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1 Introduction

Theoretical constraints on economic-model parameters often are in the form of inequality restrictions.

For example, many theoretical results are in the form of monotonicity or nonnegativity restrictions.

Inequality constraints can truncate sampling distributions of parameter estimators, so that asymptotic

normality no longer is possible. Sampling theoretic asymptotic inference is thereby greatly complicated or

compromised. We use numerical methods to investigate the resulting sampling properties of inequality-

constrained estimators produced by popular methods of imposing inequality constraints. In particular,

we investigate the possible bias in the asymptotic standard errors of estimators of inequality constrained

estimators, when the constraint is imposed by the popular method of squaring. That approach is known

to violate a regularity condition in the available asymptotic proofs regarding the unconstrained estimator,

since the sign of the unconstrained estimator, prior to squaring, is nonidentified.

2 Example

As an illustration, consider this simple classical linear regression model yt = βxt + εt for t = 1, ..., n,

where the disturbance εt is assumed to be normally distributed with mean zero at every observation. Let

y = (y1, ..., yn)T , x = (x1, ..., xn)T , and ε = (ε1, ..., εn)T , so that the regression model can be written as

y = βx+ ε, and let the covariance matrix of ε be σ2I, where I is the n×n identity matrix. Suppose that

the unconstrained least squares estimate of the model’s one parameter is β̂ = 1 with standard error of 2.

Suppose that prior information about the parameter is available in the form of a nonnegativity con-

straint. When nonnegativity is imposed, the constrained estimator would impute zero probability to the
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area to the left of the origin. The region not satisfying the constraint in figure 1 would be replaced by a

probability mass function concentrated at zero with height 0.3015 in our example. The result is a mixed

discrete-continuous distribution in the form of a truncated normal distribution. Inferences based on the

standard error of the unconstrained estimator or on asymptotic normality of the constrained estimator

would be compromised. The sampling distribution of the estimator, with and without inequality con-

straint, is displayed in figure 1. To address problems stemming from truncation of sampling distributions,

different techniques have been proposed in the literature, some using the sampling theoretic approach

and same using the Bayesian approach. In this paper we focus on the sampling theoretic approach and

its asymptotic properties.

Figure 1: Sample distribution of the 
unconstrained estimator
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Figure 1: Sampling distribution of the estimator, with and without inequality constraint.

3 Sampling Theoretic Approaches

We consider the following transformation approach, widely used to impose inequality constraints in econo-

metrics. If g is a continuous function of θ, and β is the constrained parameter, each approach acquires

point estimates of β from the transformation β = g(θ) , where g is chosen such that g(θ) satisfies the

relevant inequality constraint for all unconstrained values of θ. The constrained parameter β is replaced
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within the regression by β = g(θ), and the parameter θ is estimated without constraints. The uncon-

strained parameter can be estimated by maximum likelihood, and the constrained parameter estimate

can be recovered from the invariance property of maximum likelihood estimator1. No compromise in the

approach to point estimation is implied by truncation of the sampling distribution, but computation of

the standard error of the constrained estimator presents problems.

The ” method of squaring ” and the exponential functional form are two commonly used transfor-

mations, g. For example, to constrain the parameter β to be nonnegative, the ”method of squaring”

transformation, β = θ2, could be used. Then substitute θ2 for β in the equation to be estimated and esti-

mate θ without constraints. Alternatively an exponential transformation could be employed by defining

β = exp(θ) and then proceeding as in the method of squaring. This exponential transformation can be

used, if β must be strictly positive. But that approach has an obvious problem when the constraint is

binding, so is much less widely used than the method of squaring.

In the next three subsections, we present competing techniques for determining the standard errors

of the estimates.

3.1 The Delta Method

The delta method exploits the asymptotic properties of the estimators. Under certain additional assump-

tions, if g(θ) is a vector of continuous functions of the vector of parameters, θ, such that Γ = ∂g(θ)/∂θT

and if θ̂ has asymptotic distribution with mean θ and covariance matrix V, then β̂ = g(θ̂) has a limiting

distribution, with mean g(θ) and covariance matrix ΓVΓT 2.

Two problems arise when using this approach. The first is that the sample size in economic applications

often is small. To avoid having our results compromised, we will increase our sample sizes sequentially

to assure that small sample size is not a source of efficiency loss.

