes. Our proxy for ability is the 1980 Armed Forces Qualification Test (AFQT)

percentile rank (variable R1682). The AFQT aggregates a battery of aptitude test scores

into a scalar measure. The tests cover numerical operations, word knowledge, paragraph

comprehension, and arithmetic reasoning (see NLS User Services 1992 for details). We

remove age effects by regressing AFQT scores on the age at which the test was administered

(in 1980). We transform the residual so that it has a standard Normal distribution, which

conforms with our model.

We interpret AFQT scores as a noisy signal of the worker’s ability signal A∗. In par-

ticular, we assume that the distribution of AFQT obeys AFQT ∼ N (a∗, σAFQT ). Thus,

workers are assumed to have better ability information than the econometrician.

Schooling and ability. Table 1 characterizes educational sorting by ability. For each

school class, the table shows the fraction of persons falling into each ability quintile. Given

that our model implies perfect educational sorting by ability signal A∗, the data of Table 1

mainly contain information about the precision of the AFQT signal (σAFQT ).

The table shows evidence of strong sorting. Half of high school dropouts fall into the

lowest AFQT quintile, whereas half of college graduates fall into the highest quintile. This

is consistent with Heckman & Vytlacil (2001). Using other measures of ability, Taubman &

Wales (1972) and Herrnstein & Murrary (1994) suggest that sorting may have been weaker
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Table 1: Schooling and AFQT: NLSY79 data

AFQT quintile <HS HS SC C+
1 0.499 0.200 0.091 0.014
2 0.278 0.273 0.167 0.036
3 0.140 0.255 0.240 0.133
4 0.067 0.192 0.287 0.266
5 0.015 0.080 0.215 0.550
Fraction 0.208 0.385 0.173 0.234
N 1404 2034 888 881

Note: Fraction of persons falling in each AFQT quintile, conditional on schooling. “Fraction”

denotes the fraction of persons completing each school level. N is the number of observations.

for earlier birth cohorts. We explore this possibility in Section 4.3.

Wages and ability. Table 2 reports the results from regressing log wages at age 35

on AFQT within school classes. AFQT is transformed so that it has a standard Normal

distribution in the population. This makes the results comparable with the literature and

conforms with our model. A one standard deviation increase in AFQT is associated with

a 6% to 10% increase in wages. This is consistent with other estimates of wages on AFQT

that control for schooling. Bowles et al. (2002) survey 24 studies with a mean regression

coefficient of 0.07.

Note that the regression coefficient is not given a structural interpretation in our anal-

ysis. We only use it to describe the data. We are interested in how the conditional mean

of wages varies with measured ability, not in the “direct” effect of ability on wages, hold-

ing other characteristics constant. For this reason, we do not include controls in the wage

regression. When we calibrate the model, we simulate AFQT scores and run a regression

of exactly this form for the pool of workers who attain each education level.

3.1.3 Permanent wage dispersion

The last data moment used in the calibration characterizes the dispersion of the permanent

component of wages. In our model, the variances of wages and lifetime earnings, conditional

on schooling, are both proportional to η2
sσ

2
a. Since our model abstracts from luck and other

transitory shocks to earnings, it is important that we purge transitory variation from the

wage data. Following Guvenen (2007) and others, we do so by estimating the variance of
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Table 2: Wage Regressions: NLSY79 Data

<HS HS SC C+
β 0.055 0.090 0.055 0.103
σβ 0.026 0.016 0.028 0.040
R2 0.01 0.03 0.02 0.03
N 594 1094 390 353

Note: The table shows the results from regressing log wages at age 35 on AFQT score separately

for each schooling group. β is the estimated return to schooling, σβ is its standard error. N is

the number of observations.

Table 3: Wage Regressions: PSID Data

Schooling σY (s) σα ρ σε̂ σε

<HS 0.389 0.335 0.887 0.171 0.296
HS 0.390 0.270 0.973 0.110 0.327
SC 0.359 0.285 0.881 0.192 0.268
C+ 0.444 0.242 0.969 0.154 0.335

Note: The table shows the estimated coefficients obtained from wage regressions using PSID data.

σY (s) is the standard deviation of lifetime earnings.

permanent component of wages.

We think of log-wages of individual j at time t as being generated by an autoregressive

earnings process with an individual-specific fixed component:

log(wj,t) = αj + Xj,tβ + ζj,t + εj,t (18)

where X is the vector of the individual’s characteristics, β is a vector of constants, ε is a

transitory shock, and ζ is a persistent shock which evolves according to an AR(1) process.

The moment of interest is the variance of αj. We estimate this income process using PSID

data. Results are given in Table 3. Details are available in Appendix A3.

