
MPRA
Munich Personal RePEc Archive

Grid-enabled estimation of structural
economic models

Victor Zhorin and Tiberiu Stef-Praun

Computational Institute

4. November 2008

Online at http://mpra.ub.uni-muenchen.de/11384/
MPRA Paper No. 11384, posted 5. November 2008 01:14 UTC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munich Personal RePEc Archive

https://core.ac.uk/display/213903515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/11384/


Grid-Enabled Estimation of Structural
Economic Models

Tiberiu Stef-Praun and Victor Zhorin

November 4, 2008

Abstract

In this paper we present our experiences with the execution of
structural economic models over the Grid using ”cloud computing”.
We describe cases of distributed implementation and execution of oc-
cupational choice and financial deepening models of economic growth.
We show how the application of Grid technology and resources natu-
rally fits the studies of economic systems, by allowing us to capture
effects of computationally challenging real-world characteristics such
as heterogeneity of wealth, talent and access costs among economic
agents.

1 Introduction

According to definition given by Ian Foster [1] a Grid is a system that:

1. coordinates resources that are not subject to centralized control;

2. using standard, open, general-purpose protocols and interfaces;

3. to deliver nontrivial qualities of service to meet complex demands.

One can not help but notice the conceptual similarity of the Grid with
standard Walrasian economic world having Walrasian auctionereer in form
of Grid-coordinating processes to deal with complex issues of inadequate
resource supply, incomplete (by design) information available for each pro-
cessing node, stochastic demand, heterogeneity of capabilities in available
computing agents as well as intrinsically unavoidable failures happenning

1



both due to the random shocks (hard drive crash, data segment missing in
transmission, coding errors) and systemic factors (system is down for main-
tanaince, overwhelming demand that prevents certain tasks from executing).

We can envision the whole hierarchy of computing systems ranging from
top-performing half-a-billion worth IBM BlueGene supercomputers to clus-
ters based on charity-donated desktop computers as a structure reflecting
real distribution of economic agents with different endowment in wealth and
talent, different access to information datasets and varying setup costs.

Algorithms encapsulated into the methods of a particular agent
can only be implemented using the particular information, rea-
soning tools, time, and physical resources available to that agent.
This encapsulation into agents is done in an attempt to achieve
a more transparent and realistic representation of real-world sys-
tems involving multiple distributed entities with limited informa-
tion and computational capabilities. [2]

Historically, the most powerful computing systems served the purpose of
advancing the progress in natural sciences and applied engineering, while
economics as a science developed using relatively parochial computational
tools and techniques, arguably at the expense of human societies which were
often reduced to poverty and misery resulting from untested economic and
policy innovations.

The wedge between the desire of modern society to better understand
and control financial and economic shocks rapidly propagating through all
population strata and the possibility to discover true relationships between
underlying economic parameters from existing economic theories is stunning.

While we are in a very early stage of using distributed computing systems
to properly model the richness of economic agents behavior in real world, it
is clear that lowering barriers to access grid computing is an essential step
to scale economic models up to the level required.

This paper discusses techniques which we have employed to enable the
development, deployment and execution of Matlab-based economic models
in a distributed environment such as the academic Grids.

For a primer case, we concentrate on two non-trivial exaples: one involves
testing Lloyd-Ellis & Bernhardt (LEB) occupational choice model using large
spatially linked dataset covering ≥ 75% of Thailand territory and the other
involves constructing artificial economies from Greenwood-Jovanovich (GJ)

2



model of economic growth with endogeneous financial deepening. Original
LEB and GJ models were taken from qualitative to to quantitative estimation
level by Robert Townsend, Xavier Gine, Hyeok Jeong, and Kenichi Ueda
[3, 4, 5].

