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ABSTRACT 

 

According to Sterling et al., a batch scheduler, also called workload management, is an 

application or set of services that provide a method to monitor and manage the flow of 

work through the system [Sterling01].  The purpose of this research was to develop a 

method to assess the execution speed of workloads that are submitted to a batch 

scheduler.  While previous research exists, this research is different in that more complex 

jobs were devised that fully exercised the scheduler with established benchmarks.  This 

research is important because the reduction of latency even if it is miniscule can lead to 

massive savings of electricity, time, and money over the long term.  This is especially 

important in the era of green computing [Reuther18]. 

 

The methodology used to assess these schedulers involved the execution of custom 

automation scripts.  These custom scripts were developed as part of this research to 

automatically submit custom jobs to the schedulers, take measurements, and record the 

results. 

 

There were multiple experiments conducted throughout the course of the research. These 

experiments were designed to apply the methodology and assess the execution speed of a 

small selection of batch schedulers.  Due to time constraints, the research was limited to 

four schedulers. 
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The measurements that were taken during the experiments were wall time, RAM usage, 

and CPU usage.  These measurements captured the utilization of system resources of 

each of the schedulers.  The custom scripts were executed using, 1, 2, and 4 servers to 

determine how well a scheduler scales with network growth.  The experiments were 

conducted on local school resources.  All hardware was similar and was co-located within 

the same data-center.  While the schedulers that were investigated as part of the 

experiments are agnostic to whether the system is grid, cluster, or super-computer; the 

investigation was limited to a cluster architecture. 
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Chapter 1 

INTRODUCTION 

 

This research is comprised of several chapters.  This first chapter discusses high-

performance computing, and its various topologies.  The second chapter introduces the 

clusters and schedulers that were evaluated during the experimentation phase of the 

research.  Chapter 2 also discusses previous works that were reviewed that relate to this 

research.  Chapter 3 discusses the methodology used to assess the clusters and schedulers 

that were presented in chapter 2.  Chapter 4 discusses the results obtained from the 

experiments.  Chapter 5 draws conclusions and identifies future work that may be derived 

from this research. 

 

1.1    High-Performance Computing 

 

High-performance computing is the use of parallel processing for running advanced 

application programs efficiently, reliably and quickly [Yang13].  According to Rouse, a 

high-performance computer can be composed of nearly anything, from commodity 

hardware, to individual user PCs spread across the globe, to a large single super computer 

in a single data-center, or even to a collection of virtual machines in the cloud [Rouse07].
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Today’s high-performance computing applications require parallel processing [AWS15].  

This is accomplished either by deploying grids or clusters of standard servers and central 

processing units in a scale-out manner, or by creating specialized servers and systems 

with unusually high numbers of cores, large amounts of total memory, or high throughput 

network connectivity between the servers, and from servers to high-performance storage 

[AWS15]. 

 

Originally as late as 2007, the most common users of high-performance computing 

systems were scientific researchers, engineers and academic institutions. Some 

government agencies, particularly the military, also rely on high-performance computing 

for complex applications [Rouse07].  However, most high-performance computing as of 

2017 is done in the commercial sector, in fields such as aerospace, automotive, 

semiconductor design, large equipment design and manufacturing, energy exploration, 

and financial computing [AWS15]. 

 

1.2    High-Performance Computing Topologies 

 

As high-performance computing has increased in popularity so has its applications and its 

various forms.  Now there are three specific types of high-performance computing 

topologies: cluster, grid, and super-computer.  Clusters are connected on a local area 

network , implemented on commodity hardware, and optimized for throughput and low 
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latency services  [Kaur14]. Grid systems are geographically dispersed, are dynamically 

sized, and implemented on any kind of compute resource [Kaur14]. Grids may not be 

dedicated. Super-computer systems are a single computer with many dedicated resources. 

 

These topologies all support different parallel programming paradigms.  These paradigms 

are addressed as part of Flynn’s taxonomy.  Flynn’s taxonomy consists of four types of 

computer systems.  These are Single Instruction and Single Data (SISD), Single 

Instruction and Multiple Data (SIMD), Multiple Instruction and Single Data (MISD), and 

Multiple Instruction and Multiple Data (MIMD) [Flynn66].  All four are considered 

examples of parallel computing [Haase99]. 
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Chapter 2 

Overview of Schedulers and Clusters 

 

A batch scheduler maximizes the assignment of resources to jobs [Sterling01].  

Essentially the batch scheduler assigns work to resources based upon their availability, 

their current load, and reassigns work based upon any changing conditions.  One can also 

write jobs that can be simple or complex shell scripts that are submitted to the batch 

scheduler to be executed. 

 

Due to time constraints and the large number of available batch schedulers, this research 

focused on only four specific schedulers.  These were specifically chosen in that they are 

free, open source, prolific, easily obtained, and have a unique architecture.  It is the 

opinion of this research that these specific architectures presented are also representative 

of the wider landscape of batch schedulers available.  

