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Abstract: 

 
If asking subjects their beliefs during repeated game play changes the way those subjects play, 
using those stated beliefs to evaluate and compare theories of strategic behavior is problematic. 
We experimentally verify that belief elicitation can alter paths of play in a repeated asymmetric 
matching pennies game. In this setting, belief elicitation improves the goodness of fit of 
structural models of belief learning, and the prior beliefs implied by such structural models are 
both stronger and more realistic when beliefs are elicited than when they are not. These effects 
are, however, confined to the player type who sees a strong asymmetry between payoff 
possibilities for her two strategies in the game. We also find that “inferred beliefs” (beliefs 
estimated from past observed actions of opponents) can be better predictors of observed actions 
than the “stated beliefs” resulting from belief elicitation. 
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 Game theory and common sense suggest that beliefs shape strategic actions. Beliefs are at 

the center of many game-theoretic solution concepts, and many behavioral models of game play 

also place large explanatory burdens on beliefs that players may construct through introspection, 

experience or both (Stahl and Wilson 1995; Cheung and Friedman 1997; Fudenberg and Levine 

1998). Many experimenters now elicit participants’ beliefs about partner play during the course 

of game play, using these “stated beliefs” to test hypotheses, identify models and/or test model 

specifications; McKelvey and Page (1990) is just one relatively early example. Manski (2002, 

2004) argues forcefully that, in many cases, strong identification of models of choice under risk 

requires strictly exogenous measures of beliefs. Put differently, “inferred beliefs” estimated from 

an assumed belief updating process and observed actions of participants and their partners (e.g. 

Cheung and Friedman) cannot provide strong theory tests. However, stated beliefs have their 

own potentially serious drawback: Belief elicitation procedures may alter the very strategic 

actions we wish to explain or predict using stated beliefs. In such an instance, stated beliefs 

cannot be safely regarded as strictly exogenous, and Manski’s cogent point about strong 

identification loses some of its methodological force.   

It is tempting to view beliefs stated within an incentive-compatible mechanism for 

truthful revelation as a “gold standard” in the universe of potential empirical approaches to 

beliefs. Yet stated beliefs, like inferred beliefs, may only be estimates of underlying true or 

“latent” beliefs. If beliefs and strategic actions both result from substantially nonconscious 

cognition, agents may have to consciously estimate their own latent beliefs in order to state them. 

In such a case, stated beliefs need not be better predictors of behavior than inferred beliefs. In 

fact, we show here that inferred beliefs can predict game play better than stated beliefs, contrary 

to the well-known (and striking) results of Nyarko and Schotter (2002). 
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 If belief elicitation requires players to estimate their own beliefs, it may also engage them 

in a more conscious, deliberative consideration of the likely play of partners. This might alter 

game play itself—in the direction of more belief-based play. Our main purpose here is to test the 

assumption that belief elicitation does not alter the strategic actions we wish to explain with 

stated beliefs. We reject this hypothesis. This has already been observed in games with a unique 

dominance-solvable equilibrium or pure strategy Nash equilibrium (Erev, Bornstein and 

Wallsten 1993; Croson 1999, 2000; Nelson 2003; Gächter and Renner 2006). To our knowledge, 

we are the first to show that this can also occur in games with a unique mixed strategy Nash 

equilibrium—in particular, a repeated asymmetric matching pennies game like those studied by 

Ochs (1995) and McKelvey, Palfrey and Weber (2000).  

 Asymmetric matching pennies (or AMP) games are interesting for several reasons. Nash 

Equilibrium often does not predict play very well in these games: Probabilistic best-response 

generalizations of Nash Equilibrium, such as Quantal Response Equilibrium or QRE (McKelvey 

and Palfrey 1995), describe play much better. More importantly for our experimental design 

purposes, action sequences generated by belief-based and non-belief-based learning models can 

differ quite significantly in suitably chosen AMP games (Erev and Roth 1998, and our 

appendix).  Importantly, though, our findings are player-specific: It is only the players who have 

strongly asymmetric payoff opportunities who show all these strong belief elicitation effects. 

One explanation for this may be that with asymmetric payoff opportunities, relatively automatic 

emotional or “affective” processes attract a player to actions with relatively high payoffs. If 

belief elicitation prompts more conscious deliberation about the likely actions of partners, the 

relative impact of those affective predispositions may be dampened. We conjecture that this is 

what happens with belief elicitation. This suggests that belief elicitation only changes strategic 
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actions when relatively automatic strategic predispositions and more deliberative strategic 

judgments are in conflict. This may help explain why some studies (e.g. Croson) find belief 

elicitation effects on game play while others (e.g. Nyarko and Schotter) do not. 

 

1. Three assumptions about beliefs and three kinds of beliefs. 

 When we ask subjects to state beliefs that we intend to use as predictors of subsequent 

behavior, we usually make three tacit assumptions. First, it is of course a hypothesis, not an 

established fact, that play is belief-based. Models that are free of beliefs, such as reinforcement 

learning models and variants of them (Erev and Roth 1998, Sarin and Vahid 2001), have been 

proposed and compared with belief-based models.1 Although we mostly stay within the realm of 

belief-based theory in our thinking and our data analysis, the existence of well-developed 

theoretical alternatives to belief-based play, as well as various supportive empirical results, 

suggest that some subjects may not normally play games in a belief-based manner. 

Consequently, belief elicitation procedures could move such subjects toward belief-based 

thinking and play. This is an important motivation for testing the second assumption—that belief 

elicitation does not alter the strategy choice behavior we wish to explain with stated beliefs. 

Testing that assumption is our central planned purpose here. 

 The third assumption is that stated beliefs are better predictors of strategic actions than 

are inferred beliefs.2  This assumption can be formulated rigorously in the following terms. 

Suppose the first assumption (play is belief-based) is true, and let “latent beliefs” refer to the 

                                                           
1 See Churchland (1981) for a radically skeptical view of the ultimate status of all “propositional attitudes” such as 
“belief” and “desire” in a completed behavioral science. 
2 Notwithstanding Nyarko and Schotter’s (2002) specific support for this, it may not be a general fact. Experimental 
studies of stated beliefs in nonstrategic settings document apparent biases (Lichtenstein, Fischhoff and Phillips 
1982); while some of those studies did not use incentivized truth-telling mechanisms like a scoring rule procedure, 
some do and the biases, while reduced, do not disappear (e.g. Wright and Aboul-Ezz 1989). Palfrey and Wang 
(2007) offer some evidence that stated beliefs may not be regarded as exogenous to the action choices and may 
therefore not be good predictors of the latter. 
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theoretical belief object—that is, the true but unobserved “beliefs in the head” that actually 

determine a player’s actions according to a belief-based theory of strategic action. Let “inferred 

beliefs” instead refer to estimators of latent beliefs that are based on an assumed latent belief 

updating process, a stochastic model of the impact of those latent beliefs on actions, and the 

observed action history of a subject and her partner(s). Cheung and Friedman (1997) is a 

pioneering example of the inferred beliefs approach.  

 Cognitive processes that construct and update latent beliefs, as well as processes that 

combine them with payoff or value information to determine action probabilities, may not be 

wholly conscious ones. For many subjects, the main conscious product of an encounter with a 

strategic choice situation may simply be an inclination toward a particular action without much 

awareness of any latent beliefs. If so, asking a subject to state her latent beliefs is, in part, asking 

her to make inferences about the causes of her own inclinations to action: It is, in effect, a 

request for an estimate of her beliefs based on possibly incomplete data and whatever theoretical 

identifying restrictions she adopts (about parts of her own cognitive processes that she cannot 

directly observe) to draw such inferences. If so, appropriate language for talking about both 

stated and inferred beliefs is the language of estimators and their relative statistical properties: In 

our particular context, we focus on the estimators’ predictive content for strategic actions. 

Therefore, we distinguish below between latent beliefs (thought of as the theoretical “beliefs in 

the head” specified by some belief-based theory of strategic actions), and two classes of 

estimators of latent beliefs—inferred beliefs and stated beliefs. 

 Returning to the second assumption, we suspect that in some games, or for some players 

in a game, automatic affective processes and deliberative judgment processes will produce 

similar strategic inclinations. If belief elicitation procedures increase use of the latter processes 
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relative to the former, then in such cases one should expect little or no elicitation effects on game 

play. For other games, or players, the opposite may hold and the effects on game play from belief 

elicitation may be substantial. Some elicitation procedures, particularly complex ones like 

scoring rules, require nontrivial instruction to subjects, and interrupt the flow of subject attention 

and game play in a potentially significant way. Such procedures are cognitively “intrusive” and 

discovering the consequences of them is a necessary step toward confidently exploiting the full 

inferential potential of stated beliefs. 

 This view gets some circumstantial support from the decidedly mixed effects reported in 

the literature. Croson (1999, 2000), Gächter and Renner (2006), Nelson (2003), and Erev, 

Bornstein and Wallsten (1993) all report effects on game play from eliciting beliefs. On the other 

hand, Costa-Gomes and Weizsäcker (2008), Wilcox and Feltovich (2000) and Nyarko and 

Schotter (2002) report no significant effects. There are, of course, more prosaic explanations for 

the mixed results: Poor statistical power could cause this too. So we take steps (described 

shortly) to design our own experiment with adequate statistical power. 

