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Abstract

Since there is so far no estimator that allows to estimate a dynamic panel model
that includes a spatial lag as well as other potential endogenous variables. This
paper wants to determine if it is suitable to instrument the spatial lag variable
(which is by definition endogenous/simultaneous) using the instruments proposed
by system GMM, i.e. lagged spatial lag values. The Monte Carlo investigation
highlights the possibility to estimate a dynamic spatial lag model using the ex-
tended GMM proposed by Arellano and Bover (1995) and Blundell and Bover
(1998), especially when N and T are large.
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1 Introduction

Although the econometric analysis of dynamic panel models (Arellano and Bond (1998),
Blundell and Bover (1998), Baltagi and Kao (2000)) has drawn a lot of attention in the
last decade, econometric analysis of spatial and dynamic panel models is almost inexis-
tent (Elhorst (2003), Kapoor, Kelejian and Prucha (2007), Lee and Yu (2007), Yu et al.
(2007) and Beenstock and Felsenstein (2007)). So far, none of the available estimators
allows to consider a dynamic spatial lag panel model with one or more endogenous vari-
ables (besides the spatial lag) as explanatory variables. From an applied econometric
point of view, this is an important issue because several reasons can explain the pres-
ence of endogeneity (measurement errors, variables omission, simultaneous relationship
between the dependent and the explanatory variable). Empirically, there are several
examples where the presence of a dynamic process, spatial dependence and endogeneity
might occur.

This is the case with the analysis of the determinants of Foreign Direct Investment
(FDI). In particular, complex FDI is characterized by a multinational firm from home
country ¢ which owns not only a production plant in host country 7 but also one in
third country k, in order to exploit the comparative advantages of various locations
(Baltagi, Egger and Pfaffermayr (2007)). This type of FDI can thus feature comple-
mentary /substitutive spatial dependence with respect to FDI to other host countries.
The presence of complex FDI can be tested empirically by estimating a spatial lag model
(as proposed by Blonigen, Davies, Waddell and Naughton (2007)), which can also in-
clude a lagged dependent variable to account for the fact that FDI decisions are part of
a dynamic process, i.e. more FDI in a host country seems to attract more FDI in this
same host country (Kukenova and Monteiro (2008)). This persistence effect is partly due
to the fact that FDI is often accompanied by physical investments that are irreversible
in the short run. Since the inclusion of the time lagged depend variable in the equation
might lead to inconsistent estimates, dynamic spatial lag panel models are usually esti-
mated using the system GMM estimator, developed by Arellano and Bover (1995) and
Blundell and Bond (1998). The main argument of applying the extended GMM in a
spatial context is that it corrects for the endogeneity of the spatial lagged dependent
variable and other potentially endogenous explanatory variables. Going beyond this

intuitive motivation, this paper wants to determine if it is suitable to instrument the



spatial lag variable using the instruments proposed by system GMM, i.e. lagged spatial

lag values.

The outline of the paper is as follows. The dynamic spatial lag model is defined and
interpreted in section 2. The Monte Carlo investigation is described and performed in

section 3. Finally, section 4 concludes.

2 Spatial Dynamic Panel Model

The development of empirical spatial models is intimately linked to the recent progress
in spatial econometrics. The basic spatial model was suggested by Cliff and Ord (1981),
but it did not receive important theoretical extensions until the middle of the 1990s.
Anselin (2001) and Elhorst (2003) provide thorough surveys of the different spatial
models and suggest econometric strategies to estimate them. More generally, spatial
data is characterized by the spatial arrangement of the observations. Following Tobler’s
First Law of Geography, everything is related to everything else, but near things are
more related than distant things, the spatial linkages of the observations i = 1, ..., N are

measured by defining a spatial weight matrix, denoted by W; for any year t =1, ..., T"

0 wy(dy,;) -+ wi(diy)
W, = wt(c'lj,k) 0 ‘ wt('dj,Z)
wt(dl,k) wt(dm) cee 0

where w;(d; ;) defines the functional form of the weights between any two pair of lo-
cation j and k. In the construction of the weights themselves, the theoretical foundation
for wy(d; ) is quite general and the particular functional form of any single element in
W, is, therefore, not prescribed. In fact, the determination of the proper specification
of W; is one of the most difficult and controversial methodological issues in spatial data
analysis. As is standard in spatial econometrics, for ease of interpretation, the weighting
matrix W, is row standardized so that each row in W, sums to one. As distances are
time-invariant, it will generally be the case that W; = W,,;. However, when dealing
with unbalanced panel data, this is no longer true (Egger et al (2005)). Stacking the
data first by time and then by cross-section, the full weighting matrix, W, is given by:
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2.1 Dynamic Spatial Lag Model