The second problem, on which we focus, is related to the choice of the functional form used for

the transformation of parameters. If the function g is continuous but not bijective, the signs of the

unconstrained parameters, θ, may be nonidentified. For example, when using the method of squaring to

impose nonnegativity on βi = gi(θi), the estimation of gi(θ̂i) cannot distinguish between −θ̂i and +θ̂i.

Hence, one of the regularity conditions is violated in the asymptotic proof with the delta method. We

investigate the extent of the damage by using the delta method, when the sign of θi is nonidentified.

1The maximum likelihood estimator of β = g(θ) is g(θ̂ML)
2We use the superscript T to designate transpose of a matrix. In the case of linear least square estimation, the co-

variance matrix V is σ2

n
Q−1, where Q is the limit of (XT X)/n as n goes to infinity. In nonlinear least square esti-

mation of the model y = h(β, X) + ε, the covariance matrix V is found by replacing Q by Q0 = plim(X0)T X0 =

plim( 1
n

∑
(∂h(xi,β)/∂β)(∂h(xi,β)/∂βT )), where X is the matrix having as its rows the vectors xT

i : i = 1, ..., n
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It should be observed that the delta method usually is used, with θ̂ assumed to be asymptotically

normal and the stronger conclusion than we use is that β̂ = g(θ̂) is asymptotically normal. But since

we are exploring the implications of truncation of the distribution of β̂ = g(θ̂), asymptotic normality is

not possible. Our concern is only with the first two moments of the limiting distribution 3.

3.2 The Jackknife

The jackknife is a resampling technique that consists in creating n samples from an observed sample of

size n, by deleting one observation each time. The resulting n samples are of size n− 1. The statistic of

interest is estimated using each sample, and the n estimates are combined to obtain the mean and the

standard errors. Wu (1986) refers to this approach as the delete-one jackknife. In large samples, Miller

(1974) proves that this technique produces consistent results for bias and variance estimation 4.

Another jackknifing technique known as the delete-k jackknife consists in deleting an arbitrary number,k,

of observations. Some method must be selected for choosing k. Wu (1985, 1986) shows that in practice,

if one chooses n − k = .72n, where n is sample size, the delete-k jackknife possesses ”nice asymptotic

properties.”

3.3 The Bootstrap

The bootstrap is a computer-based resampling method for assigning a measure of accuracy to a statistical

estimate (Efron 1979). In regression analysis, the bootstrap method often is used to estimate finite-

sample standard errors, when asymptotic standard errors are unreliable. Consider the regression equation,

y = h(X,θ) + ε, where X is a vector of k regressors and θ is a vector of parameters. Two frequently

used methods are bootstrapping the fitted residuals or bootstrapping the pairs, (X,y), where X is the

n× k matrix of k regressors and y is the n observations on the dependent variable.

Bootstrapping the residuals consists in creating J bootstrap samples,

X∗
j = {(x1, h(x1, θ̂+ε∗j1), (x2, h(x2,θ̂) + ε∗j2), ..., (xn, h(xn,θ̂) + ε∗jn)}, for j=1,2,..., J,

where xi is the ith row of matrix X and (ε∗j1, ε
∗
j2, ..., ε

∗
jn) are the errors drawn with replacement from

the residuals during the j’th bootstrap, when estimating y = h(X,θ) + ε 5.

3As we discuss below, problems with higher order moments are unavoidable.
4Wu (1986) warns about the theoretical difficulties in generating confidence intervals and in estimating variances, when

the functional form is non-smooth. But all of the transformations we use in reparameterizing are smooth.
5This resampling method assumes that the errors are independently and identically distributed. That assumption is

violated in the presence of heteroskedastic or autocorrelated errors. Extensions that correct for those problems exist. See,

among others, Efron and Tibshirani (1986).
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Alternatively, bootstrapping (X,y) proceeds as follows. The matrix X of n observations on the

k exogenous variables, x, and the vector y of n observations on the one endogenous variable, y, are

bootstrapped J times, creating X∗
j = {(yj1,xj1), (yj2,xj2), ..., (yjn,xjn)} for j = 1, 2,..., J, where (yji,xji)

is the ith draw with replacement from the original sample during the j’th bootstrap. After estimating

the model on the J bootstrap samples, we obtain the bootstrap sample estimates of the parameters,