 

The batch scheduler software suites that were chosen were the default Linux job 

scheduler running on a Beowulf cluster, Portable Batch Scheduler Professional, Slurm 

Workload Manager, and Kubernetes.  Slurm Workload Manager and Portable Batch 

Scheduler run on many of the top 500 scientific, academic, and industrial systems.  

Kubernetes runs 
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on many corporate networks and cloud-based systems.  Beowulf runs on many academic 

and hobbyist systems.  So, it is appropriate to study these systems in depth.  

 

2.1    Overview Beowulf Cluster 

 

Beowulf clusters are mostly found in academic [Becker97] and hobbyist settings 

[Brown04].  Beowulf clusters are typically loosely coupled compute resources that reside 

on dissimilar or in some cases commodity hardware.  While there is not a standard 

definition of what constitutes a Beowulf cluster, they typically have a message passing 

interface package, a patched Linux kernel to take advantage of universal process IDs, and 

also patched for Distributed Inter-Process Communication (DIPC) [Becker97].  The one 

thing that is common among Beowulf clusters is the use of the Linux operating system 

and sharing of a home folder via the Network File System (NFS) [Sterling01]. 

 

Beowulf clusters do not have a specific batch scheduler.  Beowulf clusters are not defined 

by their batch scheduling architecture; however, it is not uncommon to encounter 

Beowulf clusters with various types of batch scheduling software pre-installed.  A few 

examples are Condor, Maui, Portable Batch Scheduler Professional, or even Slurm 

Workload Manage in some unusual cases.  Since the Beowulf cluster’s scheduler in the 

experiments is the default Linux scheduler, it functioned as the control for the 

experiments that were conducted during this research. 
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Typically, Beowulf implements only the kernel’s default scheduler on a per-server basis. 

The software engineer needs to design with this constraint in mind.  When a Beowulf 

cluster does not have a batch scheduler, which is often the case, all resources are 

managed directly by the operating system and application.  This means that compute 

resources are maintained independently on each node by the node’s local Linux kernel.  

The implication for this is that all resource calculation must be performed ahead of time 

and maintained independently by the developer. 

 

A major benefit to Beowulf clusters is that a Linux capable system with a shared NFS 

partition is the only hard requirement [Sterling01].  This enables Beowulf clusters to be 

made from nearly any spare compute resources including Raspberry Pis [Vaughan-

Nichols17]. 

 

2.2    Overview of Portable Batch Scheduler Professional 

 

The first batch scheduler that is included in this research is Portable Batch Scheduler 

Professional.  According to the manual PBS is a distributed workload management 

system which manages and monitors the computational workload on a set of one or more 

computers [Altair18]. 
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Figure 1: Portable Batch Scheduler Architecture [HPC2N17] 

 

In Portable Batch Scheduler Professional (PBSPro) the software suite consists of a Batch 

Server daemon, a Job Scheduler daemon, and a job executor also known as a Machine 

Oriented Mini-server or MOM [HPC2N17].   The high-level architecture is illustrated in 

Figure 1.  The Batch Server daemon is where users submit their job requests to be 

processed [HPC2N17].  Typically, client software is loaded on user workstations and 

specialized software is utilized to send commands to the Batch Server that can either 

schedule or modify jobs. These jobs are held in queues on the Batch Server until the 

resources that are required for them to execute becomes available. 
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Figure 2: Portable Batch Scheduler Multiple Execution Host [Altair18] 

 

The Job Scheduler daemon communicates with each of the job executors (or MOMs) on 

the different nodes [Sterling01].  The Job Scheduler determines the state of the node and 

if new resources are available for the MOM to begin execution of a new job for that node.  

It also communicates with the Job Scheduler daemon to determine if any new jobs are 

available for execution on the collection of nodes.  It is important to note that the Job 

Scheduler daemon does not necessarily exist on the same server as the Batch Server.  In 

the case of the experiments, it will be co-located to reduce any latency. 
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The architecture that was explored as part of this research was the Multiple Execution 

Systems as illustrated in Figure 2.  In this configuration, the job executor daemons are 

installed on the worker nodes.  The controller node contains a Batch Server, a Job 

Scheduler daemon, and a communications daemon.  The worker nodes communicate with 

the hosted communication daemon which proxies the messages and either routes them to 

the Batch Server, the Job Scheduler daemon, or other worker nodes.  One important 

aspect is that the scheduler and server daemon are backed by a database.  The database 

maintains the job queues and all accounting information that is accessed by the Job 

Scheduler daemon.  Currently, as of 2018 this database is PostgreSQL 9.2. 