 

2. Experimental design. 

2.1 Overview. 

 Our subjects play a repeated 2x2 asymmetric matching pennies game. We implement a 

control condition without any belief elicitation procedure, the “no beliefs” or NB treatment, and 

two experimental conditions with different belief elicitation procedures thought by us to vary in 

their cognitive intrusiveness. The most “intrusive” procedure uses a proper scoring rule (Aczel 

and Pfanzagl 1966): Subjects report a probability concerning the partner’s play, and are rewarded 

for its accuracy according to the scoring rule, as in Nyarko and Schotter (2002). The less 
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intrusive procedure simply asks subjects to state which strategy they believe their partner is most 

likely to play, without any reward for accuracy, as in Croson’s (1999, 2000) experiments with 

one-shot dominance-solvable 2x2 games. We view this as a minimally intrusive procedure. 

 We begin with Monte Carlo power planning of our design to improve our chance of 

finding significant treatment effects (when present) using conservative nonparametric two-

sample tests. These Monte Carlo simulations also illustrate the role played by the “degree of 

asymmetry” in an AMP game’s payoff structure. Power to detect whether the data generating 

process is belief based or not appears to be higher in games with greater payoff asymmetry. This 

was originally suggested to us by Erev and Roth’s (1998) simulation results on Och’s (1995) 

AMP games (and our appendix illustrates it further). When testing our hypothesis that belief 

elicitation procedures change game play, such power is important because one potential cause for 

such change in play is that players estimate and use beliefs in a more deliberative way.  

 We first use conservative nonparametric tests (those tests examined in power planning) to 

establish significant treatment differences in our data. Since these are found, we view this as a 

warrant to proceed to a more parametric econometric analysis of treatment differences. We use 

an extended version of Cheung and Friedman's (1997) "Gamma-Weighted Belief" or GWB 

model (described below) for this analysis. This allows us to assess differences in model fit across 

the treatments and parametrically locate likely sources of treatment differences. 

 

2.2 Power planning. 

 We use Monte Carlo simulations to choose payoffs, total periods T played by each pair of 

players in each treatment, and the number of player pairs M in each treatment, to provide 
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adequate statistical power to detect between-treatment effects (when present).3 The simulations 

(and our experiment) use a fixed pairing protocol where players are anonymously but 

permanently matched to a single partner for the duration of repeated play. This makes each row 

(column) player’s time series of strategy choices independent of all other row (column) players’ 

time series of strategy choices,4 so that nonparametric tests based on treating these time series as 

independent are justified. It also matches two of Nyarko and Schotter’s (2002) treatments for 

greater comparability of results. Let “AMPX” denote an asymmetric matching pennies game, 

where “X” refers to the degree of asymmetry in the row player’s payoffs. Our simulations 

searched over values of X, T and M in each of two treatments with different data-generating 

processes or DGPs to find values giving an acceptable probability of detecting the difference 

using a Wilcoxon two-sample test on summary measures of game play. 

 Power planning is always partially heuristic, since an unknown treatment difference must 

be specified in order to carry it out. We wish our design to have good power to detect the 

difference between some belief-based learning model and an alternative model of some sort. Our 

belief-based DGP is a 3-parameter version of Fudenberg and Levine’s (1998) weighted fictitious 

play model, with parameters we estimated from Ochs’ (1995) data on these games. The 

alternative DGP is Erev and Roth's (1998) preferred 3-parameter reinforcement learning model. 

We do not expect that belief elicitation procedures will produce a wholesale switch from 

reinforcement-based to belief-based learning; nor is our hypothesis “belief learning with belief 

elicitation, reinforcement learning without it.” Rather, these two alternative DGPs for the 

simulations represent a large, theoretically important difference between a belief-based model 

                                                           
3 Salmon (2001) shows that power is an important and perhaps neglected aspect of learning experiments. 
4 If different row players meet the same column partner in different periods of play (as would be true with a random 
rematching design) that column player carries information between those different row players and this undermines 
statistical independence between these different row players. This does not occur with a fixed pairing design.  



 8 

and an alternative. Assuming that behavior with and without belief elicitation produces a 

similarly large effect (for whatever reason), the simulations tell us which designs yield a good 

chance of detecting that effect. The simulations suggested that T = 36 repetitions of an AMP19 

game with M = 40 subject pairs in each treatment would give good power against the null of no 

treatment difference. For more detail on the simulations, see Rutström and Wilcox (2008), and 

for a summary see the appendix. Here is the AMP19 game (in the experiment, a payoff of “1” in 

this table is $0.20, so that the actual dollar payoff associated with “19” in this table is $3.80): 

 cl (column left) cr (column right) 

ru (row up) (19,0) (0,1) 

rd (row down) (0,1) (1,0) 

 

One consistent finding in our experiment is that it is the row players—the players in this game 

with the strong payoff asymmetry—whose behavior changes in the presence of belief elicitation 

procedures. Anticipating this, we couch much of the following discussion of notation, belief 

elicitation procedures, theoretical models and econometrics in terms of row players’ situations, 

beliefs and decisions; generalization to the column players is straightforward. 

 

2.3 Belief elicitation. 

 Our maximum expected contrast to the control NB treatment (no belief elicitation 

procedure) is provided by the SR (scoring rule) treatment. A scoring rule links monetary 

outcomes to subjects’ stated beliefs about future events in a manner that motivates expected 

utility maximizers to report their latent beliefs. Nyarko and Schotter used a quadratic scoring rule 

(and it is widely used by experimenters) so we also use it for our SR treatment.5 Couching this in 

                                                           
5 Strictly speaking, quadratic scoring rules are only incentive compatible for risk neutral judges. Separate elicitations 
of the risk attitudes in the population from which we recruited our subjects indicate that they are indeed moderately 
risk averse (Harrison, Johnson, McInnes and Rutström 2005). Alternative procedures that account for differences in 
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terms of a row players’ situation, the payoff for accuracy of beliefs is specified as a quadratic 

function of the row player’s stated belief tB
~

(stated just prior to period t play) that her column 

partner will play left in period t, and a dummy lt = 1 or 0 indicating whether or not this 

subsequently occurs. In U.S. dollars, the function is 0.1[1 − ( tB
~

− lt)
2], so that the payoff to the 

stated belief tB
~

 is )
~

2(
~

1.0 tt BB −  if lt = 1 and )
~

1(1.0
2

tB−  if lt = 0. 

 From a cognitive perspective, a proper scoring rule is particularly intrusive because it 

requires relatively fine-grained belief reports and employs a rather complex motivational 

scheme. Holt (1986) points out that alternative procedures may be adequate when an 

experimenter can make do with a monotone relationship between the resulting belief measure 

and latent beliefs, and that other procedures may be more transparent or natural for subjects. 

Therefore, we also examine a second EC (expected choice) treatment, in which subjects simply 

guess which strategy their partner will play in that period without any reward for accuracy—the 

same procedure examined by Croson (1999, 2000) in the 2x2 games she examined. This is the 

simplest possible belief elicitation procedure, and produces such coarse information (if any) 

about latent beliefs that it would not usually be useful to experimenters. Yet because of its very 

simplicity and the fact that no rewards are present, the EC treatment is minimally intrusive and 

may draw a negligible amount of conscious attention from subjects. We view it as providing a 

lower bound of sorts on any unintended consequences of any belief elicitation procedure. In 

summary, we expect that any difference in game play between the EC and NB treatments will be 

smaller than between the SR and NB treatments. 

 

                                                                                                                                                                                           
risk attitudes are conceivable (Andersen, Fountain, Harrison and Rutström 2007). One good feature of the small 10-
cent range of possible payoffs at stake in our quadratic scoring rule (many other experimenters use a similarly small 
range) is that risk attitudes are unlikely to matter much over such a small payoff range.  
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2.4 Software, subjects, sessions and other procedures. 

 Volunteer student subjects were recruited at the University of South Carolina; sessions 

lasted about ninety minutes. Subjects were seated at visually isolated computer stations. In 

addition to earnings from game play (and, in the SR treatment, stated beliefs,) subjects were paid 

a standard $5 show-up fee. Each subject was randomly and anonymously matched to a single 

partner for all 36 periods of the session. The planned minimum sample size was 80 subjects 

(N=40 pairs) in all three treatments, but actual final session sizes in the SR and EC treatments 

slightly exceeded what was required to meet the planned minimum sample sizes. As a result, we 

have 80 subjects (N=40 pairs) in the NB treatment, 92 subjects (N=46 pairs) in the EC treatment 

and also 92 subjects (N=46 pairs) in the SR treatment. 