2 The Models of Economic Growth, a Primer

and Examples

Understanding the failure of convergence in developing countries growth has
been one of the key puzzles in economics. Solid rejection of factors of growth
such as investments in physical capital, human capital in form of education,
difficulty in proving causal link between economic growth and political in-
stitutions and weak empirical evidence of the hypothesis on ”techological
backwardation” lead to legitimate question ”why hasn’t the world improved
like we thought it would?”[6]

As Abhijit Banerjee and Esther Duflo wrote in [7]:

...what we need to explain is less the overall technological back-
wardness and more why some firms do not adopt profitable tech-
nologies that are available to them (though perhaps not afford-
able).

Or, more generally, the basic problem of economics (more specifically of
mechanism design) of how to properly structure incentives so that people
respond to them in optimal way, what is stopping people from choosing the
kind of activities that could generate higher return (better life) is still largely
unanswered.

Though the problem is most acute in developing countries its implica-
tions go beyond that and apply to developed countries as well. However, for
empirical testing such possible growth factors as credit constraints, market
failures to insure enterpreneurial risks can be more clearly collected from
rich economic dynamics in transitional economies where different policies
and changing conditions dramatically affect the welfare of population with
directly observable survey data available.

Computational estimate of those factors is challenging due to intrinsic
heterogeneity among the agents and non-trivial barriers in access to capital
which do not allow to obtain easily computable closed-form solutions to test

3



on empirical data. The underlying complexity of economic models is un-
avoidable to properly account for observable ”anomalies”, which in fact are
so widespread that it is tempting to rather call perfectly clearing markets to
be an exception.

2.1 Capital-Constrained Occupational Choice

We start with occupational choice model since it would allow to demonstrate
the simplest way to transfer the computation process to large, publicly avail-
able academic computing resources.

The basis of this model is the household choice of occupation. A house-
hold at each time t has a choice to receive income at ”safe” (subsistence)
level γ, work as unskilled laborer at non-farm enterprise at wage w or start
a firm with potential profit π determined by:

π(bt, xt, wt) = max
kt,lt
{F (kt, lt)− wtlt − xt};

s .t . kt ∈ [0, bt − xt], lt ≥ 0
(1)

where production function has the most general quadratic form, which
can be viwed as an approximation to large class of production functions
possible

F (kt, lt) = αkt −
1

2
βk2

t + σktlt + ξlt −
1

2
ρl2t (2)

lt is supply of unskilled labor at market-cleared wage wt, kt is a capital
utilized, bt is initial wealth at start of the period t, xt is a randomly drawn
enterpreneurial cost from the following distribution

H(x,m(d)) = m(d)x2 + (1−m(d))x (3)

The distribution of setup cost x for entrepreneurs is what adds diversity
and complexity to the model. Those costs can vary both amongst different
social groups and amongst different spatially separate entities as well. It
is not directly observable but known to be distributed in the population
according to density H(x,m(d)). Parameter of distribution m depends on
spatial characteristics d and it is to be estimated from strcuctural modeling.

The end of period wealth available for consumption-saving choice would
then depend on possible three types of occupational choice

4



Wt+1(bt, xt, wt) =


γ + bt, if stays at subsistence level

wt − η + bt, if works for hire

π(bt, xt, wt)− xt − η + bt, if starts a business

(4)

Parameter η is an additional cost of living outside subsistence sector.
This model also takes into account financial intermediation by using ex-

ogeneusly specified financial deepening.
Townsend and Gine [3] explain in details how some parameters are cali-

brated to match initial sample data and others are recovered from empirical
data using maximum likelihood function estimations. This procedure, how-
ever, becomes computationally demanding as empirical dataset increases to
include larger sets of economic agents participating with tambons (small-
est agglomeration of villages) as representative economic agents. Since this
optimization problem is highly-nonlinear in nature with unknown and non-
convex structure of objective function it is hard to speed up computations
just by using grid resources for each point estimate as such.

However, to avoid bottleneck problems we can use cross-sectional MLE
parameters estimation by sorting the sample by some characteristic (for ex-
ample, distance from major roads or cities). Once the sample is sorted into
bins we can run estimation procedure in parallel for each subsample and re-
cover parameter variations as dependent from characteristic chosen to vary
across the sample. This procedure needs relatively few powerful computers
running in parallel, exclusively dedicated to this task for several days. How-
ever, if the problem is opposite, that is, if we need for LEB to model for small
samples requiring hours rather than days to converge and if we need to do
estimation for a multitude of such samples, then we want to consider using
larger number of grid nodes with less demand put on exclusive usage.

