
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2019

A method of evaluation of high-performance
computing batch schedulers
Jeremy Stephen Futral
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2019 All Rights Reserved

Suggested Citation
Futral, Jeremy Stephen, "A method of evaluation of high-performance computing batch schedulers" (2019). UNF Graduate Theses and
Dissertations. 869.
https://digitalcommons.unf.edu/etd/869

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/213904855?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

A METHOD OF EVALUATION OF HIGH-PERFORMANCE COMPUTING BATCH
SCHEDULERS

by

Jeremy Futral

A thesis submitted to the
School of Computing

in partial fulfillment of the requirements for the degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

April, 2019

ii

Copyright (C) 2018 by Jeremy Futral.

All rights reserved. Reproduction in whole or in part in any form requires the prior
written permission of Jeremy Futral or designated representative.

iii

The thesis “A Method of Evaluation of High-Performance Computing Batch Schedulers"
submitted by Jeremy Futral in partial fulfillment of the requirements for the degree of
Master of Science in Computer and Information Sciences has been

Approved by the thesis committee: Date

Eggen, Roger
Thesis Advisor and Chairperson

Ahuja, Sanjay

Liu, Xudong

Accepted for the School of Computing:

Elfayoumy, Sherif
Director of the School

Accepted for the College of Computing, Engineering, and Construction:

Klostermeyer, William
Interim Dean of the College

Accepted for the University:

Kantner, John
Dean of the Graduate School

iv

ACKNOWLEDGEMENT

I wish to especially thank my wife, Cristen, for supporting me and pushing me to always

be better than I think I am.

v

CONTENTS

List of Figures .. vii

List of Tables .. viii

Abstract ... ix

Chapter 1: Introduction ...1

1.1 High-Performance Computing ..1

1.2 High-Performance Computing Topologies ...2

Chapter 2: Overview of Schedulers and Clusters ...4

2.1 Overview of Beowulf ..5

2.2 Overview of Portable Batch Scheduler Professional 6

2.3 Overview of Slurm Workload Manager ...9

2.4 Overview of Kubernetes ...11

2.5 Previous Work ..13

Chapter 3: Methodology ...16

3.1 Experimental Setup ...19

Chapter 4: Results ...22

Chapter 5: Future Work and Conclusion ..29

5.1 Conclusion ..30

Print Publications ..31

Electronic Sources ..31

Appendix A: Slurm Workload Manager Code Listing ...35

Appendix B: Portable Batch Scheduler Professional Code Listing 37

vi

Appendix C: Kubernetes Code Listing ...39

Appendix D: Beowulf Code Listing ...46

Vita ..48

vii

FIGURES

Figure 1: Portable Batch Scheduler Architecture ...7

Figure 2: Portable Batch Scheduler Multiple Execution Host ..8

Figure 3: Slurm Workload Manager Architecture ..10

Figure 4: Kubernetes Master-Minion Architecture ...12

Figure 5: 10th percentile Time-to-Spool for Class A Jobs ...23

Figure 6: 90th percentile Time-to-Spool for Class C Jobs ...23

Figure 7: 10th percentile Total-Time for Class A Jobs ...26

Figure 8: 90th percentile Total-Time for Class C Jobs ...27

viii

TABLES

Table 1: Time-to-Spool (sec) ..22

Table 2: RAM Usage ..24

Table 3: Time-to-Process (sec) ...25

Table 4: Total-Time (sec) ...26

ix

ABSTRACT

According to Sterling et al., a batch scheduler, also called workload management, is an

application or set of services that provide a method to monitor and manage the flow of

work through the system [Sterling01]. The purpose of this research was to develop a

method to assess the execution speed of workloads that are submitted to a batch

scheduler. While previous research exists, this research is different in that more complex

jobs were devised that fully exercised the scheduler with established benchmarks. This

research is important because the reduction of latency even if it is miniscule can lead to

massive savings of electricity, time, and money over the long term. This is especially

important in the era of green computing [Reuther18].

The methodology used to assess these schedulers involved the execution of custom

automation scripts. These custom scripts were developed as part of this research to

automatically submit custom jobs to the schedulers, take measurements, and record the

results.

There were multiple experiments conducted throughout the course of the research. These

experiments were designed to apply the methodology and assess the execution speed of a

small selection of batch schedulers. Due to time constraints, the research was limited to

four schedulers.

x

The measurements that were taken during the experiments were wall time, RAM usage,

and CPU usage. These measurements captured the utilization of system resources of

each of the schedulers. The custom scripts were executed using, 1, 2, and 4 servers to

determine how well a scheduler scales with network growth. The experiments were

conducted on local school resources. All hardware was similar and was co-located within

the same data-center. While the schedulers that were investigated as part of the

experiments are agnostic to whether the system is grid, cluster, or super-computer; the

investigation was limited to a cluster architecture.

 - 1 -

Chapter 1

INTRODUCTION

This research is comprised of several chapters. This first chapter discusses high-

performance computing, and its various topologies. The second chapter introduces the

clusters and schedulers that were evaluated during the experimentation phase of the

research. Chapter 2 also discusses previous works that were reviewed that relate to this

research. Chapter 3 discusses the methodology used to assess the clusters and schedulers

that were presented in chapter 2. Chapter 4 discusses the results obtained from the

experiments. Chapter 5 draws conclusions and identifies future work that may be derived

from this research.

1.1 High-Performance Computing

High-performance computing is the use of parallel processing for running advanced

application programs efficiently, reliably and quickly [Yang13]. According to Rouse, a

high-performance computer can be composed of nearly anything, from commodity

hardware, to individual user PCs spread across the globe, to a large single super computer

in a single data-center, or even to a collection of virtual machines in the cloud [Rouse07].

 - 2 -

Today’s high-performance computing applications require parallel processing [AWS15].

This is accomplished either by deploying grids or clusters of standard servers and central

processing units in a scale-out manner, or by creating specialized servers and systems

with unusually high numbers of cores, large amounts of total memory, or high throughput

network connectivity between the servers, and from servers to high-performance storage

[AWS15].

Originally as late as 2007, the most common users of high-performance computing

systems were scientific researchers, engineers and academic institutions. Some

government agencies, particularly the military, also rely on high-performance computing

for complex applications [Rouse07]. However, most high-performance computing as of

2017 is done in the commercial sector, in fields such as aerospace, automotive,

semiconductor design, large equipment design and manufacturing, energy exploration,

and financial computing [AWS15].