θ̂1, θ̂2, ..., θ̂J . Assuming θ̂j = {θ̂1
j , ..., θ̂k

j }, then the J bootstrap replications of θ̂r(r ∈ {1, 2, ..., k}) can

be used to compute the estimate of the standard error, σ̂(θ̂r) of θ̂r, as follows 6:

σ̂(θ̂r) =

√∑J
i=1[θ̂

r
i − θ̂r∗]2

J − 1
(1)

where

θ̂r∗ =
∑J

i=1 θ̂r
i

J
(2)

4 A Nonlinear Money Demand Function Illustration

In this section we describe a typical model having the ability to estimate the elasticity of substitution

between two goods. That model will be used in the remainder of this paper to provide parameter values

used as a ”norm” for illustration in the figures. To conserve on journal space, we are presenting plots of

results only with parameter estimates acquired from that illustration. But results with only one vector of

parameter values are of limited value, without confirmation that the results are robust to the parameter

value choices. In fact, we ran our Monte Carlo simulations with different values of the parameters. Since

we found our results to be robust to different parameter settings, we are providing the plots only for our

one (admittedly arbitrary, but currently interesting) calibrated ”norm” settings of model parameters 7.

4.1 Problem Description

In producing our parameter setting norm, we decided to look at the relationship between two components

of financial transactions balances. The degree of substitution among monetary assets is an important

issue that has macroeconomic consequences and has been the subject of many published papers and

books. The commonly published statistics on monetary aggregates use simple sum aggregation. Such

summation aggregation implies that the assets are regarded by consumers as perfect substitutes. When

different goods are perfect one-to-one substitutes, utility maximizers will hold the asset with the lowest

opportunity cost. But investors’ portfolios of monetary assets usually include a variety of assets with

different opportunity costs. Hence, monetary assets are revealed not to be regarded as perfect substitutes.
6See Efron and Tibshirani (1993).
7The SAS code and outputs with other parameter settings are available upon request.
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Knowledge of the elasticities of substitution among monetary assets is highly relevant to determining bias,

when assets are aggregates using simple sum aggregation.

In the two-good case, the constant elasticity of substitution (CES) utility function is both flexible and

globally regular. Hence, the CES is a suitable choice for our illustration.

4.2 Data Description and Model Design

Monetary Services Index (MSI) data are supplied for the United States by the Federal Reserve Bank

of St. Louis on a regular basis. MSI data accurately measure the flow of monetary services received

by households from monetary assets 8. These data are based upon Divisia aggregation over highly

disaggregated component data. We extract from these input data two elements between January 1992

and August 2005: the seasonally adjusted savings deposits at commercial banks net of money market

deposit accounts (q(1)) and the seasonally adjusted savings deposits at thrift institutions net of money

market deposit accounts (q(2)).

We estimate a 2-good demand function system derived from a C.E.S. utility function of the form:

U(q(1), q(2)) = A[α1(q(1))ρ + α2(q(2))ρ]1/ρ (3)

where α1 + α2 = 1, ρ < 1, and A is a positive scalar, which can be normalized to 1. When a

representative consumer is maximizing utility subject to the budget constraint, the demand function for

commodity 1 can be written in budget share form as follows:

w
(1)
t =

ασ
1 (π(1)

t )1−σ

ασ
1 (π(1)

t )1−σ + ασ
2 (π(2)

t )1−σ
(4)

where the elasticity of substitution between the two goods is σ , with σ = 1/(1 − σ). The constraint

ρ < 1 implies σ > 0 . The subscript t represents time, w(1) is the share of savings at commercial banks,

and π
(1)
t and π

(2)
t are the user costs of savings deposits at commercial banks and at thrift institutions

respectively. The formula for monetary services user costs was derived in Barnett (1978,1980). With

the parameter ασ
2 normalized to be 1, we change the notation for ασ

1 to γ, leaving two parameters to be

estimated: γ and σ.