 

2.3    Overview of Slurm Workload Manager 

 

On the November 2013 Top500 list, five of the ten top systems use Slurm including the 

number one system [Slurm13A]. These five systems alone contain over 5.7 million cores 

[Slurm13A]. The Slurm architecture consists of a primary job controller daemon 

(SlurmCTLD) which issues commands to daemons (SlurmD) on the worker machines as 

illustrated in figure 3.  The architecture also optionally consists of an accounting database 

and additional job controller daemons. The database and additional controller daemons 

interface with the primary job controller daemon to provide highly available backups. 
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Figure 3: Slurm Workload Manager Architecture [Slurm13B] 

 

The job controller daemons track user submitted jobs and submits them to the primary 

Slurm daemon for scheduling once compute resources are available.  Slurm also provides 

a suite of command line applications.  These can be run to interact with the Slurm 

daemon and the job controller daemons to schedule jobs and control their behavior 

[Slurm13B]. 

 

The Slurm daemons are responsible for utilizing compute resources as they become 

available and are exhausted.  The Slurm daemon allocates resources based on a partition 

scheme.  In Slurm, a partition is where certain compute resources have been allocated and 

reserved for various jobs to ensure they are always available for those job sets. 
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According to Namur et al., Slurm workload manager has the ability to run jobs in one of 

four methods: multi-process, multi-threaded, data-centric, and master-worker paradigm 

[Namur17].  Multi-process applications can be of any of the various MPI variants that are 

available, such as OpenMPI.  Multi-threaded applications can be implemented with either 

p-Threads or OpenMP, which use a shared memory model.  Data-centric models rely on 

the problem being embarrassingly parallel.  In embarrassingly parallel problems, data can 

be easily split among multiple instances and processed independently without 

communication  [Neiswanger15].  In a master-worker application, the master can 

implement any combination of the earlier described methods.  Additionally, the master 

dispatches work to the workers and then accumulates the results. 

 

2.4    Overview of Kubernetes 

 

According to Kubernetes et al., Kubernetes is an open-source system for automating 

deployment, scaling, and management of containerized applications [Kubernetes17].  

Kubernetes leverages a technology known as containerization.  In containerization, a 

moderate portion of the operating system is loaded with a target application as a single 

process in memory.  This is in contrast to traditional computing where many applications 

are housed on a single operating system and share the same user space. 
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Containerization gives applications the ability to be deployed with the operating system 

of their choosing using the tools and libraries already available.  These containers are 

described using a file called a Dockerfile, which is essentially a recipe of how to 

configure the operating system and application in memory.  This allows developers more 

freedom to write custom applications without having to worry about their target 

environment.  Containerization also keeps the applications in a pristine environment each 

time they are launched.  The container is destroyed, and all its resources are released on 

application termination. 

 

 

Figure 4: Kubernetes Master-Minion Architecture [Gupta15] 
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Kubernetes has a discrete architecture made of master nodes that manages minion nodes, 

as show in figure 4.  Each of the minion nodes implements a Docker daemon and a 

Kubelet daemon that maintains the various container images in memory.  These are 

organized into logical partitions called pods.  Work is then distributed amongst the pods 

per application. 

 

The master architecture can be either a single master node which maintains all the core 

components or a collection of master nodes with the various components spread across 

the master nodes.  The master node contains the master Kubernetes daemon.  This 

communicates with the minions, a batch scheduler, a user authorization component for 

managing system user access to the master controller, a RESTful API for remote 

management, and an information daemon that maintains the status of the minion 

machines.  All of these components are controlled via user command line from a remote 

workstation or a dedicated server with the components supplied. 

 

2.5    Previous Work 

 

After extensive searching of the University’s and other online sources, there were no 

articles that could be identified that clearly demonstrated benchmark comparisons of the 
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performance of any schedulers directly head to head.  Instead, a selection of articles with 

intersecting benchmarks and technologies are presented for review. 

 

The first article reviewed was a comparison of four different schedulers that are similar to 

what this research compares.  The researchers Reuther et al., used Slurm Workload 

Manager, Grid Engine, Apache Hadoop Yarn, and Mesos [Reuther18].  The treatment 

was very thorough and many of the conclusions that the researchers arrived at were 

similar in terms of time-to-spool jobs.  The problem is that the benchmark they used does 

not fully exercise the cluster.  All jobs that were submitted were sleep jobs of varying 

lengths.  It is the opinion of this research that the reason that sleep jobs are not a 

sufficient method of measurement is that as the batch job script increases in in length and 

computational complexity it will increase the time-to-spool. 