1.2 High-Performance Computing Topologies

As high-performance computing has increased in popularity so has its applications and its

various forms. Now there are three specific types of high-performance computing

topologies: cluster, grid, and super-computer. Clusters are connected on a local area

network , implemented on commodity hardware, and optimized for throughput and low

 - 3 -

latency services [Kaur14]. Grid systems are geographically dispersed, are dynamically

sized, and implemented on any kind of compute resource [Kaur14]. Grids may not be

dedicated. Super-computer systems are a single computer with many dedicated resources.

These topologies all support different parallel programming paradigms. These paradigms

are addressed as part of Flynn’s taxonomy. Flynn’s taxonomy consists of four types of

computer systems. These are Single Instruction and Single Data (SISD), Single

Instruction and Multiple Data (SIMD), Multiple Instruction and Single Data (MISD), and

Multiple Instruction and Multiple Data (MIMD) [Flynn66]. All four are considered

examples of parallel computing [Haase99].

 - 4 -

Chapter 2

Overview of Schedulers and Clusters

A batch scheduler maximizes the assignment of resources to jobs [Sterling01].

Essentially the batch scheduler assigns work to resources based upon their availability,

their current load, and reassigns work based upon any changing conditions. One can also

write jobs that can be simple or complex shell scripts that are submitted to the batch

scheduler to be executed.

Due to time constraints and the large number of available batch schedulers, this research

focused on only four specific schedulers. These were specifically chosen in that they are

free, open source, prolific, easily obtained, and have a unique architecture. It is the

opinion of this research that these specific architectures presented are also representative

of the wider landscape of batch schedulers available.

The batch scheduler software suites that were chosen were the default Linux job

scheduler running on a Beowulf cluster, Portable Batch Scheduler Professional, Slurm

Workload Manager, and Kubernetes. Slurm Workload Manager and Portable Batch

Scheduler run on many of the top 500 scientific, academic, and industrial systems.

Kubernetes runs

 - 5 -

on many corporate networks and cloud-based systems. Beowulf runs on many academic

and hobbyist systems. So, it is appropriate to study these systems in depth.

2.1 Overview Beowulf Cluster

Beowulf clusters are mostly found in academic [Becker97] and hobbyist settings

[Brown04]. Beowulf clusters are typically loosely coupled compute resources that reside

on dissimilar or in some cases commodity hardware. While there is not a standard

definition of what constitutes a Beowulf cluster, they typically have a message passing

interface package, a patched Linux kernel to take advantage of universal process IDs, and

also patched for Distributed Inter-Process Communication (DIPC) [Becker97]. The one

thing that is common among Beowulf clusters is the use of the Linux operating system

and sharing of a home folder via the Network File System (NFS) [Sterling01].

Beowulf clusters do not have a specific batch scheduler. Beowulf clusters are not defined

by their batch scheduling architecture; however, it is not uncommon to encounter

Beowulf clusters with various types of batch scheduling software pre-installed. A few

examples are Condor, Maui, Portable Batch Scheduler Professional, or even Slurm

Workload Manage in some unusual cases. Since the Beowulf cluster’s scheduler in the

experiments is the default Linux scheduler, it functioned as the control for the

experiments that were conducted during this research.

 - 6 -

Typically, Beowulf implements only the kernel’s default scheduler on a per-server basis.

The software engineer needs to design with this constraint in mind. When a Beowulf

cluster does not have a batch scheduler, which is often the case, all resources are

managed directly by the operating system and application. This means that compute

resources are maintained independently on each node by the node’s local Linux kernel.

The implication for this is that all resource calculation must be performed ahead of time

and maintained independently by the developer.

A major benefit to Beowulf clusters is that a Linux capable system with a shared NFS

partition is the only hard requirement [Sterling01]. This enables Beowulf clusters to be

made from nearly any spare compute resources including Raspberry Pis [Vaughan-

Nichols17].

2.2 Overview of Portable Batch Scheduler Professional

The first batch scheduler that is included in this research is Portable Batch Scheduler

Professional. According to the manual PBS is a distributed workload management

system which manages and monitors the computational workload on a set of one or more

computers [Altair18].

 - 7 -

Figure 1: Portable Batch Scheduler Architecture [HPC2N17]

In Portable Batch Scheduler Professional (PBSPro) the software suite consists of a Batch

Server daemon, a Job Scheduler daemon, and a job executor also known as a Machine

Oriented Mini-server or MOM [HPC2N17]. The high-level architecture is illustrated in

Figure 1. The Batch Server daemon is where users submit their job requests to be

processed [HPC2N17]. Typically, client software is loaded on user workstations and

specialized software is utilized to send commands to the Batch Server that can either

schedule or modify jobs. These jobs are held in queues on the Batch Server until the

resources that are required for them to execute becomes available.

 - 8 -

Figure 2: Portable Batch Scheduler Multiple Execution Host [Altair18]

The Job Scheduler daemon communicates with each of the job executors (or MOMs) on

the different nodes [Sterling01]. The Job Scheduler determines the state of the node and

if new resources are available for the MOM to begin execution of a new job for that node.

It also communicates with the Job Scheduler daemon to determine if any new jobs are

available for execution on the collection of nodes. It is important to note that the Job

Scheduler daemon does not necessarily exist on the same server as the Batch Server. In

the case of the experiments, it will be co-located to reduce any latency.

 - 9 -

The architecture that was explored as part of this research was the Multiple Execution

Systems as illustrated in Figure 2. In this configuration, the job executor daemons are

installed on the worker nodes. The controller node contains a Batch Server, a Job

Scheduler daemon, and a communications daemon. The worker nodes communicate with

the hosted communication daemon which proxies the messages and either routes them to

the Batch Server, the Job Scheduler daemon, or other worker nodes. One important

aspect is that the scheduler and server daemon are backed by a database. The database

maintains the job queues and all accounting information that is accessed by the Job

Scheduler daemon. Currently, as of 2018 this database is PostgreSQL 9.2.

