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Abstract

This paper has a twofold purpose; the first is to present a small macroeconomic

model in state space form, the second is to demonstrate that it produces accurate

forecasts. The first of these objectives is achieved by fitting two forms of a structural

state space macroeconomic model to Australian data. Both forms model short and

long run relationships. Forecasts from these models are subsequently compared to

a structural vector autoregressive specification. This comparison fulfills the second

objective demonstrating that the state space formulation produces more accurate

forecasts for a selection of macroeconomic variables.

keywords: State space, multivariate time series, macroeconomic model, fore-

cast, SVAR.

∗Comments made by Richard Heaney and George Tawadros on earlier drafts of this paper were greatly
appreciated. Any errors are the sole responsibility of the author.

1



1 Introduction

The purpose of this paper is twofold; one, demonstrate how a state space model

may be formulated to capture the character of a structural vector auto-regressive

model, and two, show how this specification is useful for forecasting purposes. This

formulation will be referred to as a structural state space model.

Capturing economic relationships using a state space specification is not new.

Aoki & Havenner (1991) for instance model various US macroeconomic variables

including GNP and money stock. Another example is Balke & Wohar (2002) who

model low frequency movements of stock prices. A relatively recent example is Pan-

her (2007) who considers monetary and economic identities.

One key advantage of utilising the state space approach is that inter-series rela-

tionships can be disaggregated to the latent component level. This provides a greater

degree of insight which may be useful for policy analysis.

The structural state space model presented comprises two latent components for

each variable. They are referred to as the permanent and transitory component.

These components are specified such that they capture the long and short run rela-

tionships between variables. The specification is similar to the state space form of

the Beveridge-Nelson decomposition (Morley 2002).

The state space model described in this paper nests the structural vector autore-

gression (SVAR) specification. Eleven variables are used, six of which are classified

domestic as they can be considered to be within the sphere of influence of Aus-

tralian government authorities. The remainder of the variables represent the rest of

the world. As Australia is considered to be a small economy these variables are

considered to be determined “outside” the Australian economy.

The structure of this paper is as follows, a brief contextual outline is presented in

Section 2. In Section 3 the proposed state space approach is shown to be flexible

and simple to implement. The results of a forecast exercise are presented in Section

4. In Section 5 some concluding remarks are presented.

2 Background

The number of frameworks that have been employed to model relationships be-

tween macroeconomic variables are too numerous to mention. They include: Gen-

eral Equilibrium models (Dixon et al. 1997); various Bayesian frameworks (Nimark
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2007); and Dynamic Stochastic General Equilibrium (DSGE) specifications (Mathe-

son 2006). Arguably, the most popular in recent times (at least in the Australian and

New Zealand context) is the DSGE alternative. A technique that is also popular is

the Structural Vector Auto-Regressive (SVAR) framework (Berkelmans 2005, Buncic

& Melecky 2008, Fry et al. 2008).

As well as there being many frameworks, the size of these applications also vary

significantly, ranging from bivariate models (Moosa 1998) to large scale formulations

(Monash Model, Dixon & Rimmer 2002). A problem with large scale models is that

they can be particularly difficult to implement as they require the imposition of strong

economic assumptions that are often hard to verify1.

Although the class of macroeconomic models is large and diverse, any two mod-

els may be compared using the following two principles, degree of theoretical coher-

ence and degree of empirical coherence. In every formulation a trade-off between

these two principles occur. For example: relative to the SVAR, the DSGE has more

theoretical coherence, whereas, the SVAR has more empirical coherence (Pagan

2003).

As the new formulation adopts the character of a SVAR approach it must also

share its qualities. That is, it has more empirical but less theoretical coherence than

the DSGE approach. However, as the structural state space formulation explicitly

models the permanent component, in this sense it may have more theoretical coher-

ence than the SVAR. Therefore, the framework presented might be considered to be

an improvement on the SVAR approach.

3 The State Space Model

The three key advantages2 of the state space approach when compared to the (vec-

tor) ARMA alternative are generality, flexibility, and transparency. For example, as

shown in this paper, it generalises easily to a multivariate formulation. The flexibility

of the framework is demonstrated by its ability to handle data irregularities such as

structural breaks. Finally, each series is decomposed into a set of latent components

that are directly estimated, thus illustrating the transparent nature of this approach.

The nature of these components is that they are determined before the model is fitted

1This problem is avoided in this paper as a small data set comprising only eleven variables has been
used.