 

According to Sakar et al., the researchers were employed by Tata Steel in Jamshedpur, 

India [Sakar12].  In the article, they wrote PBS batch jobs for a cluster, known as 

Reynolds.  The batch jobs would then execute their own benchmarks on varying numbers 

of nodes.  For their benchmark, they used OpenFoam which would then simulate various 

scenarios which were designed to exercise the system.  The researchers unfortunately did 

not provide the code for the OpenFoam benchmarks and also no other batch scheduler 

schedulers were evaluated. 
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Another relevant benchmark paper is from Madani et al, whose comparison is of MPI 

specifications: MVAPICH2 and Intel MPI [Madani11].  They performed tests by varying 

the message package size that was communicated between nodes.  They then performed 

these tests on both MVAPICH2 and Intel MPI frameworks and recorded the results.  The 

paper did not include any indication that a batch scheduler was used; however, this 

research is relevant in that the NASA Parallel Benchmarks are MPI based. 

 

In terms of heterogeneous processors, one can look to Soner et al [Soner 12].  In this 

article, the authors devise a new type of scheduler to be used in conjunction with the 

Slurm Workload Manager [Soner12].  This scheduler is capable of differentiating 

between GPU and CPU cores.  According to the authors of the article, some jobs are ill 

suited for GPU processing time and should be exclusively scheduled on CPU cores.  This 

article also delves into the best way to schedule these resources and ensure maximum 

utilization. 

 

Docker container technology has also started to be utilized recently in conjunction with 

high-performance computing and can be illustrated in [Alfonso18].  In this article, the 

authors introduced and evaluated a tool called Elastic Cluster for Docker or EC4Docker.  

Its goal is to automate the deployment of Docker containers that are preconfigured with a 

batch scheduler and libraries associated with High-Performance computing.  Instead of 

Kubernetes, they use Docker’s competing product Swarm. 
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Chapter 3 

METHODOLOGY 

 

Two kernels, Class A and Class C, of the Embarrassingly Parallel (EP) of the NASA 

Parallel Benchmark suite were used to test the systems. Class A was used to simulate 

short running tasks and Class C was used to simulate long running tasks.  To simulate 

complicated workloads, several different automation and batch job scripts were written as 

part of this research.  These scripts were used to execute both classes of tasks many times 

and on various number of nodes 

 

For this research, four pairs of scripts, describe previously, were executed with various 

parameters and measurements were taken.  Each pair of scripts were structured 

identically, except for some minor changes to accommodate the scheduler being tested.  

The pair of scripts consisted of an automation script which then submitted a batch job 

script to the batch scheduler to be executed. 

 

The automation script initializes resource monitoring and records the current time 

immediately before submitting the batch job script.  Once the batch job script is 

submitted to the job scheduler, the time is recorded again upon execution by the executor 
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service on a remote node.  It then begins execution of several NASA Parallel Benchmark 

programs.  Once the benchmark programs complete, the batch job script records the time 

a final time. 

 

According to NASA, NASA Parallel Benchmarks are a small set of programs designed to 

help evaluate performance [NPB18]. The benchmarks are derived from computational 

fluid dynamics (CFD) applications and consist of five kernels and three pseudo-

applications.  NASA Parallel Benchmark 3.1.1 provides three programming models that 

can be leveraged.  OpenMPI, OpenMP, and Serial.  The OpenMPI variant of NPB 3.1.1 

was chosen instead of OpenMP and serial since it leverages the cluster in its entirety.  

OpenMP was not chosen since it does not support the cluster architecture that was chosen 

for this research [Eijkhout11].  OpenMPI is an open source Message Passing Interface 

implementation that is developed and maintained by a consortium of academic, research, 

and industry partners and is used for High-Performance Computing [OpenMPI18]. 

 

The time between when the automation script records the time initially and when the 

batch job script records the second time is the time-to-spool.  The time-to-spool metric 

represents the amount of time it takes for the batch scheduler to completely pre-process 

the batch job script sent from the command line.  The batch scheduler then begins 

execution of the batch job script itself on the worker nodes.  The amount of time recorded 

between the second and final time, after the benchmark programs complete, is the time-
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to-process.  This time span represents the amount of time it takes for the batch to execute 

the script itself.   

 

The pair of scripts are customized with three parameters.  The first parameter is the 

number of benchmark programs that the batch job script will execute.  This will give a 

good sample of more complicated batch job scripts.  As the length and computational 

complexity of the script increases, the performance should degrade amongst the different 

schedulers.  The second parameter is the test number.  This parameter is for informational 

purposes only and tags the file names with a number that can be used to serialize the tests 

for easy extraction later.  The third parameter is the specific benchmark program that will 

be executed multiple times during the batch job script.  In our tests this was either NASA 

Parallel Benchmark Class A or Class C. 

 

Since the various batch systems pre-process the batch job scripts and look in the 

comments for additional parameters, the scripts were not parameterized for the number of 

nodes.  The number of nodes that the jobs required were adjusted manually before run-

time. 
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3.1    Experimental Setup 

 

The servers in this experimental setup were all virtualized instances that resided on 

VMWare hosts.  The front-end server that was used as the batch server for the 

experiments was provisioned with 8GB of RAM and 4 vCPU cores.  Each of the worker 

nodes were provisioned with 4 GB of RAM and 1 vCPU core each. 