In using this approach, we assume that variation in αj is predictable at the time schooling

decisions are made. The findings of Geweke & Keane (2000), Cunha, Heckman & Navarro

(2005) suggest that a large share of variation in lifetime earnings is predictable.
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Table 4: Model Parameters

Moment Value Moment Value
x2000 7.906 gx,<1975 2.67%
z2000,2 0.776 gx,>=1975 -0.13%
z2000,3 0.556 gz2

0.43%
z2000,4 0.415 gz3

0.15%
η1 1.0000 gz4

0.33%
η2 1.0001 σa 0.558
η3 1.0004 σa∗ 0.220
η4 1.0007 σAFQT 0.848

3.2 Model Parameters

The calibrated parameters are given in Table 4. The key parameters are the standard

deviations of the various ability measures and the ηs which transform abilities into produc-

tivities. We find that all ηs are close to unity, which simplifies the interpretation of the

findings. Approximately, abilities correspond to productivities in all school groups.

The standard deviation of abilities (σa) is near 0.5. Since this parameter is central for

our findings, it is useful to consider whether its magnitude appears reasonable. The model

implies that, for given schooling, a person at the 95th ability percentile earns 2.5 times more

than a person of median ability. The range between the 95th and the 5th percentile amounts

to a 6.3 fold wage gap. The calibrated value of σa is also close to the standard deviation

of log adjusted wages within age / school groups. It varies across cohorts, but without a

clear trend. According to the estimates of Section 3.1.3, about 60% of this wage dispersion

is permanent. As our sensitivity analysis reveals, this calibration target, which corresponds

to η2
sV ar (a|s) in the model, is largely responsible for the calibrated value of σa.

The combination of large ability dispersion and sizeable changes in educational attain-

ment over time raises the concern that our model may imply large trends in the variance

of wages over time. This is not the case, mainly because educational sorting by ability is

highly imperfect. Figure 3 plots the model-predicted time series for the standard deviation

of wages, conditional on schooling. The largest movement is for high school dropouts; wage

variation declines by 22% for this group, and rises modestly for the others.

It is tempting to argue that empirical estimates imply a much weaker relationship be-

tween ability and wages than our model does. In the estimates reviewed by Bowles et al.
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Figure 3: Time Series of Standard Deviation of Wages
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(2002), a one standard deviation increase in ability is, on average, associated with a wage

gain of only 7%. However, these estimates rely on noisy measures of ability and suffer from

attenuation bias.3 By construction, our model is consistent with the empirical relationship

between wages and measured ability proxies because this is one of our calibration targets.

A set of parameters that is closely related to our findings is the set of wage growth rates,

g (x)+g (zs). In the model, skill prices grow between 60% and 80% between 1950 and 2000.

The wage growth rates we estimate from the Census data are substantially smaller. Our

model attributes the differences to changes in worker abilities over time. This foreshadows

the finding, discussed in section 4, that measured wage growth substantially underestimates

the growth of skill prices.

3.3 Model Fit

In this section, we evaluate the model’s ability to replicate the calibration targets. Since

the model exactly replicates educational attainment by cohort, this is not shown.

Wages. The first set of calibration targets consists of mean log wages of persons aged 35-

44 in each Census year. Figure 4 compares the model predictions with the data described

3Bishop (1989) corrects for measurement error and estimates that a one standard error increase in ability
leads to a 19% increase in wages. He assumes that the variance of measurement error is known and given
by the KR-20 reliability of the PSID’s GIA score.
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in Section 3.1.1. Each line represents a school group. The model accounts well for the low

frequency wage movements seen in the data. A sharp decline in wage growth is visible after

1970, which motivates our assumption that skill neutral wage growth slows in 1975.

Figure 4: Mean Log Wages, Model and Data
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Figure 5 displays the same wage data in the form of skill premia relative to high school

graduates. The model accounts well for the long-run trends in relative wages. Two main

discrepancies are visible. The model misses the large drop in the college premium between

1970 and 1980. This drop could be due to the changes in the coding of schooling discussed

in Appendix A1. The model overstates relative college wages in 1950. In the data, the mean

college wage in 1950 is below the mean wage earned by a college dropout. This anomalous

result may be due to the small size of the 1950 sample (see Appendix A1).

Education and aptitudes. The second set of calibration targets characterizes the joint

distribution of AFQT, schooling, and wages discussed in Section 3.1.2. Figure 6 shows the

density of AFQT scores by schooling level for the model and the NLSY79 data. Overall,

the model accounts reasonably well for the data. The main discrepancy is the too large

fraction of low AFQT persons among high school graduates.