This dichotomy leads us to the next case to consider where parallelization
is essential and it naturally follows from the model structure.

2.2 Financial intermediaries and Risky Projects Insur-
ance

Townsend-Ueda quantitative model of economic growth with endogeneous fi-
nancial deepening [5] is based on the canonical model of Greenwood-Jovanovich
(GJ). It is a stochastic dynamic programming model with forward-looking

5



agents maximizing return of investment portfolio by choosing proportion of
”risky” and ”safe” assets. In terms of household s ”safe” return is guaran-
teed by staying in low-return occupation and ” risky” business is any enter-
preneurial activity with uncertain outcome. The safe projects return is δ and
enterpreneurial activity can result in θt+ε

s
t , where θt is aggregate stochastic

shock and εst is idiosyncratic shock specific for particular household s.
An economic agent can also choose to use financial services to finance

risky projects. Financial intermediaries provide two major services: 1) they
provide insurance against idiosyncratic shocks by pooling funds from many
enterpreneurs; 2) they select particular projects by having informational ad-
vantage over the agents in terms of better assessments of survivability of
the projects under aggregate shocks. When choosing to apply to financial
services the agents pay fixed entry cost q > 0 and variable per period cost
(1− γ) ∈ [0, 1]. A household s does not have to stay with the same project
all the time and it can rebalance risky project portfolio allocation φs

t ∈ [0, 1]
each time period Saving decisions are also endogeneous in this model and
agents are heterogeneous in initial wealth.

Given parameters of the model (discount factor, entry cost, risk aversion,
etc.) we can analytically estimate value functions for agents who join finan-
cial system and those who are never allowed to join due to restrictions. It
is harder to obtain value function for agents who are not joining and those
value functions are calculated numerically. There is no market clearance in
this model, each agent return is independent of others but since return de-
pends on wealth, the aggregate shocks will affect heterogeneously distributed
agents differently.

With value and policy functions calculated based on pre-calibrated set
of model parameters we can simulate the growth path of artificial economy
subjected to a sequence of shocks lasting 17 years for which we have observ-
able data. Then we perform Monte-Carlo simulations by randomly varying
the sequence of shocks with the actual growth path of economy representing
one of the possible Monte-Carlo realizations.

To deploy this model on the grid we have to clearly deliniate what each
artificial economy needs in terms of inputs, how to colect the outputs and
make final decision about choosing particular economy of interest out of
thousands simulated.

We restructured the code to allow for different mode of operations with
each artificial economy running on its own dedicated node with particular
policy function supplied. The set of policy functions is generated by master

6



nodes, each of which can correspond to a different set of underlying microeco-
nomic parameters. Once the master nodes finish the computations of policy
functions they send them to as many worker nodes as available and wait
untill they finish time-path of development under those policies. In the final
stage a collector checks results and compares them to observable time paths
of GDP per capita growth, Theil inequality index and financial participation.
This scheme allows flexible estimation of model parameters as well as trials
with easily replacable objective function and quick selection of particular
economy of interest.

3 High Performance Computing with The Grid

In an academic environment setting, High Performance Computing usually
means high-throughput execution of the research models on Grid computing
pools. We introduce in this section the concepts that define computational
Grids, the interfaces they provide to the users and the ways to efficiently use
such large computational resource pools.

3.1 Grid Infrastructure

Large scale computational resources can be classified in two main groups:
tightly-coupled systems, which pack together in a highly controlled, compact,
and efficient way a large number of identical hardware resources (e.g. IBM
BlueGene supercomputers), or loosely coupled systems, which are generally
built from commodity computers, connected through a local area network,
and controlled by a job manager software that allocates the resources as
needed.