A general spatial dynamic panel model can be described as follows:

Y, = oY+ pWiY + EX B+ ENyy + iy + €4 (1)
& = <,0+)\W2t€t+ut, tzl,,T

where Y; is a N x 1 vector, Wy, and W, are N x N spatial weight matrices which are
non-stochastic and exogenous to the model, ¢ is the vector of country effect, i is the
vector of time effect, £X; is a N X p matrix of p exogenous explanatory variables (p > 0)
and EN; is a N x ¢ matrix of ¢ endogenous explanatory variables with respect to Y;
(¢ > 0). Finally, u; is assumed to be normally distributed (N (0, 2)). By adding some
restrictions to the parameters, two popular spatial model specifications can be derived
from this general spatial model, namely the dynamic spatial lag model (A = 0) and the

dynamic spatial error model (p = 0)[T]

The spatial lag model accounts directly for relationships between dependent vari-
ables that are believed to be related in some spatial way. Somewhat analogous to a
lagged dependent variable in time series analysis, the estimated “spatial lag” coeffi-
cient characterizes the contemporaneous correlation between one country’s Y and other
geographically-proximate country’ Y’s. The following equation gives the basic specifi-

cation for the "time-space simultaneous" model (Anselin (2001))P}

Y, =0Y, 1 + o WY+ EX, B+ ENyy + @+ py + 1wy (2)

IThe analysis of the spatial error panel model is beyond the scope of this paper. For further detail,
see Elhorst (2003) and Kapoor et al. (2007).

2Beside the "time-space simulatenous" model, Anselin (2001) distinguishes three other distinct spa-
tial lag panel models: the "pure space recursive" model which only includes a lagged spatial lag co-
efficient (oW1 ,-1Y;—1); the "time-space recursive" specification which considers a lagged dependent
variable as well as a lagged spatial lag (see Korniotis (2007)); and the "time-space dynamic" model,
which includes a time lag, a spatial lag and a lagged spatial lag.
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The spatial autoregressive coefficient (p) associated with W;Y; represents the effect
of the weighted average (w; (d;;) being the weights) of the neighborhood, i.e. [W}Y}]. =
> je1.n, Wi (dij) - Yji. The spatial lag term allows to determine if the variable Y is
(positively /negatively) affected by the Y; from other close locations weighted by a given
criterion (usually distance or contiguity). In other words, the spatial lag coefficient
captures the impact of Y; from neighborhood locations. This effect is assumed to lie
between -1 and +1. As such, this model allows the data to reveal patterns of substitution

or complementarity through the estimated spatial lag coefficient.

Note that the spatial lag term W,Y; is correlated with the disturbances, even if u,
are independently and identically distributed. To see this point more formally, note that

the reduced form of equation (2) take the following form:

Y, = (In — pWo) " (0Yio1 + EXy B+ ENyy + 0 + 1, + )

Each element of Y; is a linear combination of all of the error terms. Moreover, as
pointed out by Anselin (2003), since |p| < 1 and each element of W, is smaller than one
implies that (I — pW;)~" can be reformulated as a Leontief expansion (Iy — pW,) " =
I + pW; + p*W? + ... Accordingly, the spatial lag model features two types of global
spillovers effects: a multiplier effect for the predictor variables as well as a diffusion effect
for the error process. From an econometric viewpoint, equation (2) faces simultaneity
and endogeneity problems, which in turn means that OLS estimation will be biased and
inconsistent (Anselin (1988)). Therefore, the spatial lag coefficient must be treated as an

endogenous variable and proper estimation methods must account for this endogeneity.