4.3 Econometric Results

We employ maximum likelihood estimation of the model represented by equation 4. Since the two

expenditure shares sum to one, the second equation will be omitted from the estimation and can be
8For details on the theory and methodology relevant to these indexes, see Barnett (1977, 1978, 1980) and Anderson,

Jones and Nesmith, 1997.
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recovered from equation 4. The model is estimated with an additive AR(1) error term. The parameter

estimates of equation 4 with an additive autoregressive error structure are shown in table 1. Note the

finding that substitution among the two assets, savings deposits at commercial banks and savings deposits

at thrift institutions, is very low (σ = .21). Even though both are savings deposits, simple sum aggregation

over them would not be justifiable, since the services produced by the two types of savings deposits are

far from perfect substitutes. We were surprised by just how low that elasticity of substitution was for

savings deposits at different institution types. In addition, since this minor step in our procedure is only

to produce a calibration norm for illustration figures from our Monte Carlo experiments, we felt that

such a low elasticity of substitution cannot be viewed as adequately typical. So in generating simulated

data for our initial Monte Carlo experiments, we adjusted the elasticity of substitution upwards to 0.37.

We round γ only slightly upwards to 2.8. The figures in this paper are conditional upon those initial

calibrated settings for parameters, but the figures produced the same conclusions with other parameter

settings.

σ γ ρ

0.21 2.728 1.004

(0.42) (0.15) (.002)

Table 1: Parameter estimates (Standard errors in parenthesis)

5 Monte Carlo Experiment

The two goods we simulate are assumed to be substitutable to some degree, so that the two goods

(perhaps monetary assets, but only used as an illustration in the one calibrated case) are subject to the

inequality constraint σ > 0. With the simulated data described below, we estimate the demand model

with the simulated data subject to that inequality constraint, using the method of squaring by applying

the reparameterization, σ = 10−20 + 0.01θ2, while alternatively the exponential transformation approach

is implemented by applying the reparameterization, σ = 0.00001 exp θ. The next sections describe the

data generation process and the estimation method, followed by the results. There are two objectives of

our Monte Carlo experiment: (1) assess the potential damage to the asymptotic properties of σ = g(θ)

resulting from the indeterminacy of the sign of the squared parameter θ in the method of squaring 9

and (2) determine the asymptotic properties of the constrained parameter when the jackknife and the

bootstrap are used to calculate the finite sample standard errors, with sample sizes permitted to increase

to large values.
9In this context, g(θ) = 10−20 + 0.01θ2
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The parameters (σ, γ) are set at various values, but since our results were robust to the setting of

those parameters, we provide illustrative figures only for the case calibrated to have (σ, γ) = (0.37, 2.8).

5.1 Data Generation Process

The data generation process proceeds in six steps, following the setting of the values of the parameters.

Step 1: Generate three series of 100,000 random numbers that will be the seeds for generating two

user costs series and the white noise errors.

Step 2: Generate two stationary series containing S observations and representing the unit costs of

two categories of assets [π(1)
t and π

(2)
t , t = 1, 2, 3, ..., S]. We generated that data from the following simple

stationary specifications: π
(1)
t = 2 + 6ν1 and π

(2)
t = 1 + 5ν2, where ν1 and ν2 are uniformly distributed

between 0 and 1 10.

Step 3: Use equation 4 to generate a series of expenditure shares of asset 1, w
(1)
t , with the true values

of the parameters set at σ = 0.37, γ = 2.8. The expenditure share of monetary asset 2 are then derived

from w
(1)
t + w

(2)
t = 1.

Step 4: Generate a white noise error term series with mean zero and standard deviation equal to

0.04.

Step 5: Add the errors created in step 4 to the series of expenditure shares of asset 1 from step 3.

The resulting realized stochastic shares are designated by fw1.

Step 6: The set of increasing sample sizes are chosen to be:

S ∈ {30, 45, 60, 100, 200, 400, 800, 1000, 2000, 3000, 4000, ..., 100000)}.

5.2 Estimation Techniques

With the simulated data, maximum likelihood is used to estimate equation 4 with replaced by fw1.

