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ABSTRACT 

 

The research presented here supports the ongoing need for automatic heart volume 

calculation through the identification of the left and right ventricles in MRI images. The 

need for automated heart volume calculation stems from the amount of time it takes to 

manually processes MRI images and required esoteric skill set. There are several 

methods for region detection such as Deep Neural Networks, Support Vector Machines 

and Ant Colony Optimization. In this research Ant Colony Optimization (ACO) will be 

the method of choice due to its efficiency and flexibility. There are many types of ACO 

algorithms using a variety of heuristics that provide advantages in different environments 

and knowledge domains. All ACO algorithms share a foundational attribute, a heuristic 

that acts in conjunction with pheromones. These heuristics can work in various ways, 

such as dictating dispersion or the interpretation of pheromones. In this research a novel 

heuristic to disperse and act on pheromone is presented. Further, ants are applied to more 

general problem than the normal objective of finding edges, highly qualified region 

detection. The reliable application of heuristic oriented algorithms is difficult in a diverse 

environment. Although the problem space here is limited to MRI images of the heart, 

there are significant difference among them: the topology of the heart is different by 

patient, the angle of the scans changes and the location of the heart is not known.  A 

thorough experiment is conducted to support algorithm efficacy using randomized 

sampling with human subjects.  It will be shown during the analysis the algorithm has 

both prediction power and robustness. 
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1    Chapter 1  

Introduction 

 

Heart disease is a ubiquitous problem causing more than 610,000 deaths in the United 

States alone [NCHS15]. Cardiomyopathy is one of several heart ailments that arises from 

inability to displace blood. Patience’s are routinely given MRI’s for diagnostics purposes 

to help establish the aliments and the extent of impact on their health. MRI’s provides 

information by taking slices of high definition images through the body at various 

orientations and locations. It is possible to calculate volume of blood through many MRI 

slices of the heart with the laborious efforts of a professional to identify the heart 

boundaries. Only after the doctor has outlined the boundaries of the heart through a 

complete heartbeat cycle, can the calculation the displaced blood volume be performed.  

 

The process of manually circumscribing the blood in the heart is very inefficient and 

error prone. Adding to the doctor’s significant efforts, circumscribing must be performed 

on both left and right ventricle over many MRIs. This is a mundane and relentless task 

since there are k*n MRIs to analyze (where k is the number of slices and n is the time 

count), which equates to normally more than a 100 MRIs. Circumscription can 

optimistically take approximately 30 seconds per image, resulting in a conservative 

estimate of 50 minutes for each patient.  Due to the substantial remuneration of doctors, 

this implies significant cost to insurances providers and clients.
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In addition, manual drawing of heart edges can become somewhat a subjective process 

resulting in identification inconsistencies. This subjective nature is a result of the MRI 

themselves and not so much about the doctors’ capability or skill set. Artifacts such as 

spots, noise and textures can obscure the boundaries and require interpolation. The 

interpolation may not be consistent between professionals leading to improper metrics.  

 

It is possible to automate the laborious task of circumscribing using known methods of 

optimization. This can save tremendous amounts of time enabling professionals to 

increase productivity while reducing or eliminating subjectivity. There are a multitude of 

optimization techniques, of which Ant Colony Optimization (ACO) is included. ACO is a 

model that attempts to simulate real world ants guided by a goal. We use these theoretical 

ants by placing them on MRI’s and setting the goal as detecting heart boundaries. In this 

research we will elaborate and hopefully establish solidarity that ACO can adequately 

identify heart walls and thus, implicitly, support heart volume displacement calculations.  

 

1.1 Background 

 

This research relies heavily on image segmentation and ant colony optimization. 

Regarding image processing there are a few basic concepts that are needed. An image is 

made of pixels that are associated with a color. In this research monochrome images 

(grayscale) are used which results in a single integer value to representational the 

intensity. This value determines the lightness or darkness of each pixel. All images are 
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two-dimensional resulting in every pixel having four neighbors (except image edges). 

Relative to some pixel, there is one path of length one to each of the neighboring pixels.  

 

Ant colony optimization is a heuristic based on actual ant colonies [Dorigo04]. Ants 

communicate using Stigmergy, the process of changing the environment to communicate 

with other intelligence agents (ants). Stigmergy is done though dispersion of pheromone 

on the path of travel. When ants encounter pheromone, they are more susceptible to go in 

the direction of the pheromone. The assumption is that many trials will eventually cause 

the ants to converge to an optimal solution. 

 

Image segmentation is the process of converting an image from multi-valued pixels to, in 

regard to this research, dichotomized binary values.  There must be a value chosen prior 

to the segmentation called the threshold. After this value is chosen the image is simply 

converted as follows: 

  If pixel value is greater than threshold change to color A 

  If pixel value is lower or equal than threshold change to color B 

A useful image segmentation rests entirely on the value of the threshold making it very 

important that it is selected with care. A simple way to select a threshold is to take the 

average of every pixel value in the image. Although this may work in some situations, 

there is normally more sophisticated methods used such as receiver operation 

characteristic [Vermon91].
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1.1.1 MRI 

 

Heart MRI’s have a somewhat consistent topology and generally look like Figure 1. As 

previously discussed, there can be different orientations and locations resulting in 

different views of the heart. The current image was chosen as it contains several 

characteristics while still maintaining a clean descriptive view of the heart. An expression 

of areas that look consistent are generally referred to as the salient region. When using 

the phrase “salient region” here it is meant as a loosely identified homogenous area. 

Referring to the image we see several possible salient regions; three predominate salient 

regions have been identified as the heart (labeled 1 and 2) and lung (labeled 3). It is 

important to note many salient regions can be devised in the image and may not be useful 

or even biologically logical. These different possible salient regions can cause issues 

when detecting the heart. Intra-salient region attributes can have different intensities, 

gradient contours and textures which increasing the complexities of the problem space. 

The quintessential difference between interesting and uninteresting salient regions is 

contrast, size and location.
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Figure 1: MRI Heart Regions 

 

Referring to the image, the blood in the heart has significantly lighter intensity than other 

regions, such as the lungs. The heart wall has a relatively darker intensity than the blood 

but not as dark as the lungs. This implies a good segmentation algorithm may identify the 

heart walls but, this is not the case. When thresholding the dichotomy is not 

discriminatory towards the heart wall and many other artifacts may be confounded. 

Further, as discussed, segmentation relies on a threshold at a precise value which will not 

be optimal for different images [Kaman10].  Heart walls usually do not have a consistent 

intensity leaving the segmentation method lacking. Looking at region 1, there is a wide 

range of pixel intensities within the heart boundary. These variations within the salient 

regions are not part of the heart and should be suppressed when detecting boundaries. 

 

For the most part there are abrupt changes from salient regions to tissue, but this is not 

consistently a valid assumption. As shown in the lower part of salient region labeled 2, 

the salient region and boundary are not readily discernable.  Therefore, edge detection 
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such as Sobel [Sobel14] will find some of the heart boundaries but will fail at critical 

points. This is an unacceptable behavior as interpolation of missing points may cause 

serious discrepancies in heart volume.  Still referring to region labeled 2, inside the 

salient area one can make out additional lines that are not part of the boundaries of the 

heart. This is due to the blood pressure variances, resulting in different densities, under 

normal heart function. Therefore, lines do not necessitate a meaningful boundary when 

detecting ventricles.  

 

MRIs of the heart do provide quality information but have many difficulties arising from 

complex characteristics. These complexities cause both professionals and technological 

solutions to have opportunities. Further it has been established here that detections 

algorithms based on edge detection or segmentation cannot provide a panacea to 

automation of volume calculation.  

 

1.1.2 Watershed  

 

The Watershed model is a topological algorithm based on water aggregations. This is 

done by transforming a gray scale image into three dimensions. The third dimension is 

the intensity of the pixel and is interpreted as elevation. Therefor if water is evenly 

distributed throughout an image it will flow with the gradient and aggregate at all local 

minima. Each of the distinct aggregations are identified as an independent cell. These 

cells are completely separately from each other by pixel intensity or elevation. If water is 
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continuously added, regions will begin to merge as the elevation thresholds are surpassed. 

One good aspect of this methodology is that local segmentation thresholding is implicitly 

performed.  

 

Normally, before image is processed the gradient transformation is performed. This 

“normalizes” the image and exaggerates the edges since, by definition, larger differences 

exist in neighboring pixels on edges. This implies that as threshold increases more 

distinct edges are detected since the derivative will be greater. An alternative to gradient 

can be used called the lower neighborhood (LN) [Masoumi12]. The use of LN reduces 

process requirements since it is simply the lowest value of neighborhood. The LN is a 

non-parametric method that decreases complexity and stabilizing outliers.  

 

The algorithm divides the image into local minima cells by manual marking areas or 

marking positions with gradient < k as a local minimum. To simulate region flooding, the 

local minima are incrementally increased by changing the starting threshold intensity 

value k by l.  This results in contiguous pixels that are within the new value threshold to 

be added to the associated cell set. In Figure 2, cells may flood horizontally or vertically. 