 The experimental interface was programmed using the z-Tree software (Fischbacher 

2007). The software presented the game as a pair of 2x2 payoff tables, with the subject’s own 

payoffs in the left table and her partner’s payoffs in the right table.6 Subjects were prompted to 

choose one of their strategies using radio buttons next to their two possible strategies, and were 

then asked to confirm their choice.  When both subjects had done so, a new screen appeared, 

reporting both subjects’ choices and the resulting earnings of both members of the pair. After 

finishing reading the review screen, subjects clicked “continue” and the software took them to 

the next period of play until all thirty-six periods were done. 

 Prior to the strategy choice in each period, EC treatment subjects simply guessed which 

strategy their partner would play in that period, without any reward for accuracy. SR treatment 

subjects instead stated a belief that their partner would play one of her two available strategies, 

with scoring rule rewards for accuracy. The screen showed a table with eleven rows representing 

                                                           
6 All subjects viewed themselves as row players and their partner as column player. All supporting documents, 

including the instructions, the code, and the data are available at the ExLab Digital Library: http:\\exlab.bus.ucf.edu. 
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eleven possible probabilities presented in a frequentist manner (in 0.1 units, as “Z in 10 

chances,” from “0 in 10 chances” to “10 in 10 chances”). The two columns of the table showed 

scoring rule payoffs associated with each possible choice as a function of the realized strategy 

choice of the partner. Subjects chose a row of the table and confirmed their choice; when both 

had done so, the software proceeded to the strategy choice screen as described above.  

 Before starting the 36 periods of play, subjects practiced their tasks in a non-interactive 

setting, where they were each required to enter choices for both players in an imaginary pair. 

This practice allowed them to gain some familiarity with the choice tasks, and also to experience 

some consequences for both players of different decisions made. A similar procedure was used 

to allow SR treatment subjects to become familiar with the scoring rule procedure. 

 

3. Statistical Tests and Econometric Models. 

 We first use Wilcoxon two-sample tests to establish significant treatment effects. 

Nonparametric tests do this conservatively, but are relatively uninformative about the many 

possible sources of observed treatment differences. Therefore, once treatment differences are 

established with nonparametric tests, we estimate structural, belief-based models in each 

treatment, and then test for significant differences in estimated parameters across the treatments. 

 We begin with a common class of logit-based models that map a subjective expected 

payoff difference between strategies, based on latent beliefs, into strategy choice probabilities. 

Couched in terms of row player choice probabilities in our AMP19 game, the probability u

tP 1+  

that row plays up in period t+1 is 

(1) =+

u

tP 1  )]([ 1+∆ΠΛ ttEλ , where 1)1()( −−+≡Λ xex  is the logistic c.d.f.  
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We call λ ∈ R+ the sensitivity parameter. It denotes the row player’s sensitivity to the expected 

payoff difference between her two strategies—here, )1(19)( 111

l

t

l

ttt BBE +++ −−=∆Π , where l

tB 1+ is 

row’s latent belief that her column partner will play left in period t+1. Note carefully that so far, 

l

tB 1+  is simply the theoretical entity we call a latent belief—the row player’s causally crucial 

belief (in a belief-based theory) that her column partner will play left in period t+1. 

 Completion of such models requires an estimator of latent beliefs. Stated beliefs l

tB 1

~
+ are  

one such estimator: Setting l

tB 1+ = l

tB 1

~
+ yields the stated belief model that plays a central role in 

Nyarko and Schotter (2002), and we later examine a version of this model for comparative 

purposes. However, we first estimate and discuss inferred belief models that set l

tB 1+ = l

tB 1
ˆ

+ , 

where l

tB 1
ˆ

+  is what we call an inferred belief. Inferred beliefs are estimated with the aid of some 

assumed specification of latent belief updating, usually based solely on a player’s observations of 

her partner’s past behavior and a handful of parameters. Those parameters become extra 

estimable parameters in the resulting econometric model of the dynamics of strategy choice. 

 Our specification of belief updating begins as a straightforward generalization of Cheung 

and Friedman’s (1997) widely used gamma-weighted belief or GWB process: 

(2) 
t

l

tl

tB
Γ

Γ
=+1

ˆ . 

Beliefs are formed as a ratio of two “discounted sums of experience:” The numerator l

tΓ  is the 

discounted sum of experience of the partner playing left, while the denominator tΓ is the 

discounted sum of all experience of partner play (both through the end of period t). The sums are 

updated throughout the game as t

l

t

l

t l+Γ=Γ −1γ  and 11 +Γ=Γ −tt γ . The initial value 0Γ (for the 

denominator sum tΓ ) may be interpreted as the initial “strength” (relative to a period of 



 13 

experience) with which an initial prior belief lB1
ˆ ∈ [0,1] is held. Once one specifies 0Γ and lB1

ˆ , (2) 

implies an initial value 010
ˆ Γ=Γ ll
B (for the numerator sum )l

tΓ . This completes the GWB process 

as a function of three parameters: γ ∈ [0,1], lB1
ˆ ∈ [0,1] and 0Γ ∈ [0,(1−γ)−1].7 

 If players regard partners as nonstationary stochastic processes, which is sensible if 

partners are learning too, the discounting of past experience (at some rate γ) is a reasonable 

assumption (Cheung and Friedman 1997; Fudenberg and Levine 1998); it might also simply 

reflect decaying memory. Though estimable prior beliefs lB1
ˆ were not part of Cheung and 

Friedman’s own estimation, they discussed the possibility and it has been added to GWB by 

others (e.g., Battalio, Samuelson and Van Huyck 2001). Adding the separate initial strength 

parameter 0Γ for the prior is novel in GWB, but this is a well-known feature of other adaptive 

learning models with a belief-based component such as EWA (Camerer and Ho 1999). So we 

regard all of this (so far) as conventional. 

 Nyarko and Schotter (2002) found that the high-frequency variance of stated beliefs is 

much greater than that of inferred beliefs estimated using the GWB process. This could be an 

artefact of belief elicitation procedures, and it also may reflect the well-known phenomenon of 

overconfidence in judgment (Lichtenstein, Fischoff and Phillips 1982). Nevertheless, this finding 

is so striking that we think belief updating processes ought to be generalized to allow for 

persistent high-frequency variability of beliefs. In the received GWB model, the γ parameter can 

produce persistent high-frequency variability only at the expense of rapid discounting of history: 

                                                           
7 Obviously, any two of the three terms 

0
Γ , l

0
Γ  and lB

1
ˆ  could be estimated, with the remaining term determined by 

equation (2). We think it most natural to estimate the prior lB
1

ˆ  and its strength 
0

Γ . The restriction 1

0
)1( −−≤Γ γ is 

usually imposed since the denominator sum 
t

Γ  can grow no larger than 1)1( −− γ  through the accumulation of 

experience, according to its updating formula. It would seem odd to allow the prior strength of belief to be larger 
than what the posterior strength of belief could possibly be through infinite experience. 
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For instance, γ = 0 implies a Cournot belief process in which high-frequency variability of 

beliefs is maximal but past observations of partner play beyond a single lag have no influence 

whatever on beliefs. On the other hand, values of γ  close to 1 generate persistent attention to the 

history of partner play, but correspondingly little persistent high-frequency variability of beliefs. 

This means that the standard gamma-weighted belief process forces a tradeoff between high-

frequency and low-frequency components of an assumed belief updating process. 

 One plausible way to relax this tradeoff, particularly in fixed pairing environments, is to 

permit high-frequency “state dependence” of an otherwise gamma-weighted belief process. As in 

the GWB model, a row player’s own strategy choice probability u

tP 1+  is determined by her belief 

that her column partner will play left in period t+1 (see equation 1), but now we allow that belief 

to depend on the “state of game play” she observes in period t. Our 2x2 game has four possible 

states of game play s ∈ S = {ul,ur,dl,dr}: For instance, ul ∈ S is “row plays up and column plays 

left.” Let ts  ∈ S be the state that occurs in period t. A player observes her partner’s choice, and 

hence this state, at the conclusion of period t. Therefore, a player could condition her beliefs 

about the future action of her partner (in period t+1) on the state ts  (observed in period t). To do 

that, a row player could keep track of four different kinds of information about her column 

partner’s past actions: What column did in periods j immediately following observations of state 

ul in periods j−1; what column did in periods k immediately following observations of state ur in 

periods k−1; and so forth. This is the essence of a very simple state-dependent belief process.  

 Formally, define the updating of conditional discounted experience sums as follows: 

(3) )()()( 11 ssIlss tt

cl

t

cl

t =+Γ=Γ −−γ , and )()()( 11 ssIss t

c

t

c

t =+Γ=Γ −−γ , ∀ s ∈ S = {ul,ur,dl,dr}, 
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where 1)( 1 ==− ssI t  if state s is observed in period t−1, zero otherwise. Equation (3) divides 

each of the two unconditional experience sums ( l

tΓ  and tΓ ) into four conditional sums. The 

updating in equation (3) depends both on column’s action tl  in period t, and on the state 1−ts  

observed in period t−1. Once this updating is finished, these eight conditional sums create four 

conditional beliefs for period t+1, in a manner similar to the unconditional belief in equation (2): 

(4)  
)(

)(
)(ˆ

1
s

s
sB

c

t

cl

tcl

t
Γ

Γ
=+ ∀ t  > 1, ∀ s ∈ S = {ul,ur,dl,dr}. 