The positivity constraint on σ is imposed using the method of squaring with σ = 10−20 + 0.01θ2 and

alternatively by using the exponential transformation, σ = 0.00001 exp θ. Our primary objective is to

determine whether Y =
√

N [g(θ̂)−Eg(θ̂)] has a limiting distribution providing accurate measures of its

standard deviation. Other properties of the limiting distribution are not relevant to this study, and figure

1 demonstrates that limiting normality is impossible for Y with the distribution of g(θ̂) being truncated

at the origin.
10We considered using simulated autogressive price data, but the nature of those stochastic processes seems unrelated to

the truncation and sign-identification issues that are our focus.
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Nevertheless, it is possible that enough properties of the limiting distribution may be undamaged so

that limiting normality of Y cannot be rejected empirically. Since we are only concerned with the first

two moments, the unavoidable errors in the higher order moments (that do not exist with the normal

distribution) need not concern us. In fact our objective is focused solely on convergence of the standard

deviation, which remains possible, even if the distribution cannot converge to a limiting normal.

For every generated sample of size S, we estimate the model using the method of squaring first and

then by using the exponential transformation. If the parameter estimation converges as S increases

with the method of squaring, we consider the trial to be successful. This procedure is repeated 1000

times and the parameter estimates from the first 220 successful experiments are collected to compute
√

N [g(θ̂)− Eg(θ̂)], with N being the sample size, set at the increasing values of S 11.

We first look at the evolution of the finite-sample estimated standard deviation of
√

N [g(θ̂)−Eg(θ̂)],

as N diverges to infinity, since those standard deviations are the focus of this paper. If a limiting

distribution exists, the variance should be stationary as the sample size increases. Although limiting

normality is impossible with truncated distribution, we also compare with the known quantiles for the

normal distribution. Finally, we use three normality tests: the Kolmogorov-Smirnov, the Cramer-von

Mises, and the Anderson-Darling tests.

These tests are based on the empirical distribution function (EDF). The Kolmogorov-Smirnov test

statistic D is based on the largest vertical difference (sup norm) between the EDF, (Fn(x)), and the

theoretical distribution function F (x) so that D = Supx|Fn(x) − F (x)|. The Anderson-Darling and

the Cramer-von Mises tests use the weighted square difference as the norm. The Cramer-von Mises test

weights are constant and equal to 1, while the Anderson-Darling weights are given by F (x)(1−F (x)) The

tails are weighted more in the Anderson-Darling test than in the Kolmogorov-Smirnov or the Cramer-von

Mises tests. With each of the three tests, the smaller the test statistic, the closer the empirical distribution

is to the normal distribution. We cannot take seriously limiting normality with truncation, since the

normal distribution has no moments higher than the second moment, while a truncated distribution

does. Nevertheless, empirical inability to reject limiting normality could strengthen our ability to use the

first two moments from the limiting distribution in producing asymptotic inferences, since the first two

moments have particularly heavy influence on normality tests.

5.3 Estimation Results

The results about the asymptotic properties of
√

N [g(θ̂) − Eg(θ̂)] are summarized in tables 2a,b and

in figure 2 - 5. The method of squaring was implemented by defining g(θ) = 10−20 + 0.01θ2 and the

11This number of replications, 1000, is arbitrary but its only importance is to guarantee that each sample of parameter

estimates will have 220 observations.
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exponential transformation by defining σ = 0.00001eθ 12. We have not attempted to weaken the existing

asymptotic proofs for the delta method to permit the nonidentified sign of the unconstrained parameter

estimates. But our Monte Carlo results demonstrate that the nonidentified sign does not compromise

the asymptotic standard errors. It should be emphasized that the regularity assumptions in the existing

proofs are sufficient but not necessary for the results on the variance of the limiting distribution.

Figure 2 exhibits the estimated standard deviation of the limiting distribution of
√

N [g(θ̂)−Eg(θ̂)] with

the two reparameterizations (method of squaring and exponential transformation). These results were

acquired from the delta method’s asymptotic distribution theory, but with increasing simulated sample

sizes. The results are almost identical, which demonstrates that the estimated asymptotic standard errors

do not depend on the transformation used to impose the inequality constraint, or the nonidentification of

the sign of the unconstrained parameter with the method of squaring. The exponential transformation

and the method of squaring perform equally well. As the sample size increases, the estimated standard

deviation of
√

N [g(θ̂)−Eg(θ̂)] converges to approximately 0.42 in both cases. This convergence tends to

support the use of the asymptotic theory.

The results in figure 2 are consistent with those in the first plot (Std1) of figure 3, which shows

the directly computed finite sample estimated standard deviation of
√

N [g(θ̂) − Eg(θ̂)] from the Monte

Carlo simulation results. The standard error again converges to approximately 0.42 as the sample size

increases. We view 0.42 thereby as being the correct limiting standard deviation against which all other

computations should be compared13.