The starting position is the center, setting k equal to 50, the pixels notated by light blue 

“fill up” or merge.  
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Figure 2: Watershed 

 

If 5 is added, resulting k = 55, the boundary is breached resulting in the dark blue areas 

becoming flooded.  

 

The example provides insight to how cells are generated as the water level is increased. 

Cells are the resulting states through which k changes and can be represented as a graph. 

Let there be graph G(V,E) such that V is the set of vertices and E is the set of weighted 

edges.  If water fills up a region of pixels, it must have traveled a path to each pixel. Also, 

the path traveled is weighed since some pixels have lower values causing more attraction. 

Then it can be shown if G' is a connect subgraph of G and it is the minimal spanning set, 

then it is equivalent to watershed method. Succinctly, let G' be a subgraph of G then the 

minimum spanning set is equivalent to the watershed [Jean-Yves10]. What is meant by 

state can now be posed in the right context. State is processed through several iterations 

and uses the graph theory concept of component extension. Let component G' t be a 
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component of G at time t then at time t+1, G' t+1 ⊆ G' t. This implies that G' t is an 

extension of G't+1 and since threshold t is either monotonically increasing or decreasing 

then G't is either monotonically increasing or decreasing, respectfully.  

 

The application of Watershed methodology on most images results in a significant 

number of cells, refer to the second image in Figure 3. This is undesirable and results in a 

poor solution or substantial post processing. Therefore, prepossessing the image with a 

various method before performing this algorithm becomes a necessity. Another major 

difficulty is establishing the threshold value that extracts the desired results. If this value 

is ill defined, there may be substantial merging of cells or too little merging. To combat 

these downfalls other techniques are used in conjunction with Watershed. In Figure 3 , 

the original MRI of the liver is on the left, extreme number of cells in the center and too 

few cells on the right.    

 

 

 
Figure 3 Liver Watershed 
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Conditioning can be used to assist the Watershed method. One type of preprocessed 

ubiquitous throughout image processing is the application of Gaussian filters. This 

retracts differences in outlier intensities through averaging. Gaussian filtering is 

accomplish using a sliding window of size n x n applied to every pixel in the image.  The 

values of each of the windows are calculated and the center pixel value replaced with the 

new values. The weighted value is calculated using the Mahalanobis distance with the 

Gaussian distribution as the coefficient.  The new value of p is px,y = β1pd=1 + β2pd=2… 

βnpn  were β1+ β2…βn = 1 and d is distance.  In Figure 4 images display the effects of a 

Gaussian filter applied iteratively. The images sequenced from left to right, displays a 

blurring until there is not enough information to discern the person.    

 

 

 

The application of Gaussian transformation operator, or convolution, results in a 

Morphological Smoothed Image (MSI) which reduces intensity extremes and noise such 

as speckle. Taking convolutions further, it is possible to use mixed Gaussian masks. This 

is done by using windows of different sizes and assigning pixels the difference of the 

 

Figure 4: Gaussian Filter 
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masks. Further these methods have been combined with morphological operators and 

applied to MRI image processing. The morphological closure and gradient operators are 

used in conjunction with a Gaussian mask for liver detection [Masoumi12]. 

 

There are several methods to determine threshold values to create cells. A good threshold 

values may change between images and thus one value is not a fit all. Therefore, 

techniques must be used to find this value. One simple technique queries the image to set 

t = (max (p) – min (p)) /2 [Zhao08]. Although this provides an approximation of central 

tendency, in most cases, this is a naive guess. It is incorrect to assume that the edges of 

interest require a centralized threshold. Still, a more sophisticated technique is required.  

A concept that is successful in establishing good threshold values is iterative processes 

based on optimization. This can come in many forms but at its most general level, 

consists of trials and a fitness function. As trials increase the fitness function works to 

minimize error based on threshold perturbation.  

 

One technique used is the iterative Watershed with scaling based on Neural Network 

error detection [Masoumi12]. Supplied with an expected result the neural networks can 

establish the difference in shape and area against a paragon, difference in these 

characteristics result in an error value. This feedback mechanism injects thresholds values 

parameterizes watershed model. On the unset, threshold is set to max intensity then 

incremented lower until the NN tolerance becomes within a user defined specification. 

This scaling feedback method provided a good mechanism for optimization. One issue in 
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this feedback approach is the neural network must be trained to look for shapes and area. 

This leads to problems when shapes are morphologically inconsistent resulting in high 

error or no convergence.  

 

Continuing to combat some of the downfalls of watershed, two more methods are briefly 

discussed called Hopfield neural networks, HNN [Storkey99] and Canny edge detection 

[Nadernejad08].  HNN is a recurrent network based on energy levels, resulting output is a 

binary value. Energy levels are altered equivalently to previously discussed thresholds in 

watershed. The neighborhood of each pixel provides the input that excites HNN to 

produce an output assigned to the center pixel as edge or no edge. This results in a 

watershed methodology guided by HNN. The HNN suffers similar setbacks as the core 

watershed method in that many cells can be generated diluting important information.  

 

Another factor to consider is with the Watershed edges themselves. It is not desirable to 

have edges that contain spurs or are thick. To reduce thick edges the concept of 

“destructive” edges is used [Jean-Yves10]. Any pixel on an edge that is more than two 

connected is removed in an iterative process until done. As shown in Figure 5, the gray 

shaded circles are the original watershed output and the black shaded circle are the result 

after performing the destructive operation. 

 



-  13 - 

 

Figure 5: Watershed destructive edges 

 

1.1.3 ACO  

 

As discussed in the introduction, ant colony optimization is a model based on real ants. 

Ants disperse pheromone in the environment as a form of information which can be acted 

on by other ants in their forging process.  There are several different interesting variants 

of this model each having different advantages. Some ACO variants help to converge a 

solution faster while others may provide more robust solutions at the expense of slower 

convergence. Well documented ACO algorithms such as stubborn ants [Abdelbar03], 

Elitist ants [Abdelbar08], Min Max ants [Stutzle00] and threshold ACO [Zhao08] have 

showed promise. To understand some techniques several are subsequently surveyed. 
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1.1.4 Standard ACO 

 

To understand the many ACO we will review, arguably, a standard form as applied to 

image analysis. An ACO supplied with heuristics, or a utility function, has the ability to 

make decisions based on pixel intensities. An image can be mapped into a perceptual 

graph with nodes and edges [Zhuang04].  The representation binds nodes to pixels and 

edges to paths, where a neighborhood of nodes is all nodes one path away from a refence 

node. Referring to Figure 6, the circles represent the nodes, or pixels, and the lines 

between the pixels represent paths. Valid paths are up, down, right and left but not 

diagonal as shown with the circle containing the x. In the figure, “pxl 1” represents an 

edge pixel and does path “up” does not exist. Referring to “pxl 2”, it is shown that four 

paths exist where each path has a weight as: 3.5, 2.6, 1.1, 2.1. Also take note that “pxl 1” 

is a neighbor of “pxl 2” as well as the converse.  

 

 

Figure 6: Image representation for ACO
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The weights between the pixels, or on the path, are the driving influencer of the ants 

routing choices. As a neighbor’s weights relatively increase in the neighborhood it 

becomes a more compelling choice. These weights and actions are derived by random 

proportional transition rule [Monteiro09] that takes input as input the neighborhood of 

nodes and edges. The path weights are updated recursively throughout the forging 

process, or many trials. 

 

Referring to the top formula in Equation 1, let the probability of following a path to pixel 

i,j be Pij for trial number t.  Let τij(t) be pheromone density and ηij(t) be the change in 

pixel intensity [Zhao08] on each path in the neighborhood.  The user defined values of α 

and β foster ant behaviors such as randomness and pheromone bias. As α increases ants 

will follow past paths whereas increasing β, behavior will change to favor image 

attributes. The denominator of the formula is the sum of all neighbor values providing a 

normalized output suitable for probability. The numerator provides the bias or the weight 

of a specific path.  

 

 

Equation 1: Standard ACO Formulas 
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In the second formula (η), this weight is inversely proportion to dij, . There can be a 

multitudinous of functions for dij such as difference, max or variance of pixels, etc. The 

last formula t controls dispersion and dissipation of pheromone for trail location i j. 

Where р is the dissipation rate and τij is a recurrent equation aggregating dispersion and 

dissipation for all trials.  

 

Using this model as the gold standard, the following sections will explore variations and 

augmentations.  