 

To ensure that the clock was synchronized for the timed portion of tests all server clocks 

were synchronized using the Network Time Protocol (NTP) with NTP United States pool 

servers.  These NTP servers ensured that the clock drift between the workers and front-

end server was minimal and within 100 milliseconds.  In addition to NTP, all servers ran 

OpenSSH_7.4p1 and OpenMPI 3.1.1 with parameters’--enable-openib-rdmacm --with-

slurm --with-tm=/opt/pbs’.  Once everything was built and installed, four experiments 

were then conducted.   

 

The first experiment was executed using a standard Beowulf cluster.  No special software 

or daemons were installed except for OpenSSH daemons to facilitate communication to 

the nodes for benchmark execution.  Even though the Beowulf cluster does not include a 

standardized scheduler, it has been included to serve as the baseline.  The other clusters 

will be compared against this baseline. 
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The second experiment was conducted with Portable Batch Scheduler Professional 

18.1.2.  The front-end server hosted the Batch Server (pbs_server), the Job Schedulers 

(pbs_sched), and the Communication Daemon (pbs_comm).  It also was backed by 

PostgreSQL 9.2.23 as its job scheduling queue.  The worker nodes each host a Job 

Executor Daemon (pbs_mom). 

 

The third experiment was conducted with the Slurm Workload Manager Scheduler 

17.11.18.  The front-end server hosted the Slurm Controller Daemon (SlurmCTLD) and 

the workers hosted the Slurm Worker Daemons (SlurmD). In addition to the Slurm 

Daemons, the Munge Daemons were also started to provide authentication between nodes 

in the Slurm cluster. 

 

The final experiment was the Kubernetes cluster.  All nodes in the Kubernetes cluster 

hosted both the Docker Daemon and the Kubelet Daemons.  The Kubelet Daemon on the 

front-end node hosted the pods etcd, kube-apiserver, kube-controller, kube-proxy, and 

weave-net.  The worker nodes Kubelet Daemon hosted kube-proxy, coredns, and weave-

net.  During the experiment the nodes also hosted a set of custom daemon pods to support 

the benchmark programs.  The daemon pods were specifically written and designed to 

contain the NASA Parallel Benchmark programs, OpenMPI libraries, and OpenSSH.  
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To deploy the daemon pods, a request was submitted to the master node to provision the 

worker pods on the worker nodes.  Once the request was submitted, the batch job would 

then be submitted to the cluster.  The batch job would then provision the controller node.  

The controller node would test that the worker pods were available and begin running the 

batch shell script provided.  This would then run the requested jobs on the worker pods. 

 

Each of the described setups were then tested using the batch and automation scripts.  

The scripts were executed with 10, 20, 30, 40, 50, and 100 benchmark programs per 

batch job with Class A and again with Class C embarrassingly parallel benchmark 

program variants. 
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Chapter 4 

RESULTS 

 

In terms of time-to-spool jobs, Beowulf outperformed all of the schedulers.  This can be 

seen in table 1, figure 5, and figure 6.  Kubernetes did not perform well in terms of 

startup time as can be seen in the previously mentioned tables and figures.  The reason 

that Kubernetes did not perform well was that the worker pods had to be first provisioned 

before a controller pod could be provisioned via the batch job. The batch job then had to 

perform a DNS lookup of the worker pods and then it would be forced to wait till the 

worker pods were available. 

 

TIME-TO-

SPOOL (MS) CLASS A CLASS C 

KUBE 1814.5 2023.3 

PBS 191.7 292 

SLURM 269.1 724.3 

BEOWULF 180 190 

Table 1: Time-to-Spool (ms) 
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Figure 5: 10th percentile Time-to-Spool for Class A Jobs 

 

 

Figure 6: 90th Time-to-Spool for Class C Jobs 
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Of note, Kubernetes, Portable Batch Scheduler Professional, and Beowulf all had 

consistent and predictable spool times whereas Slurm spool times varied wildly, from as 

little as 80 milliseconds to 1000 milliseconds or more.  This behavior can be seen 

especially in Class C of table 1 and figure 6.  If Kubernetes time-to-spool is not 

considered in the full dataset then one will find that some of the Slurm Workload 

Manager spool times are statistically significant.  The reason is that Kubernetes, Portable 

Batch Scheduler Professional, and Beowulf job handlers are all RAM based whereas the 

Slurm Workload Manager job handler is disk based.  The Slurm Workload Manager jobs 

are first spooled to disk before execution.  Since disk access times are slower and will 

occasionally be cached, the access times can vary from execution to execution. 

 

RAM USAGE (KB) MASTER WORKER 

BEOWULF 0 0 

KUBERNETES 606404 290348 

PBS 32164 1848 

SLURM 2488 1296 

Table 2: RAM Usage 

 

RAM usage (in kilobytes) was observed during the experiments and recorded in table 2.  