2.3 Overview of Slurm Workload Manager

On the November 2013 Top500 list, five of the ten top systems use Slurm including the

number one system [Slurm13A]. These five systems alone contain over 5.7 million cores

[Slurm13A]. The Slurm architecture consists of a primary job controller daemon

(SlurmCTLD) which issues commands to daemons (SlurmD) on the worker machines as

illustrated in figure 3. The architecture also optionally consists of an accounting database

and additional job controller daemons. The database and additional controller daemons

interface with the primary job controller daemon to provide highly available backups.

 - 10 -

Figure 3: Slurm Workload Manager Architecture [Slurm13B]

The job controller daemons track user submitted jobs and submits them to the primary

Slurm daemon for scheduling once compute resources are available. Slurm also provides

a suite of command line applications. These can be run to interact with the Slurm

daemon and the job controller daemons to schedule jobs and control their behavior

[Slurm13B].

The Slurm daemons are responsible for utilizing compute resources as they become

available and are exhausted. The Slurm daemon allocates resources based on a partition

scheme. In Slurm, a partition is where certain compute resources have been allocated and

reserved for various jobs to ensure they are always available for those job sets.

 - 11 -

According to Namur et al., Slurm workload manager has the ability to run jobs in one of

four methods: multi-process, multi-threaded, data-centric, and master-worker paradigm

[Namur17]. Multi-process applications can be of any of the various MPI variants that are

available, such as OpenMPI. Multi-threaded applications can be implemented with either

p-Threads or OpenMP, which use a shared memory model. Data-centric models rely on

the problem being embarrassingly parallel. In embarrassingly parallel problems, data can

be easily split among multiple instances and processed independently without

communication [Neiswanger15]. In a master-worker application, the master can

implement any combination of the earlier described methods. Additionally, the master

dispatches work to the workers and then accumulates the results.

2.4 Overview of Kubernetes

According to Kubernetes et al., Kubernetes is an open-source system for automating

deployment, scaling, and management of containerized applications [Kubernetes17].

Kubernetes leverages a technology known as containerization. In containerization, a

moderate portion of the operating system is loaded with a target application as a single

process in memory. This is in contrast to traditional computing where many applications

are housed on a single operating system and share the same user space.

 - 12 -

Containerization gives applications the ability to be deployed with the operating system

of their choosing using the tools and libraries already available. These containers are

described using a file called a Dockerfile, which is essentially a recipe of how to

configure the operating system and application in memory. This allows developers more

freedom to write custom applications without having to worry about their target

environment. Containerization also keeps the applications in a pristine environment each

time they are launched. The container is destroyed, and all its resources are released on

application termination.

Figure 4: Kubernetes Master-Minion Architecture [Gupta15]

 - 13 -

Kubernetes has a discrete architecture made of master nodes that manages minion nodes,

as show in figure 4. Each of the minion nodes implements a Docker daemon and a

Kubelet daemon that maintains the various container images in memory. These are

organized into logical partitions called pods. Work is then distributed amongst the pods

per application.

The master architecture can be either a single master node which maintains all the core

components or a collection of master nodes with the various components spread across

the master nodes. The master node contains the master Kubernetes daemon. This

communicates with the minions, a batch scheduler, a user authorization component for

managing system user access to the master controller, a RESTful API for remote

management, and an information daemon that maintains the status of the minion

machines. All of these components are controlled via user command line from a remote

workstation or a dedicated server with the components supplied.

2.5 Previous Work

After extensive searching of the University’s and other online sources, there were no

articles that could be identified that clearly demonstrated benchmark comparisons of the

 - 14 -

performance of any schedulers directly head to head. Instead, a selection of articles with

intersecting benchmarks and technologies are presented for review.

The first article reviewed was a comparison of four different schedulers that are similar to

what this research compares. The researchers Reuther et al., used Slurm Workload

Manager, Grid Engine, Apache Hadoop Yarn, and Mesos [Reuther18]. The treatment

was very thorough and many of the conclusions that the researchers arrived at were

similar in terms of time-to-spool jobs. The problem is that the benchmark they used does

not fully exercise the cluster. All jobs that were submitted were sleep jobs of varying

lengths. It is the opinion of this research that the reason that sleep jobs are not a

sufficient method of measurement is that as the batch job script increases in in length and

computational complexity it will increase the time-to-spool.

According to Sakar et al., the researchers were employed by Tata Steel in Jamshedpur,

India [Sakar12]. In the article, they wrote PBS batch jobs for a cluster, known as

Reynolds. The batch jobs would then execute their own benchmarks on varying numbers

of nodes. For their benchmark, they used OpenFoam which would then simulate various

scenarios which were designed to exercise the system. The researchers unfortunately did

not provide the code for the OpenFoam benchmarks and also no other batch scheduler

schedulers were evaluated.

 - 15 -

Another relevant benchmark paper is from Madani et al, whose comparison is of MPI

specifications: MVAPICH2 and Intel MPI [Madani11]. They performed tests by varying

the message package size that was communicated between nodes. They then performed

these tests on both MVAPICH2 and Intel MPI frameworks and recorded the results. The

paper did not include any indication that a batch scheduler was used; however, this

research is relevant in that the NASA Parallel Benchmarks are MPI based.

In terms of heterogeneous processors, one can look to Soner et al [Soner 12]. In this

article, the authors devise a new type of scheduler to be used in conjunction with the

Slurm Workload Manager [Soner12]. This scheduler is capable of differentiating

between GPU and CPU cores. According to the authors of the article, some jobs are ill

suited for GPU processing time and should be exclusively scheduled on CPU cores. This

article also delves into the best way to schedule these resources and ensure maximum

utilization.

Docker container technology has also started to be utilized recently in conjunction with

high-performance computing and can be illustrated in [Alfonso18]. In this article, the

authors introduced and evaluated a tool called Elastic Cluster for Docker or EC4Docker.

Its goal is to automate the deployment of Docker containers that are preconfigured with a

batch scheduler and libraries associated with High-Performance computing. Instead of

Kubernetes, they use Docker’s competing product Swarm.