Despite the fact that dynamic panel models have been the object of recent important
developments (Baltagi and Kao (2000), Phillips and Moon (2000)), econometric analysis
of spatial dynamic panel models is almost inexistent. In fact, there is only a limited
number of available estimators that deal with spatial and time dependence in a panel

setting. Table 1 sums up the different estimators proposed in the literature:
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Assuming all explanatory variables are exogenous beside the spatial autoregressive
term, the spatial lag panel model without any time dynamic is usually estimated us-
ing maximum likelihood (Elhorst (2003b)) or spatial two-stage least squares methods
(Anselin (1988) (2001)). The ML approach consists of estimating the spatial coefficient
using a non-linear optimization routine that maximizes the non-linear reduced form of
the spatial lag model. The spatial 2SLS uses the exogenous variables and their spatially
weighted averages (EX;, W;- EX;) as instrumentsﬂ When the number of cross-sections
is larger than the period sample, Anselin (1988) suggests to estimate the model using
MLE, 2SLS or 3SLS in a spatial seemingly unrelated regression (SUR) framework. More
recently, Dall’erba and Le Gallo (2007) suggest to estimate a spatial lag panel model,
which includes several endogenous variables but no time dynamic, applying spatial 2SLS
with lower orders of the spatial lags of the exogenous variables as instrument for the

spatial autoregressive ternﬁ.

In a dynamic context, Elhorst (2003a) proposes to estimate a reduced form of the
model in first-difference using maximum likelihood. Yu et al. (2006, 2007) provide
a theoretical analysis on the asymptotic properties of the ML and QML estimators,
assuming the process is stationary and partially nonstationary, respectively. In order to
account for not only unobservable individual effects but also unobserved time effects,
Lee and Yu (2007) propose to transform the data to eliminate the time effects (bias) and
then estimate the model using QML. Recently, Beenstock and Felsenstein (2007) suggest
a two-step procedure to estimate a spatial panel vector autoregression model. The first
step consists of applying least square dummy variables (LSDV) to the model omitting
the spatial lag and computing the fitted values (37,5) Then, in the second step, the full
model is also estimated using LSDV, but with Wt?t as instrument for W,Y;. Finally,
the authors suggest to correct the bias of the lagged dependent variable by using the
asymptotic bias defined by Hsiao (1986).

If one is willing to consider some explanatory variables as potentially endogenous in a

3In a cross-section setting, Kelejian and Prucha (1998) propose also additional instruments (W2 -
EX,;, W2 - EXy, ...). Lee (2003) shows that the estimator proposed by Kelejian and Prucha is not an
asymptotically optimal estimator and suggests a three-steps procedure with an alternative instrument

~ -1 = ~ =
for the spatial autoregressive coefficient in the last step (W - (I N — ﬁWt) - EX, 3, where p and (8 are

estimates obtained using the S2SLS proposed by Kelejian and Prucha (1998)).

1Recently, Fingleton and Le Gallo (2008) proposes an extended feasible generalized spatial two-stage
least squares estimator for spatial lag models with several endogenous variables and spatial error term
in a cross-section framework.



dynamic spatial panel setting, then no estimator is currently available. From an applied
econometric point of view, this is an important issue because several grounds can lead
to the presence of endogeneity including measurement errors, variables omission or the
presence of simultaneous relationship(s) between the dependent and the explanatory
variable(s). The main drawback of applying MLE, S2SLS or spatial GMM is that,
while the spatial autoregressive coefficient is considered endogenous, no instrumental
treatment is applied to other potential endogenous variables. This can lead to biased

estimates, which would invalidate empirical results.

2.2 System GMM

In the absence of spatial dependence, there are different estimators available to esti-
mate a dynamic panel model, like classical GMM (Arellano and Bond (1992)) and MLE
(Hsiao, Pesaran and Tahmiscioglu (2002)). However, since the inclusion of the time
lagged depend variable in the equation might lead to inconsistent estimates, dynamic
spatial lag panel models are usually estimated using the system GMM estimator’] sug-
gested by Arellano and Bover (1995) and Blundell and Bond (1998).

Haining (1978) already proposed to instrument a first order spatial autoregressive
model using lagged dependent variables. While this method is not efficient in a cross-
section setting, because it does not use efficiently all the available information (Anselin
(1988)), this is no longer necessarily the case in a panel framework. Accordingly, the
use of system GMM might be justified in this trade-off situation, since the spatial
lag would be instrumented by lagged values of the dependent variable and the spatial
autoregressive variablef] In particular, it can correct for the endogeneity of the spatial
lag and lagged dependent variable as well as other potentially endogenous explanatory
variables. Extended GMM allows also to take into consideration some econometrics
problems such as measurement error and weak instruments. It also controls for time-
invariant individual-specific effects such as distance, culture and political structure. On
a practical ground, it also avoids the inversion of high dimension spatial weights matrix

W and the computation of its eigenvalueq’| which can be sometimes computationally

°See for example, Madriaga and Poncet (2007) or Foucault, Madies and Paty (2008).