 

1.1.5 Stubborn Ants 

 

Stubborn ants are compelled to follow their past paths to certain degree. To do this the 

ants are endowed with the capability to distinguish their pheromone from others 

[Abdelbar08]. Although the ant is attracted to pheromones its agency will put a high 

priority on its own pheromone. The intended benefit of this technique is to thoroughly 

evaluate regions, or slow convergence, causing an increased robustness of solutions.   
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Equation 2: Stubborn at Formula 

 

To augment the discussed standard ACO formula and implement a “stubborn” attribute, 

the updated formula shown in Equation 2 is shown as identified in Abdelba’s work. In the 

top equation, the standard formula has been outfitted with additional parameter δ and is 

normalized over the neighborhood. Reviewing the bottom formula, parameter δ is set to 

one when a past path is not encountered resulting in no bias. In the other case, δ uses γ as 

an additional heuristic contributing to bias, where nodes a and b belong to the previous 

edge at time t-1 traveled by ant k.  For γ values increasing greater than one the bias 

becomes more prevalent. One issue with this approach is unsuccessful paths may be 

persisted since there is no way to gauge the fitness level. In the next algorithm, not only 

do paths persist like stubborn ants, they are acted on only when a certain level of fitness 

is achieved.  
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1.1.6 Elitist Ants 

 

Elitist ants behave uniquely in that the pheromone dispersion depends on a utility 

function called Cost Based Abduction [Abdelbar03]. If an ant satisfies the utility function 

better than another arbitrary ant, it disperses pheromone that is more “attractive” than the 

arbitrary ant. Therefore, ants that perform better have more influence of the successive 

trails. Elitist model has variants such as k best ants, only the best ant or all ants may 

update but in a weighted configuration.  

 

To establish if an ant has a better solution than its siblings and predecessors, it is first 

assumed there are an infinite set of hypotheses that are applied to cost-based abduction 

methodology.  To promote economy, discussion is limited to the most import formulae in 

this report which may be refenced in Abdelbar & Mokhtar [Abdelbar03] if deeper 

understanding is required. The abduction formula is shown in Equation 3, where Xih is 

the hypothesis h of ant i establishing the probability Pr of the hypothesis being true.  

 

An example hypothesis may be the most pixel differences of a path on some trial. Then 

paths with a greater summed difference in intensities would be a better hypothesis than 

paths with less. In this context the reduction of the cost function is the optimization 

method, therefor it is modified to be the inverse of the sum of pixel intensity. Looking at 
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the bottom formula in Equation 3, g is a weighted result of τ and η where η is a domain 

dependent characteristic and τ is the best solution or hypothesis. As the value of 𝛼 is 

increased, the elitist pheromone will be more strongly encouraged from another 

pheromone.  

 

Throughout trials the best solution called “Global Best” is saved and updated, Xg.  This 

formula is show in Equation 4.  As shown, if current iteration j has reduced the cost, 

function f, more than the global g, then it is selected as the new global. 

 

 
Equation 3: CBA formula 

 

 

Equation 4: Global best update  

 

In the bottom formula of Equation 3 the two components are expanded in Equation 5. 

The top formula of Equation 5  transforms the pheromone values to be τmax, τmin or τr j 
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[Stutzle00]. The bottom equation is the heuristic as show previously in the standard 

model.     

 

 

Equation 5: Elitist Update 

 

This results in the standard ACO with a path that globally updates when it is found to be 

better 

 

1.1.7 Thresholding with ACO  

 

The last model discussed is a novel thresholding technique using ACO (TACO) 

[Zhao08]. Unlike the previous methods, every pixel is initialized with an ant. The ants 

perform all traversals on one pixel, although this seems contrary to ACO, the similarity 

holds in the selection of pheromone updating. TACO primary function is to dictate if an 

ant is “merged” into the solution.  Merging is the processes of including pixels into the 

solution set for the best contrast. 
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Equation 6: TACO 

 

Selection of initial “food” is set as the value of T= (max pixel value - min pixel value) / 2. 

In Equation 6 A, the distance of each ant is calculated to its corresponding pseudo pixel 

(itself), where X is pixel intensity and T the threshold value. The pheromone update is 

then performed using a binary function where distance is less than or equal to T set to 1 

else 0 (Equation 6 part B). Finally, pheromone update is done in the bottom equation 

where p (Equation 6 D)  As processing termination occurs under the constraint |Tcurr – 

Tlast|<є where є is a user defined variable.  

 

1.2 Motivation 

 

There are many variations to ACO that are used in various problems and medians. In 

previous discussion it was pointed out that ACO has been used in image analysis with 

optimistic results. Also discussed previously was the need to calculate blood 
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displacement of the human heart to detect aliments. Experiments where performed using 

ACO in the next section and a pilot algorithm in the after.  

 

1.2.1 ACO and Watershed Applied to the Heart 

 

In this section preliminary analysis is done to identify and understand characteristics of 

using ACO with MRIs. In Figure 7, there are three regions: 1 & 2 are both ventricles of 

the heart and 3 the lungs.   

 

 

Figure 7: Transverse slice of hear 

 

In Figure 8, a watershed was performed with 50 different levels. This means, 

metaphorically, 50 levels of water where poured on the image and basin perimeters 

recorded. As shown in the images, a plethora of salient regions are found but the regions 

of interest (1 & 2) are difficult or impossible to discern. A boon of the identified regions 
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is that they are internally consistent and can be rightfully assumed to belong to the same 

object.  

 

Figure 8: Watershed 

 

The previously discussed method TACO is applied on the image, and results shown in 

Figure 9. The algorithm performed well in the sense of identifying regions. It is readily 

evident that lungs and heart are the white regions and black is the denser regions. Also, 

the edges are consistent and not over porous which means the value of the threshold 

selected was close to optimal choice. One serious issue is that region 1 is merged with 

region 3. This is a serious issue and is a downfall of contrasting in general. The merged 

salient region is caused by the boundary changing intensity to just below the threshold. If 

the threshold value is adjusted to allow for this ambiguity, then the salient regions 

become muddled and not useful. If regions are merged volume cannot be reliably 

calculated causing this method not to work. 



-  24 - 

 

Figure 9: Contrasting 

 

The results in Figure 10 represents the best results from stubborn ants and elitist ants 

(with 40 trials), in this case, stubborn ants. The edges are unequivocally detected but have 

several hindering attributes. The edges are extremely thick causing two or more edges to 

fuse together. The edges are not smooth but jagged and harsh causing difficulties in 

establishing the actual heart walls. There are many artifacts that have nothing in common 

with the edges. The main causes of this seem to be that the resolution (number of pixels) 

of the image and transient edges. If the resolution is increased the time of processing 

increases significantly and may not be feasible.  If assumed all edges are detected within 

some predefined standards, there would still be a significant problem determining which 

edges are heart walls. Therefore, every edge detection algorithm, shown here, does not 

discriminate from the edges that are of interest.  
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Figure 10: Edge Detection 

 

 Previous analysis provides jagged edges and merged region, although, the result was an 

accurate depiction of the original MRI image. A major issue, algorithms do not 

differentiate edges of importance such as heart walls and lungs. These algorithms require 

many trials to adequately find an optimized threshold values or the intensity differences. 

One main issue is the edges are not quantitatively defined thus cannot be directly 

translated for volume derivation. It is shown that the Left ventricle does not possess a 

closed region and therefore the edge was not completely detected. This would completely 

invalid volume calculation making this algorithm undesirable.  

 

On the other hand, both segmentation and stubborn ants provided good information, 

although different information. The next section introduces a unique algorithm using 

concepts from both approaches. 
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1.2.2 Trapping Ant Algorithm (TAA) 

 

The previously discussed algorithms all have benefits and opportunities. In this research 

an augmentation and merging of methods will be presented that results in elimination 

said problems while keeping the best attributes. To lay the foundation of the final 

algorithm an intermediate method was devised as the foundation and to prove the 

concept.  

 

The Trapping Ant Algorithm (TAA) can be understood by imagining a small confined 

flat surface as the environment, then inserting a single ant into this area as an agent. The 

ant will then begin walking straight (approximately) until it finds an edge. When it is 

unable to continue any further on its trajectory, it will reverse its direction and continue in 

another random direction. The ant will do this indefinitely. 

 

 When an ant finds an edge, it lays pheromone (or records the points) then it starts from 

its original starting point. This results in simple and fast processing algorithm.  In Figure 

11, the thick line represents the boundary the ant cannot pass. 
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Figure 11: TAA Region 

 

The points represent the initial random placement of the ants. Lastly, the thin lines 

represent a path the ant has taken to an edge. This example is contrived but develops the 

concept well. There are certain situations where this process will have difficulty finding a 

complete region which is not an issue regarding heart analysis. This difficulty is when the 

confined salient region is concave. Since we are working with a reasonably convex 

image, from the ant’s vantage point, there will be very little chance of these issues. 

Further, the redundancy of multiple ants will eliminate most ambiguities.  

 

 TAA processed an MRI of the heart with a specified intensity (114 provided best results) 

and one thousand ants. The results are shown in Figure 12. The boundaries of the heart 

are detected well, and other artifacts are suppressed. The operation of TAA is similar to 

watershed in that a level was used and similar to ACO in that the image was forged to get 

the result. 
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Figure 12: TAA concept 

 

The TAA by itself is insufficient to solve any real-world problems. A main point is the 

threshold value was a user chosen value and not a derived value. From image to image 

this value needs to be updated thus needing to be intelligently derived by the algorithm. 

The definition of an edge can change such that the same edge may have distinctly 

different characteristics from one point to another. The final algorithm will derive from 

TAA, TACO and Stubborn ants to resolve the downfalls and provide a usable method.  