Figure 7 displays the results of regressing log wages at age 35 on AFQT, which is scaled

to have a standard Normal distribution. Separate regressions are estimated for each school

group. In the model, the returns to AFQT are generally lower than in the data (described

in section 3.1.2), but especially so in the middle school groups. To understand this, note

that the returns in the model are ηs
da

dAFQT
. ηs is similar for all s. Low returns in the middle
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Figure 5: Returns to Schooling, Model and Data
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groups therefore mean more noise in AFQT as a measure of ability. One reason for this

is that ability noise is less likely to change schooling in the lowest and highest education

classes. For college graduates, even large positive noise does not change schooling. Similarly,

for high school dropouts, the same is true for large negative noise. Hence, the relationship

between AFQT and ability is stronger in the lowest and highest education groups.

Permanent wage dispersion. The final calibration target is the dispersion of the per-

manent component of wages estimated in Section 3.1.3. Figure 8 compares the model

standard deviations with the data for each school group. The model generates roughly the

right amount of dispersion on average, but overstates the dispersion for college graduates.

The model implies larger dispersion for the outer school groups because they contain most

of the extreme ability draws.

4 Results

The main question we address in this paper is: As education expands, the abilities of workers

with any given education level decline. How much of the observed movements of wages and

skill premia in the U.S. since 1950 are due to these changing abilities?

To answer this question, Figure 9 shows mean the log abilities implied by the model for

each birth cohort in our dataset. Since all ηs are close to one, ability units are close to log

wage units. The model implies large declines in abilities for all school groups, but especially
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(a) High School Dropouts (b) High School Graduates

(c) Some College (d) College Graduates

Figure 6: AFQT Distribution for Different School Attainments

for the high school and some college groups. For some school groups, mean ability changes

by more than total measured wages. Notably, mean log ability of high school graduates

drops by 0.5, while wages grow by 0.275. The model therefore implies that large shares of

wage and skill premium movements are due to abilities rather than skill prices.

Figure 10 illustrates the role of ability changes for skill premia. For each school group,

the figure shows two paths of relative wages. The solid lines are the paths of measured wages

predicted by the calibrated model. These were already shown in Figure 5. The dashed lines

show the evolution of relative skill prices, zs,t − z2,t. All wages are in logarithms and

expressed relative to high school graduates.

The main message of Figure 10 is that accounting for changes in worker ability leads to
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Figure 7: Returns to AFQT

��� �� �� ��
����

����

���	

���


����

����

����


����

����

���������������

�
�
��
��
�
��
�
��
 
!
"

large revisions in the estimated changes of skill premia. Conventional measures of wages

attribute the entire change in hourly earnings (the solid line) to skill price movements. In

our model, the average ability of workers in all school groups declines as education expands

over time. However, relative to high school graduates, mean abilities rise for all other school

groups. As a result, the growth rates of skill premia are below the growth rates of measured

relative wages.

The discrepancy is particularly striking for the college wage premium, which is the

relative wage that has experienced the largest changes since 1950 and has received the

most attention in the literature. Even though the relative wages of college graduates rose

by 32% since 1950, our model implies that the relative price of college educated labor

declined by 5%. The gap between measured wages and skill prices is due to a large increase

in the average ability of college graduates relative to high school graduates.

Table 5 summarizes the changes in relative wages over the period 1950-2000. Measured

relative wages declined for high school and college dropouts, but rose for college graduates

(column “data”). The “model” column shows the corresponding changes in relative mea-

sured wages implied by the model. The “skill price” column displays the changes in relative

skill prices, zs,t − z2,t. In each case, skill prices rise more slowly than measured wages, but

the discrepancy is particularly large for college graduates.

Table 6 decomposes the changes in wage levels into the contributions of skill prices and

ability changes. Its layout is analogous to that of Table 5. The main message is that large

declines in abilities mask substantial growth in skill prices. To illustrate, the measured

23



Figure 8: Dispersion of Permanent Earnings
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Table 5: Counterfactual Premia Increases

Data Model Skill Price Difference
<HS-HS -0.07 -0.15 -0.21 -0.06
SC-HS 0.01 -0.03 -0.14 -0.11
C+-HS 0.32 0.22 -0.05 -0.27

Note: The table shows changes in mean wages relative to high school graduates, 1950-2000. “Data”

refers to Census data.

mean wage of a high school graduate rose by 27% between 1950 and 2000 (column “data”).

Our model implies that the rental price of high school labor grew roughly three times as

fast (by 84%, column “skill price”). However, the expansion of schooling led to a drop in

the average ability of high school graduates of 58% (column “difference”), which erodes

much of the growth in wages.