6Badinger et al. (2004) recommend to apply system GMM, once the data has been spatially filtered.
This approach can only be consider when spatial depence is viewed as a nuisance parameter.

"Kelejian and Prucha (1999) notice that the calculation of roots for moderate 400x 400 nonsymmetric
matrix involves accuracy problems.



unfeasible to estimate model with large N and/or T.

For simplicity, equation (2) is reformulated for a given cross-section i (i = 1,.., N)

at time ¢t (t =1,..,7T):
Yiie = 0Yu1 + pWYi], + EXufS + ENyy + @; + iy + uyy (3)

According to the GMM procedure, one has to get rid of the country effects (y;)
correlated with the covariates and the lagged dependent variable, by rewriting equation

(3) in first order difference for individual 7 at time t:
AYy = 6AYy_1 + pA Wiy, + AEXy B+ AENyy + py + Auyy (4)

Even if the fixed effects (within) estimator cancels the country individual fixed (¢;),
the lagged endogenous variable (AY;_1) is still correlated with the idiosyncratic error
terms (u;). Nickell (1981) as well as Anderson and Hsiao (1981) showed that the within
estimator has a bias measured by O(%) and is only consistent for large T'. Given that this
condition is usually not satisfied, the GMM estimator is also biased and inconsistent.
Arellano and Bond (1991) propose the following moment conditions associated with

equation (4):

E(Y;i—+Auy)=0; fort=3,..,7 and 2<7<t—1 (5)

But the estimation based only on these moment conditions (5) is insufficient, if
the strict exogeneity assumption of the covariates (EX;;) has not been verified. The
explicative variables constitute valid instruments to improve the estimator’s efficiency,

only when the strict exogeneity assumption is satisfied:
E(EX;Auy)=0; fort=3,..,T and 1<7<T (6)

However, the GMM estimator based on the moment conditions (5) and (6) can still
be inconsistent when 7 < 2 and in presence of inverse causality, i.e. E(EX;u;) # 0. In
order to overcome this problem, one can assume that the covariates are weakly exogenous

for 7 < ¢, which means that the moment condition (6) can be rewritten as:



E(EXit—7Auy)=0; fort=3,...,7 and 1 <7<t-1 (7)

For the different endogenous variables, the valid moment conditions are

E(EN;t—+Auy) = 0; fort=3..T and 2<7<t—-1 (8)
E(Wi_syr—r|; Duy) = 0; fort=3.T and 2<7<t-1 9)

For small samples, this estimator can still yield biased coefficients. Blundell and
Bond (1998) showed that the imprecision of this estimator is bigger as the individual
effects are important and as the variables are persistent over time. To overcome this
limits, the authors propose the system GMM, which estimate simultaneously equation

(3) and equation (4). The extra moment conditions for the extended GMM are thus:

E(AY;;quy) = 0; fort=3,..,
E(AEXuuy) = 0; fort=2..
0
0

E(AEN;_quy) = 0; fort=3,...,

E(A Wiy, ue) = 0; fort=3,...,

The consistency of the SYS-GMM estimator relies on the validity of these moment
conditions, which depends on the assumption of absence of serially correlation of the level
residuals and the exogeneity of the explanatory variables. Therefore, it is necessary to
apply specification tests to ensure that these assumptions are justified. More generally,
one should keep in mind that the estimation of the spatial autoregressive coefficient
although "potentially" consistent is usually not the most efficient one. Efficiency relies

on the "proper" choice of instruments, which is not an easy task to determine.

Arellano and Bond suggest two specification tests in order to verify the consistency
of the GMM estimator. First, the overall validity of the moment conditions is checked by
the Sargan/Hansen test. The null hypothesis is that instruments are not correlated with

the residuals. This null hypothesis of no misspecification is rejected if the minimized
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GMM criterion function is greater than the value of a chi-squared distribution with the
degree of freedom equal to the difference between the number of moment conditions and
number of parameters. The validity of the moment conditions can also be evaluated with
the Sargan/Hansen-difference test, which checks the validity of extra moment conditions
over that of weak exogeneity. If the Sargan-difference test rejects the validity of these
extra moment conditions, then the strong assumption of strict exogeneity will be in
doubt. Aware that too many instrument variables tend to validated invalid results
through the Hansen J test for joint validity of those instruments, as well as the difference-
in-Sargan/Hansen tests for subsets of instruments, it is advised to restrict the number
of instruments by defining a maximum number of lags or by collapsing the instruments
(see Roodman (2006)).