 

1.2.3 Proposed Algorithm 

 

Using concepts from earlier discussions a proposed algorithm will be introduced. It was 

shown that TAA is a simplistic thresholding method that does find edges but does not 

have a guided method to select its threshold. In TACO it was shown that thresholds can 

be achieved by iteration with a utility function. In stubborn ants it was shown that ants 

can be biased to specific paths and in elitist, some solutions can be acted on separately. 

The Watershed method displayed how to isolate contiguous regions called salient 

regions. In this research we use all discussed concepts to create a unique algorithm that 
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exploits salient regions, converges fast and is discriminant in the area selected. By using 

watershed for region selection, TACO for threshold determination and both elitist and 

stubborn ants for selective path generation, it is possible to find the heart regions. TAA 

will be the foundation of the proposed algorithm as its flexibility and extensibility allow 

the application of all these concepts. 

 

To demonstrate the ease in which TAA is extensible, threshold value is automated using 

TACO. The image in Figure 7 was processed using this augmentation and the results 

shown in Figure 13. 

  

 

Figure 13: Reprocessed Edge Detection 

 

The results are very good detection since predicted edges are relatively smooth and 

accurate. Also, unlike watershed, generation of many arbitrary cells is not an issue. 

Looking at the edges on a more detailed level, they do not merge with each other and the 
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thickness is consistently minimal. The positions of the edges are readily available to 

calculate volume. The right ventricle is an exemplary display of what is needed for 

volume calculation, but the left ventricle leaves a lot to be desired. Although this this 

augmentation is promising, this approach to thresholding is not robust enough to 

guarantee the regions are isolated.   

  

 To find the heart wall it has been discussed that a specific set of requirements needs to be 

enforced. It is imperative that threshold be determined by the boundary of the heart and 

not the characteristics of the image. Further it is important that the assumed threshold 

finds the exact edges with minimum deprecating artifacts.  Most importantly there cannot 

exist segments of the heart boundary that are not found.  

 

To resolve this, we propose an algorithm that is a merger of TAA and dynamic threshold 

segmentation. The previous analysis of different algorithms has shed light on what is 

required in a successful algorithm.  In order not to be verbose, they are listed: 

1. Heart edges should be differentiated from other edges 

2. Edges should possess the same contours as the heart walls 

3. Edges should have minimal or no discontinuities 

4. The solutions should be the set of points corresponding to the heart wall 

 

The proposed algorithm in section 2.2 conforms to every requirement in this list. 
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1.3 Evaluation and Metrics 

 

 A well know statistic will be presented using two different types of research papers 

working in the same problem domain. The research was selected because of their strong 

parallels with the current research and consistency among metrics; this is discussed 

subsequently. These parallels include the MRI processing medium on heart ventricles and 

algorithmic active contour derivation. Among both papers, as well as in image analysis, it 

is common to use the Dice coeffect [Dice45], which will be expanded later.  

 

To understand the coming concepts a more fundamental concept is required which is 

briefly described here. When a result is said to be True positive (TP), the classification is 

true and, it is correct. When a result is said to be True Negative (TN) the classification is 

True but, it is incorrect. When a result is said to be False positive (FP) the classification is 

false and, it is correct. Finally, when a result is said to be False negative (FN) the 

classification is false but, it is incorrect.  

 

In this section an abbreviated walkthrough of an algorithm called “Left Ventricle 

Segmentation in Cardiac MRI Images” [Hadhoud12] is presented as well as the 

identification of the metrics used. 
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The space is first preprocessed to develop a region of interest (ROI) in which the core 

algorithm operates.  First, to increase consistency, only center most scans are used as this 

provides the best visibility of the ventricles. Using the center scans, each MRI of the 

sequence is processed to derive the standard deviation (SD) of intensities which is used as 

a metric of selection. The scan with the highest SD is selected as it is inferred that light 

areas (blood) and dark boundaries (tissue) are predominately distant.  The MRI is 

segmented using the SD where 80% under the curve is assigned a class as blood and the 

above, classified as other. 

 

To find the salient region each pixel has attributes extracted such as intensity, gradient, 

etc. The set of attributes of each pixel is large requiring substantial processing power to 

process. To deal with this, a scaling of the image is performed using “patches” which is 

synonymous with pooling in neural network (NN).  Each patch has the similar attributes 

assigned to represent the whole set of pixels. Even with the use of patches there is still a 

need to further reduce dimensionality. This is done here using principle component 

analysis (PCA). Dimensionality reduction is a characteristic of PCA as it works by 

remove variance through the rotation of principle axes into the most optimal positions. 

The final feature representation is then clustered using K-nearest neighbors where it is 

assumed one cluster is blood and the other is not.  

 

To analyze the quality of this algorithm three metrics where used called specificity, 

sensitivity and the Dice metric. Sensitivity is defined as TP / (TP + FN) and interpreted as 
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the proportion of true positives correctly identified. Specificity is defined as TN / (FP + 

TN) and interpreted as the proportion of true negatives identified.  The dice metric was 

used without modifications and will be discussed below. 

 

There are a few key differences between that research and the here proposed algorithm. 

In the comparative research, preprocessing is performed using a completely different 

technique (than the core algorithm) using a global and local minimization methods 

[Hadhoud11]. The proposed research here uses the same core algorithm techniques to 

both find the region of interest and detect its boundaries. Also, the comparative research 

performs dimensionality reduction by using PCA where in this research, dimensionality 

reduction is inherent in the linear sampling of the space. 

 

In this section an abbreviated walkthrough of the second algorithm called “Automatic 

hybrid ventricular segmentation of short-axis cardiac MRI images” [Nageswararao17] is 

presented as well as the metrics used.  

 

The research in this report approaches the solution by means of edge detection methods. 

Although there are many edge detection techniques, most work by identifying gradient 

changes. The method of choice is an augmentation to Kirsch edge detection with region 

based active contour (AC). Kirsch edge detection works by resolving a kernel using 

gradient analysis to project the direction of the most likely line.  This happens in 45-

degree rotations and thus the line will be in one of 8 directions. Region based contours is 
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performed by applying energy functions to the boundary. The energy functions work to 

become balanced by local interior and local exterior properties therefor endowing the 

interpolation ambiguous boundaries.   

 

To analyze the quality of this algorithm the Dice metric and Hausdroff distance were 

used. Since Dice metric will be discussed subsequently only Hausdroff distance (HD) 

will be discussed here. At a high-level HD, is a distance function between the point of 

interest and the boundary it is attempting to identify. This is done by taking every point 

of the predicted set and finding the closest point in the reference set. Every point is 

normalized using the formula in Equation 7. The advantage over the Dice index is HD 

takes into consideration closeness of points where Dice only takes into consideration 

overlap.  

 

 
Equation 7:  Huasdroff Distance 

 

There are a few key differences between the discussed research and the proposed 

algorithm. First, it is assumed that another algorithm or cardiologist has drafted an initial 

boundary of the heart. In the here proposed research, dependency on preliminary 

boundary identification is not needed as well as any type of seeding. Further, the starting 
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boundary must be adequate to allow the energy function to converge correctly where this 

is not applicable here.  

 

1.4 Dice Coefficient Metric 

 

In this section the Dice Coefficient (DC) will be discussed in detail. To understand DC, it 

is important to know exactly what it is measuring. Let S be a set of points and let T be a 

set of points then H = S∩T.  Let S be the points of actual classification and T be the 

points that are of a predicted classification. This infers that  S-T is the points not 

predicted and T-S are points incorrectly predicted. Using the non-normalized  set H does 

not work since to the contrary, if all the points in the universe are set to true then H is S 

and all is predicted correctly. This means creating an over optimistic prediction set to 

represent the actual classification can alter the correctness of the solution. Using DC, also 

called Dice Metric (DM), resolves this using the formula in Equation 8 where DM ε 

[0,1]. Where 0 is no overlap and 1 is perfect overlap. In the formula Aa is defined as 

number of points of the area, Am is the number of points predicted and Aam is the number 

of points in the intersection. This ratio implicitly has a penalization for being over 

optimistic or pessimistic in classification because as the denominator will become large 

forcing a smaller value.  
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Equation 8: Dice Metric 

 

The DM provides a percentage of coverage, but it is important to statistically prove the 

null hypothesis, the area is detected. To do this the application of standard method in 

feature detection called the F test will be applied [Martin04].  Referencing Equation 9, 

there is a Chi test and a F test that endows this capability. In the formula the variables 

TPR and FPR stand for TP rate and FP rate, respectively.  Further, Q is the total of true 

and false positive. Although this report will only contrast the two research papers with 

the DM, the F and X statics will be provided for thoroughness and completeness.  

 

 

 

 

 

Equation 9: Edge As feature metric 
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2          Chapter 2:   
Trapping Ant Algorithm  

 

In this chapter the proposed algorithm will be presented called Trapping Ant Algorithm 

(TGAA). Take note that “trapping” is used in TGAA as opposed to “trapped” in TAA, 

this is to emphasizes an ongoing active process. The approach is first to rigorously extend 

TAA and introduce the needed argot. Then TGAA is explained and broken down into 

phases of operation.  Each phase is introduced as a standalone process, although requires 

information derived in the preceding phase.  