2For an in depth discussion regarding the advantages of a state space approach refer to Durbin & Koop-
man (2001, pages 51–53)
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and are based on the stylised characteristics of the data. In addition, their contribution

may be gauged providing valuable insight into the underlying dynamics3.

The formulation adopted in this paper resembles the state space or unobservable

component form of the Beveridge-Nelson decomposition. This specification, in its

univariate form, has been employed in many instances. Perhaps the most notable

are Harvey & Jaeger (1993) and Proietti (2002). The multivariate form has also been

employed, applications include Morley (2002) and Sinclair (2005).

The link between the state space formulation presented in this paper and the

more common multivariate time series approaches has long been established (Har-

vey 1989, pages 431-432). It is important, however, to appreciate that analytical

equivalence does not automatically imply empirical equivalence (Hyndman 2001,

Morley et al. 2003).

The general specification for a N -variable system proposed is:

yt = µt + Wτt + ΘXt + εt, εt ∼ N(0,Σε) (3.1)

µt+1 = δ + µt + Rµηt, ηt ∼ N(0,Ση) (3.2)

τt+1 = Φ(L)τt + Rτζt, ζt ∼ N(0,Σζ), (3.3)

where yt,µt and τt denote N -vectors of observations, permanent components, and

temporary components at time t. Similarly δ is also an N -vector and represents a set

of constants. The term Φ(L) represents a polynomial function of the lag operator L,

that is Φ(L) = Φ1L + Φ2L
2 + . . . + ΦpL

p where Liyt = yt−i. Two N × N coefficient

matrices are specified, Φ and W . The Φ’s are estimated subject to the roots of the

polynomial function being larger than one, that is stationarity is imposed. The distur-

bances are assumed to be diagonal, independent and follow a Gaussian distribution.

They are denoted as εt, ζt and ηt. The matrices Rµ and Rτ are coefficient matrices

of dimension N ×N . For the remainder of this paper Rτ is constrained to be identity

matrix (IN ). The term Xt denotes a set of exogenous variables at time t. The coeffi-

cient matrix Θ measures the influences of the exogenous variables. In the context of

this paper, Xt corresponds to a set of q dummy variables.

The first equation, equation (3.1), represents the observation equation. It depicts

the vector of observations being comprised of two latent components, the perma-

nent and transitory component. The transitory component feeds into the observation

equation through the coefficient matrix W .

3As the aim of this paper is demonstrate the forecasting advantages of this specification the estimated
components are not presented. They are available upon request.
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Equations (3.2) and (3.3) represent transition equations. The first of these is the

permanent component which is specified to be a random walk with drift. This may

also be referred to as the long run component. The second of these equations is

referred to as the transitory or short run component. The influence of this compo-

nent declines as the horizon increases. The temporary component is often referred

to as the cyclical component. The long run character of this specification may be

summarised as:

lim T →∞ yT = µ0 + δ(T − 2) + Rµ

T−1∑

i=1

ηt−i + W

T−1∑

i=1

Φ(L)ζT−i. (3.4)

Equation (3.4) shows that a set of observations at time T is determined by a

set of constants µ0, deterministic linear trends (with growth rates), stochastic trends
∑T−1

i=1 ηt−i and stochastic mean reverting processes
∑T−1

i=1 Φ(L)ζT−i.

3.1 Adopting a SVAR characterisation

In practice, before a SVAR can be fitted, the variables must be made stationary.

This is typically done by a series of transformations. In contrast, the structural state

space specification models the non-stationarity component explicitly in the form of a

permanent component equation.

By letting ỹt denote an N -vector of stationary observations at time t, for t =

1, 2, . . . T , a SVAR(3) may be written as:

Bỹt = Ψ1ỹt−1 + Ψ2ỹt−2 + Ψ3ỹt−3 + et, et ∼ N(0, Σe) (3.5)

where B and Ψi (i = 1, 2, 3) denote coefficient matrices of dimension N ×N . In order

for B to be identifiable, there must be N(N−1)
2 restrictions imposed. Typically this is

achieved by constraining B to be lower triangular. In addition, the covariance matrix

Σe is also constrained to be diagonal.