The second and third plots (Std2 and Std3) in figure 3 show the evolution of the finite sample estimated

standard deviation of
√

N [g(θ̂)−Eg(θ̂)] for increasing sample size, when the bootstrap and the jackknife

are utilized. The jackknifed standard deviation appears to be stationary around 0.22, which is almost

half the table 1 standard deviation of the constrained estimator.

The bootstrap performs better than the jackknife, since the bootstrapped standard deviation does

converge to the Std1 estimated standard deviation of the limiting distribution of Y, as the sample size

increases, while the jackknifed standard deviations are consistently lower than the bootstrapped standard

deviation. Figure 4 shows that this result is a consequence of the relatively small proportion, k, of jackknife

observations deleted. After almost 90 percent of the sample is deleted, the jackknifed finite-sample

standard deviation of Y does converge to the estimated standard deviation of the limiting distribution of
12As mentioned in a prior footnote above, we also ran our model with different values of the constrained parameter

(elasticities of substitution), and those results are available upon request.
13This Delta method standard deviation converges to the table 1 standard errors of the constrained parameter, regardless

of the distribution of the unconstrained parameter and regardless of whether or not the sign of the unconstrained parameter

is identified. But we view this as being a coincidence. In Table 1, we are using real monetary asset user cost data, while

in Figure 3, we are using simulated user cost data. Also in Figure 3, we are plotting the standard deviation of the limiting

distribution of
√

N [g(θ̂)− Eg(θ̂)], while in table 1, we provide the standard error of the estimate of g(θ).
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Y. These results strongly argue against the jackknife, in such applications as consumer demand modeling,

where very large sample size is the exception rather than the rule.

The bootstrap standard deviation of Y performs very similarly to the estimated standard deviation

from the theoretical limiting distribution, as figure 5 shows. Not only are the two very similar to each

other at all sample sizes, but converge to each other as sample size grows.

As the sample size increases, the normality of the limiting distribution of
√

N [g(θ̂)−Eg(θ̂)] from both

the bootstrap and the jackknife cannot be rejected. This is despite the fact that normality is impossible,

as a result of the truncation displayed in figure 1. As displayed in table 2b, we cannot reject the null

hypothesis of normality at the 15 percent level with the Kolmogorov-Smirnov test and at 25 percent

with both the Cramer-von Mises and the Anderson-Darling tests. In addition, as displayed in table

2a, the estimated quantiles of the normal distribution of
√

N [g(θ̂) − Eg(θ̂)] converge to the observed

quantiles, as the sample size diverges to infinity. While we know that limiting normality is impossible

for a truncated distribution, we are only concerned in this paper about whether or not the asymptotic

theory is adequate for certain properties — in particular standard errors. Our numerical experiments

demonstrate that the asymptotic theory, using the delta method, is undamaged by the truncation. Our

results with tests of limiting normality suggest that there are properties of the limiting distribution that

also are undamaged, at least approximately, but we do not pursue the implications for other properties

of the limiting distribution. Clearly higher order limiting moments cannot be used, since the normal

distribution has no moments higher than the second moment, while the truncated distribution in table 1

displays existence of higher order moments, such as skewness towards the right.

6 Conclusion

In this paper, our goal is to investigate the empirical implication of inequality constraints imposed on the

parameters of a regression. In particular, we are interested in knowing the asymptotic implications of the

nonidentified sign of the unconstrained parameter in the method of squaring. While that nonidentified

sign violates the regularity conditions of the currently available asymptotic proofs with the delta method,

we cannot rule out the possibility that the usual asymptotic properties of the constrained parameter

still apply, despite the unavailability of a theoretical proof. As a result, we explore that issue using

numerical Monte Carlo methods. Results with the popular method of squaring were compared to results

with the exponential transformation, which violates different regularity conditions of available theoretical

asymptotic proofs14. We find that the theoretical regularity conditions violations do not affect the

usefulness of existing asymptotic theory in determining standard errors of the constrained parameter
14Any transformation that produces truncated sampling distribution for the transformed parameters inherently must

violate the existing proofs, which produce the excessively strong result of asymptotic normality.
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estimates by the delta method. In addition, the results were not sensitive to the functional form used