 - 16 -

Chapter 3

METHODOLOGY

Two kernels, Class A and Class C, of the Embarrassingly Parallel (EP) of the NASA

Parallel Benchmark suite were used to test the systems. Class A was used to simulate

short running tasks and Class C was used to simulate long running tasks. To simulate

complicated workloads, several different automation and batch job scripts were written as

part of this research. These scripts were used to execute both classes of tasks many times

and on various number of nodes

For this research, four pairs of scripts, describe previously, were executed with various

parameters and measurements were taken. Each pair of scripts were structured

identically, except for some minor changes to accommodate the scheduler being tested.

The pair of scripts consisted of an automation script which then submitted a batch job

script to the batch scheduler to be executed.

The automation script initializes resource monitoring and records the current time

immediately before submitting the batch job script. Once the batch job script is

submitted to the job scheduler, the time is recorded again upon execution by the executor

 - 17 -

service on a remote node. It then begins execution of several NASA Parallel Benchmark

programs. Once the benchmark programs complete, the batch job script records the time

a final time.

According to NASA, NASA Parallel Benchmarks are a small set of programs designed to

help evaluate performance [NPB18]. The benchmarks are derived from computational

fluid dynamics (CFD) applications and consist of five kernels and three pseudo-

applications. NASA Parallel Benchmark 3.1.1 provides three programming models that

can be leveraged. OpenMPI, OpenMP, and Serial. The OpenMPI variant of NPB 3.1.1

was chosen instead of OpenMP and serial since it leverages the cluster in its entirety.

OpenMP was not chosen since it does not support the cluster architecture that was chosen

for this research [Eijkhout11]. OpenMPI is an open source Message Passing Interface

implementation that is developed and maintained by a consortium of academic, research,

and industry partners and is used for High-Performance Computing [OpenMPI18].

The time between when the automation script records the time initially and when the

batch job script records the second time is the time-to-spool. The time-to-spool metric

represents the amount of time it takes for the batch scheduler to completely pre-process

the batch job script sent from the command line. The batch scheduler then begins

execution of the batch job script itself on the worker nodes. The amount of time recorded

between the second and final time, after the benchmark programs complete, is the time-

 - 18 -

to-process. This time span represents the amount of time it takes for the batch to execute

the script itself.

The pair of scripts are customized with three parameters. The first parameter is the

number of benchmark programs that the batch job script will execute. This will give a

good sample of more complicated batch job scripts. As the length and computational

complexity of the script increases, the performance should degrade amongst the different

schedulers. The second parameter is the test number. This parameter is for informational

purposes only and tags the file names with a number that can be used to serialize the tests

for easy extraction later. The third parameter is the specific benchmark program that will

be executed multiple times during the batch job script. In our tests this was either NASA

Parallel Benchmark Class A or Class C.

Since the various batch systems pre-process the batch job scripts and look in the

comments for additional parameters, the scripts were not parameterized for the number of

nodes. The number of nodes that the jobs required were adjusted manually before run-

time.

 - 19 -

3.1 Experimental Setup

The servers in this experimental setup were all virtualized instances that resided on

VMWare hosts. The front-end server that was used as the batch server for the

experiments was provisioned with 8GB of RAM and 4 vCPU cores. Each of the worker

nodes were provisioned with 4 GB of RAM and 1 vCPU core each.

To ensure that the clock was synchronized for the timed portion of tests all server clocks

were synchronized using the Network Time Protocol (NTP) with NTP United States pool

servers. These NTP servers ensured that the clock drift between the workers and front-

end server was minimal and within 100 milliseconds. In addition to NTP, all servers ran

OpenSSH_7.4p1 and OpenMPI 3.1.1 with parameters’--enable-openib-rdmacm --with-

slurm --with-tm=/opt/pbs’. Once everything was built and installed, four experiments

were then conducted.

The first experiment was executed using a standard Beowulf cluster. No special software

or daemons were installed except for OpenSSH daemons to facilitate communication to

the nodes for benchmark execution. Even though the Beowulf cluster does not include a

standardized scheduler, it has been included to serve as the baseline. The other clusters

will be compared against this baseline.

 - 20 -

The second experiment was conducted with Portable Batch Scheduler Professional

18.1.2. The front-end server hosted the Batch Server (pbs_server), the Job Schedulers

(pbs_sched), and the Communication Daemon (pbs_comm). It also was backed by

PostgreSQL 9.2.23 as its job scheduling queue. The worker nodes each host a Job

Executor Daemon (pbs_mom).

The third experiment was conducted with the Slurm Workload Manager Scheduler

17.11.18. The front-end server hosted the Slurm Controller Daemon (SlurmCTLD) and

the workers hosted the Slurm Worker Daemons (SlurmD). In addition to the Slurm

Daemons, the Munge Daemons were also started to provide authentication between nodes

in the Slurm cluster.

The final experiment was the Kubernetes cluster. All nodes in the Kubernetes cluster

hosted both the Docker Daemon and the Kubelet Daemons. The Kubelet Daemon on the

front-end node hosted the pods etcd, kube-apiserver, kube-controller, kube-proxy, and

weave-net. The worker nodes Kubelet Daemon hosted kube-proxy, coredns, and weave-

net. During the experiment the nodes also hosted a set of custom daemon pods to support

the benchmark programs. The daemon pods were specifically written and designed to

contain the NASA Parallel Benchmark programs, OpenMPI libraries, and OpenSSH.

 - 21 -

To deploy the daemon pods, a request was submitted to the master node to provision the

worker pods on the worker nodes. Once the request was submitted, the batch job would

then be submitted to the cluster. The batch job would then provision the controller node.

The controller node would test that the worker pods were available and begin running the

batch shell script provided. This would then run the requested jobs on the worker pods.

Each of the described setups were then tested using the batch and automation scripts.

The scripts were executed with 10, 20, 30, 40, 50, and 100 benchmark programs per

batch job with Class A and again with Class C embarrassingly parallel benchmark

program variants.

 - 22 -

Chapter 4

RESULTS

In terms of time-to-spool jobs, Beowulf outperformed all of the schedulers. This can be

seen in table 1, figure 5, and figure 6. Kubernetes did not perform well in terms of

startup time as can be seen in the previously mentioned tables and figures. The reason

that Kubernetes did not perform well was that the worker pods had to be first provisioned

before a controller pod could be provisioned via the batch job. The batch job then had to

perform a DNS lookup of the worker pods and then it would be forced to wait till the

worker pods were available.