The transitory component of the structural state space model captures the sta-

tionary dynamics of a series and therefore may be formulated to adopt the character

of a SVAR specification. In particular, the characteristics of the SVAR specification

denoted in equation (3.5) may be incorporated into the structural state space model
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in the following way:

yt = µt + Wτt + ΘXt + εt, εt ∼ N(0,Σε), (3.6)

µt+1 = δ + µt + Rηηt, ηt ∼ N(0, Ση), (3.7)

τt+1 = Φ1τt + Φ2τt−1 + Φ3τt−2 + ζt, ζt ∼ N(0, Σζ). (3.8)

The similarity between the SVAR model specified in equation (3.5) and the structural

state space model (equations (3.6) to (3.8)) is revealed by equating τt to ỹt, W to B

and Φ to Ψ. Arguably, τt can be regarded as being a proxy for ỹt.

3.2 Two Macroeconomic Models of the Australian Economy

Both models proposed incorporate the characteristics of the SVAR model proposed

by Dungey & Pagan (2000). There was no particular reason for choosing the Dungey

& Pagan (2000) model except that it is the most well known Australian SVAR specifi-

cation. In general the characteristics of any SVAR may be imposed on the framework

denoted by equations (3.6) to (3.8).

Two structural state space models are presented. The first treats the permanent

components as being independent. In contrast, the second allows the permanent

components to be related by estimating the off-diagonal elements of Rµ
4.

The data set employed differs from Dungey & Pagan (2000) in that nominal in-

stead of real interest rates are used. The list of variables used are presented in Table

1.

OVERSEAS
USGDP US real Gross Domestic Product
TOT Terms of Trade
USR 90-day US Treasury Bill
USQ US Q ratio
EXPT Real Chain Weighted Exports
DOMESTIC
AUSQ Australian Q ratio
GDP Gross Domestic Product (Chained Volume Measure)
GNE Real Gross National Expenditure
INF Annual inflation rate
A3R 3-month Bank Bill
RTWI Real Trade Weighted Index

Table 1: Brief description of data set, see Appendix A for more details.

4For identification purposes the diagonal values of Rµ are constrained to equal one
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Dungey & Pagan (2000) summarised the philosophy behind their model in three

points. First, Australia is a small open economy, therefore it cannot influence over-

seas markets. Second, a variable and all its lags would only be eliminated if it could

be justified. Third, some equations, like the inflation equation, reflect the findings of

single equation research. Having applied these three criteria, the restrictions applied

to the coefficient matrices W and Φ are summarised in Tables 2 and 3.

Independent Variable
USGDP TOT RUS USQ EXPT AUSQ GNE GDP INF CASH RTWI

USGDP 1
TOT * 1
RUS * 1
USQ * * 1
EXPT * * 1
AUSQ * * * 1
GNE * * 1
GDP * * * * * 1
INF * * 1
CASH * * 1
RTWI * * * * * * * * * 1

Table 2: Contemporaneous Restrictions: * indicates a parameter is estimated, a value
of 1 is imposed for all diagonal elements and blank cells indicates no parameter is esti-
mated, i.e., restricted to zero

Independent Variables
USGDP TOT RUS USQ EXPT AUSQ GNE GDP INF CASH RTWI

USGDP * *
TOT * * *
RUS * *
USQ * * *
EXPT * * *
AUSQ * * * * * * * * *
GNE * * * * ** ** *
GDP * * * * * * ** ** *
INF * * * *
CASH * * * *
RTWI * * * * * * * * * *

Table 3: Restrictions on Autoregressive matrices, * denotes all lags of the variables are
present, ** denotes only the second and third lags are present. Blank cell indicates no
parameter is estimated, i.e., restricted to zero.

Enforcing these restrictions means that both state space models retain the key

characteristics of the SVAR outlined by Dungey & Pagan (2000). That is, the block

recursive nature of the system and the ordering of the variables. Although allowing
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the off-diagonals of Rµ introduces a new set of relationships, these are confined to

the permanent component. The two macroeconomic state space models applied take

the form previously stated except Rζ = IN (see equations (3.6) and (3.8)).

The first and second models will be referred to hereafter as SSM1 and SSM2

(structural state space model one/two). SSM2 will model the basic form of long run

association between the eleven variables.