Notice that these conditional beliefs do not change between periods t and t+1 if state s is not 

observed in period t−1 since, in this instance, equation (3) implies that  
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This is sensible: The observation tl  in period t only alters the belief conditioned on the state that 

was actually observed in t−1. Still, the strength of the other three conditional beliefs (those 

conditioned on states not observed in t−1) do decay at rate γ. 

 After the updating of experience sums in equation (3), and the determination of 

conditional beliefs in equation (4), the state ts  observed in period t  selects one of the four 

conditional beliefs to determine the row player’s belief (and her choice probability u

tP 1+ ): This is 

simply )(ˆ
1 t

cl

t sB + . Notice that the states observed in t−1 and t play quite distinct roles in 

determining beliefs (and hence choice probabilities). The distinction is exactly that between 

estimation and prediction. The player updates her conditional belief estimates on the basis of 

once-lagged states: During period t, this updating of estimates is based on tl  and the lagged state 

1−ts . Then, for the purpose of predicting how column will play in period t+1, which determines 
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row’s choice probability, the updated estimates are projected ahead one period using the latest 

conditioning information—the state observation ts  in period t.  

 If players completely condition beliefs on past states, )(ˆ
1 t

cl

t sB + would be the belief at period 

t+1. However, players may only partially condition beliefs on past states, and we formalize this 

by assuming that beliefs at t+1 are a mixture of conditional (equations 3 and 4) and unconditional 

(equation 2) updating. This can be accommodated with a parameter θ ∈ [0,1] that mixes the two 

processes: 
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With such a mixture, the observation lt in period t alters beliefs across all states through the last 

term, but accentuates the effect the observation has on the actual state observed in t−1. We call 

the belief updating process defined by equations (3), (4) and (6) gamma-theta beliefs. Notice that 

(1−θ) regresses conditional beliefs toward the ordinary gamma-weighted belief in (2). This has 

some statistical justification since the unconditional belief reflects all past observations (and 

hence is a relatively low variance estimator) whereas each conditional belief reflects just a subset 

of past observations (those following the state on which it is conditioned). When θ = 0, this 

gamma-theta belief process is the standard unconditional gamma-weighted belief process. When 

θ = 1, beliefs are fully conditioned on the most recently observed state of game play. 

 From a behavioral perspective, gamma-theta beliefs allow for a kind of conditional 

learning not present in the standard gamma-weighted belief model. Modeling the updating 

process as contingent on the combination of actions of both players, rather than on the actions of 

the partner alone, allows players to learn to anticipate high frequency reactions of partners to 

one’s own immediate history of play (if such reactions exist): Players can learn that new actions 
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by the partner are in part reactions to one’s own recent play. For example, a row player’s beliefs 

about column playing left no longer depends simply on the history of left play, but also on 

whether the row player herself just played up or down. At the very least, since up/left results in a 

very asymmetric earnings consequence compared to any other play, it is not unreasonable to 

expect reactions and beliefs in response to that particular play to differ in a qualitative way.  

From a general strategic viewpoint, θ  ∈ (0,1) is not merely a regression parameter. If a 

partner is highly predictable on the basis of past states of play (a serious mistake in AMP games), 

θ  > 0 can be profitable. Yet a player with θ  > 0 will herself be a more predictable, and hence 

more exploitable, opponent in an AMP game. So while gamma-theta beliefs algebraically behave 

like conditional probabilities, they might also be interpreted as “strategic decision weights” since 

θ  may be as much a product of strategic as statistical reasoning; but we will refer to them as 

beliefs in spite of this subtlety. Our intent is to allow for high-frequency variance of these beliefs 

(or decision weights), as observed by Nyarko and Schotter (2002) for stated beliefs, in a manner 

that is also useful to our purpose. If belief elicitation causes relatively more deliberate and  

conscious modeling of opponents, this could result in either larger or smaller values of θ, 

depending on how that modeling balances the possibility that the partner may be predictable 

against the possibility that the partner may exploit one’s own predictability. 

 While the belief updating of equation (6) adds just one parameter θ, a complete model 

needs a specification of prior beliefs and initial strengths (as with gamma-weighted beliefs). In 

principle, each conditional prior belief could have its own initial value and strength, so a 

maximally “fat” specification could add (in net) six more parameters to the model (remove the 

unconditional initial belief and its initial strength, and replace them with four initial conditional 

beliefs )(ˆ
1 sBcl and their four associated initial strengths )(0 s

cΓ ). We opt for the opposite in the 
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interest of parsimony—a maximally “lean” specification that adds no extra parameters. First, we 

assume that lcl BsB 11
ˆ)(ˆ = ∀ s: We let all four conditional prior beliefs equal a single unconditional 

prior belief parameter. In words, we assume that the player applies something like the principle 

of insufficient reason to conditional prior beliefs (she sets them all equal to lB1
ˆ ). This could be a 

reasonable assumption if players believe that other players have highly heterogeneous dynamic 

behavior. But our main reason for this assumption is parsimony, not any theoretical conviction.  

 We also assume that the four initial strengths )(0 s
cΓ  are proportional to four implicit 

“prior state likelihoods” )(1 sπ . Equation (1) and the row player’s prior belief lB1
ˆ  are sufficient to 

determine her initial choice probability uP1 . This implies that row’s “prior likelihood of state ul” 

is lu BPul 111
ˆ)( =π . Now, equation (3) has long-run implications about conditional strengths and 

state likelihoods: In particular, the four conditional strengths have asymptotic expected values 

)1/()(Pr)]([ γ−=Γ ∞∞ ssE c , where )(Pr s∞  is the asymptotic likelihood of state s. That is, 

asymptotic conditional strengths are proportional to asymptotic state likelihoods. We impose the 

same relationship on the players’ prior state likelihoods and initial conditional strengths: For 

instance, for state s = ul, we set 0110
ˆ)( Γ=Γ luc
BPul . Determined this way, the initial conditional 

strengths also sum to the initial unconditional strength as they must (also an implication of 

equation 3), since the four prior state likelihoods )(1 sπ  sum to one. Finally, for updating in the 

first period, we let prior state likelihoods take the place of the “period zero state indicator” 

)( 0 ssI =  in equation (3): For instance, for state s = ul, we have lucc
BPulul 1101
ˆ)()( +Γ=Γ γ . In 

these ways, initial conditions are determined by lB1
ˆ  and 0Γ  alone without additional parameters. 
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 Another parameter α ∈ R frequently appears in models resembling equation (1), usually 

in the form ])([ 11 αλ +∆ΠΛ= ++ tt

u

t EP . Cheung and Friedman (1997) interpret α  as a bias in 

strategy choice not attributable to subjective expected payoff differences between strategies. 

Battalio, Samuelson and Van Huyck (2001) interpret α as allowing for players’ attempts to 

encourage selection of (or an aspiration toward) a preferred equilibrium in future repetitions of a 

game with two equilibria. We add a similar term for a reason resembling that of Battalio, 

Samuelson and Van Huyck—to allow for forward-looking behavior of players. Since we use a 

fixed pairing design, forward-looking reasoning (that anticipates a partner’s future reactions to 

decisions made now) may be common. In many games, models that specify only stage-game 

strategies as objects of learning may be inappropriate for fixed pairing designs, where forward-

looking strategies may be reasonable. For this reason, many experimental protocols meant to test 

these “simple” adaptive learning models use random rematching protocols or protocols where 

each player meets every possible partner in no more than one period. We use a fixed pairing 

protocol so that our simple nonparametric tests, which treat each row player’s time series of 

strategy choices as independent of all other row players’ strategy choices and abstract from 

learning processes, are statistically justified. However, forward-looking or “sophisticated” 

learning models can also be constructed to handle fixed-pairing environments; Camerer, Ho and 

Chong’s (2002) “sophisticated EWA model” is such a modification of “adaptive EWA.” 

 To represent forward-looking behavior in a parsimonious way, let α denote a row 

player’s perception of the change in her expected payoff difference in the next period brought 

about by playing up (rather than down) in the current period.8 Suppose also that the row player 

                                                           
8 We are assuming that α is either constant across periods, or that its variability across periods is small enough that 
approximating it by a constant is econometrically inconsequential. However, we do not assume that the row player 
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believes that her column player partner learns according to some model that discounts experience 

at the same rate γ as her own, and believes that this implies a roughly geometrically declining 

impact of her period t decision on changes in expected future payoffs in periods t+k as k grows. 

This implies that her total perceived change in expected future payoffs over all remaining periods 

(from playing up in period t) is α + γα + γ2α +…+ γT−t−1α = α(1− γT−t)/(1−γ). So, to account for 

forward-looking behavior with one extra parameter α, we modify equation (1) to be 

(7) )]1/()1()([ 11 γγαλ −−+∆ΠΛ= −
++

tT

t

u

t EP . 