 

2.1 Extending TAA  

 

TAA is an efficient algorithm that finds salient regions in an image and it is extended in 

this section to lay the foundation for TGAA. First, good parameter estimates of the 

boundary value and a size range of the salient region are necessary. There are five user 

defined parameters:  threshold (H), minimum path (t0), time of trail (t), number of trials 

(T), number of ants (N). A trial is one cycle composed of ant placement and image 

traversal until time runs out.  The time of the trial is the maximal number of pixels an ant 

may travel in a trail.  The minimal path is the distance an ant must travel before it is in 

consideration of influencing the solution. Minimal path specifies the minimum salient 

size to include into the result set. The threshold is the minimal intensity value the ant 
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considers a boundary. Please note that all values above threshold are considered a 

boundary. It is possible to perform TAA using other boundary specifications but is not 

required in this research.  Ants are placed randomly at the beginning of each trial. When 

an ant is initial positioned, it is assigned a random direction to travel. Ants always travel 

in a straight line until they find the threshold. An ant may satisfy undesirable conditions 

which stop its processing. The following rules define undesirable conditions: 

 

Let ant k have path Pk with length Ik. Let ant k be randomly placed on a pixel Pl. Also 

let t0 be a user defined minimal length of a path. Then there are two undesirable 

conditions that cause an ant to stop processing: 

1. If ant k travels length Ik < t0 and encounters a pixel such that H  <= value (Pl) 

2. If ant k encounters the image edge during processing time t 

 

When an ant finds itself in an undesirable state it is said to have “died”. If an ant has 

traveled time t without detecting the threshold, it does not provide any information and 

has “escaped”, which is defined below: 

 

An ant k has escaped if and only path length Lk and max trail time t is Lk = t and a 
threshold condition has not been met 
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Ants detect boundaries when they do not encounter an undesirable condition and have not 

escaped. If an ant detects the boundary and the time has not expired, it is “trapped”. An 

ant that is trapped is assigned a random direction and placed at its starting position to 

continue processing.  The predicted edge solution set is defined as: 

 

For all trails T select all pi for all ant that do not encounter an undesirable 

condition or have escaped while H<value(pi) in time t. Let the set of selected pi 

be the solution set G 

 

An example is shown in Figure 14  containing seven ants. The area p ≥ H is the boundary 

region where p < H is the salient region. All ants initially placed in the boundary region 

fulfill undesirable conditions and do not travel (represented as a single dot). The ant 

labeled “A” has been placed in a salient region that is less than the t0 and dies.  The three 

remain ants in the salient region traverse the image adding boundary points to set G.  The 

interpolated results of the set are shown to the right. The results are course but an 

accurate correlation with the salient boundary. One can see if the ants where increased to 

fifty that the boundaries would become more accurate.  
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Figure 14: TAA convex hull 

 

There are some issues still present in the extension of TAA. First a feedback mechanism 

is required to update the threshold. This is done using the escaped ant paths and will be 

performed in the Trapping phase of TGAA. Currently, TAA cannot start processing the 

image without user intervention. TGAA resolves initial state problem by applying a 

Bootstrap Phase. Finally, preprocessing akin to Gaussian, is integrated using path 

sensitivities. Ants do not just stop on a threshold value but require multiple thresholds, 

this suppress noise and other issues in multiple phases.   

   

2.2 TGAA 

 

There are four phases in TGAA. Each phase extracts information from MRI of the heart, 

without changing the image. A phase requires the developed information, as input, from 

the previous phase. In order of execution, the four phases are named Bootstrap, Trapping, 

Evaluation and Synthesis. Each phase will be explained in detail subsequently. The 
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Bootstrap phase is unique in that its only purpose is to start the algorithm and does not 

consume any trials or gather information that is of significant use.  

 

 

Figure 15: Reference Example 

 

To help expedite understanding, the MRI in Figure 15 will be used throughout the 

algorithm explanation. The area labeled one is the left ventricle. The left ventricle has a 

boundary that is curvy with different grayscale values. Its salient region is consistent with 

some darker regions. The right ventricle, labeled two in the MRI, is similar to the left 

ventricle except the salient region possesses a gradual change in color. Both regions have 

noisy salient regions and inconsistent boundary colors that can causes serious problems 

when determining boundaries.  
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In this explanation of TGAA, we first explain ants in detail, then internal and external 

(user defined) variables. Finally, we visit each phase of the algorithm and display some 

results.  

2.2.1 Ants 
 

 

Ants are initially placed randomly, at the beginning of a trail, using a placement heuristic. 

Ants always travel in straight lines but the direction and initial placement change. It is 

important to note ants travel one pixel each time unit, this implies time and number of 

pixels are, somewhat, related. Therefore, when referring to ant path, time and pixel are 

interchangeable except an ant may have not processed the full number of pixels.  

 

Ants require a method of boundary identification. One possible formula is distance. The 

pixel distance from the target salient value would remove both lower and higher pixels 

that are to different, refer to Equation 10. 

 

 

Equation 10: Boundary 

 

  Let B answered the question “is pixel a boundary point?” then:  

𝐵 =  
 𝑆 − 𝑝𝑐  > 𝐻      𝑦𝑒𝑠
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       𝑛𝑜

  

   H is threshold 
   S is salient value  
   pc is current pixel value 
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The assumption made in this research is the threshold is “darker” than the salient region. 

This results in the below formula: 

 

 

Equation 11: Low Intensity Boundaries 

 

It can be shown that several formulas may be used to manipulate detection of edges and 

in fact whether lighter or darker salient regions is irrelevant to functionality.  

 

2.2.2 User Variables 

 

User variables are parameters assigned before processing that influence behavior. The 

number of trials to perform on Trapping, Evaluation and Synthesis phases is Ttrapping, 

Tevaluation and Tsynthesis, respectively. The total trials performed during processing are 

notated as Ttotal.  As Ttrapping is increased the threshold prediction value is more precise. 

There is a maximum number of trails that improved threshold where any further trials 

will produce no benefit. As Tplacement is increased the connectivity of regions become 

increasingly stable representation of salient quality. There are a minimum number of 

  Let B answered the question “is pixel a boundary point?” then:  

𝐵 =  
𝑝𝑐 > 𝐻             𝑦𝑒𝑠
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       𝑛𝑜

  

   H is threshold 
  pc is current pixel value 
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trials that must be selected to insure paths cross or the model will fail. As Tsynthesis is 

increase the density and continuity of the predicted edges is increased. The number of 

trials in phases is dependent on image size and salient qualities. The number of ants in a 

trial is notated by n. As the number of ants is increased processing requirements rapidly 

increased. It is recommended to use the least possible ants to obtain a solution although 

using too few ants will result in volatile results or model failure. The time of a trial is t, or 

maximum path length, that an ant can travel. The trail time must be greater than the 

salient region but smaller than the image size. The maximum salient size to consider is 

tmax and is valid in the placement phase only. The quality of a salient region is quantified 

by an integer number and called connectivity. The user defines the number of best-

connected salient regions (Csel) that should be used in the solution. The target region is a 

numerical value representing intensity notated by Itarget. The exact value is 

inconsequential as the algorithm is robust, but it is required that the value be less that the 

boundary value. The exploratory and exploitation characteristics of the ant can be 

modified by τ such that τ > 0. Ants may encounter noise in the salient region and falsely 

mark pixels as an edge. To reduce these ants can be assigned threshold sensitivity of tsense. 

The use of τ and tsense will be explained in the placement phase section. 

 

2.2.3 Internal Variables 

 

The following variables are created and updated, by the model, during the run.  Each ant 

is assigned a direction (v) in which it travels at the beginning of each trial. This random 
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variable is in degrees implying 0 ≤ v < 360 and does not change during a trial.  At the end 

of a trail ants are in one of three possible states. An ant is either dead, escaped or trapped 

where the number of ants in these states is ndead, nescaped and ntrapped, respectively. 

Elaboration of states will be explained further in the trapping section. The current value 

of the threshold is notated by H and is monotonically changing. Let Lmin and Lmax be the 

minimal and maximal value of a pixel in an image then Lmin  ≤ H ≤ Lmax.  The 

connectivity of a specific salient region is notated by Ci and the number of total predicted 

salient regions is Stotal. The placement phase records all ant paths that are trapped this set 

is notated as Ptrap. At the end of this phase redundant and pixels greater than the threshold 

are removed from Ptrap, this set is notated as Pprune. Therefore, in normal circumstances | 

Ptrap | >> | Pprune| but it is always the case that | Ptrap | ≥ | Pprune|. The evaluation phase 

records all paths that have crossed and is notated by the set Pplace. The selected set of 

paths meeting minimum connectivity criterion is Psal and identifies all possible salient 

prediction sets. Each salient region has Ci, the number of path crossing, associated with 

that region. Therefore, in normal circumstances | Psal | >> | Pplace| but it is always the case 

that |Psal| ≥ |Pplace|. The evaluation phase records all endpoints of paths and is notated by 

set Peval. The set conditioned to remove all redundant nodes resulting in the solution set 

Pfinal. 
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2.2.4 Bootstrap 

 

In the Bootstrap phase an initial threshold value is generated, Hstart ,then assigned to the 

global threshold H. TGAA algorithm cannot begin execution without a starting threshold. 