Since Beowulf does not include a batch scheduler, it was recorded as 0 kb usage.  Also 

observed is the very small footprint of Slurm Workload Manager.  This is a consequence 
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of all jobs being spooled to disk and not managed in memory.  Kubernetes is very 

memory intensive and consumes the most RAM. 

 

The initial hypothesis was that the addition of a batch scheduler would degrade 

performance of the jobs.  The results from these experiments were very surprising.  Slurm 

Workload Manager and Portable Batch Scheduler Professional both performed 

remarkably better than the Beowulf cluster.  They performed better in time-to-process, as 

can be seen in Table 3 and Figure 7.  They also performed better in terms of total-time as 

can be seen in Table 4 and Figure 8.   This is unexpected given that the Beowulf cluster 

had the shortest time-to-spool.  The only situation where a batch scheduler performed 

worse than a plain Beowulf cluster was the Kubernetes cluster. 

 

TIME-TO-PROCESS (SEC) SHORT LONG 

KUBE 96.2 14508 

PBS 91.2 14147 

SLURM 91.6 14151 

BEOWULF 94.5 14166 

Table 3: Time-to-Process (sec) 
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TOTAL-TIME (SEC) SHORT LONG 

KUBE 98.1 14510 

PBS 91.6 14147 

SLURM 92.2 14152 

BEOWULF 94.7 14166 

Table 4: Total-Time (sec) 

 

 

Figure 7: 10th percentile for Total-Time for Class A Jobs 

 

88000

90000

92000

94000

96000

98000

100000

Kubernees PBS Slurm Beowulf

m
ill

is
ec

o
n

d
s

Class A - Total-Time
10th percentile



   
 

 - 27 - 

 

Figure 8: 90th percentile for Total-Time for Class C Jobs 
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Scheduler Professional clusters are not encrypted.  The reason that this security situation 
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dynamic DNS solutions to determine worker node availability.  The added layer of the 

virtual network and the DNS lookups significantly affects its performance. 
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Chapter 5 

FUTURE WORK AND CONCLUSION 

 

In terms of future work, the research indicates that there are some implementation 

changes that could significantly improve performance.  For Kubernetes, for example it 

needs to be determined if Weave-Net is the appropriate network plugin for the cluster.  A 

comparison of network plugins for Kubernetes in conjunction with OpenMPI would be a 

great point of future research.  Another way that Kubernetes cluster could be optimized is 

by moving from SSH to RSH for fenced networks.  This same optimization could be 

applied to Beowulf clusters as well. 

 

One additional optimization for Kubernetes would be to create a static, custom pod as the 

front-end node.  Once the custom pod is provisioned then the batch job would select the 

front-end node instead of creating new pods each time.  Provisioning all pods including 

the front-end pod ahead-of-time would eliminate most of the startup time. 

 

Slurm Workload Manager out of the box does not appear to require any optimizations.  

Any optimizations would be in terms of additional configuration of the supporting 

OpenMPI libraries themselves.  In order to better assess Slurm Workload Manager versus 
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Portable Batch Scheduler, it might be beneficial to unroll the for-loop within the batch 

scripts.  Portable Batch Scheduler Professional also provides an MPI wrapper script 

(pbs_mpirun) that was not leveraged during the experiments which could potentially 

boost performance, since the benchmarks are OpenMPI based.  Also, the job array 

functions within Portable Batch Scheduler and Slurm Workload manager should be 

leveraged to see how they compare against one another.  Future research might entail 

evaluating batch scheduler backfill algorithms and job arrays and developing methods to 

evaluate those scheduler features. 

 

5.1   Conclusion 

 

The purpose of this research is to develop a method to evaluate the strength and 

weaknesses of a variety of high-performance computing schedulers.  Beowulf clusters are 

wonderful for dedicated jobs with single users but do not provide any native batch 

scheduling to take advantage of idle resources.  While Kubernetes does provide some 

batch job facilities, ease of development, and process isolation; it did not perform as well 

as expected overall.  In conclusion, the data that was collected suggests that most batch 

schedulers are uniquely tuned to improve performance of high-performance compute 

jobs.  This advanced tuning is especially pronounced in Slurm Workload Manager and 

Portable Batch Scheduler. 
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APPENDIX A 