We expect α < 0 since players’ incentives are strictly opposed in the AMP19 game.9 

Nevertheless, belief elicitation may influence forward-looking behavior and significant treatment 

effects on α would reflect this.  

 We will call equation (7), with the gamma-theta belief updating process given by 

equations (3), (4) and (6), an “extended gamma-weighted belief” or EGWB model. We do not 

offer this as a new competitor in the universe of learning models. Instead, we view it as an 

econometric model that is sufficiently flexible to capture empirical regularities and theoretical 

possibilities discussed above that cannot be captured within the simple GWB model.   

 Before examining the results, a few remarks on estimation and alternative specifications 

are in order. Wilcox (2006) shows that pooled estimation of learning models, that is, estimation 

that specifies a single shared parameter vector for all players, can result in severely biased and 

inconsistent estimates when the learning model contains own lagged dependent variables and 

learning model parameters in fact vary across players. This is a general econometric 

                                                                                                                                                                                           

knows all of the column player’s adaptive learning structure, nor that α is the change in one-period-ahead payoffs 

implied by that structure: In other words, α denotes an expectation, but not necessarily a rational one. 
9 The row player’s maximum payoff opportunity occurs when the column player plays left. But when the row player 
plays up to attempt to capitalize on it, the column player’s belief that row players will play up in the future is 
strengthened. Given the column player’s payoffs, this causes column players to play left less often, reducing the row 
player’s future payoff opportunities. 
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phenomenon (see, e.g., Wooldridge 2002). Although reinforcement learning models and hybrid 

models such as EWA (Camerer and Ho 1999) contain own lagged dependent variables, belief-

based models typically do not. For instance, in the received GWB model, beliefs of the row 

player are indeed directly conditioned on lagged strategy choices of the column partner, but not 

on the lagged strategy choices of the row player herself. However, the EGWB model does 

contain own lagged dependent variables since the gamma-theta belief process is conditioned on 

the lagged state of game play, which depends, in part, on a player’s own lagged choices.  

 We employ the “mixed random estimator” recommended by Wilcox (2006) to account 

for heterogeneity.10 This estimator assumes that ln(λ) is normally distributed with mean µλ and 

standard deviation σλ across subjects,11 and also adds a normally distributed, mean zero subject-

specific additive random effect ν with standard deviation σν to the latent variable in the EGWB 

model. These distributions are assumed to be independent. The estimator is implemented in the 

usual way for random parameters: λ and ν  are numerically integrated out of the EGWB 

likelihood for each player, conditional on µλ, σλ and σν; the log of this is summed across players 

in a sample; and this sum is maximized in α, γ, lB1
ˆ , 0Γ , θ, µλ, σλ and σν. 

 The gamma-theta belief process is only one of many alternative belief updating processes 

that might capture high-frequency variance of beliefs.  We examined some alternative belief 

updating specifications, and two summary facts are important. First, neither standard gamma-

weighted beliefs, nor the other alternatives we examined, fit our data as well as gamma-theta 

                                                           
10 Since it is the gamma-theta belief process that contains own lagged dependent variables, and since θ  controls the 

degree of conditioning on them, the expectation would be that pooled estimation will bias estimates of θ  upward. In 

fact, the pooled MLE of θ  is about 15-25 percent larger than the random parameters estimate of θ in all three 
treatments, illustrating this expectation and suggesting that random parameters estimation is a sensible precaution. 
11 Wilcox (2006) shows that heterogeneity of λ is a particularly serious source of bias in pooled MLE estimates. In 

the interest of robustness checking, we also specified a 3-parameter gamma distribution for λ and find that this 
neither fits our data significantly better nor produces different parameter estimates than the lognormal specification. 
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beliefs. Second, the EGWB model with gamma-theta beliefs generally results in larger p-values 

against hypotheses concerning equality of model parameters across treatments—that is, weaker 

evidence of treatment effects—than gamma-weighted beliefs or any alternative we examined.12 

Relative to these alternatives, then, the EGWB model is the least “friendly” model we have 

examined toward our basic hypothesis that belief elicitation changes play. 

 

4. Results 

 

4.1 Graphical summary and nonparametric test results. 

 Figures 1 and 2 summarize observed patterns of play for row and column players in the 

three treatments, aggregated into blocks of 12 periods, and Table 1 presents associated simple 

non-parametric tests based on this level of aggregation. Significant treatment differences appear 

for row players, while they do not for column players. The Wilcoxon two-sample tests in Table 1 

treat the proportion of up plays (of each row player) and left plays (of each column player) in the 

first and last block of 12 periods, as well as the difference between these proportions, as single 

observations on each subject. This is exactly the testing procedure examined in the power 

planning simulations discussed in Rutström and Wilcox (2008). These are conservative tests 

because they treat a function (averages, or differences in averages) of each subjects’ whole time 

series of play as a single observation on that subject, and assume nothing about underlying 

structural models guiding play and/or learning. For row players, significant differences between 

the SR and NB treatments are found; therefore we will delve into structural modeling of 

treatment differences for row players below, but not for column players since the nonparametric 

                                                           
12 Moreover, the significant treatment effects we identify subsequently with the EGWB model are also found under 
all the alternative specifications we examined that include parameters with similar interpretations. 



 23 

results do not warrant it. We note that our power planning concentrated on making power large 

for the row players, since Erev and Roth’s (1998) discussion suggested that we might create the 

largest treatment effect for them, though our power planning suggested considerable power for 

detecting treatment difference in column play as well. It may be that because column player 

incentives are much weaker in our design, they are less responsive to treatment variations, 

though we discuss an alternative interpretation in our conclusions. 

 

4.2 Estimates of the EGWB model: Parametric location of treatment differences. 

 Table 2 shows the estimated EGWB model for row players in each treatment along with 

likelihood ratio tests against various hypotheses. The top of the table shows the results of testing 

the equivalence of the entire parameter vector across pairs of treatments and all three treatments 

together. In agreement with the nonparametric test results in Table 1, there is a strongly 

significant difference between the SR and NB model estimates but no significant difference 

between the NB and EC model estimates. However, unlike the nonparametric test, this model-

based test does suggest a weakly significant difference between the SR and EC treatments. In 

summary, the EGWB model suggests that the particularly “intrusive” scoring rule changes 

behavior, while the less intrusive expected choice procedure does not (cf. Croson 1999, 2000). 

Because of this, we now turn to a parameter-by-parameter examination of differences between 

the estimated SR treatment model and the estimated model in the other two treatments.  

 The parameters α, γ  and θ  do not appear to vary significantly across the treatments. Put 

differently, neither forward-looking calculation (represented by α) nor the dynamics of belief 

learning (represented by γ  and θ) appear to be altered by belief elicitation. In all three 

treatments, α is significantly negative, as expected if row players consider the negative future 



 24 

payoff consequences of playing up in any period t < T  due to column’s expected reactions.  

Estimates of γ , the discount rate on observations of partner behavior, are in a range from about 

0.90 to 0.95, similar to what others estimate for the GWB model with a prior belief (e.g. Battalio, 

Samuelson and Van Huyck 2001), and indicating a low-frequency persistence of observational 

history much more like fictitious play (γ = 1) than Cournot play (γ = 0). The conditionality 

parameter θ  takes values from 0.2 to 0.35 and is highly significant in all treatments.13 We return 

to the question of the practical significance of these estimates of θ  shortly.  Significant 

parametric effects of scoring rule procedures relative to no belief elicitation are confined to three 

areas. These are: (1) More realistic and stronger initial conditions of beliefs (represented 

by lB1
ˆ and 0Γ ); (2) greater sensitivity to expected payoff differences (represented by the expected 

value of λ) and an improvement of model fit (represented by log likelihoods); and (3) greater 

subject heterogeneity that is not explained by the structural EGWB model (represented by σν ). 