Given the significant popularity of the loosely coupled parallel computing
environments, illustrated by the large computing Grids of the academic world
(TeraGrid, OSG, EGEE, etc) and by the similar infrastructure successes from
the commercial world (Amazon Elastic Computing Cloud, Google search
engine infrastructure, commercial Grid resource rentals from Sun, IBM, etc),
we will focus our discussion on these models. However similar principles and
discussions apply to tightly-coupled systems as well.

The structure of a Grid consists of a large pool of computers (or nodes),
all dedicated to running applications (or jobs) on behalf of the users, and
the pool has one special node in the pool, the head node, which is the place

7



where the user submits jobs to the pool, through the job manager interface.
An important observation for the application developer: the computing re-
source pool can be abstracted through the interface it exports to the user:
the user submits an application together with its inputs to the computing
cluster, then the job manager sends all these to one of its available resources
(nodes), and after the execution ends, it returns the results to the user. This
job submission abstraction is useful in two ways: First, sending jobs to the
Grid is conceptually similar to making a function call, so the application de-
velopers should feel comfortable with making their applications Grid-ready.
We discuss this in detail in the following section. Second, the universal
nature of the application invocation interface for submitting tasks to compu-
tational resources has been designed to hide away the heterogeneity and the
complexities of using many machines in parallel, and it has allowed for the
development of the Globus [8] middleware, a standardized universal layer for
accessing multiple Grid sites.

3.1.1 Using Computational Grid sites

The central idea has already been introduced: as long as the application can
be described as a set of tasks, and even better, if those tasks can be run in
parallel, independent of each other, the procedure of running an application
on the Grid is reduced to submitting the component tasks with the proper
inputs to the job manager in the right order.

Sending a single job to the Grid usually involves making sure that the
machines belonging to that Grid can actually run the task that the user
submits: the hardware, the operating system and all required libraries for
the application should be suitable for desired application. This step is usually
referred to as “installing the application into the Grid”. Once the application
is installed, the multiple invocations of can be easily instantiated through the
job manager. In different grid installations there are various job managers
software solutions: Condor, PBS, LSF, Sun Grid Engine, etc. The more
general alternative is to use Globus-enabled grids, which provide a universal
layer on top of the heterogeneous Grid sites, and hides away the specifics of
each resource pool through a standard job description interface.

Often, when the application is too big and requires very long time to
complete, or when reuse of the various application components is needed,
the model will need to be divided in several blocks, some of which are inter-
dependent. In such cases, the way to run the decomposed model on the grid

8



is to construct the dependency graph for the execution order of the blocks,
usually by determining the files that link outputs from one component to the
inputs of other components. Then that graph is passed to a workflow engine
that knows how (in what order) to send the components to be executed on
the grid. This procedure is similar to scripting, where the script interpreter
is a special piece of software that a) enforces the dependencies between the
pieces and b) takes care of the execution of the components.

There are several Grid-focused workflow-expressing tools, such as Con-
dor’s DagMan, Swift (from Globus), and we will introduce here our experi-
ences with the Swift workflow/scripting system.

3.1.2 Distributed execution overhead

The benefits of Grids (mainly simplified/standardized access to large com-
puter pools) do not come without a cost. Given that the resources are dis-
tributed across a network, there are latencies associated with transferring the
data to the machine allocated to the task. Also, especially in the academic
Grids, one has to keep in mind that these are shared resources, and therefore
the user might have to wait its turn to be serviced by some nodes in the
cluster. This wait in the job queue can some times be significant, as the
general rule is to serve jobs on a first-come-first served basis, with priority
given to smaller taks. A rule of the thumb is to have tasks that are no shorter
than 3-5 minutes and no longer than 2 hours, otherwise the overhead of us-
ing Grids might become significant. There are reservation mechanisms or
batching facilities to solve these issues, but they also require some overhead
to be set up.

3.2 Setting up a Computational Environment with Mat-
lab

The academic Grid sites have been set up to support scientific research. How-
ever, the heterogeneous requirements of each individual research model leads
in practice to the requirement that Grid users set up their own environment :
they need to make sure that their specific application can be run on that
specific Grid’s nodes.