A large literature has pointed out that real wages have barely increased since about 1960

(Katz & Autor 1999). Our findings suggest that skill prices may have grown substantially,

but measured wages are pushed down by the declining abilities of the students attending

each school level.

It would be helpful to compare our findings with direct evidence on the changes in

student abilities over time. Unfortunately, such evidence is scarce. Taubman & Wales

(1972) collect the results of several studies. Test scores are expressed as percentile ranks

and therefore contain no information about the trend in mean ability. Taubman & Wales
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Figure 9: Mean Log Ability of Selected Cohorts
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Table 6: Counterfactual Wage Increases

Data Model Skill Price Difference
<HS 0.21 0.1 0.62 0.52
HS 0.27 0.25 0.84 0.58
SC 0.28 0.22 0.7 0.48
C+ 0.59 0.48 0.79 0.31

find that the ability gap between college and high school students widened between 1925

and 1960. Herrnstein & Murray (1994) report a similar finding. This is consistent with our

model’s implications, shown in Figure 10.

The studies collected by Finch (1946) indicate that the average ability of high school

graduates remained roughly constant between 1916 and 1942. By contrast, our model

implies that average student ability declines over time.

A major caveat applies to all of the available time series evidence on student test scores.

The nature of the tests and the student populations covered vary over time. Assumptions

and adjustments are needed to compare statistics from different time periods (see Juhn

et al. 2005). Moreover, since tests are generally taken when students have completed at

least some high school, it is not clear to what extent test scores reflect student abilities as

opposed to skills learned in school (Winship & Korenman 1997).
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Figure 10: Model and Counterfactual (Fixed Ability) Wage Premia
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4.1 Intuition

In this section, we provide intuition for our findings. The basic mechanism that drives the

results is that rising schooling inevitably lowers the average abilities of students at all levels.

How strong this mechanism is depends on the dispersion of abilities and on the degree of

educational sorting by ability.

An example with perfect sorting. The intuition for our findings is complicated by

the fact that ability heterogeneity and imperfect educational sorting by ability interact.

Fortunately, a version of the model with perfect information about ability (σa∗ = 0) has

similar implications and is easier to understand. In this section, we present the implications

of this model, assuming that all calibrated parameters are the same as in the baseline case.

Figure 11a shows the schooling decisions and abilities of the 1915 birth cohort, observed

in the 1950 Census. The bell shaped curve is the Normal density of a with the calibrated

standard deviation σa. The vertical lines represent the ability cutoffs that delineate the

schooling levels. These are taken from the data, since the model exactly replicates them.

For example, the least able 53% of the population choose not to complete high school.

Their mean a equals 0.58, against a population mean of 1. This can be computed directly

as the mean of a right truncated Normal distribution with standard deviation σa.

Now forward to the year 2000. Figure 11b shows the school choices for the 1965 birth

cohort. Only 10% of the population fail to graduate from high school. Losing the right
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tail of the ability distribution reduces the mean a for high school dropouts to 0.02. The

decline in mean ability is 0.56, compared with 0.51 in the calibrated model. Other education

groups yield similar results. The baseline model yields ability changes that are similar to

the perfect sorting example. Note that the resulting wage changes are similar to the ability

changes because all ηs are close to 1.
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Figure 11: Abilities and Schooling

The perfect sorting example shows why the relative ability of college graduates rises

over time. The expansion of education means that new, lower ability students are added

to both the high school and college populations over time. However, high school abilities

are also impacted by the tendency for the most able high school students to join the some

college group, while the most able college students are have no further education to aspire

to. Moreover, the some college group here acts as a wedge between the high school and

college groups, and it has expanded over time, separating their abilities. This reasoning

suggest that the increase in relative college abilities is a robust feature of our model; it is

the quantitative magnitude that may vary.

Educational sorting. Given the calibrated parameters, the model implies strong sorting.

Figures 12 shows distributions of ability by school level for the 1960 cohort. 90% of college

graduates are drawn from the top 2 ability quintiles. More than 80% of high school dropouts

are drawn from the lowest ability quintile. This happens even though the ability signal

observed by the agent is quite noisy. Recall that roughly 30% of the signal’s standard

deviation is noise.
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(a) High School Dropouts
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(b) High School Graduates
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(c) Some College
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(d) College Graduates

Figure 12: Ability Distribution for Different School Attainments

Another way of assessing the degree of sorting examines how many persons ex post

regret their schooling choices. Table 7 shows the fraction of persons in each school class

who would revise their choices upon learning their true abilities. More than 70% of high

school dropouts and of college graduates would not revise their decisions. However, roughly

half of those completing high school or some college would.