We now discuss each of these in turn.14 

 In some respects, the significant differences between initial inferred belief conditions and 

their accuracy across the SR, EC and NB treatments is the most interesting effect of belief 

elicitation. Figure 3 shows the fit (in terms of log likelihood) of row players’ estimated gamma-

theta beliefs to the actual play of their column partners by 12 period block.15 It is clear that there 

is a radical difference in this fit in early periods (periods 1-12); however, by the late periods 

                                                           
13 While it is tempting to draw this conclusion (and similar ones) on the basis of the standard errors reported in 

Table 2, or on the basis of likelihood ratio tests against θ = 0 (the reduction in the log likelihood is quite large), 
neither Wald tests nor likelihood ratio tests are asymptotically valid when the restriction being tested lies on the 
boundary of the allowed parameter space. The appropriate test in this case is the LM or score test (Wooldridge 

2002). In the NB, EC and SR treatments, the LM test statistics against θ = 0 are 24.21, 12.05 and 30.09, 

respectively, distributed χ2 with one degree of freedom—all (obviously) producing miniscule p-values. 
14 As a robustness test we also estimate the model with θ restricted to 0. Qualitative findings from this estimation 
are the same: prior beliefs in left play are still significantly lower with belief elicitation and the strength of the priors 
are significantly higher. In fact, all inferences are qualitatively the same with greater statistical significance. 
15 In other words, these are not the maximized likelihoods of the estimated models of row player behavior, but 
rather the fit of estimated gamma-theta inferred belief updating process to the actual play of column partners. 
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(periods 25-36), there is little difference in fit across the three treatments. We believe this occurs 

because scoring rule procedures prompt more conscious pre-play modeling of partners, 

decreasing the relative contribution of unconscious processes to latent beliefs. It takes perhaps 

twenty periods of experience in the NB treatment to match the improved accuracy of inferred 

beliefs brought about at the very beginning of play by the scoring rule procedure in the SR 

treatment. The actual proportions of first period plays of left by column partners in the NB, EC 

and SR treatments are 0.40, 0.22 and 0.35, with standard errors 0.078, 0.061 and 0.071, 

respectively. Corresponding inferred prior beliefs lB1
ˆ are 0.89, 0.62 and 0.45, with standard errors 

of 0.29, 0.15 and 0.09, respectively. Inferred prior beliefs closely match actual first period play 

of column players only in the SR treatment, and are especially biased in the NB treatment. 

 The second effect of scoring rule procedures is, quite simply, that the EGWB model fits 

row player behavior much better with than without them. The last row of Table 2 shows that the  

estimated log likelihoods of the EGWB model in the NB and SR treatment (per 40 subjects) are 

−866.78 and −820.68, respectively.16 Parametrically, the estimated expected value of λ—the 

sensitivity of choice to modeled expected payoff differences—is more than fifty percent larger in 

the SR treatment than in the NB treatment, suggesting that inferred belief updating processes 

have greater explanatory force in the presence of scoring rule procedures.17  

 Third, σν  is significantly greater in the SR treatment than the NB treatment. We interpret 

ν  as representing relatively persistent but unmodeled differences in behavior across individual 

                                                           
16 To put this 5.62% poorer model fit in the NB treatment into empirical perspective, consider that the median 
percent reduction in log likelihoods reported by Camerer, Ho and Chong (2002) from using reinforcement learning 
rather than adaptive EWA across thirty games, player types and/or treatment conditions is 2.52%. 
17 λ is usually viewed as sensitivity to expected payoff differences, but this interpretation implicitly assumes that the 
inferred belief updating process determining expected payoff differences is properly specified. If we relax this 

assumption, the estimated size of λ can also be viewed as reflecting (in part) specification errors in the model of 
expected payoff differences, including specification errors in the inferred belief updating process. This is the sense 

in which higher estimated values of λ can signal greater predictive force of inferred belief updating processes. 
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row players. Under this interpretation, larger σν  implies greater unexplained but systematic 

variance of row player behavior in the SR treatment. This suggests that the belief processes 

encouraged by scoring rule procedures are more variable across players than the ones that prevail 

without them. If conscious attentional resources vary more  across individuals than unconscious 

ones do, and if these attentional resources control the ability to inhibit or suppress relatively 

automatic strategic inclinations based on unconscious processes (e.g. Feldman-Barrett, Tugade 

and Engle 2004), this difference makes some sense. 

 

4.3 The relative explanatory power of stated and inferred beliefs. 

 Nyarko and Schotter (2002) found that stated beliefs have much greater high-frequency 

variance than do gamma-weighted inferred beliefs, and that the stated belief model explains 

player choices better than the gamma-weighted inferred belief model. Are these results also true 

in our setting? Table 3 compares certain characteristics of three estimators of latent beliefs 

(gamma-weighted beliefs, gamma-theta beliefs and stated beliefs) in the SR treatment. The 

gamma-theta beliefs are those implied by the estimates of α, γ , θ, lB1
ˆ and 0Γ  shown in Table 2 for 

the SR treatment data. The gamma-weighted beliefs are those implied by estimates of the EGWB 

model in the SR treatment when the constraint θ = 0 is imposed. The stated belief model uses 

row players’ stated beliefs in the SR treatment, and therefore (obviously) includes none of the 

three inferred belief process parameters θ, lB1
ˆ or 0Γ . However, it does include the parameters α 

and γ  to represent forward-looking calculation by the players as in equation (7). Both the stated 

belief model and the gamma-weighted belief model are estimated using the same “mixed random 

estimator” used to estimate the EGWB model (for comparability of fit). 
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 The first row of Table 3 compares the relative high-frequency variability of the three 

estimators of latent beliefs. The ratio iBBi σσ ˆˆ
∆  measures the variance of high-frequency changes 

(i.e. changes across consecutive time periods) in a series of belief estimates relative to the overall 

time series variability of those estimates (for row player i).  In Table 3, our mean value of 

iBBi σσ ˆˆ
∆ for stated beliefs is more than twice that for gamma-weighted beliefs. However, also 

notice that gamma-theta beliefs narrow this gap quite substantially. The last three columns of 

Table 3 report one-sample tests of the hypothesis that iBBi σσ ˆˆ
∆ does not vary across pairs of 

belief estimators, and this is easily rejected in all cases. Thus, we replicate Nyarko and Schotter’s 

(2002) finding that stated beliefs have much greater high-frequency variability than gamma-

weighted beliefs, but the high-frequency variability of estimated gamma-theta beliefs lies 

squarely and significantly between them. The estimated value of θ  in the SR treatment (0.30) 

produces a pronounced increase in the high-frequency variability of estimated beliefs relative to 

the gamma-weighted belief model—though not to the level observed for stated beliefs. Recall 

that our motivation for the gamma-theta belief updating process was to allow for greater high-

frequency variability of inferred beliefs. 

 The rest of Table 3 compares three measures of the predictive value of the three belief 

estimators in the model explaining row player’s choices. Let iBuρ̂  denote a Spearman rank 

correlation coefficient between choices of “up” (measured by a dummy variable) and any one of 

the three estimated latent belief series itB , for each player i.18 The second row of Table 3 shows 

the mean of this correlation for each of the three belief estimators, as well as tests for differences 

                                                           
18 The Spearman correlation is a rank correlation coefficient appropriate to cases where one or both variables do not 
have cardinal meaning or are qualitative in nature. The latter is true here since uit is a qualitative variable. Kendall’s 

τ could also be used, but it throws away potentially useful magnitude information represented by the rank of itB  

that is used by the Spearman coefficient, replacing it with purely ordinal information about itB . 
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between them. The third row of Table 3 shows the mean (across row players) of estimated log 

likelihoods of the models based on each of the three belief estimators, per player. These two 

evaluations of the predictive value of the estimators do not replicate Nyarko and Schotter’s 

(2002) findings: Both suggest that stated beliefs are a worse predictor of row player behavior 

than either gamma-theta or gamma-weighted beliefs, though the comparison is statistically 

convincing only for gamma-theta beliefs.19 Overall, this evidence contradicts the third 

assumption about stated beliefs we outlined earlier: Stated beliefs are sometimes worse 

estimators of latent beliefs than are inferred beliefs. 

 Do stated beliefs predict anything better than the inferred belief updating processes? The 

last row of Table 3 computes Spearman correlations uBi ∆∆ρ̂  between changes in “up” plays across 

consecutive time periods and changes in belief estimates itB∆  from each of the three estimators, 

for each player i. It is here that stated beliefs show some comparative advantage, significantly 

(but weakly) outperforming gamma-weighted beliefs according to two of the three test statistics, 

and not performing significantly worse than gamma-theta beliefs. Stated beliefs would then have 

a predictive advantage in games with a high frequency of changes in play.   

 

5. Discussion and Conclusions 

 Is belief elicitation a good tool for understanding behavior in games? Clearly, if it 

provided us with an unbiased and efficient estimator of latent beliefs without altering the very 

behavior we wish to explain, it would be extremely valuable for empirical study of behavior in 

                                                           
19 Nyarko and Schotter’s (2002) scoring rule procedure allows subjects to state beliefs more finely (in 0.01 
probability units) than ours does (in 0.10 probability units). To see whether this matters, we used Nyarko and 
Schotter’s “experiment 1” data (which most closely resembles ours) to estimate their own stated belief model (that 
is, their model 1 reported in their Table 4) two ways. Rounding the stated beliefs to the nearest 0.1 prior to 
estimating the stated belief model actually improves its fit very slightly (the log likelihood per subject, over the sixty 

periods of play, is −36.93 without rounding versus −36.89 with rounding). 
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games (Manski 2002) and in many other contexts (Manski 2004). Unfortunately, we find that 

scoring rule belief elicitation changes row players’ observed actions, and row players are the 

most highly motivated players in our game. Both nonparametric tests and tests based on a 

structural model of belief learning support that conclusion. Estimation of the structural model 

suggests three kinds of changes wrought by the use of scoring rules: (1) Prior beliefs become 

stronger and more realistic; (2) structural belief models fit the resulting data much better; and (3) 

unmodeled structural heterogeneity of play is more pronounced. We also find that stated beliefs 

can be poorer predictors of actions than inferred beliefs. This does not weigh decisively against 

Manski’s point (which is not that stated beliefs have unique predictive value) that strictly 

exogenous beliefs would have a decisive econometric advantage in model identification. 