TIME-TO-

SPOOL (MS) CLASS A CLASS C

KUBE 1814.5 2023.3

PBS 191.7 292

SLURM 269.1 724.3

BEOWULF 180 190

Table 1: Time-to-Spool (ms)

 - 23 -

Figure 5: 10th percentile Time-to-Spool for Class A Jobs

Figure 6: 90th Time-to-Spool for Class C Jobs

0

500

1000

1500

2000

2500

Kubernetes PBS Slurm Beowulf

m
ill

is
ec

o
n

d
s

Class A - Time-to-Spool
10th percentile

0

500

1000

1500

2000

2500

Kubernetes PBS Slurm Beowulf

m
ill

is
ec

o
n

d
s

Class C - Time-to-Spool
90th percentile

 - 24 -

Of note, Kubernetes, Portable Batch Scheduler Professional, and Beowulf all had

consistent and predictable spool times whereas Slurm spool times varied wildly, from as

little as 80 milliseconds to 1000 milliseconds or more. This behavior can be seen

especially in Class C of table 1 and figure 6. If Kubernetes time-to-spool is not

considered in the full dataset then one will find that some of the Slurm Workload

Manager spool times are statistically significant. The reason is that Kubernetes, Portable

Batch Scheduler Professional, and Beowulf job handlers are all RAM based whereas the

Slurm Workload Manager job handler is disk based. The Slurm Workload Manager jobs

are first spooled to disk before execution. Since disk access times are slower and will

occasionally be cached, the access times can vary from execution to execution.

RAM USAGE (KB) MASTER WORKER

BEOWULF 0 0

KUBERNETES 606404 290348

PBS 32164 1848

SLURM 2488 1296

Table 2: RAM Usage

RAM usage (in kilobytes) was observed during the experiments and recorded in table 2.

Since Beowulf does not include a batch scheduler, it was recorded as 0 kb usage. Also

observed is the very small footprint of Slurm Workload Manager. This is a consequence

 - 25 -

of all jobs being spooled to disk and not managed in memory. Kubernetes is very

memory intensive and consumes the most RAM.

The initial hypothesis was that the addition of a batch scheduler would degrade

performance of the jobs. The results from these experiments were very surprising. Slurm

Workload Manager and Portable Batch Scheduler Professional both performed

remarkably better than the Beowulf cluster. They performed better in time-to-process, as

can be seen in Table 3 and Figure 7. They also performed better in terms of total-time as

can be seen in Table 4 and Figure 8. This is unexpected given that the Beowulf cluster

had the shortest time-to-spool. The only situation where a batch scheduler performed

worse than a plain Beowulf cluster was the Kubernetes cluster.

TIME-TO-PROCESS (SEC) SHORT LONG

KUBE 96.2 14508

PBS 91.2 14147

SLURM 91.6 14151

BEOWULF 94.5 14166

Table 3: Time-to-Process (sec)

 - 26 -

TOTAL-TIME (SEC) SHORT LONG

KUBE 98.1 14510

PBS 91.6 14147

SLURM 92.2 14152

BEOWULF 94.7 14166

Table 4: Total-Time (sec)

Figure 7: 10th percentile for Total-Time for Class A Jobs

88000

90000

92000

94000

96000

98000

100000

Kubernees PBS Slurm Beowulf

m
ill

is
ec

o
n

d
s

Class A - Total-Time
10th percentile

 - 27 -

Figure 8: 90th percentile for Total-Time for Class C Jobs

It was discovered that one reason Slurm Workload Manager and Portable Batch

Scheduler Professional outperform the Beowulf cluster is the fact that Beowulf relies on

SSH for inter-node communication. Since SSH is encrypted, communication is slower

for Beowulf. The communications in Slurm Workload Manager and Portable Batch

Scheduler Professional clusters are not encrypted. The reason that this security situation

would be tolerated is that the nodes that are employed in a high-performance computing

cluster are fenced within an environment. The cluster is not accessible except through

the front-end node.

The Kubernetes cluster also suffers from utilizing SSH for its communication protocol.

In addition to SSH, our Kubernetes setup also relies on a virtual network and custom

13900

14000

14100

14200

14300

14400

14500

14600

Kubernetes PBS Slurm Beowulf

se
co

n
d

s

Class C - Total-Time
90th percentile

 - 28 -

dynamic DNS solutions to determine worker node availability. The added layer of the

virtual network and the DNS lookups significantly affects its performance.

 - 29 -

Chapter 5

FUTURE WORK AND CONCLUSION

In terms of future work, the research indicates that there are some implementation

changes that could significantly improve performance. For Kubernetes, for example it

needs to be determined if Weave-Net is the appropriate network plugin for the cluster. A

comparison of network plugins for Kubernetes in conjunction with OpenMPI would be a

great point of future research. Another way that Kubernetes cluster could be optimized is

by moving from SSH to RSH for fenced networks. This same optimization could be

applied to Beowulf clusters as well.

One additional optimization for Kubernetes would be to create a static, custom pod as the

front-end node. Once the custom pod is provisioned then the batch job would select the

front-end node instead of creating new pods each time. Provisioning all pods including

the front-end pod ahead-of-time would eliminate most of the startup time.

Slurm Workload Manager out of the box does not appear to require any optimizations.

Any optimizations would be in terms of additional configuration of the supporting

OpenMPI libraries themselves. In order to better assess Slurm Workload Manager versus

 - 30 -

Portable Batch Scheduler, it might be beneficial to unroll the for-loop within the batch

scripts. Portable Batch Scheduler Professional also provides an MPI wrapper script

(pbs_mpirun) that was not leveraged during the experiments which could potentially

boost performance, since the benchmarks are OpenMPI based. Also, the job array

functions within Portable Batch Scheduler and Slurm Workload manager should be

leveraged to see how they compare against one another. Future research might entail

evaluating batch scheduler backfill algorithms and job arrays and developing methods to

evaluate those scheduler features.

5.1 Conclusion

The purpose of this research is to develop a method to evaluate the strength and

weaknesses of a variety of high-performance computing schedulers. Beowulf clusters are

wonderful for dedicated jobs with single users but do not provide any native batch

scheduling to take advantage of idle resources. While Kubernetes does provide some

batch job facilities, ease of development, and process isolation; it did not perform as well

as expected overall. In conclusion, the data that was collected suggests that most batch

schedulers are uniquely tuned to improve performance of high-performance compute

jobs. This advanced tuning is especially pronounced in Slurm Workload Manager and

Portable Batch Scheduler.