Second, the Arellano-Bond test examines the serial correlation property of the level
residuals. If the level residuals were serially uncorrelated, then the first-differenced
residuals in (6) would, by construction, follow a MA(1) process. This would imply
that autocorrelations of the first-order are different from zero, while the second (ms)
or higher-ones are equal to zero. Applied to the residuals in difference, the miand msy
Arellano-Bond statistics test the null hypothesis of zero first-order and second-order
autocorrelation of the idiosyncratic disturbances. Knowing that Au,; is mathematically
related to Au;_q via the shared term u;_1, one can expect a first-order serial correlation
in differences. That is why, in order to check first-correlation in levels, we rely on the
Arellano bond test for second order autocorrelation (ms). An insignificant m;and/or
significant mso suggest the likely presence of invalid moment conditions due to serial

correlation in the level residuals.

3 A Monte-Carlo Study

In this section, we investigate the properties of using extended GMM to account for
the endogeneity of the spatial lag in a dynamic panel data context using Monte-Carlo
simulations. Simulation studies already showed that SYS-GMM is the right estimator
when the panel model includes a time autoregressive coefficient and several endogenous
variables. That is why we only focus here on the estimation of the spatial lag and its

consistency. The dynamic spatial lag panel data model is thus defined as follows:
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Y, = Y1+ WY, + BX; + ¢ (14)

€ = Yt u

where Y; is N x 1 vector, W is a N x N spatial weight matrixf| X, is an N x 1
exogenous variable, 7 is the individual effect while u; is the error term which is normally

distributed.

In order to check the consistency of the spatial autoregressive estimator, we consider

the following different designs with different period and cross-country sizes’}

T € {5; 20; 30; 40}
N € {5; 20; 50; 70}
5 € {0; 0.25; 0.5; 0.75)
pe {0; 0.25; 0.5; 0.75)
ped{l}

There is a total of 256 different designs (4 x 4 x 4 x 4). For each of these designs, we
performed 1000 trials. Note that for each design, the exogenous variables and spatial
weight matrices are generated once according to a standard normal distribution. In order

to compute the initial observations Yj, we create a 30 x 1 vector of initial disturbances:
o
€ = Z 5t5_t
t=0

We then construct the N x 1 vector of initial observations according to the following

equation:

Yo=(Iy —pW) " e+ (1—6)""n]

8Note that we only consider a balanced panel model to simplify the simulation process.
9Note that the designs with § and p € (0.5,0.75) are subject to high multicollinearity.
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The subsequent observations for ¢ = 1,...,T" are then generated according to the

following reduced form:
Yy = (Iy — pW) 7 61 + BX: + &

Following Kapoor et al. (2007) and Kelejian and Prucha (1999), we consider dif-
ferent types of spatial weight matrix. In each case, the matrices are row-standardized
so that all non zero elements in each row sum to one. The first three matrices rely on
a perfect "idealized" circular world, while the last ones consider a real-word weighting
scheme. The three "theoretical" spatial matrices, referred as "1 ahead and 1 behind"
(W1l), "3 ahead and 3 behind" (W13) and "5 ahead and 5 behind" (W1®), respectively,
are characterized by different degree of sparseness. Each are such that each location
is related to the one/three/five locations immediately before and after it, so that each
nonzero elements are equal to 0.5/0.3/0.1, respectively. The last two spatial weighting
schemes are based on real distance data. We consider the distance between capitals
among OECD countries and among non OECD countried'"] respectively. In order to
avoid giving some positive weight to very remote countries (with weaker cultural, po-
litical and economic ties), we consider the negative exponential weighting scheme. This
is done by dividing the distance between locations j and %k by the minimum distance
within the region r (where location j lies within region r):w (d; ) = exp (—d;/MIN;. ;)

if j £ k.