Unfortunately, if belief statement alters game play—as it does here and in Erev, Bornstein and 

Wallsten (1993), Croson (2000), and Nelson (2003)—this hoped-for exogeneity is dubious. Our 

findings, limited to a repeated matching protocol matching pennies game, should motivate 

further tests in other game domains. 

 As none of this matches what Nyarko and Schotter (2002) observe, what might explain 

the difference? With obvious caution due to the limited number of game structures that have 

been exposed to such tests, here are some possibilities. First, we think statistical power plays a 

role. The appendix illustrates how statistical power in an AMP game can vary quite strongly with 

the asymmetry of the payoffs, holding other design features constant. Our game was designed 

explicitly to generate statistical power to detect shifts from non-belief-based to belief-based 

learning models, and is therefore highly asymmetric. Other games designed with some other 

primary focus, such as Nyarko and Schotter’s design, do not have this property.20 Therefore, it 

                                                           
20 Nyarko and Schotter (2002) originally set out to compare stated and inferred belief models and chose their game 
with that central purpose in mind.  
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should not be surprising that their specific game produces no evidence of belief elicitation 

effects, while we and Croson (1999, 2000), who deliberately chose games to look for this, do. 

 Beyond statistical power, we have one theoretical conjecture based on our findings and 

those of Croson (2000) and Nyarko and Schotter (2002). We only find belief elicitation effects 

for row players, but not column players, in our AMP19 game, even though our power analysis 

shows that statistical power should be high enough to detect early period shifts in column play as 

well. Indeed, although we do not show the results, we performed all of our analyses for our 

column players as well: For them, all results closely resemble those of Nyarko and Schotter.  

 This contrast may reveal something useful. Figure 4 reproduces our AMP19 game, along 

with Nyarko and Schotter’s zero-sum game and the prisoner’s dilemma where Croson finds 

strong belief elicitation effects on game play. It is striking that across these three games, each 

player type who shows a significant belief elicitation effect (our row players, and both of 

Croson’s players) also see some arguably pronounced affective asymmetry between the two 

strategies available to them. For row players in our game, the asymmetry is immediately 

obvious. In Croson’s prisoner’s dilemma, the affective asymmetry is between the high and 

equitable payoffs of cooperation versus the temptation to defect and the regret of being cheated. 

By contrast, no strong asymmetry is present for player types who show no belief elicitation effect 

(our column players, and both of Nyarko and Schotter’s players). 

 These results are consistent with dual-process theories of mind (Feldman-Barrett, Tugade 

and Engle 2004) if the payoff asymmetry invokes relatively automatic emotional predispositions 

favoring up over down. As belief elicitation procedures require the decision maker to estimate 

latent beliefs, it is possible that attention is brought to the conflict between the desirability of the 

high payoff to row and the lack of desirability for column to play left when row plays up. 
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Attention to these conflicting desires could motivate row to change how he plays the game.  If 

this is the case, then in games where automatic predispositions lead to the same choices as 

attentive deliberations belief elicitation may not have an effect on game play. 

 Our finding that stated beliefs can be worse predictors of actions than inferred beliefs 

needs to be replicated in other games, but if replicated it is important. We note that plenty of 

other evidence points to strong dissociations between demonstrable causes of human behavior 

and human abilities to accurately declare those causes (Nisbett and Wilson 1977, Ross 1989). To 

the extent that latent beliefs are below the level of consciousness, and their conscious products 

are mostly inclinations to action rather than explicit beliefs, subjects’ stated beliefs can in part be 

inferences about the causes of their own actions or inclinations. Therefore, it should not be all 

that surprising that there may also be a dissociation between latent and stated beliefs. Some 

optimism is still called for since the less intrusive belief elicitation mechanism that we used in 

our EC treatment, where subjects simply report which strategy partners are most likely to play, 

affects play to a lesser degree than does the scoring rule.21 Of course, this elicitation is a rather 

blunt instrument for latent beliefs. Yet this fact gives us hope that some belief elicitation 

mechanism might be informative about latent beliefs yet not so intrusive as to alter play, and thus 

give researchers a suitable “belief instrument” for identification and theory tests. One potentially 

useful possibility is a suitably fine-grained verbal response scale. This technique has been 

extensively studied by statisticians and psychologists for many years; Mosteller and Youtz 

(1990) provide a useful review. Our point is that there are many imaginable techniques for 

eliciting a belief instrument, if not beliefs themselves, as this example shows. Some of those may 

have no effect on game play and, at the same time, may be good instruments for latent beliefs.

                                                           
21 But Croson (1999, 2000) documents belief elicitation effects even with this procedure. 
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Table 1 
 

Simple Tests for Differences Between the Three Treatments 
 

Proportion of row “up” choices Proportion of column “left” 
choices 

 
 

block 
(periods) 

NB 

versus 

SR 

NB 
versus 

EC 

SR  
versus 

EC 

NB 

versus 

SR 

NB 
versus 

EC 

SR 
versus 

EC 

All Periods (1 to 36) 
 

p=0.67 

p=0.62 
p=0.63 
p=0.46 

p=0.38 
p=0.27 

p=0.35 

p=0.34 
p=0.94 
p=0.78 

p=0.27 
p=0.23 

Early Periods (1 to 12) 
 

p=0.04 

p=0.055 
p=0.92 
p=0.94 

p=0.023 
p=0.026 

p=0.52 

p=0.40 
p=0.54 
p=0.72 

p=0.21 
p=0.25 

Late Periods (25 to 36) 
 

p=0.35 

p=0.47 
p=0.16 
p=0.19 

p=0.66 
p=0.59 

p=0.89 

p=0.78 
p=0.92 
p=0.55 

p=0.79 
p=0.81 

Change Between Early and 
Late Periods 

p=0.027 

p=0.027 
p=0.24 
p=0.28 

p=0.25 
p=0.25 

p=0.63 

p=0.58 
p=0.61 
p=0.89 

p=0.32 
p=0.41 

The shaded cells indicate where the power planning predicts low power. 
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Table 2. 
 

Maximum likelihood analysis of treatment differences in row player behavior, using the 6-parameter 

EGWB Model with random coefficients λ and random effects ν.  
 

Likelihood Ratio Tests of Equivalence of Parameter Vectors Across Treatments 

Extended GWB Model w/ lognormal λ and normal random effects ν  
Treatments Compared Constrained  

Log L  
Unconstrained Log 

L 
Likelihood Ratio Test against 
equivalent parameter vectors 

NB versus SR −1823.52 −1810.56  χ2
8 = 25.92, p = 0.0011 

NB versus EC − 1868.69 −1864.41 χ2
8 = 8.56, p = 0.38  

SR versus EC −1948.25 −1941.40 χ2
8 = 13.70, p = 0.090 

All Treatments −2824.56 −2808.18 χ2
16 = 32.77, p = 0.0079 

Estimated Parameters (Asymptotic Standard Errors in Parentheses) 

 
Extended GWB Model 

Likelihood Ratio Test of Various Parameter 
Equality Restrictions Between the SR Treatment 

and the other Treatments 

Parameter NB Treat. EC Treat. SR Treat.  
Restriction 

LR Test: 
SR vs. EC 

LR Test: 
SR vs. NB 

α −0.296 
(0.090) 

−0.477 
(0.146) 

−0.358 
(0.0701) 

equal α χ2
1 = 0.86 

p = 0.35 
χ2

1 = 0.33  
p = 0.56 

γ 0.950 
(0.0261) 

0.897 
(0.0352) 

0.898 
(0.0261) 

equal γ χ2
1 = 0.0005 
p = 0.98 

χ2
1 = 2.53 

p = 0.11 
lB1

ˆ  0.892 
(0.285) 

0.615 
(0.152) 

0.446 
(0.0901) 

equal 
lB1

ˆ  χ2
1 = 1.54 

p = 0.21 
χ2

1 = 5.21 
p = 0.022 

Γ0 0.329 
(0.445) 

1.24 
(0.661) 

5.38 
(3.82) 

equal Γ0 χ2
1 = 3.77 

p = 0.052 
χ2

1 = 6.49 
p = 0.011 

θ 0.352 
(0.112) 

0.214 
(0.0692) 

0.297 
(0.0691) 

equal θ χ2
1 = 0.72 

p = 0.40 
χ2

1 = 0.24 
p = 0.62 

µλ −1.77 
(0.174) 

−1.74 
(0.169) 

−1.28 
(0.137) 

equal µλ  
 

χ2
1 = 4.41 

p = 0.036 
χ2

1 = 4.32 
p = 0.038 

σλ 0.414 
(0.184) 

0.640 
(0.227) 

0.496 
(0.182) 

equal σλ χ2
1 = 0.42 

p = 0.51 
χ2

1 = 0.15 
p = 0.69 

σν 0.459 
(0.115) 