It is useful to compare our findings with those of Navarro (2008). Based on a structural

model of school choice, Navarro estimates that 13% of high school graduates and 16%

of college graduates would revise their schooling choices upon learning about factors that

affect their earnings. Conversely, 81% of the variance of lifetime earnings is predictable at

age 18 for college graduates and 44% for high school graduates. The comparison suggests

that our calibration may imply too much noise and hence too weak sorting by ability. To
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Table 7: Ex Ante and Ex Post Optimal Schooling

Actual School Choice
Ex-Post Optimal <HS HS SC C+

<HS 81.9% 11.2% 0.0% 0.0%
HS 18.1% 74.4% 23.3% 0.6%
SC 0.0% 14.0% 59.7% 17.4%
C+ 0.0% 0.3% 17.0% 82.0%

Note: Each row shows person in one school group. Each column shows the fraction of persons

who would have chosen other school levels, given perfect knowledge of their abilities.

the extent this is the case, our findings are conservative.

4.2 Robustness

This section examines the robustness of our findings. The main parameters of concern are

the dispersion of abilities (σa) and the amount of noise in the worker’s ability signal (σa∗)

which governs educational sorting. We study how these parameters affect the main findings

as well as the model’s ability to attain the calibration targets. We vary either σa or σa∗

across a grid. For each value, we calibrate the wage parameters xt and zs,t to minimize

the deviation between model and data wages. All other parameters remain fixed at their

baseline values.

Varying noise in the ability signal. Figure 13 shows the effect of varying σa∗ from

a case that is close to perfect information to a case with 75% more noise. Of particular

interest are larger values of σa∗ because we are concerned that our model could overstate

the role ability changes, if educational sorting were too strong. The top panels of Figure 13

show how varying σa∗ affects the model’s ability to attain the calibration targets. This is

summarized by showing the average “wage return” of AFQT (the coefficient of regressing

log wages on AFQT) and the average variance of permanent wages. Both averages are

taken across school groups. The lower two panels illustrate how the main results change.

They show the growth rate of the high school skill price (log xt + log z2,t) and of the college

wage premium (log z4,t − log z2,t) between 1950 and 2000.

The main insight is that varying σa∗ has little effect on the findings. Ability noise

raises the dispersion of permanent wages. This is due to more mixing of high and low
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ability workers within school groups. However, the wage and skill premium changes are not

strongly affected.
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(d)

Figure 13: Changing Variance of Noise

Varying the dispersion of abilities. Figure 14 shows model economies with ability

dispersion (σa) ranging from 25% to 100% of the baseline calibration. Higher ability dis-

persion would strengthen our results, so we focus on lower values. Similar to Figure 13, the

top two panels show how well the model attains the calibration targets. The data clearly

favor larger values of σa. Even the calibrated value is too low to fully account for the wage

returns to AFQT and for the variance of permanent wages. Smaller values of σa increase

the gap between model and data dramatically.

The lower two panels of Figure 14 show that lower ability dispersion strongly increases

skill price growth rates. Reducing σa by half relative to the baseline value substantially

reduces the effect of ability changes on high school wage growth (panel c) and cuts the effect

on the college wage premium by two-thirds (panel d). Clearly, our results are sensitive to
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the calibrated value of σa. However, reducing σa by half also dramatically reduces the

contribution of abilities to wages and to wage dispersion. We conclude that even a model

with ability dispersion that seems much too low compared to our data targets still generates

a substantial downward bias in measured high school wages and a substantial upward bias

in the relative returns to college.
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(d)

Figure 14: Changing Variance of Ability

Jointly varying σa∗ and σa. We also experimented with simultaneous variation in σa∗

and σa. The results are essentially the sum of varying each parameter separately. We do

not report the details in order to conserve space. The case that comes closest to overturning

our results combines large noise and small ability dispersion. Some parameter combinations

come close to accounting for the estimated amount of permanent wage dispersion while at

the same time dramatically reducing the contribution of abilities to measured wage growth.

However, these parameters imply that wage variation is mostly due to luck rather than

ability. The wage returns to AFQT are very close to zero and lifetime earnings are largely
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unpredictable by the agent. These implications are at variance with a large literature that

emphasizes the role of cognitive skills for wages (Hanushek & Woessman 2008) and with a

smaller literature which shows that lifetime earnings are highly predictable (Cunha et al.

2005; Navarro 2008).