3.3 Estimation

Before the likelihood function is presented, the general form of equations (3.1) to (3.3)

is formally defined. These equations may be rewritten in the form of a two equation

system as:

yt = Ztαt + εt, εt ∼ N(0,H) (3.9)

αt+1 = Tαt + Rνt, νt ∼ N(0, Q). (3.10)

The models presented in the previous two sections are attained by setting:

Zt =
[

I B ON ON Xt

]
, αt =




µt

τt

τt−1

τt−2

Θ




T =




IN ON ON ON ON,q

ON Φ1 Φ2 Φ3 ON,q

ON IN ON ON ON,q

ON ON IN ON ON,q

ON ON ON ON Iq




, R =




Rτ ON ON ON ON,q

ON IN ON ON ON,q

ON IN ON ON ON,q

ON ON ON ON ON,q

Oq,N Oq,N Oq,N Oq,N Oq




νt =




ηt

ζt

0N

0N

0q




,
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where Ik and Ok denote the identity and null matrices of dimension k×k respectively.

The terms 0k and Oi,j denote a k-vector of zeros and a null matrix of dimension i× j.

The estimation of this framework is straightforward. The likelihood to be max-

imised is

log L(Λ) =
NT

2
log 2π − 1

2

T∑
t=1

log |Ft| − 1
2

T∑
t=1

ν′tF
−1
t ν ′t. (3.11)

The likelihood is calculated using the Kalman Filter. The prediction equations are

given by

at+1 = Tat|t, (3.12)

Pt+1 = TPt|tT ′ + RQR′. (3.13)

The updating equations are

at|t = at + PtZ
′F−1

t νt, (3.14)

Pt|t = Pt − PtZ
′F−1

1 ZP ′t , (3.15)

where

νt = yt − d− Zαt, (3.16)

Ft = ZPtZ
′ + H. (3.17)

Before the estimation procedure can be employed, a set of initial conditions need

to be determined. These initial conditions specify seed values for the states (α0 =

[µ0, τ0, τ0, τ0,Θ0]) and their variances P0 and Q0. Starting values for the coefficients

(W , Φ, δ and R) also need to be determined.

Initial values for µ, τ and δ are determined simultaneously by running a linear

regression model. Specifically, the first ten observations of each variable (yi, i =

1, .., N ) are regressed against a constant and a time trend. The initial value for the

permanent state is set to be the constant. Similarly, the estimated linear time trend

coefficient is used as the starting value for δ. Finally, the initial values of the temporary

state5 are set to be the median of the residuals.

As the estimation process is initiated with a diffuse prior, P is set to be an identity

matrix with dimensions of 4N +3, multiplied by a large number. Before this estimation

5Three initial values are required as an VAR(3) is being fitted
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procedure is conducted however, the variances relating to Θ are constrained to be

zero, thus Θ is time invariant.

Two other second moment matrices need to be given starting values. These are

H and Q. The seed values for H correspond to the variance of each series. The

structure that is imposed on P is also imposed on Q. The first N leading diagonals

are set to be the variance of each series. The following 3N leading diagonals are set

to be the variance of the first difference. Finally, the remaining three diagonals are

set to be zero.

According to Table 2, only a subset of elements are non-zero. These non-zero

elements are given a starting value of 0.8 as this was found to work well in practice.

Each Φ was set to be diagonal. The diagonal values were determined by fitting an

AR(3) to each variable.

As the exogenous variables are yet to be identified, the starting values for Θ will be

discussed briefly in the next section. The final set of coefficients that require starting

values are those in Rµ. As no prior information is available on what these values

might be, the matrix is initially set to be an identity matrix.

3.4 Specification of exogenous variables

The model is fitted to a data set of quarterly observations spanning 20 years. These

observations are non seasonal. The earliest observation corresponds to the first

quarter of 1985. Observations in years 2005 and 2006 are retained for an out-of-

sample forecast comparison. Plots of each variable is presented in appendix B.

Examination of the eleven variables suggests that three dummy variables is ap-

propriate. Each of these indicator variables relate to a specific domestic macroe-

conomic variable. The first is a double pulse dummy which is assigned to AUSQ.

This dummy variable captures the extraordinary growth observed in the second and

third quarters of 1987. The variable is given a value of 1 for these quarters and zero

elsewhere. The A3R variable exhibits a shift in the mean post 1992. Therefore the

variable is specified to be one pre-1992 and zero elsewhere. A similar story is also

evident for inflation. An inspection of the series reveals the Australian economy ex-

perienced considerably higher growth rates in the period 1985 to 1992, quarter 2. As

such, a dummy variable is specified to capture this phenomenon.

Having identified the exogenous variables, the starting values for Θ can now be

determined. In all three cases the linear trend equation that was outlined earlier is

modified to include the dummy variable. The estimated coefficient is then used as
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the starting value for Θ.