Slurm Workload Manager Code Listing 

 

slurmkick.sh 

#!/bin/bash 

TIME0=$(date +%s%3N) 

sbatch slurmbatch.sh $1 $2 $3 

echo "${TIME0}" > slurm-$1-$2-time0.txt 

 

slurmbatch.sh 

#!/bin/bash 

# set max wallclock time 

#SBATCH --time=5-00:00:00 

# num nodes 

#SBATCH --nodes=1 

# set name of job 

#SBATCH --job-name=ep4 

# mail alert at start, end and abortion of execution 

#SBATCH --mail-type=ALL 

# send mail to this address 

#SBATCH --mail-user=futralj@gmail.com 

### Run the executable 

# run the application 

export PATH=/bin/:${PATH} 

TIME1=$(date +%s%3N) 

mailto:--mail-user=futralj@gmail.com
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echo "${TIME1}" > /home/student/jobs/slurm/slurm-$1-$2-

time1.txt 

sar -rub 1 > /home/student/jobs/slurm/stats-$1-$2-

${HOSTNAME}.txt & 

for i in $(seq -s' ' $1); do 

  mpirun --mca btl ^openib 

/home/student/Downloads/NPB3.3.1/NPB3.3-MPI/bin/$3 

Done 

pkill -f sar 

TIME2=$(date +%s%3N) 

echo "${TIME2}" > /home/student/jobs/slurm/slurm-$1-$2-

time2.txt 
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APPENDIX B 

Portable Batch Scheduler Professional Code Listing 

 

pbskick.sh 

#!/bin/bash 

export PATH=/bin:${PATH} 

TIME0=$(date +%s%3N) 

qsub -v RUNS=$1,ITER=$2,TEST=$3 pbsbatch.sh 

echo "${TIME0}" > pbs-$1-$2-time0.txt 

 

pbsbatch.sh 

#!/bin/bash 

#PBS -N pbs 

### Merge output and error files 

#PBS -j oe 

### Select 1 nodes 

#PBS -l select=1:ncpus=1 

### Run the executable 

# run the application 

export PATH=/bin/:${PATH} 

TIME1=$(date +%s%3N) 

echo "${TIME1}" > /home/student/jobs/pbspro/pbs-$RUNS-

$ITER-time1.txt 

sar -rub 1 > /home/student/jobs/pbspro/stats-${RUNS}-

${ITER}-${HOSTNAME}.txt & 

for i in $(seq -s' ' $RUNS); do 
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  mpirun --mca btl ^openib 

/home/student/Downloads/NPB3.3.1/NPB3.3-MPI/bin/$TESTdone 

pkill -f sar 

TIME2=$(date +%s%3N) 

echo "${TIME2}" > /home/student/jobs/pbspro/pbs-$RUNS-

$ITER-time2.txt 
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APPENDIX C 

Kubernetes Code Listing 

 

daemon.yaml 

apiVersion: extensions/v1beta1 

kind: DaemonSet 

metadata: 

  generation: 1 

  name: ssh-openmpi-worker 

spec: 

  revisionHistoryLimit: 10 

  selector:     

    matchLabels: 

      app: ssh-openmpi 

  template: 

    metadata: 

      creationTimestamp: null 

      labels: 

        app: ssh-openmpi 

    spec: 

      containers: 

      - args: 

        - -c 

        - cp /data/id_* ~/.ssh/; chmod 644 

~/.ssh/id_rsa.pub; chmod 600 ~/.ssh/id_rsa; 
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          cp /data/id_rsa.pub /root/.ssh/authorized_keys; 

/usr/sbin/sshd; sleep 5; 

          SERVERS=$(dig +short ssh-

openmpi.default.svc.cluster.local | paste -sd ',' 

          -); echo ${SERVERS} | ssh-keyscan -f - > 

/root/.ssh/known_hosts; sleep infinity 

        command: 

        - /bin/sh 

        image: ironmerchant/openmpi 

        imagePullPolicy: Always 

        name: ssh-openmpi-worker 

        ports: 

        - containerPort: 22 

          protocol: TCP 

        resources: {} 

        terminationMessagePath: /dev/termination-log 

        terminationMessagePolicy: File 

        volumeMounts: 

        - mountPath: /data 

          name: ssh-openmpi-worker-volume 

      dnsPolicy: ClusterFirst 

      restartPolicy: Always 

      schedulerName: default-scheduler 

      securityContext: {} 

      terminationGracePeriodSeconds: 30 

      volumes: 

      - hostPath: 

          path: /home/student 

          type: "" 

        name: ssh-openmpi-worker-volume 
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  templateGeneration: 1 

  updateStrategy: 

    rollingUpdate: 

      maxUnavailable: 1 

    type: RollingUpdate 

status: 

  currentNumberScheduled: 0 

  desiredNumberScheduled: 0 

  numberMisscheduled: 0 

  numberReady: 0 

 

job.yaml.tmpl 

apiVersion: batch/v1 

kind: Job 

metadata: 

  name: openmpi-controller-job 

spec: 

  template: 

    spec: 

      containers: 

      - name: openmpi-controller 

        image: ironmerchant/openmpi 

        command: ["/bin/sh"] 

        args: [ 

          "-c", 

          "/data/jobs/kube/kubebatch.sh $(NUM_ITER) 