4.3 Rising Educational Sorting

A number of studies suggest that educational sorting by ability has increased between the

1920s and the 1960s. Taubman & Wales (1972) compile data from several previous studies

that characterize the cognitive abilities of students at different education levels between

1925 and 1963. Their data suggest that the probability of attending college increased

disproportionately among the most able students. Similar data are presented by Herrnstein

& Murray (1994, chapter 1).

While the comparability of the test scores used and of the student populations covered

is an issue, there are reasons to think that educational sorting may have improved. Among

the contributing factors may be the declining cost of long distance travel, the relaxation

of parental borrowing constraints, and the spreading of standardized testing (Herrnstein &

Murray 1994, chapter 1).

We explore the implications of improved sorting by ability in our model. We modify the

baseline calibration of Section 3 by assuming that the standard deviation of ability noise

(σa∗) declines by half between 1906 and 1965. Otherwise, all parameters are calibrated

using the same targets as in the baseline case.

Table 8 shows the parameter values. The main point of note is that the parameters

governing ability dispersion and sorting (σa, σa∗) do not change dramatically relative to the

baseline case. As a result, the model’s ability to replicate the calibration targets is not

affected much (the details are not shown to conserve space).

Figure 15 verifies that the experiment implies a substantial reduction in educational

sorting for the early birth cohorts. The figure compares the distribution of abilities for the

1915 birth cohort with those of the baseline calibration.

Figure 16 shows that the results are very similar to the baseline calibration with constant

σa∗ . The figure shows the evolution of measured wages and skill prices relative to high school

graduates. The corresponding results for the baseline case are shown in Figure 10. As in

the case of constant ability noise, the model implies that essentially the entire measured

increase in relative college wages reflects changing abilities rather than skill prices. The
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Table 8: Model Parameters

Moment Value Moment Value
x2000 6.992 gx,<1975 2.69%
z2000,2 0.804 gx,>=1975 0.18%
z2000,3 0.641 gz2

-0.11%
z2000,4 0.520 gz3

-0.37%
η1 1.0000 gz4

-0.20%
η2 1.0001 σa 0.462
η3 1.0001 σa∗,1906 0.417
η4 1.0001 σa∗,1965 0.208

σAFQT 0.719

Table 9: Counterfactual Wage Increases

Data Model Skill Price Difference
<HS 0.21 0.23 0.66 0.43
HS 0.27 0.21 0.69 0.48
SC 0.28 0.21 0.6 0.39
C+ 0.59 0.47 0.72 0.26

results for the other school groups are also quite similar to the baseline case.

Table 9 decomposes wage level changes into the contributions of skill prices and abilities.

The corresponding results for the baseline case are shown in Table 5. There are no dra-

matic differences between the two experiments. Stronger sorting mainly affects the ability

composition of the high school dropout group. Its mean ability drops by 37% between 1915

and 1960, compared with 54% in the baseline case. For the other school groups, the ability

changes differ no more than 10% from the baseline experiment.

The intuition for these findings is as follows. A noisy ability signal causes mixing of

abilities within school groups among the early birth cohorts. This raises the abilities of the

least educated, while lowering those of college graduates. Over time, as sorting improves,

the high school dropout group loses its most able members and its mean ability declines

faster than in the baseline experiment. Therefore, the group’s skill price must grow faster

in order to replicate measured wage growth. Hence, improving sorting increases the gap

between measured and true wage growth for the least educated workers.

The opposite happens for college graduates. As sorting improves, their abilities are
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(a) High School Dropouts (b) High School Graduates

(c) Some College (d) College Graduates

Figure 15: Comparison of Sorting

pushed up. The decline in mean ability associated with expanding education is attenuated.

For high school graduates and college dropouts the effect of improved sorting is ambiguous.

The net effect on the college wage premium changes is therefore ambiguous as well. In the

calibrated model, it is very close to zero as improved sorting raises the abilities of college

and high school graduates by similar amounts.

It is evident from the comparison with the baseline results that none of the effects of

improved sorting are quantitatively large. Our qualitative conclusions are not affected.
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Figure 16: Returns to Schooling, Model and Data
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5 Conclusion

The U.S. experienced a dramatic expansion of education during the post-war period. Our

findings suggest that this expansion was accompanied by a substantial decline in the abilities

of students. As a result, measured wage growth substantially underestimates true wage

growth. Changing abilities of different groups also imply large movements in relative wages.

In particular, the entire increase in the college wage premium since 1950 can be attributed to

the relative increase in the ability of college graduates compared with high school graduates.