4 Forecast comparison

The forecasting accuracy of the two structural state space models are compared by

conducting a roll-out forecasting comparison. As indicated in an earlier section the

observations corresponding to years 2005 and 2006 were withheld. These obser-

vations are now employed in a roll-out forecasting exercise. The maximum horizon

length is eight quarters.

The first batch of forecasts spans eight horizons and was generated by fitting the

SVAR, SSM1 and SSM2 to data ranging 1985 quarter 1 to 2004 quarter 4. The

second batch of forecasts spans seven horizons and was generated by fitting the

three alternatives to data ranging 1985 quarter 1 to 2005 quarter 16. This incremental

procedure was repeated eight times. The final prediction was a one step ahead

forecast corresponding to quarter 4 of 2006.

The measure used to compare the forecast accuracy is the mean absolute scaled

error (or MASE for short, Hyndman & Koehler 2006). This measure is chosen as

it is numerically robust, unlike conventional measures such as the mean absolute

percentage error (MAPE) and root mean square error (RMSE). Furthermore, the

measure is unitless and as such can be averaged across series. For an h-step head

forecast the MASE is:

MASE(h) =
|eT+h|

1
T−1

∑T
t=2 |yt − yt−1|

As indicated above, the MASE is calculated by dividing the absolute forecast error by

the average of the absolute within sample first difference.

Three aspects of forecast accuracy will be examined. The first will consider the

accuracy across the entire data set. The second will focus on each variable sepa-

rately. The last will compare the approaches across horizons.

As part of the proceeding forecast evaluation formal hypothesis tests are con-

ducted. The test used is the Wilcoxen test. This test is a non-parametric test and

therefore is a function of order rather than magnitude. The motivation for using this

test is that at longer horizons the sample size is very small7.

6Before the models were fitted each variable was standardised by dividing through by its standard devia-
tion

7Performing a Wilcoxen test is in keeping with Diebold & Mariano (1995, page 255)
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4.1 Results

The relative forecasting accuracy of the state space models outlined earlier are as-

sessed in this section. The comparison begins by analysing overall forecasting accu-

racy.

Overall Domestic Variables
Statistic SVAR SSM1 SSM2 SVAR SSM1 SSM2
Min. 0.000 0.000 0.001 0.001 0.000 0.001
1st Qu. 0.013 0.030 0.020 0.016 0.016 0.013
Median 0.036 0.063 0.047 0.043 0.035 0.026
3rd Qu. 0.090 0.134 0.125 0.107 0.064 0.049
Max. 1.089 0.673 0.698 1.089 0.336 0.335
Mean 0.090 0.109 0.097 0.134 0.056 0.045

Table 4: Five Number Summary and Mean of Forecast Accuracy by Model

Table 4 displays a statistical summary of the overall forecasting accuracy for each

of the three approaches. By construction, all the scores are strictly non-negative. As

each raw score measures forecast error, a relatively smaller value is desirable.

The statistical measures used to summarise forecasting performance are the min-

imum, 1st quartile, median, 3rd quartile, maximum and mean. Table 4 is separated

into two sections. The first is a general overview, the second considers a subset

corresponding to the domestic variables {AUSQ, GNE, GDP, INF, A3R, RTWI}.
For the domestic subset each statistic (excluding the minimum) indicates that the

state space models are noticeably more accurate. This is especially true for SSM2

where long run interrelationships are explicitly modeled. This conclusion is best illus-

trated by a comparison of the means, which show that the state space models have

inaccuracy measures less than half of that of the SVAR.

A similar analysis of the forecasting accuracy at the overall level does not indicate

the same conclusions, however the maximum values seem to indicate that the state

space models are more robust. Furthermore, as shown shortly, these results are

skewed by two poor performances and therefore not indicative of the true overall

performance. In addition, as the model is designed for an Australian context, it is the

variables which are within Australia’s sphere of control which are of primary focus. It

is these domestic variables that the state space models are better at predicting.

The second comparison examines forecasting accuracy on a variable by vari-

able basis. Positive values indicate that the state space models are more accurate.