 - 31 -

REFERENCES

Print Publications:

[Eijkhout11]
Eijkhout, Victor, et al (2011), Introduction to High-Performance Scientific Computing

[Sterling01]
Sterling, Thomas (2001). Beowulf Cluster Computing with Linux.

Electronic Sources:

[Alfonso17]
de Alfonso, Carlos, et al, “Container-Based Virtual Elastic Clusters,” The Journal of

Systems & Software, vol. 127, May 2017, pp. 1–11. EBSCOhost,
doi:10.1016/j.jss.2017.01.007.

[Altair18]
Altair, “Altair PBS Professional 18.2 Big Book (IG, AG, HG, RG, UG, & PG)”,

https://www.pbsworks.com/pdfs/PBS18.2_BigBook.pdf, 2018, last accessed
October 20, 2018.

[AWS15]
Amazon Web Services, “An Introduction to High Performance Computing on

AWS:Scalable, Cost-Effective Solutions for Engineering, Business, and Science,”
https://d0.awsstatic.com/whitepapers/Intro_to_HPC_on_AWS.pdf, 2015, last
accessed September 1, 2017.

[Becker97]
Becker, D., et al, “Frequently Asked Questions,”

http://www.beowulf.org/overview/faq.html#3, last revision 1997, last accessed
September 20, 2017.

[Brown04]
Brown, Robert, “Engineering a Beowulf-style Compute Cluster”,

http://rgbrown.org/Beowulf/beowulf_book/beowulf_book.pdf, 2004, last accessed
April, 2019.

 - 32 -

[Flynn66]
Flynn, Michael, “Very high-speed computing systems”, Proceedings of the IEEE, volume

54, pages 1901-1909, December 1966.
https://www.researchgate.net/publication/2989747_Very_High-
Speed_Computing_Systems/download, last accessed April, 2019.

[Gupta15]
Gupta, Arun, “Key Concepts of Kubernetes”, http://blog.arungupta.me/key-concepts-

kubernetes/, last revision January 14, 2015, last accessed September 23, 2017.

[Haase99]
Haase, Gundolf, “Parallelization of numerical algorithms”, http://www.numa.uni-

linz.ac.at/Staff/haase/parvor_e/node9.html, last revision December 2013, last
accessed April, 2019.

[HPC2N17]
HPC2N, Umeå University, “Beginner’s Guide to Clusters,”

https://www.hpc2n.umu.se/documentation/guides/beginner-guide, last modified
September 21, 2017, last accessed September 23, 2017.

[Kaur14]
Kaur, Kiranjot et al, “A Comparative Analysis: Grid, Cluster and Cloud Computing”,

International Journal of Advanced Research in Computer and Communication
Engineering, 2014, Vol. 3, Issue 3,
https://pdfs.semanticscholar.org/5e6e/9b4b7f4d986bc9f1246198c50c8d43d2d695.pdf,
last accessed April, 2019.

[Kubernetes17]
Kubernetes, “Production-Grade Container Orchestration”, https://kubernetes.io/, last

revision 2017, last accessed September 23, 2017.

[Madani11]
Madani, Basem et al, “Performance Benchmark and MPI Evaluation Using Westmere-

based Infiniband HPC Cluster,” International Journal of Simulation -- Systems,
Science & Technology; 2011, Vol. 12 Issue 1, p20-26, 7p, EBSCOhost,
login.dax.lib.unf.edu/login?url=http://search.ebscohost.com/login.aspx?direct=tru
e&db=aci&AN=96568498&site=eds-live&scope=site, last accessed October 20,
2018.

[Namur17]
Université de Namur, “Slurm Quick Start Tutorial”, https://support.ceci-

hpc.be/doc/_contents/QuickStart/SubmittingJobs/SlurmTutorial.html, last revision
September 18, 2017, last accessed September 23, 2017.

http://www.numa.uni-linz.ac.at/Staff/haase/parvor_e/node9.html
http://www.numa.uni-linz.ac.at/Staff/haase/parvor_e/node9.html
https://kubernetes.io/
https://support.ceci-hpc.be/doc/_contents/QuickStart/SubmittingJobs/SlurmTutorial.html
https://support.ceci-hpc.be/doc/_contents/QuickStart/SubmittingJobs/SlurmTutorial.html

 - 33 -

[Neiswanger15]
Neiswanger, Willie et al, “Embarrassingly Parallel Variational Inference in Nonconjugate

Models”, https://arxiv.org/pdf/1510.04163, last modified October 14, 2015, last
accessed April,2019.

[NPB18]
“NAS Parallel Benchmarks”, NASA Advanced Supercomputing Division,

https://www.nas.nasa.gov/publications/npb.html, last accessed September 20,
2017

[OpenMPI18]
“A High-Performance Message Passing Library”, https://www.open-mpi.org/, last

accessed September 20, 2017

[Reuther18]
Reuther, Albert, et al. “Scalable System Scheduling for HPC and Big Data.” Journal of

Parallel and Distributed Computing, vol. 111, Jan. 2018, pp. 76–92. EBSCOhost,
doi:10.1016/j.jpdc.2017.06.009.

[Rouse07]
Rouse, M, “high-performance computing (HPC),”

https://searchdatacenter.techtarget.com/definition/high-performance-computing-HPC,

last accessed September 18, 2017.

[Sarkar12]
Sandip, Sarkar et al, “Benchmarking of High Performance Cluster Reynolds”,

International Journal of Advanced Research in Computer Science, 3 (3), May –
June, 2012,21-32. EBSCOhost,
login.dax.lib.unf.edu/login?url=http://search.ebscohost.com/login.aspx?direct=tru
e&db=aci&AN=91876563&site=eds-live&scope=site, last accessed 20 Oct. 2018.