Our findings have implications for the causes of the U.S. educational expansion which

we plan to explore in future work. Previous research attributes the increase in schooling to

skill biased wage growth (Restuccia & Vandenbroucke 2008). In our estimates, the relative

wages of college graduates do not trend upwards over the period 1950 to 2000. This finding

suggests that changes in the supply of educated labor may be important for the expansion

of U.S. education.
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Appendix

A1 Census Data

Samples. We use 1% samples for 1950-1970 and 5% samples thereafter. In 1950, only

sample line individuals report wages and hours worked. This reduces the effective sample

size to only one quarter of the 1960 sample. As a result, the 1950 estimates of mean log

wages by birth cohort are noisy.

Educational attainment. Our measure of educational attainment is the IPUMS variable

EDUCREC. It distinguishes nine levels of education, which we aggregate into four groups:

less than high school, high school, some college, and at least college completed.

Before proceeding, it is useful to discuss a technical detail in the construction of the

educational attainment data. Figure 1 shows discrete jumps between adjacent cohorts that

are observed in different Census years. One reason is that the wording of the educational

attainment question changed between 1980 and 1990. Prior to 1990, HIGRADE recorded

years of schooling completed. Since 1990, EDUC99 asks for the highest degree attained.

This affects in particular whether people report high school or some college.

We do not see a compelling way of correcting this problem. Goldin & Katz (2008)

use Current Population Survey data to estimate the changes in education between 1980

and 1990. Two problems prevent us from adopting their approach: (i) The magnitude of

the mismeasurement likely changes from one Census year to the next. The reason is that

differences in the educational attainment questions affect only a subset of the population.

The size of this population changes with the distribution of educational attainment. (ii) We

observe jumps in educational attainment also between 1970 and 1980, even though both

years use the HIGRADE version of the attainment question.

The outstanding feature of the data is the large decline in the fraction of high school

dropouts. The changes in the attainment questions affect mainly those who are the border

between two degrees (e.g., high school vs. some college). Since most of those identified as

dropouts in 1940 report less than 11 years of schooling, we are confident that they did not

achieve a high school degree. We therefore believe that the decline in high school dropouts

is real and not an artifact of the changing data collection.
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Wages. We calculate hourly wages as the ratio of wage and salary income (INCWAGE)

to annual hours worked. Annual work hours are the product of weeks per year times hours

per week. For consistency, we use intervalled weeks and hours for all years. Where available

we use usual hours per week. Wages are computed only for persons who report working

“for wages” (CLASSWKR) and who work between 520 and 5110 hours per year.

All dollar figures are converted into year 2000 prices using the Bureau of Labor Statistics’

consumer price index (CPI) for all wage earners (all items, U.S. city average).

Adjusted wages. Our model abstracts from wage variation due to demographic charac-

teristics such as marital status or place of residence. We remove this variation from our

wage data using standard wage regressions. We divide the population into groups accord-

ing to age and educational attainment. For each group, we regress the logarithm of wages

on indicators for marital status, race, region of residence, and urban status as well as age

and schooling. The adjusted wage is defined as the measured wage net of effects due to

covariates other than age and schooling. Wage variation due to schooling within education

groups is also removed. All wage data reported in this paper are based on adjusted wages.

Aggregation. For consistency reasons we calculate all cohort and year aggregates from a

matrix of summary statistics that is indexed by school group, birth year, and year (s, τ, t).

For each cell, the matrix records mean log wages, aggregate earnings and hours, etc.

The data cover men aged 35-44, so that each cohort born between 1906 and 1965 is

observed exactly once. The age range is chosen so that schooling is completed and most

men participate full time in the labor market.

The educational attainment of birth cohort τ is defined as follows. Denote the mass in a

given cell by φ (s, τ, t). Then the fraction of cohort τ in group s is given by φ (s, τ, t) /
∑

s φ (s, τ, t).

Since cohorts are observed at different ages, the educational attainment estimates are not

fully comparable. However, data for pseudo-cohorts suggest that educational attainment

does not change substantially between the ages of 35 and 44.

The mean log wage of school group s at date t is defined as an equally weighted average

of the mean log wage of all cohorts recorded at t. Denote the mean log wage of a cell by

w̄ (s, τ, t). Then the mean log wage of group s is defined as 0.1
∑

τ w̄ (s, τ, t).