Matlab is a very popular environment to build up economic models with
an optimization library (either internal to Matlab, such as fmincon or some
external one (knitro, ipopt, etc) plugged in. Hence, setting up the scientific

9



environment for computational economists translates into making available
both Matlab and solvers on the Grid.

The case of setting up a Matlab environment on the Grid is very illus-
trative, especially since one has to deal with restrictions due to the fact that
Matlab is commercial software and it needs a license in order to be run. In
a Grid environment, that means that it needs licenses on all the machines
where the pieces of Matlab codes are sent for execution, which could be very
costly. Fortunately, Matlab allows for the distribution of their run-time li-
braries (MCR) under non-restrictive license, and as long as the researcher
compiles his Matlab model (using the procedure described below) into an ex-
ecutable, setting up the code for the Grid simply consists of the compilation
and installation of the MCR libraries and of the executable onto the Grid
site.

Here is how one compiles Matlab code: Assume that the code consists of
a main program “main.m” and two dependencies “dep1.m” and “dep2.m”.
Below is included a snapshot from the Makefile that builds the executable
“mainapp” from the codes above:

compile-master:

/soft/matlab-7.5-r1/bin/mcc -o mainapp \

-W main -T link:exe -d . -v main.m -a dep1.m -a dep2.m

The result is a set of files in the bin folder, and the most important
ones are “mainapp” and “run mainapp.sh”, and these, together with the
MCR libraries are the ones that need to be installed on the Grid site. The
run mainapp.sh then needs to be invoked with the first argument the path
to the MCR libraries’ Grid installation location, e.g.:

/home/ba01/u102/stef/local/run_mainapp.sh \

/home/ba01/u102/stef/local/MCR-Purdue-X64/v77

It is worth mentioning that other alternatives are also available for run-
ning Matlab applications on the Grid. One relevant example is using Octave,
a free, fully Matlab-compatible programming environment, in conjunction
with invoking external libraries for solvers or other specialized codes. A
good reference is our previous work done to run a Moral Hazard economic
model on the Grid [9].

The working environment for the Grid can be considered as being set up
when it is ready to execute the application given proper inputs. This is a
one-time effort, after which, the general strategy consists of feeding proper

10



inputs to the same grid enabled application, as required by the economic
model. We detail below how this can be automated, the final goal being to
obtain the expected, correct results from the economic model.

3.3 Executing decomposed applications on the Grid
with Swift

What does it take to run an application consisting of several self-sufficient
blocks ? In the general example above we considered the Matlab code to be
the block that describes the model, and the numerical solver to be the block
that actually produces the results of the model. One has to note that the link
between the two blocks consists of the optimization problem description (be
it a set of equations or some numerical expression of those equations) which
is output the Matlab block and which is fed as an input to the optimization
software. For generality reasons, and to accommodate the possibility that
the Matlab block and the optimization block can each reside and execute on
different machines in the Grid, we choose to pass the outputs of upstream
blocks as inputs to downstream blocks as files. The steps for running the
case above consists of executing the (compiled) Matlab code on some Grid
site, retrieving the output (the representation of the optimization problem to
be solved) and passing it as a parameter to the solver block (which can take
place on some other node in a completely different Grid site). This simple
example also reiterates the usefulness of the simple interfaces made available
by Grids: the execute interface, and the file transfer interface.

In section four, we extend the discussion with significantly more complex
economic models, and we illustrate how we have decomposed those models
into blocks. In this section, we continue with the presentation of Swift, a
Grid scripting and workflow execution tool that enables users to express
and execute applications composed of modules with relatively more complex
dependencies amongst each other.

3.4 Swift Grid scripting tool

Swift is both a modeling language and an execution engine for the Grid. The
modeling part of Swift allows one to define the application blocks as atomic
procedures. Each of these atomic procedures are mapped by Swift into one or
mode installations of the corresponding specific code block on some Grid site.

11



Having multiple installations on different Grids for the same atomic block
means that Swift will be able to send in parallel all the invocations of that
atomic block to all the defined Grid endpoints. These atomic procedures
usually produce files as outputs (to allow for the transfer of their results
between execution nodes).