[Slurm13A]
“Slurm Workload Manager”, https://slurm.schedmd.com/slurm.html, last revision

November 24, 2013, last accessed September 23, 2017

[Slurm13B]
“Quick Start Guide”, https://slurm.schedmd.com/quickstart.html, last revision March 13,

2016, last accessed September 23, 2017

[Soner12]
Soner, Seren, and Can Özturan, “Integer Programming Based Heterogeneous CPU–GPU

Cluster Schedulers for SLURM Resource Manager,” Journal of Computer and
System Sciences, vol. 81, Feb. 2015, pp. 38–56. EBSCOhost,
doi:10.1016/j.jcss.2014.06.011.

https://arxiv.org/pdf/1510.04163

 - 34 -

[Vaughan-Nichols17]
Vaughan-Nichols, S. J, “Build your own supercomputer out of Raspberry Pi boards,”

http://www.zdnet.com/article/build-your-own-supercomputer-out-of-raspberry-pi-
boards/, last revision June 21, 2017, last accessed September 20, 2017.

[Yang13]
Yang, Xiaoyu et al, “Principles, Methodologies, and Service-Oriented Approaches for

Cloud Computing”,
https://books.google.co.in/books?id=gMieBQAAQBAJ&printsec=frontcover#v=o
nepage&q&f=false, last accessed April, 2019.

 - 35 -

APPENDIX A

Slurm Workload Manager Code Listing

slurmkick.sh

#!/bin/bash

TIME0=$(date +%s%3N)

sbatch slurmbatch.sh $1 $2 $3

echo "${TIME0}" > slurm-$1-$2-time0.txt

slurmbatch.sh

#!/bin/bash

set max wallclock time

#SBATCH --time=5-00:00:00

num nodes

#SBATCH --nodes=1

set name of job

#SBATCH --job-name=ep4

mail alert at start, end and abortion of execution

#SBATCH --mail-type=ALL

send mail to this address

#SBATCH --mail-user=futralj@gmail.com

Run the executable

run the application

export PATH=/bin/:${PATH}

TIME1=$(date +%s%3N)

mailto:--mail-user=futralj@gmail.com

 - 36 -

echo "${TIME1}" > /home/student/jobs/slurm/slurm-$1-$2-

time1.txt

sar -rub 1 > /home/student/jobs/slurm/stats-$1-$2-

${HOSTNAME}.txt &

for i in $(seq -s' ' $1); do

 mpirun --mca btl ^openib

/home/student/Downloads/NPB3.3.1/NPB3.3-MPI/bin/$3

Done

pkill -f sar

TIME2=$(date +%s%3N)

echo "${TIME2}" > /home/student/jobs/slurm/slurm-$1-$2-

time2.txt

 - 37 -

APPENDIX B

Portable Batch Scheduler Professional Code Listing

pbskick.sh

#!/bin/bash

export PATH=/bin:${PATH}

TIME0=$(date +%s%3N)

qsub -v RUNS=$1,ITER=$2,TEST=$3 pbsbatch.sh

echo "${TIME0}" > pbs-$1-$2-time0.txt

pbsbatch.sh

#!/bin/bash

#PBS -N pbs

Merge output and error files

#PBS -j oe

Select 1 nodes

#PBS -l select=1:ncpus=1

Run the executable

run the application

export PATH=/bin/:${PATH}

TIME1=$(date +%s%3N)

echo "${TIME1}" > /home/student/jobs/pbspro/pbs-$RUNS-

$ITER-time1.txt

sar -rub 1 > /home/student/jobs/pbspro/stats-${RUNS}-

${ITER}-${HOSTNAME}.txt &

for i in $(seq -s' ' $RUNS); do

 - 38 -

 mpirun --mca btl ^openib

/home/student/Downloads/NPB3.3.1/NPB3.3-MPI/bin/$TESTdone

pkill -f sar

TIME2=$(date +%s%3N)

echo "${TIME2}" > /home/student/jobs/pbspro/pbs-$RUNS-

$ITER-time2.txt

 - 39 -

APPENDIX C

Kubernetes Code Listing

daemon.yaml

apiVersion: extensions/v1beta1

kind: DaemonSet

metadata:

 generation: 1

 name: ssh-openmpi-worker

spec:

 revisionHistoryLimit: 10

 selector:

 matchLabels:

 app: ssh-openmpi

 template:

 metadata:

 creationTimestamp: null

 labels:

 app: ssh-openmpi

 spec:

 containers:

 - args:

 - -c

 - cp /data/id_* ~/.ssh/; chmod 644

~/.ssh/id_rsa.pub; chmod 600 ~/.ssh/id_rsa;

 - 40 -

 cp /data/id_rsa.pub /root/.ssh/authorized_keys;

/usr/sbin/sshd; sleep 5;

 SERVERS=$(dig +short ssh-

openmpi.default.svc.cluster.local | paste -sd ','

 -); echo ${SERVERS} | ssh-keyscan -f - >

/root/.ssh/known_hosts; sleep infinity

 command:

 - /bin/sh

 image: ironmerchant/openmpi

 imagePullPolicy: Always

 name: ssh-openmpi-worker

 ports:

 - containerPort: 22

 protocol: TCP

 resources: {}

 terminationMessagePath: /dev/termination-log

 terminationMessagePolicy: File

 volumeMounts:

 - mountPath: /data

 name: ssh-openmpi-worker-volume

 dnsPolicy: ClusterFirst

 restartPolicy: Always

 schedulerName: default-scheduler

 securityContext: {}

 terminationGracePeriodSeconds: 30

 volumes:

 - hostPath:

 path: /home/student

 type: ""

 name: ssh-openmpi-worker-volume

 - 41 -

 templateGeneration: 1

 updateStrategy:

 rollingUpdate:

 maxUnavailable: 1

 type: RollingUpdate

status:

 currentNumberScheduled: 0

 desiredNumberScheduled: 0

 numberMisscheduled: 0

 numberReady: 0

job.yaml.tmpl

apiVersion: batch/v1

kind: Job

metadata:

 name: openmpi-controller-job

spec:

 template:

 spec:

 containers:

 - name: openmpi-controller

 image: ironmerchant/openmpi

 command: ["/bin/sh"]

 args: [

 "-c",

 "/data/jobs/kube/kubebatch.sh $(NUM_ITER)

$(NUM_RUNS) $(JOB_NAME)"

]

 env:

 - 42 -

 - name: "NUM_ITER"

 value: "{{NUM_ITER}}"

 - name: "NUM_RUNS"

 value: "{{NUM_RUNS}}"