Estimation of Ms. One of the calibration targets is Ms: the ratio of lifetime earnings to

age 35 wages. Ms is constructed as follows. We estimate longitudinal experience wage and
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Table 10: Summary statistics: Census data

1950 1960 1970 1980 1990 2000
N 106.9 442.1 539.4 3398.3 3939.3 4432.0
Avg.school 9.9 10.5 11.5 12.6 13.4 13.8
Real wage 9.7 13.0 15.7 14.3 15.6 16.6
w1,35 3.7 6.5 8.1 9.2 8.3 7.5
w2,35 4.6 7.4 9.7 11.4 10.4 9.5
w3,35 5.9 7.2 10.0 11.6 10.4 10.0
w4,35 6.6 8.1 11.5 13.4 11.0 11.7

Notes: The table shows summary statistics for the Census sample. N is the number of observations

(in thousands). Avg.school denotes average years of schooling. Real wage is the average real wage

of all persons in the sample. ws,35 denotes the average real wage of persons aged 35.

hours worked profiles for each school group. Lifetime earnings are defined as the present

value of fitted wages times hours over the age range Ts + 6 through 68, discounted to age

18. Ms is given by lifetime earnings divided by the mean fitted wage at age 35.

Age profiles are estimated by regressing log wages (or hours) on an experience quartic

and a birth year quadratic. These regressions pool all years and are separately estimated

for each school group.

Summary statistics. Table 10 shows descriptive statistics for each Census year.

A2 NLSY79 Data

Schooling. We construct each person’s highest grade attained and last year in school from

annual reports of school enrollment and grade completed. These reports contain numerous

inconsistencies. Many persons report single years of school enrollment late in life, often

without any change in the highest grade attained. We treat such observations as invalid.

We calculate the last year of school as the last year in which the person reports enroll-

ment and an increase in highest grade attained. Visual inspection of individual schooling

histories suggests that this algorithm leads to sensible results. However, there is no unam-

biguous way of distinguishing valid from erroneous schooling observations.

Since our model does not permit persons to return to school once they started working,

we delete 728 individuals who completed schooling at ages greater than years of schooling
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Table 11: Summary statistics: NLSY79 data

School class Dropout High school Some college College
Avg.school 9.9 12.0 13.8 17.0
Real wage at age 35 12.5 15.2 19.0 26.3
Adj. wage at age 35 11.1 13.8 17.7 22.3
AFQT percentile 0.25 0.43 0.58 0.77
N 1404 2034 888 882

plus 12.

Wages. We calculate hourly wages as the ratio of labor income to annual hours worked.

Labor income includes wages, salaries, bonuses, and two-thirds of business income. We

delete wage observations prior to the last year of school enrollment or with hours worked

outside the range [520, 5110]. We also delete wage observations outside the range [0.02, 100]

times the median wage. Wages are deflated by the CPI.

We remove from the wage data variation that is due to demographic characteristics not

captured by our model. This is done by regressing log wages on schooling, experience,

race, marital status, and region of residence. Separate regressions are estimated for each

year and schooling group (high school dropouts, high school graduates, some college, and

college+). As before, we construct adjusted wages, by removing the effects of race, marital

status, region, and schooling sub-group within each education group.

For consistency with the Census data, we focus on wages earned at age 35. Since not

all persons are interviewed at age 35, we interpolate these wages. For each person with at

least 10 valid wage observations, we fit a quadratic experience wage profile using OLS. We

use the wage predicted by this regression at age 35.

Summary statistics. Table 11 summarizes the data. For each school class, the table

shows average years of schooling, the average AFQT percentile rank, the mean log wage at

age 35, and the number of persons in the sample.
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A3 PSID Data

This section describes how we estimate the variance of permanent wages. We use the 1968

to 2003 waves of the Panel Study of Income Dynamics (PSID). The sample contains all

men who report at least 15 valid wage observations between the ages of 18 and 65. Wage

observations are valid if hours worked fall in the interval [520, 5110] and labor income is

positive. Wages below 0.02 times the median or above 100 times the median are deleted.

Labor income includes wage and salary income as well as the labor income share of self-

employment income. The real wage is defined as total labor income divided by total hours

worked, deflated by the Consumer Price Index.

Estimating the stochastic process governing wages. Our estimation strategy follows

Guvenen (2007). The first step is to form a residual wage. We pool all observations within

a given school group and regress the log real wage on a quartic in experience. We assume

that the residual wage is governed by a process of the form

log(wj,t) = αj + Xj,tβ + ζj,t + εj,t (19)

ζi,t = ρζi,t−1 + ε̂i,t (20)

where the error terms εi,t˜N (0, σε) and ε̂i,t˜N (0, σζ) are independently distributed. log(wj,t)

is the log residual wage of person j at date t. It is composed of a fixed effect αj , a persistent

shock ζj,t, and a transitory shock εj,t.

We estimate the parameters of the wage process by minimizing the sum of squared

deviations between the empirical covariance matrix of wages and the one implied by the

model (19). All deviations are equally weighted. Only elements of the empirical covariance

matrix with at least 200 contributing individuals are retained.
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