Swift also allows for using standard programming constructs such as
loops, conditional expressions and also for defining and manipulating complex
data structures (arrays, etc). All these are generally used to build compound
procedures which are generally used to express parallelism in invoking the
atomic procedures with different parameters (e.g. in parameter sweeps).

Handling of the inputs and outputs happens through a mapping mech-
anism which maps (usually) file objects within Swift to files names on the
local (as an input file) or remote machine (as a result file).

Once the problem workflow is defined (by expressing all the dependencies
- i.e. input and output files - between all the atomic procedures), invoking
Swift results in the execution of all those application blocks, in parallel if
possible, as long as they have the inputs defined (either as files that have
been provided locally by the user or as long as the upstream blocks which
generate inputs for the current block has been run successfully).

Swift will interface directly with the Grid sites, and hide the details of file
transfers and application block execution. It also provides its own scheduler
which balances the load of submitting applications to the Grid sites, and it
also handles errors and task resubmissions.

4 Grid Mapping and Execution of the eco-

nomic models

Coming back to the models mentioned in section two, we detail in this section
the decomposition of those models, the coding in Swift, mention issues with
preparing and running the models, and display and comment the results of
their execution on the Grid.

4.1 Occupational choice model

For the case of the Occupational Choice model, the main ”driver” for the
parallel execution is the input data set.

12



file modelOut, file paramOut) compiledLEB (file sampleIn, file paramIn, file dependencies[]){

app{

compiledLEB @filename(sampleIn) @filename(paramIn) @filename(modelOut) @filename(paramOut);

}}

We are driving the execution of the whole model by providing the sample
data sampleIn from the various spatial regions of the economy (at tambon
level, as mentioned above) in parallel as inputs, and by having the model run
on each of these data sets in parallel. The speed advantage from the Grid
comes from being able to logically disaggregate the Thailand input data into
administrative sub-regions, and from having those sub-regions-driven models
run independently of each other.

This version of running the model is more “lightweight” because the model
already has access to proper pre-computed structural parameters (in the
paramIn file) that resulted from fitting the model to the data. For an actual
structural estimation run, we vary the paramIn file (which contains the
combinations of the model’s parameters), and run the model again as a single
block in the the loops that vary the parameter values. The power of Grid
really comes in when your model is amenable to be run in loops (see the
foreach block below).

//having defined some ranges for the parameters ...

foreach mIndex in mRange {

foreach omegaIndex in omegaRange{

foreach gIndex in gRange{

//define output files to receive results

file outParam<single_file_mapper; file=@strcat("param-",mIndex,"-",omegaIndex,"-",gIndex,".out")>;

file outModel<single_file_mapper; file=@strcat("model-",mIndex,"-",omegaIndex,"-",gIndex,".out")>;

//invoke the LEB model

(outModel, outParam) = paramCompiledLEB (sampleIn, m+mStep*mIndex, omega+omegaIndex*omegaStep, \

beta, alpha, rho, sigma, gamma, xi, g+gIndex*gStep, nyu, dependencies);

} } }

4.2 Financial Intermediation model

The Financial Intermediation model is a better case for our discussion be-
cause it can be decomposed into computational blocks. Reviewing the de-
scription of this model from section two, one can observe that there exists a
“logical decomposition” of the model: one can isolate the part that computes
the policy and value function for the agents; also the part that simulates the
effect of the shocks on the economies can be run as a stand-alone compo-
nent (and all-together in parallel, replicated in N instances, as determined by
the Monte-Carlo procedure); and also the last part where the results of the

13



parallel runs are collected and compared to the real data from the economic
surveys.

It is important to remember that each of the block introduced above is
very likely to be executed on a different machine in the resource pool. This
means that the process of splitting up the code into pieces also requires a
global variables export stage at the end of the block, together with a global
variables import stage at the beginning of the following block, to ensure
the “continuity” of the code across different computing resources. This is
equivalent to a user-chosen checkpointing step in the code, where the relevant
variables in the memory are save to the disk, then the code is shipped off
to a new machine, the variables are re-loaded into memory, and the process
continues. For the case illustrated above, all the variables determined by the
value function and policy function computation, together with the variables
provided by the user as inputs are saved into the policyf ile and passed on to
all the parallel simulation blocks following the main procedure.