An H value is required because it determines if an ant has stopped by encountering a 

boundary condition. Assigning Hstart to the maximum possible intensity allows a state in 

which all ants can escape. The update heuristic is unrestricted causing the initial H value 

to possibly be to low intensity. This is a result of the algorithm working by monotonically 

decreasing the threshold H therefore it is imperative that threshold be selected higher than 

the salient region and lower than the maximum intensity in the image. The starting 

threshold characteristics is shown in Equation 12. 

 

 

Equation 12: Starting Threshold 

 

Therefore, the algorithm requires a starting point that is not part of the standard 

algorithm. The resolution is a simple bootstrap technique. Before trial one the image is 

traveled by ants in random directions with no applicable heuristics. The only rule is ants 

Let Hstart be the starting threshold, Hsalient be the salient threshold. 

HSalient << Hstart < max (Ɐ pixels) 
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that touch edges are eliminated from this sample. This eliminates the possibility that an 

ant may be spawned next to the edge reducing the sample size causing possible biases.  

The highest pixel value of all paths is assigned as the boundary. This value will be 

significantly higher than the boundary but represents an arbitrary starting point. The 

algorithm is summarized in figure 16: 

 

 

Figure 16 Bootstrap 

 

2.2.5 Trapping 

 

The trapping phase performs two activities. First, information gathering and the second, 

data cleaning (pruning).  Together, these activities survey the image while, 

simultaneously, conditioning preliminary solutions.  After each trail paths are 

dichotomized into the sets trapped (Ptrap), escaped (Pescaped) and dead (Pdead), see section 

2.1 for more information. Subsequently, it will be shown how Ptrap and Pescaped are formed 

and used. In regard to dead ants, they are not processed and disregarded. Before 

discussing these sets, however, sensitivity needs to be discussed. 
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Due to image noise, stopping immediately on a boundary condition is not fruitful and 

requires detection to be somewhat impervious to these conditions. Noise issues were 

discussed previously using Gaussian masks; here the image is not preprocessed but 

performed dynamically during model execution. Noise is dealt with using ant sensitivity, 

as defined in this research in Equation 13.   

Equation 13: Trapped Path Threshold 

 

The output of sensitivity is a simple binary value and input is pixels for a duration in the 

past, starting with the current time.  If for any sequence of pixels of size n with a pixel 

value below threshold the function returns false. Referring to Figure 17, letting s = 5 

(sensitivity) and each line of boxes be a path traveling in direction of the arrow.  The grey 

boxes represent above threshold and the white boxes below.  The number inside the 

boxes represent the consecutive pixels greater than the threshold. In the top path, the 

sensitivity is incremented in the second box to one but resets in the third because the 

threshold was not met. The sensitivity has a largest value of 3 which is less than 5, 

implying thresholds are not consistent enough. In the bottom path, boxes 4 thru 8 are all 

sequentially greater than the threshold resulting in the sensitivity of 5, meeting the 

minimum sensitivity constraint. This results in threshold detection and the function 

returns true. A subtle point to clarify, the actual boundary starts at the beginning of the 

sequence detecting the edge. The “start” in the bottom path represents the boundary. 

Constraint: Path Pk is an element of Ptrap if and only if there exists pi εPk such that: 

Pi, Pi+1…, Psense  ≥ H 
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Figure 17: Threshold Sensitivity 

 

Information gathering begins with an empty salient prediction Ptrap, Bootstrap threshold 

(H) and the user defined number of trials (Ttrap).  The salient prediction region is a set of 

paths aggregated in Ttrap trials. The paths are added to the set Ptrap as defined in Equation 

14. For further foundational information refer to Equation 8. Alternatively, a path is added 

to the trapped set if it did not die or escape.  

 

 

Equation 14: Trapped Paths 

 

At the beginning of this phase the escaped set Pescaped is empty. An ant path is added to 

Pescaped if  the escaped path, shown in Figure 18, holds. Alternatively, a path is added to the 

escaped set if it did not die and it was trapped.  

For trial T in 0 < T < Ttrap let k be the kth ant with path Pk and path length Lk. Let Pk be 
qualified such that Lmin < Lk < tmax and Pk did not encounter an image edge. 

Constraint: Path Pk is an element of Ptrap if and only if boundary sensitive is met 
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Figure 18: Escaped Paths 

 

At the beginning of this phase ants are placed to foster exploration. Exploration is 

implemented by randomly placing ants throughout the whole image at the beginning of 

each trial. The exploratory behavior allows a survey of the image while reducing the 

possibility of falling into a local minimum. Exploitation, by use of Stigmergy, is the 

result of placing ants randomly in Prap at the beginning of each trail.  The proportion of 

ants randomly placed anywhere in the image versus placed randomly in Ptrap, is a 

heuristic defined in Equation 15. 

 

 

For trial T in 0 < T < Ttrap let k be the kth ant with path Pk and path length Lk. Let Pk be 
qualified such that Lk = tmax  

Constraint: Path Pk is an element of Pescaped if and only if boundary sensitive not is met 
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Equation 15: Placement Heuristic 

 

For trial one, η is zero implying 𝑃𝑟𝑖𝑛𝑖𝑡,𝑠𝑎𝑙 is zero forcing exploratory behavior not to 

occur. This must be the case since the first trial has an empty salient prediction set. As τ 

increases the behavior is more exploratory increasing both the number ants randomly 

placed and trails. Conversely, as τ decreases the behavior is more exploitive in both 

number of ants and trials. The two behaviors have an inverse relationship expressed 

through τ, but one can increase both behaviors through the increase of number of ants per 

trial.   

 

As trials increase, the size of sets Ptrap and Pescape increases where at the beginning Pescape 

increases rapidly and towards the end Ptrap does.  This is pertinent as information is 

leveraged in a similar fashion such that at the beginning trapping escaped ants is critical 

to threshold development and toward the end discovering the boundaries using trapped 
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ants is priority. The threshold is updated after each trial using Pescape and is monotonically 

decreasing. The update is performed using Equation 16.  

 

 

Equation 16:  Threshold Update 

 

This simply states the minimum of all maximum values may update the threshold only if 

it is less than the threshold. The new threshold causes every ant that traversed these paths 

to become trapped. To support solidarity and understanding refer to Proof 1.  

 

 

Proof 1: Trapping Escaped Ants 

 

Finally, as a corollary of Proof 1 and Equation 16, every ant in previous trials remains 

trapped, refer to Corollary 1. 

 

 

Threshold is updated as follows:  H= min (Ɐ pk,max ε Pescape ∪ H) 

For some trial let P be the set of all path escaped and pi be the ith path. Let `pi be the max 
intensity of path i.  

 H = min(Ɐ `pi) 

Then it must be the case for all paths in p ꓱ pi < H and thus every ant is trapped.  
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Corollary 1 Trapped Ants Remain Trapped 

 

The results of the trapping phase, the set Ptrap, is shown in Figure 19.  

 

As shown the paths have converged to the lighter regions where they cluster or become 

denser.  Further inspection displays that salient regions have been identified for multiple 

intensity levels that are greater than the heart. Although the heart is strongly detected the 

paths protrude out of the salient region into the boundary. To resolve these unwanted 

attributes cleaning is performed next.  

 

 

Figure 19:  Path Convergence 

In Equation 16 threshold H is shown to be monotonically decreasing for every trial and in 
Proof 1 every ant is trapped when H is updated.  

Therefore Ht+1 ≤ Ht implying min(max(pt+1)) ≤ min(max(pt)) and therefor all previously 
escaped ants are trapped. 
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Cleaning Ptrap is necessary since the current solution does not adequality reflect the final 

threshold under normal model operation. To understand this an additional specification is 

outlined in Corollary 2. The implication of this corollary trapped is that ants may have 

pixels above the current threshold and are no longer valid in the final solution.  

 

 

Corollary 2: Trapped Ants above Threshold 

 

In the cleaning activity, named pruning, the result set Ptrap is reprocessed where no trials 

are performed or consumed. There are two issues to resolve, the previously described 

path threshold problem and duplicated pixels (same location) from paths crossing. In the 

first, the reprocessing of all paths with the new threshold is performed. In the second, 

removal of redundant pixels eliminates bias during random placement of ants. The result 

is the qualified prediction set Pprune and contains all usable salient prediction paths. The 

pruning of the predicted salient set is shown in Figure 20 .  