to impose the inequality constraint. Our second result compares the estimated standard errors from

the jackknife and the bootstrap. We find that the finite sample bootstrapped standard errors and the

estimated standard errors from the limiting distribution of the constrained parameter estimate converge

to each other. However, the finite sample jackknifed standard errors is an increasing function of the

proportion of the sample deleted within that procedure. For that reason, the bootstrap dominates the

jackknife, even though the finite sample jackknifed standard errors are lower than the finite sample

bootstrapped standard errors.
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Table 2a:  Normality tests for ˆ ˆ( ) ( )N g Egθ θ −  , where g(θ) = σ.  Quantiles for limiting 

normal distribution of Y. 
 

 

Sample size=100 

BOOTSTRAP JACKKNIFE 
 

TESTS 
--Statistic--   --p Value-- --Statistic-- --p Value-- 

Kolmogorov-Smirnov    
Cramer-von Mises      
Anderson-Darling   

D    0.0467   
W2   0.0704    
A2   0.4567  

Pr > D    > 0.15 
Pr > W2     > 0.25 
Pr > A2     > 0.25 

D      0.057   
W2       0.201   
A2       1.28  

Pr > D   < 0.010 
Pr > W2   < 0.005 
Pr > A2   < 0.005 

 

Sample size=30,000 

BOOTSTRAP JACKKNIFE 
 

TESTS 
--Statistic--   --p Value-- --Statistic-- --p Value-- 

Kolmogorov-Smirnov    
Cramer-von Mises      
Anderson-Darling   

D    0.0368   
W2   0.0585    
A2   0.3831  

Pr > D   > 0.150 
Pr > W2   > 0.250 
Pr > A2   > 0.250 

D     0.035   
W2       0.049   
A2       0.271  

Pr > D   > 0.150 
Pr > W2   > 0.250 
Pr > A2   > 0.250 

 

Table 2b:  Normality tests for ˆ ˆ( ) ( )N g Egθ θ −  , where g(θ) = σ. Goodness of fit tests for 

limiting normal distribution of Y. 

BOOTSTRAP 100 JACKKNIFE N=100  

-----Quantiles------ -----Quantiles------ 
Percent Observed Observed Estimated Estimated 
1.0 -1.65570 -0.49016 -0.554355 -1.667597 

5.0 -1.25156 -0.40389 -0.391958 -1.179081 

10.0 -1.02117 -0.32782 -0.305385 -0.918654 

25.0 -0.43871 -0.16927 -0.160725 -0.483493 
50.0 0.03750 0.00314 0.000003 0.000003 
75.0 0.47197 0.18360 0.160731 0.483498 
90.0 0.92255 0.29008 0.305390 0.918660 
95.0 1.14766 0.33082 0.391964 1.179086 
99.0 1.46774 0.54913 0.554361 1.667603 

BOOTSTRAP 30,000 JACKKNIFE N=30,000  

 

-----Quantiles------ -----Quantiles------ 
Percent Observed Observed Estimated Estimated 
1.0 -0.08953 -0.51335 -0.51335 -0.094693 
5.0 -0.06416 -0.40140 -0.40140 -0.066954 
10.0 -0.05586 -0.30727 -0.30727 -0.052167 
25.0 -0.03173 -0.14700 -0.14700 -0.027458 
50.0 0.00216 0.01539 0.01539 -0.000004 
75.0 0.02984 0.14528 0.14528 0.027450 
90.0 0.05063 0.30632 0.30632 0.052159 
95.0 0.06246 0.41219 0.41219 0.066947 
99.0 0.09395 0.48937 0.48937 0.094686 
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Figure 2: Estimated standard deviation of the theoretical limiting distribution of
√

N [g(θ̂) − Eg(θ̂)] as

the sample size, N, increases.
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Figure 3: Finite sample estimated standard deviation of
√

N [g(θ̂)−Eg(θ̂)] as the sample size, N, increases.
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Figure 4: Finite sample estimated standard deviation of
√

N [g(θ̂)−Eg(θ̂)] where N = 800, as the number

of Jackknife replications, k, increases.
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Figure 5: Bootstrapped versus asymptotic standard deviation of the limiting distribution of
√

N [g(θ̂)−

Eg(θ̂)] as N increases to 2000.
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