The Box and Whisker plots show that in eight instances the state space alternatives
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Variable SSM1 SSM2
USGDP 1.000 1.000
TOT 1.000 1.000
RUS 1.000 1.000
USQ 1.000 0.972
EXP 1.000 0.999
AUSQ 1.000 1.000
GDP 1.000 0.951
GNE 1.000 0.960
INF >0.001 >0.001
A3R 0.020 0.004
RTWI >0.001 >0.001

Table 5: P-values relating to a one-sided Wilcoxon test for each variable, the test being:
H0 : SSMMASE ≥ SV ARMASE v H1 : SSMMASE < SV ARMASE

performed at least as well as the SVAR alternative. In particular, the state space

approaches performed noticeably better for the variables: USQ, EXPT, INF, A3R and

RTWI.
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Figure 1: Forecast Comparison by Model.

Table 5 formally evaluates the differences between the state space models and

the SVAR alternative. The test employed was the Wilcoxon-test which is a non-

parametric test with the null corresponding to the case when the state space forecasts

are greater than or equal to the the SVAR alternative.

The results presented in Table 5 indicate that the state space approaches per-
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formed significantly better for three variables, inflation, Australian three month trea-

sury rate and real trade weighted index.
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Figure 2: Forecast Comparison by Horizon (Domestic subset only).

Figure 2 displays the relative forecast accuracy for over horizons one to eight for

the domestic subset only. Careful examination of this figure suggests that as the

horizon increases the state space alternative becomes relatively more accurate. This

is especially true for the SSM2 which models the long run interrelationships.

Horizon SSM1 SSM2
1 0.066 0.008
2 0.175 0.061
3 0.037 0.006
4 0.040 0.001
5 0.071 0.015
6 0.036 0.011
7 0.042 0.014
8 0.094 0.031

Table 6: P-values relating to a one-sided Wilcoxon test for each horizon (domestic subset
only), the test being: H0 : SSMMASE ≥ SV ARMASE v H1 : SSMMASE < SV ARMASE

Using the Wilcoxon-test to verify the pattern observed in the box and whisker plots

confirms the better performance of the state space approach. According to Table 6,

at the 10% significance level only once can the null not be rejected. That is, across all

horizons for the SSM2, and all but the second horizon for SSM1, the forecasts from
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the state space alternative are superior.

5 Conclusion

The purpose of writing this paper was twofold, one to illustrate how the state space

approach can be formed to represent a small open macroeconomic model and two,

demonstrate that forecasts from this adaption are accurate. On both accounts this

paper has satisfied these objectives.

In particular, the first objective was achieved (in part) by showing how the charac-

ter of a SVAR specification may be incorporated into a structural state space model.

Furthermore, long run (inter) relationships were explicitly modeled and showed to

have a positive effect on forecast accuracy at longer horizons. Also, the advantages

of the state space model were presented, these being generality, flexibility and trans-

parency.

Improvements in forecast accuracy have also been demonstrated. This was par-

ticularly true for the domestic subset. In general the Box and Whisker plots of the

previous section demonstrate that the structural state space model performed at least

as good as the SVAR on eight occasions.

In summary, the evidence provided suggests that the structural state space ap-

proach is a useful forecasting tool that can yield significant improvements when com-

pared to a standard alternative.
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A Description of Data used

USGDP Real Gross Domestic Product of USA. Data Source: Bureau of Economic

Analysis {http://www.bea.gov/}, issue date 20/12/2007.

TOT Terms of Trade (AUS). Data Source: Australian Bureau of Statistics, Catalogue

5206, Table 1.

USR 3 month US Treasury Bill. Data Source: Federal Reserve. Identifier: H15/H15/RIFSGFSM03 N.M.

This series was calculated by averaging the monthly observations for each quar-

ter.

USQ US Q ratio. Calculated by averaging the monthly S&P500 index and then di-

viding it by the USA Implicit Price Deflator. The IPD was downloaded from the

Bureau of Economic Analysis.

EXPT Real exports of Goods and Services. Source: Datastream, Code: AUOCFEGSD.

AUSQ Australian Q ratio, calculated in the same way as USQ. Date Source: Austal-

ian Bureau of Statistics (ASX200) and Reserve Bank of Australia (IPD).

GDP Chain Weighted Volume Gross Domestic Product of Australia. Source ABS,

Table 5206.0.

GNE Australian Gross National Expenditure. Source: Datastream

INF Consumer Price Index (all groups), source DataStrean
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A3R 3-month Bank Bill. Average of monthly observations. Source: RBA

RTWI Real Trade Weighted Index, source RBA
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B Plots of the Data
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Figure 3: Plots of overseas.
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Figure 4: Plots of domestic variables.
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