As prescribed by Proof 1, let trial Tn have escaped ants trapped with threshold Hn and 
trial Tn-1 have escaped ants trapped with threshold Hn-1 

If Hn-1 < Hn (Equation 16) then it is possible for paths in Tn-1 to have higher intensities 
than Hn 

 

As prescribed by Error! Reference source not found. let trial Tn have escaped ants 
trapped with threshold Hn and trial Tn-1 have escaped ants trapped with threshold Hn-1 

If Hn-1 < Hn (Equation 18) then it is possible for paths in Tn-1 to have higher intensities 
than Hn 

 

As prescribed by Error! Reference source not found. let trial Tn have escaped ants 
trapped with threshold Hn and trial Tn-1 have escaped ants trapped with threshold Hn-1 

If Hn-1 < Hn (Equation 18) then it is possible for paths in Tn-1 to have higher intensities 
than Hn 

 

As prescribed by Error! Reference source not found. let trial Tn have escaped ants 
trapped with threshold Hn and trial Tn-1 have escaped ants trapped with threshold Hn-1 

If Hn-1 < Hn (Equation 18) then it is possible for paths in Tn-1 to have higher intensities 
than Hn 
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Figure 20: Path Threshold 

 

It is shown that the paths between salient regions have been removed. Further artifacts 

that held no value have been effectively removed. The MRI displays salient 

disjointedness and convergence on possible salient regions. Given this information, it is 

now possible to quantify the quality of the salient regions.   

 

2.2.6 Evaluation 

 

The evaluation phase consists of two different activities. These activities are data 

generation and evaluation. Generation of data, salient region paths, is done by performing 

TAA a user defined Tplace trials. Evaluation of the paths provides new information to 

make quantifications about the salient region. 
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At this point in the algorithm the salient regions have been found and a threshold 

established.  In the data generation activity ants perform a TAA where initial placement 

is randomly assigned in the set Pprune and the threshold value is H. This activity requires 

enough trials to ensure that paths cross in the salient regions. As trials increase, the 

number of path crossings increase, providing a more stable solution. The paths of every 

trial are aggregated into the results set Pplace.  

 

In the evaluation activity the connectivity of all prospect salient regions is calculated.  

This is done by comparing all paths in Pplace.  If two paths cross, they are in the same 

salient region and the connectivity of the region is increased by one.  Connectivity is 

defined here as:  crossing of paths generated from Pplace, either directly or indirectly, 

limited by H. By “indirectly crossing” it is meant that transitivity applies. The individual 

predicted salient regions are quantitatively separated and have an associated connectivity. 

A new set BT is introduced in Equation 17 to facilitate understanding:  

 

 

Equation 17: Connectivity 

 

Every single predicted salient region B is disjointed from others. This is by definition and 

is explained in Equation 18: 

Let BT be a set of order pairs (B, C) where B is a set of paths and 

C is the connectivity of those paths 



-  57 - 

 

Equation 18: Disjointed Regions 

 

It should be noted that a prediction set B may have the quality that there exists a salient 

region such that more than one B belongs.  If this is the case the more connected 

prediction region is given precedence. The connectedness of a region is the number of 

crossing in a salient prediction set. This is defined Equation 19:  

 

 

Equation: 19: Connected  

 

In the ongoing MRI example, the number of most connected regions to consider (Scolor) is 

two. As shown in Figure 21, there are eight regions selected. These are the most highly 

connected salient regions. As shown every path is connected to another. 

 Let  Pj and Pk be any paths that updated BT  where BT ={ (B1,C1), (B2,C2),…(Bn,Cn)}  then 

the following holds:  if (Pj ∩ Pk) ≠ 0  Then  ∃ 𝐵𝑟 , 𝐶𝑟 ∈ 𝐵𝑇   𝑆. 𝑇.  𝑃𝑖 ∪ 𝑃𝑘 ⊆ 𝐵𝑟   and 

𝐵𝑟   𝐵𝑝𝑝≠𝑟 = {} 

For every (Pj ∩Pk) ≠ 0  in Br ,  Cr is incremented by one. 
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Figure 21: Evaluation 

 

2.2.7 Synthesis 

 

The synthesis phase builds the final solution by finding salient edges. This phase 

performs a user defined Tsyth trials. In the evaluation phase, Csel number of predicted 

salient regions were chosen and the respected paths aggregated to Peval .  This phase 

performs a TAA with ants randomly placement in Peval with threshold set to H.  The 

threshold location found by each ant after a trial is aggregated into Peval. This produces a 

growing set that will detect edges normally unfound. At the end of this phase all 

redundant points are purged resulting in the solution Pfinal , as demonstrated in Figure 22.  
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Figure 22: Synthesis 

 

 

 

 

 

 

 

 

 

 



-  60 - 

2.2.8 Visual Representation  
 

To help visualize the flow and interconnections of TGAA, refer to Figure 23 below 

 

 

Figure 23 TGAA Visual Representation
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3        Chapter 3:   

TGAA Analysis:   

 

In this chapter analysis will be conducted to assess the efficacy of TGAA. First, a 

discussion of how the sample data was acquired, cleaned and disseminated. Then analysis 

is performed on the sample data for quality and predictions correctness. Finally, a 

conclusion is made as to the capability of TGAA. 

 

3.1 Sample Data 

 

In this section a discussion of the procurement and conditioning of MRI image samples is 

given. The procurement of MRI images has to be done in a way that represents the 

population and assigned so that no biases occur. Special attention has been given to the 

procurement and is described in detail below. To perform testing the images have to be 

transformed, or conditioned, into a format that can be compared against the prediction set 

using the DM. Care has been given not to alter the sample results and the transformation 

will be explained as well. 

 

As describe previously the full set of MRI images contains different slices of the heart 
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across time. Also, as previously discussed in the refence report “Left Ventricle 

Segmentation in Cardiac MRI Images”, some slices of the heart do not provide 

information or are too noisy to process [Hadhoud12]. These issues are normally on the 

boundary slices; in this research the boundary slices are 1 and 7.  It was found, by visual 

and preliminary processing, that slices 6 and 7 were not able to be processed although 

slice 1 had enough information. Further, in most cases these slices of the heart did not 

contain blood. Reviewing Figure 24, one can see there is no light regions, this implies 

absence of blood only regions which has no volume. 

 

 

Figure 24 Slice Six 

 

The sampling is done using 12 subjects to manually draw, what they perceive to be, the 

walls of the heart. The subjects where not coached on how to identify the heart but only 

on the drawing tool use and what an MRI entails. To evaluate the algorithm, a fully 

randomized sample of 48 MRI images was procured from a full set of 850. These 48 MRI 

images where then randomly assigned to 12 subjects in which every image belongs to 3 

different subjects.  This results in a validation set of 144 MRI images where each subject 
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has 12 MRI images to work on. For more information of setup and design refer to the 

Sample Assignments section in Appendix A.   

 

After the images were collected, conditioning was performed to provide a consistent 

format.  This was done by extracting all yellow information from MRI images samples. 

All non-yellow pixel was set to white and the inner contiguous regions were set to 

yellow. This is shown in Figure 25 where the processing happens from left to right 

  

Figure 25 Image Processing 

 

3.2 Results 

 

In this section an analysis of the algorithm contour detection capability is performed. As 

discussed in the metrics section assessment will be performed using the Dice Metric 

(DM). To do this the samples are first evaluated as to consistency and viability. This 

evaluation is done at both the human subject level and MRI images. It is possible for the 

subject to not grasp or mechanically perform accurate boundary detection. Also, some 

MRI images may be confusing for all subjects causing low consensus and little 
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agreement. Last, several experiments were performed to understand the contour 

identification capability of the algorithm.  

 

To understand the constancy of the subjects and the resulting MRI samples, analysis will 

be performed to identify any issues.  It is important that there is consensus by the 

subject’s results image wise. A comparison is done for each MRI across all the subjects’ 

samples and results are shown in Figure 26. A horizontal line is drawn to highlight the 

DM below a reference value for outliers using the standard formula max(min(x), Q_1 – 

1.5 * IQR)).  The value Q_1 and IQR were derived from all MRI samples resulting the 

outlier value of 80.8%.  

 

Figure 26 DM by Sample by Image 

 

It is shown that for six MRI groups DM was lower than 80.8% and totaling10 subject 

samples.  Also there seems to be a large variance across images, some boxplots have a 
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very large range, and some have very narrow. As the boxplot becomes narrower it can be 

said the consensus of the MRI is high. Alternatively, if the boxplot is wide, the subjects 

have less consensus. The largest disagreements happens to also be in images that cross 

the anomality boundary.  Given this, analysis of intra image variance will be refrained 

from. 

 

DM < 0.8  

Discrepancies 
User  

Discrepancies 
Image 

# DM Subj. 1 Subj. 2 image  User # Count  Image # Count 

1 0.761 6 4 24  1 0  24 2 

2 0.721 6 5 24  2 0  13 2 

3 0.780 8 9 13  3 0  21 2 

4 0.710 7 8 13  4 3  38 1 

5 0.779 7 6 21  5 1  36 1 

6 0.70 8 6 21  6 8  14 1 

7 0.790 6 4 22  7 3  else 0 

8 0.764 6 7 38  8 4    
9 0.686 8 6 36  9 1    

10 0.782 6 4 14  10 0    
      11 0    
      12 0    

Table 1: DM Outliers for MRI samples 

 

It is shown in the Table 1 that Subjects 6 & 8 contribute to 60% of the outliers implying 

there is a possible significant difference in their samples. Since the distribution is 

unknown, or at least not well defined, a non-parametric Chi Squared test is performed.  