 - name: "JOB_NAME"

 value: "{{JOB_NAME}}"

 ports:

 - containerPort: 22

 volumeMounts:

 - name: openmpi-controller-volume

 mountPath: /data

 nodeSelector:

 dedicated: master

 tolerations:

 - key: node-role.kubernetes.io/master

 effect: NoSchedule

 restartPolicy: Never

 volumes:

 - name: openmpi-controller-volume

 hostPath:

 path: /home/student

service.yaml

apiVersion: v1

kind: Service

metadata:

 labels:

 app: ssh-openmpi

 - 43 -

 name: ssh-openmpi

spec:

 clusterIP: None

 ports:

 - name: ssh

 port: 22

 protocol: TCP

 targetPort: 22

 selector:

 app: ssh-openmpi

 sessionAffinity: None

 type: ClusterIP

status:

 loadBalancer: {}

kubekick.sh

#!/bin/bash -ex

for i in 0 1 2 3 4; do

 ssh compute-0-${i} "nohup sar -rub 1 >

/home/student/jobs/kube/n1/stats-$1-$2-compute-0-${i}.txt

&"

done

sed "s/{{NUM_ITER}}/${1}/g" job.yaml.tmpl > job.yaml

sed -i.orig "s/{{NUM_RUNS}}/${2}/g" job.yaml

sed -i.orig "s/{{JOB_NAME}}/${3}/g" job.yaml

kubectl label nodes cisvm-rocks71.ccec.unf.edu

dedicated=master || true

TIME0=$(date +%s%3N)

echo "${TIME0}" > /home/student/jobs/kube/n1/kube-$1-$2-

time0.txt

 - 44 -

kubectl apply -f service.yaml

kubectl apply -f daemon.yaml

while [[$(kubectl get pods | wc -l) < 6]]; do

 echo "Not online yet..."

 sleep 1

done

kubectl apply -f job.yaml

while [[! $(kubectl get pods | grep "Completed")]]; do

 sleep 10

done

for i in 0 1 2 3 4; do

 ssh compute-0-${i} "pkill sar"

done

kubectl delete -f job.yaml

kubebatch.sh

#!/bin/bash

TIME1=$(date +%s%3N)

echo "${TIME1}" > /data/jobs/kube/n1/kube-$1-$2-time1.txt

cp /data/id_* ~/.ssh/

chmod 644 ~/.ssh/id_rsa.pub

chmod 600 ~/.ssh/id_rsa

export SERVERS=$(dig +short ssh-

openmpi.default.svc.cluster.local | paste -sd ',' -)

export SERVERS=$(echo ${SERVERS} | cut -d',' -f5-)

echo ${SERVERS} | ssh-keyscan -f - > ~/.ssh/known_hosts;

for i in $(seq -s' ' $1); do

 mpirun --mca btl ^openib\

 - 45 -

 --host ${SERVERS}\

 --allow-run-as-root\

 /tmp/NPB3.3.1/NPB3.3-MPI/bin/$3

done

TIME2=$(date +%s%3N)

echo "${TIME2}" > /data/jobs/kube/n1/kube-$1-$2-time2.txt

 - 46 -

APPENDIX D

Beowulf Code Listing

plainkick.sh

#!/bin/bash

export

LD_LIBRARY_PATH=/usr/lib64:/usr/lib64/openmpi:${LD_LIBRARY_

PATH}

TIME0=$(date +%s%3N)

echo "${TIME0}" > plain-$1-$2-time0.txt

./plainbatch.sh $1 $2 $3 &> log-$2.txt &

plainbatch.sh

#!/bin/bash

export PATH=/bin/:/usr/bin:${PATH}

ssh compute-0-0 "nohup sar -rub 1 >

/home/student/jobs/plain/stats-$1-$2-${HOSTNAME}.txt &"

TIME1=$(date +%s%3N)

echo "${TIME1}" > plain-$1-$2-time1.txt

for i in $(seq -s' ' $1); do

 mpirun --mca btl ^openib\

 --host compute-0-0\

 /home/student/Downloads/NPB3.3.1/NPB3.3-MPI/bin/$3

done

TIME2=$(date +%s%3N)

 - 47 -

echo "${TIME2}" > plain-$1-$2-time2.txt

ssh compute-0-0 'pkill sar'

 - 48 -

VITA

Jeremy Futral has a Bachelor of Applied Science in Information Technology from

the University of North Florida, 2012 and expects to receive a Master of Science in

Computer Science from University of North Florida in Spring 2019. Dr. Roger Eggen is

Jeremy Futral’s current thesis advisor.

	UNF Digital Commons
	2019

	A method of evaluation of high-performance computing batch schedulers
	Jeremy Stephen Futral
	Suggested Citation

	Title Page
	Acknowledgement
	Contents
	Figures
	Tables
	Abstract
	Chapter 1: Introduction
	1.1 High-Performance Computing
	1.2 High-Performance Computing Topologies

	Chapter 2: Overview of Schedulers and Clusters
	2.1 Overview Beowulf Cluster
	2.2 Overview of Portable Batch Scheduler Professional
	Figure 1: Portable Batch Scheduler Architecture (HPC2N17)
	Figure 2: Portable Batch Scheduler Multiple Execution Host

	2.3 Overview of Slurm Workload Manager
	Figure 3. Slurm Workload Manager Architecture

	2.4 Overview of Kubernetes
	Figure 4: Kubernetes Master-Minion Architecture

	2.5 Previous Work

	Chapter 3: Methodology
	3.1 Experimental Setup

	Chapter 4: Results
	Table 1: Time-to-Spool
	Figure 5: 10th percentile Time-to-Spool for Class A Jobs
	Figure 6: 90th Time-to-Spool for Class C Jobs
	Table 2: RAM Usage
	Table 3: Time-to-Process
	Table 4: Total-Time
	Figure 7: 10th percentile for Total-Time for class A Jobs
	Figure 8: 90th percentile for Total-Time for Class C Jobs

	Chapter 5: Future Work and Conclusion
	5.1 Conclusion

	References
	Appendix A: Slurm Workload Manager Code Listing
	Appendix B: Portable Batch Scheduler Professional Code Listing
	Appendix C: Kubernetes Code Listing
	Appendix D: Beowulf Code Listing
	VITA