$(NUM_RUNS) $(JOB_NAME)" 

        ] 

        env: 
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        - name: "NUM_ITER" 

          value: "{{NUM_ITER}}" 

        - name: "NUM_RUNS" 

          value: "{{NUM_RUNS}}" 

        - name: "JOB_NAME" 

          value: "{{JOB_NAME}}" 

        ports: 

        - containerPort: 22 

        volumeMounts: 

        - name: openmpi-controller-volume 

          mountPath: /data 

      nodeSelector: 

        dedicated: master 

      tolerations: 

      - key: node-role.kubernetes.io/master 

        effect: NoSchedule 

      restartPolicy: Never 

      volumes: 

      - name: openmpi-controller-volume 

        hostPath: 

         path: /home/student 

 

service.yaml 

apiVersion: v1 

kind: Service 

metadata: 

  labels: 

    app: ssh-openmpi 
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  name: ssh-openmpi 

spec: 

  clusterIP: None 

  ports: 

  - name: ssh 

    port: 22 

    protocol: TCP 

    targetPort: 22 

  selector: 

    app: ssh-openmpi 

  sessionAffinity: None 

  type: ClusterIP 

status: 

  loadBalancer: {} 

 

kubekick.sh 

#!/bin/bash -ex 

for i in 0 1 2 3 4; do  

  ssh compute-0-${i} "nohup sar -rub 1 > 

/home/student/jobs/kube/n1/stats-$1-$2-compute-0-${i}.txt 

&" 

done 

sed "s/{{NUM_ITER}}/${1}/g" job.yaml.tmpl > job.yaml 

sed -i.orig "s/{{NUM_RUNS}}/${2}/g" job.yaml 

sed -i.orig "s/{{JOB_NAME}}/${3}/g" job.yaml 

kubectl label nodes cisvm-rocks71.ccec.unf.edu 

dedicated=master || true 

TIME0=$(date +%s%3N) 

echo "${TIME0}" > /home/student/jobs/kube/n1/kube-$1-$2-

time0.txt 
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kubectl apply -f service.yaml 

kubectl apply -f daemon.yaml 

while [[ $(kubectl get pods | wc -l) < 6 ]]; do 

  echo "Not online yet..." 

  sleep 1 

done 

kubectl apply -f job.yaml 

while [[ ! $(kubectl get pods | grep "Completed") ]]; do 

  sleep 10 

done  

for i in 0 1 2 3 4; do  

  ssh compute-0-${i} "pkill sar" 

done 

kubectl delete -f job.yaml 

 

 

kubebatch.sh 

#!/bin/bash 

TIME1=$(date +%s%3N) 

echo "${TIME1}" > /data/jobs/kube/n1/kube-$1-$2-time1.txt 

cp /data/id_* ~/.ssh/ 

chmod 644 ~/.ssh/id_rsa.pub 

chmod 600 ~/.ssh/id_rsa 

export SERVERS=$(dig +short ssh-

openmpi.default.svc.cluster.local | paste -sd ',' -) 

export SERVERS=$(echo ${SERVERS} | cut -d',' -f5-) 

echo ${SERVERS} | ssh-keyscan -f - > ~/.ssh/known_hosts; 

for i in $(seq -s' ' $1); do 

  mpirun --mca btl ^openib\ 
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         --host ${SERVERS}\ 

         --allow-run-as-root\ 

         /tmp/NPB3.3.1/NPB3.3-MPI/bin/$3 

done 

TIME2=$(date +%s%3N) 

echo "${TIME2}" > /data/jobs/kube/n1/kube-$1-$2-time2.txt 
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APPENDIX D 

Beowulf Code Listing 

 

plainkick.sh 

#!/bin/bash 

export 

LD_LIBRARY_PATH=/usr/lib64:/usr/lib64/openmpi:${LD_LIBRARY_

PATH} 

TIME0=$(date +%s%3N) 

echo "${TIME0}" > plain-$1-$2-time0.txt 

./plainbatch.sh $1 $2 $3 &> log-$2.txt & 

 

plainbatch.sh 

#!/bin/bash 

export PATH=/bin/:/usr/bin:${PATH} 

  

ssh compute-0-0 "nohup sar -rub 1 > 

/home/student/jobs/plain/stats-$1-$2-${HOSTNAME}.txt &" 

TIME1=$(date +%s%3N) 

echo "${TIME1}" > plain-$1-$2-time1.txt 

for i in $(seq -s' ' $1); do 

  mpirun --mca btl ^openib\ 

         --host compute-0-0\ 

         /home/student/Downloads/NPB3.3.1/NPB3.3-MPI/bin/$3 

done 

TIME2=$(date +%s%3N) 
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echo "${TIME2}" > plain-$1-$2-time2.txt 

ssh compute-0-0 'pkill sar' 
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