0.577 
(0.190) 

0.844 
(0.158) 

equal σν χ2
1 = 2.48 

p = 0.12 
χ2

1 = 5.67 
p = 0.017 

E(λ)a 0.186 
(0.0301) 

0.214 
(0.0400) 

0.314 
(0.0357) 

equal E(λ) χ2
1 = 2.94 

p = 0.087 
χ2

1 = 6.43 
p = 0.011 

Var(λ)a 0.00647 
(0.00674) 

0.0233 
(0.0256) 

0.0276 
(0.0243) 

equal Var(λ) χ2
1 = 0.026 

p = 0.87 
χ2

1 = 1.75 
p = 0.19 

Log Likelihood −866.78 −997.62 −943.78 equal µλ and 

equal σλ 

χ2
2 = 3.69 

p = 0.16 
χ2

2 = 6.55 
p = 0.038 

Log Likelihood 
per 40 subjects 

−866.78 −867.49 −820.68 equal 
lB1

ˆ and 

Γ0 

χ2
2 = 3.80 

p = 0.15 
χ2

2 = 6.91 
p = 0.032 

 
aBecause µλ and σλ are the mean and variance of ln(λ), the actual mean and variance of λ are given by E(λ) = 

exp(µλ+σλ
2/2) and Var(λ) = exp(2µλ+σλ

2)⋅[exp(σλ
2) − 1].
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Table 3 
 

Comparison of Characteristics of Stated Beliefs, Gamma-Weighted Beliefs and Gamma-Theta Beliefs in the SR Treatment  
 

Mean across row players of each 
type of within-player statistic, 

using each belief estimator 

Two-tailed p-values of one-sample t-test, 
sign test and signed rank test against no 

difference across pairs of belief measures 

 
 
 

Type of within-player statistic Gamma-
weighted 
beliefs 

Gamma-
theta 

beliefs 

Stated 
beliefs 

Stated vs 
gamma-
weighted 

Stated vs 
gamma-theta 

gamma-
weighted vs 
gamma-theta 

iBBi σσ ˆˆ
∆ , ratio of standard deviation of high 

frequency changes in belief estimator to standard 
deviation of estimated beliefs, for row player i. 

 
0.553 

 

 
0.780 

 

 
1.19 

 

p < 0.0001 
p < 0.0001 
p < 0.0001 

p < 0.0001 
p < 0.0001 
p < 0.0001 

p < 0.0001 
p < 0.0001 
p < 0.0001 

iBuρ̂ , Spearman correlation between belief 

estimator and choices of “up”, for row player i. 

 
0.266 

 

 
0.293 

 

 
0.214 

 

p = 0.25 
p = 0.10 
p = 0.13 

p = 0.097 
p = 0.026 
p = 0.050 

p = 0.093 
p = 0.044 
p = 0.059 

LLi, log likelihood of the estimated model for row 
player i. 

 

−20.77 

 

−20.52 

 

−20.92 

p = 0.86 
p = 0.46 
p = 0.36 

p = 0.50 
p = 0.026 
p = 0.072 

p = 0.71 
p = 0.30 
p = 0.37 

uBi ∆∆ρ̂ , Spearman correlation between changes in 

estimated beliefs and changes in choices of “up”, 
for row player i. 

 
0.087 

 

 
0.230 

 

 
0.184 

 

p = 0.077 
p = 0.18 
p = 0.096 

p = 0.44 
p = 0.30 
p = 0.40 

p < 0.0001 
p < 0.0001 
p < 0.0001 
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Proportion of Times Row Player Plays "up" in the Three Treatments

0.58

0.6

0.62

0.64

0.66

0.68

0.7

1 to 12 13 to 24 25 to 36

Periods of play

P
ro

p
o

rt
io

n
 o

f 
p

e
ri

o
d

s
 t

h
a
t 

"u
p

" 
is

 p
la

y
e

d No Beliefs

Scoring Rule

Expected Choice

 
 

Figure 1. Proportion of times row player plays “up” in the three treatments. 
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Proportion of Times Column Player Plays "left" in NB and SR Treatments
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Figure 2. Proportion of times column player plays “left” in the three treatments. 
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Figure 3. Fit of row players’ estimated gamma-theta beliefs to actual play of column partners, by treatments and period blocks. 
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This study l (left) r (right) 

u (up) (19,0) (0,1) 

d (down) (0,1) (1,0) 

   
   

Nyarko and Schotter (2002) l (left) r (right) 

u (up) (6,2) (3,5) 

d (down) (3,5) (5,3) 

   
   

Croson (1999, 2000) l (left) r (right) 

u (up) (75,75) (25,85) 

d (down) (85,25) (30,30) 
 

 
Figure 4. Comparison of the games used here and in Nyarko and Schotter (2002) and Croson (1999, 2000). 
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Appendix: Statistical power and payoff asymmetry 

 

 Table A1 reports an analysis (based on Monte Carlo simulation) of the power of two-sample 

tests for differences in AMPX game behavior: X is row’s payoff in the {up,left} cell of the game, 

whereas all other payoffs are zero or one as in symmetric matching pennies or SMP (e.g. AMP1 is 

identical to SMP, and AMP19 is our game). The analysis considers two samples, each with 40 row and 

column players in fixed pairings for 36 periods (as in our experiment). Table entries are probabilities 

that a null hypothesis (no difference between two such samples) is rejected by a Wilcoxon test at an α 

= .05 significance level (entries are 1−β, where β is the probability of type II error). As described in the 

text, the simulations use a 3-parameter weighted fictitious play model as the true data-generating 

process or DGP in one sample, and a 3-parameter reinforcement learning model as the true DGP in the 

other sample (see Rutström and Wilcox 2008 for more details). The first row of the table below reports 

power in our experimental game, AMP19. Below that, we also report power in AMPX games with 

degrees of asymmetry X=1, 2, 3, 4, and 9. 

 The table suggests that power is very good during early periods for all X>2. But learning 

models make relatively ad hoc assumptions about initial conditions—after all, initial conditions are not 

their primary focus. So the fact that the two assumed DGPs (learning models) produce detectable 

differences in early periods is relatively uninteresting—probably (at least partially) an artifact of the 

different assumptions the DGPs make about initial conditions. We wanted a design capable of detecting 

differences in later behavior too. The table shows that we only get to conventionally accepted power 

levels (β less than or equal to 4α, or power in excess of 0.80; see e.g. Cohen 1988) during late period 

play (last third of periods) when the asymmetry is strong, X=19, and even then only for the row player. 
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 Notice that SMP (AMP1) produces no power at all. Ichimura and Bracht (2001) first described 

why this is so. Games with equal mixing over strategies in equilibrium will result in poor identification 

of learning model parameters in equilibrium. Both the MSNE and QRE (quantal response equilibrium) 

of SMP is equal mixing, and equal mixing is commonly observed in SMP games (Goeree and Holt 

2001). Under these circumstances, any learning model with a precision parameter λ (EWA and GWB 

for instance) will be poorly identified, since λ = 0 will fit such data well. (Because λ multiplies a 

function of all other parameters in these models, this implies that these other model parameters are also 

poorly identified in SMP games.) But if no EWA parameter is well-identified in SMP equilibria, then 

its δ parameter, which distinguishes between reinforcement- and belief-learning processes, is poorly 

identified too. Therefore, it should be unsurprising that the nonparametric Wilcoxon test cannot detect 

the difference between a reinforcement learning and belief learning model in an SMP game. After all, 

such a test operates with “less structural knowledge” than an EWA estimation would: It cannot be that 

it is able to detect something that a (correctly specified) EWA estimation cannot. For distinguishing 

between learning models with precision parameters λ, QRE equilibria away from equal mixing over 

strategies is a necessary design component. 

TABLE A1 
 

POWER OF WILCOXON TESTS AGAINST THE HYPOTHESIS OF NO TREATMENT DIFFERENCE 
(SIMULATIONS—SEE NOTES BELOW): AMP GAMES 

 

 Power of test (at 5% significance level) to detect a treatment difference in the 
proportion of times each player plays the indicated strategy. 

All periods First third of all periods  Last third of all periods 

Power of test to detect 
change in proportion 

(between first third and 
last third of periods) 

 
 

Game Row  
plays  
Up 

Column 
plays  
Left 

Row  
plays  
Up 

Column 
plays  
Left 

Row  
plays  
Up 

Column 
plays  
Left 

Row  
plays  
Up 

Column  
plays  
Left 

AMP19 0.18 0.99 0.84 0.99 0.85 0.11 0.98 0.79 

AMP9 0.12 0.98 0.78 0.99 0.70 0.10 0.94 0.71 

AMP4 0.07 0.92 0.59 0.96 0.36 0.08 0.71 0.52 

AMP3 0.06 0.83 0.47 0.89 0.24 0.07 0.54 0.41 

AMP2 0.05 0.56 0.26 0.63 0.11 0.06 0.26 0.21 

SMP (AMP1) 0.06 0.06 0.05 0.05 0.05 0.05 0.04 0.05 

 