New to the monolithic-application Matlab developer is also the procedure
that collects all the outputs of the individual simulations into a single data
structure in memory, for further processing (the comparison of the computed
paths in our example). This scenario is known as a fan-in procedure, and has
two main aspects to it. The first aspect is the management of the parallel
execution processes, and of their outputs. Swift, as the parallel execution
engine, ensures (read: retries) on behalf of the user that all the blocks are run
and all the outputs are copied back from the remote resources, and that no
subsequent blocks are run before all the outputs have become available on the
local machine (the one which runs the application workflow through Swift).
This introduces the second aspect: the naming of the output files needs to
be such that when all the files are copied back they do not have conflicting
(identical) names, and also the names should be descriptive enough for the
subsequent block to be able to extract and store the results from each of
those files into its proper location in memory, in its corresponding variable.

5 Conclusion

We have reported our experiences with two complex economic models, and
we gave the reader an idea about the thought process and about the com-
putational tools that we have employed to map computationally constrained
problems onto large computing pools. We would like to emphasize that de-

14



signing and implementing models in a modular fashion, and keeping in mind
the possibility of running those codes in parallel on Grid computing resources,
is often a significant way of improving one’s capacity of solving bigger and
more realistic models.

The main result that we have achieved with decomposing and parallelizing
these codes is a significant (in some cases) speedup. For instance, with the
Financial Intermediation model, parallelizing the simulation of the shocks on
the economy has produced a 20x speedup as compared with the same run on
a single machine. These improvements are highly dependent on the structure
(internal dependencies) of the decomposed model and on the computational
resources that we were able to acquire at the time of running the models.

Regardless of the application specifics, the advantages which make Swift
a useful tool are the automated management of the execution of the models’
blocks and the obscuring of the details on interacting with and using of the
Grid computing resource pools.

We would like to acknowledge Robert Townsend and Ian Foster for initi-
ating and supporting this work

References

[1] Ian Foster, 2002. What is the Grid? A Three Point Checklist.,
http://www-fp.mcs.anl.gov/ foster/Articles/WhatIsTheGrid.pdf.

[2] Leigh Tesfatsion, Agent-based Computational Economics: A Construc-
tive Approach to Economic Theory, 2006. Handbook of Computational
Economics, Volume 2., Elsevier.

[3] Xavier Gine and Robert Townsend (2004). Evaluation of Financial Lib-
eralization: a General Equilibrium Model with Constrained Occupation
Choice. Journal of Development Economics 74,269-307.

[4] Hyeok Jeong and Robert Townsend (2008). Growth and Inequality:
Model Evaluation Based on an Estimation-Calibration Strategy. forth-
coming, Macroeconomic Dynamics.

[5] Robert Townsend and Kenichi Ueda, Financial Deepening, Inequality,
and Growth: A Model-Based Quantitative Evaluation. Review of Eco-
nomic Studies (2006) 73, 251-293.

15



[6] William Easterly (2002), The Elusive Quest for Growth: Economists’
Adventures and Misadventures in the Tropics. MIT Press. 356 pp.

[7] Abhijit Banerjee and Esther Duflo (2005). Growth Theory through the
Lens of Development Economics. In P. Aghion and S. N. Durlauf (Eds.),
Handbook of Development Economics, pp. 473-552. Elsevier B.V.

[8] Globus: A Metacomputing Infrastructure Toolkit. I. Foster, C. Kessel-
man. Intl J. Supercomputer Applications, 11(2):115-128, 1997.

[9] Stef-Praun, T., Madeira, G., Foster, I., and Townsend, R. (2007) Accel-
erating solution of a moral hazard problem with Swift e-Social Science
Conference, Ann Arbor, MI

16