As mentioned previously, extended GMM relies on the specification of instruments.
In order to check if the estimated spatial lag coefficient is sensitive to the instruments
structure, we consider different approaches. Each endogenous variables (Y;_;, WY;) will

thus be instrumented by their

1. 2th and 3rd lags values, using the collapse option and the exogenous variable X;;

2. 2th and 3rd lags values, without the collapse option and the exogenous variable

Xi;

3. 2th and lower lags values, using the collapse option and the exogenous variables

X; and WXy

10The data is taken from CEPII database.
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4. 2th and lower lags values, without the collapse option and the exogenous variables

Xt and WXt,

As a measure of consistency, we consider the root mean square error (RMSE). The-
oretically, RMSE is defined as the square root of the weighted average of the mean and
the variance. We not only consider this definition but also the approximation given in
Kelejian and Prucha (1999) and Kapoor et al. (2007), which converges to the standard
RMSE under a normal distribution:

, 102 2
MSE = 24 —
RMS \/bms (1'35)

where the bias is the difference between the true value of the coefficient and the

median of the estimated coefficients; and () is the difference between the 75% and 25%
quantile. This definition has the advantage of being more robust to outliers that may

be generated by the Monte-Carlo simulations.

Since the results are qualitatively similar with respect to different spatial weight
schemes, for sake of brievty we only present the results for "1 ahead and 1 behind" W.

The full results are given in table 2 in appendix.

Monte Carlo Simulations Results

rho = .25; phi = .25

rho = .25; phi = .5

rho = .25; phi = .75

rho = .25; phi= 0

S .
rho = .5; phi = .25 rho = .5; phi = .5 rho =.5; phi=0 rho =.75; phi = .25
- —
o
=
EJ/ rho = .75; phi = 0 rho = 0; phi = .25 rho = 0; phi = .5 rho = 0; phi =.75
N =
s | e = - =
o — T -
T T T T = T T T T T T T T T T
0 10 20 30 40 10 20 30 40 0 10 20 30 40
rho = 0; phi =0
—_———
0 10 20 30 40
T
N=5 N =20
N =50 N =70

Figure 1: Monte-Carlo Simulation for 7" fixed
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Monte Carlo Simulations Results

rho = .25; phi = .25

rho = .25; phi= .5

rho = .25; phi = .75

rho = .25; phi = 0

0
o
rho = .5; phi = .25 rho = .5; phi= .5 rho = .5; phi =0 rho = .75; phi = .25
0
=
~~ = — e — _
o ©- — —
=
EI-J/ rho = .75; phi = 0 rho = 0; phi = .25 rho = 0; phi=.5 rho = 0; phi =.75
0 2
p= _ >~ -~
. — = - = - =
T T T T = T T T T T T T T T T
0 20 40 60 80 0 20 40 60 80 O 20 40 60 80
rho = 0; phi = 0
0
f—
_—
o
0 20 40 60 80
N
T=5 T=20
T=30 T=40

Figure 2: Monte Carlo Simulations for N fixed

The Monte Carlo investigation highlights several important facts:

e System GMM can estimate consistently the spatial lag p. However, the rate of
consistency is faster when 7' is fixed and N increases than when 7" increases for a

given cross-section N size.

When the sample and period size are relatively small, one should use extended
GMM carefully. The spatial autoregressive coefficient tend to be over-estimated.
This comes from the fact that unlike MLE, the spatial lag term is not bounded.
This becomes an important issue when the lagged dependent variable is signifi-
cantly not different from zero. In reality, this is relatively intuitive: when there is
no time dynamic, then extended GMM is no longer relevant. It is probably more

suitable to estimate the model using MLE.

When both spatial and time lagged coefficients are close to one, then the prob-
ability to face multicollinearity problem increases. This issue tends to disappear
once the number of cross-section N increases with T fixed, but not the other way

around.
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e The presence of exogenous variables reduces the probability to overestimate the
spatial autoregressive term. This was confirmed by comparing the results of a pure
first order dnyamic spatial autoregressive model and a mixed spatial autoregressive

specification.

4 Conclusion

This study shows that system GMM can estimate consistently the spatial lag coeffi-
cient as the N (T') increases with 7" (N) fixed. Until a new estimator that allows to
account for the endogeneity of the lagged dependent variable, spatial lag and other po-
tentially endogenous variables is found, applied researchers can apply extended GMM
to estimate "time-space simultaneous" models. However, one should be careful when
the sample is relatively small. This is especially true if one expects to obtain a small

time autoregressive coefficient.
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Note: see page 13-14 for explanation of the different instrument structures.
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