The only assumption made is that all subjects have the same probability of having 

outliers.  Referring to Table 2 test number 1, it is shown that the null hypothesis has been 

rejected in favor there exists a difference in proportion of outliers by user.  Replacing the 
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discrepancies with the expected median value outlier (0.5) for subjects 6 and 8 it is found 

in test 3 the test fails to reject the null hypothesis that discrepancies of subjects are 

significantly different.  

 

Table 2: Subject Chi Squared test 

 

Due to the limited number of samples, removing two subjects, or 24 MRI images, is a 

significant obstruction. Therefor a compromise is made to remove subject 8 and 

continuing with subject 6. Performing Chi Squared with subject 6 in test 2 results in a p-

value 0f 0.021.  

 

Every algorithm identification compared against the sample resulting in 136 DM values. 

Once again, A horizontal line is drawn to highlight that all DM below this value are 

outliers using the standard formula max (min(x), Q_1 – 1.5 * IQR)).  The value Q_1 and 

IQR were derived from all MRI predictions resulting the outlier value of 68.1%. The 

results are shown in Figure 26 where it is readily apparent there are 3 outliers.  

Test # Sample Description X-squared DF p-value 
1 All 40 11 <.001 
2 Student 6 median 21 10 0.021 
3 Subject 8 & 6 

median 
18.33 11 0.074 
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Figure 26: DM by Predicted compared to samples 

 

Focusing on the outliers the results are tabulated in Table 3 where it is shown that three 

images cause 100% of the issues. Subjects 1 and 12 have two samples as outliers but 2 

outliers in this context turns out not to be significant and were not pursued. Also, it is 

interesting that for these images all three samples were different. This means, there is a 

consistent disagreement among the prediction ant sample set.  
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Compare # DM Subject # Image #  image # issue count 
1 0.606 1 39  39 3 
2 0.567 12 39  13 3 
3 0.627 11 39  23 3 
4 0.461 9 13  All else  0 
5 0.361 8 13    
6 0.506 7 13    
7 0.530 12 23    
8 0.564 1 23    
9 0.554 2 23    

Table 3: Prediction Outliers 

 

Example outlier (MRI #23) is selected as a paragon because it displays two issues that are 

present in all other outliers. Referring to the raw classification (full paths shown) in 

Figure 27,  there are two regions identified that subjects did not identify. The region 

labeled “Issue One” has the same intensity of blood and same geometric properties. Issue 

one could have been resolved by reducing the region of interest. The region labeled 

“Issue Two” is correct as the heart is malformed, and the subjects were unable to discern 

this.   
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Figure 27: MRI outlier Example 

 

In order to provide complete transparency, analysis was performed on all the data with 

outliers not remove, called “Raw” and with outliers removed Called “Conditioned”.  The 

descriptive results are shown in Table 4 where one can see there are differences in means 

in both raw and conditioned data. Further, variance seems to be larger for predictions in 

both cases.  

 Raw Conditioned 
 Samples Prediction Samples Prediction 
mean 0.888 0.817 0.902 0.844 
1st Q 0.8709 0.791 0.884 0.810 
Variance 0.002748543 0.010 0.001 0.003 

 
Table 4: Summary of DM by Set 

 

Tests were performed to evaluate the differences in means between the samples and 

predictions for DM. This was done using a more sensitive T test that assumes some 



-  70 - 

normality in the underlying distribution and a Wilcox Ranked test with no assumptions of 

the underling distribution. Further, these tests were done on the all data and conditioned 

data resulting in four tests. 

 

Referring to Table 5, it is shown that both tests reject the null hypothesis in both 

conditioned and raw data sets. Therefore, we can conclude that prediction set is 

significantly different from the subject sample set.  

 

  T Test Wilcox Test 

Description Df p-value W p-value 
All Data 198 <.001 3780  <.001 
Outliers 
Removed 179 <.001 2064  <.001 

 
Table 5: T test difference of means 

 

Although it has been shown that the prediction set does not match the MRI samples the 

question remains: Does this algorithm provide any prediction capability?  

 

To answer this question a bootstrap experiment was performed. This was done by 

comparing DM of random subject samples against other subject samples, where the 

samples were not the same. This results in a DM that reflect a random prediction on a 

subject sample. If the DM for a random prediction on a sample is significantly different 
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from the predicted DM, there would still be benefit in the algorithm. Further, if there is a 

significant difference, it would follow that the algorithm provides more power than 

random predictions but less than human predictions.  

 

To do these, 30 subject samples were selected randomly and then compared against each 

other. The results are summarized in Table 6, which shows non-zero but very low mean. 

Further the variance is significantly higher than all the previously discussed summaries.  

mean 0.263 

1st Q 0.06 

Variance      0.064 
 

Table 6: Summary Random Sample Comparisons of DM 

 

To visually understand the difference of the results, refer to Figure 28. One can see the 

“boot” (representing the bootstraps) set has much greater variance and lower mean than 

both prediction and sample sets. 



-  72 - 

 
Figure 28: DM by set type 

 

As before, the bootstrap set of DM will be tested used the T test and Wilcox Rank test. 

Table 7 displays the results of the tests. Both tests fail to accept the null hypothesis of 

similar means in favor of the alternative that means are different. Therefore, it can be 

concluded the algorithm does predict heart volume better than random predictions of the 

heart volume.  

 

  T Test Wilcox Test 
Description Df p-value W <.001 
All Data 24 <.001 75  <.001 

 

Table 7: Test Random Samples vs Prediction 
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3.3 Conclusion 

 

TGAA does have the ability to find regions in the heart. This was shown using the dice 

metrics to compare the prediction set against inner random samples comparisons. 

Although shown to have prediction power, TGAA was not able to predict at the same 

accuracy as human subjects. However, there was 6% difference in the DM which equates 

to 6% difference in volume and may prove to be of minimal impact in real world settings. 

Also, TGAA worked on a variety of sample MRI in both size, slice angles and heart 

topology differences.  Therefore, it is concluded that TGAA has prediction power but not 

as strong as a human subject.  
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4      Chapter 4: 

 Future Research 

 

In this research analysis was done only on the path. It is possible to perform analysis on a 

sliding window (neighboring pixels) as ant travels. Performing a proof of concept, we 

found a breast tumor shown below in Figure 29. 

 

 

Figure 29: Tumor POC 

 

TGAA was augmented with a window of size 20X20 and a density function as trapping 

condition.  Also, there may be useful information in the natural clustering that occurs 

when this algorithm is run as shown below in Figure 30.
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Figure 30: Clustering POC 

 

The yellow points are end points of all trapped paths and the blue are starting points. We 

see lines are developing within the yellow points and salient regions within the blue.  

 

Lastly, TGAA lends itself well to parallel processing. Trials only depend on starting 

condition and have no dependencies until the next trial. Also, the source data is not 

modified, and the state of the model is a relatively small data structure. This results in the 

ability to run multiple models simultaneously.  
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Appendix A:   

 Sample Assignments 

 

Student # Images #'s Diagnostics 

1 39 17 25 
Ha: Sample 
Different? 

  30 19 26 25.67 mean 

  37 5 34 11.36 std.dev. 

  45 23 12 0.7 p-value 

2 17 25 35 
Ha: Sample 
Different? 

  19 26 48 26.42 mean 

  5 34 10 13.49 std.dev. 

  23 12 36 0.94 p-value 

4 25 35 44 
Ha: Sample 
Different? 

  26 48 8 27.33 mean 

  34 10 33 13.23 std.dev. 

  12 36 18 0.48 p-value 

4 35 44 24 
Ha: Sample 
Different? 

  48 8 7 24.33 mean 

  10 33 22 13.81 std.dev. 

  36 18 14 0.92 p-value 

5 44 24 28 
Ha: Sample 
Different? 

  8 7 6 20.75 mean 

  33 22 16 11.55 std.dev. 

  18 14 29 0.37 p-value 

6 24 28 47 
Ha: Sample 
Different? 

  7 6 21 24.83 mean 

  22 16 46 13.59 std.dev. 

  14 29 38 0.94 p-value 

7 28 47 13 
Ha: Sample 
Different? 
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  6 21 2 24.67 mean 

  16 46 9 15.84 std.dev. 

  29 38 41 0.97 p-value 

8 47 13 20 
Ha: Sample 
Different? 

  21 2 32 27.25 mean 

  46 9 15 15.76 std.dev. 

  38 41 43 0.52 p-value 

9 13 20 40 
Ha: Sample 
Different? 

  2 32 42 21.83 mean 

  9 15 4 16.77 std.dev. 

  41 43 1 0.53 p-value 

10 20 40 3 
Ha: Sample 
Different? 

  32 42 11 22.42 mean 

  15 4 27 15.58 std.dev. 

  43 1 31 0.62 p-value 

11 40 3 39 
Ha: Sample 
Different? 

  42 11 30 25.83 mean 

  4 27 37 16.54 std.dev. 

  1 31 45 0.75 p-value 

12 3 39 17 
Ha: Sample 
Different? 

  11 30 19 23.92 mean 

  27 37 5 13.4 std.dev. 

  31 45 23 0.88 p-value 
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