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INVESTING IN ARMS TO SECURE WATER

JOHANNUS A. JANMAAT
ECONOMICS, UNIVERSITY OF BRITISH COLUMBIA OKANAGAN
ARJAN RUILJS
ROYAL HASKONING

ABsTracT. Where nations depend on resources originating outside their bor-
ders, such as river water, some believe that the resulting international tensions
may lead to conflict. Homer-Dixon (1999) and Toset et al. (2000) argue such
conflict is most likely between riparian neighbours, with a militarily superior
downstream ’leader’ nation. In a two stage stochastic game, solutions involv-
ing conflict are more common absent a leader, where a pure strategy equilibria
may not exist. When upstream defensive expenditures substitute for water
using investments, a downstream leader may induced an arms race to increase
downstream water supplies. Water scarcity may not be a cause for war, but
may cause a buildup in arms that can make any conflict between riparian
neighbours more serious.

1. INTRODUCTION

Water scarcity is expected to be one of the most serious resource issues of the
twenty-first century, particularly in the developing world (Rosegrant, 1997). In the
literature on conflict and cooperation in water management, two separate schools
of thought can be distinguished. One fears that as populations grow and demand
expands, disputes over water allocation may lead to violent international conflict
(Serageldin, 1995), particularly where water is already scarce (Falkenmark, 1990;
Gleick, 1993; Sandler, 2000). In contrast, others argue that scarcity will promote
increased cooperation (Giordano et al., 2002; Giordano and Wolf, 2003; Wolf et al.,
2003; Dinar and Dinar, 2004), citing as support the absence of strong empirical
evidence that past wars have been fought over water. The fears that wars will be
fought over water seems to be borne out by the popular belief that wars are more
common in arid regions. However, to reconcile this with the lack of evidence that
water disputes have triggered wars, as an alternative we consider how disputes over
water may set the conditions for war by encouraging military spending.

A very superficial examination of the data is weakly supportive of the hypothesis
that the more sensitive an economy is to water scarcity, the greater the share
of economic output spent on the military. Figure 1 plots, for all nations with
World Resources Institute water availability data and World Bank military and
development data, military expenditure as a share of GDP against the per capita
renewable water supply, dependency - the share of the water used in a nation
that comes in from outside, and the share of the national economy represented
by agriculture. With an admittedly healthy dose of imagination, one can see that
military spending decreases with water availability, increases with dependency, and
with the importance of agriculture to the national economy. The effect appears
strongest when water availability is low. However, the fact that the relationship is
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at best weakly apparent in the graphs suggests that there may be other effects or
interactions not captured in this visual representation.

[Figure 1 about here.]

As there are almost certainly a range of variables that affect military expendi-
tures, it is unlikely that the relationships will stand out strongly in a graph. The
data can be explored in a bit more depth with regressions. Table 1 shows multiple
regression results for two regressions using all the data, and two for nations with less
than 10,000 m? of water available per year per person. Given the failure to account
for political factors beyond corruption and stability, it is not surprising that the
explanatory power of the models is very low. However, there is some weak evidence
of a link between water availability and military spending. For all the data, increas-
ing water availability correlates with a decrease in military spending, as a share of
GDP, with statistical significance for nations where per capita water availability is
low. Although not significant, the relationships between dependency and the share
of agriculture’s value in GDP are suggestive. As the dependency increases, military
spending increases, whether we consider all the data or the more arid subset. As
the importance of agriculture increases, military expenditure increase for the total
dataset, but declines in the arid part of the dataset. To rationalize this, perhaps
some nations, such as Kuwait and Saudi Arabia, are so arid that agriculture ceases
to be an important component of the economy. A nation’s military spending is
certainly the result of a complex decision environment, so that it is not surprising
that it is difficult to find any statistically significant results. However, they are not
inconsistent with the idea that water scarcity and military spending are related, a
relationship which we explore with the model developed in this paper.

[Table 1 about here.|

This casual empiricism suggests that military spending may be influenced by wa-
ter availability. However, there is considerable doubt about whether water scarcity
leads to international conflict. If military conflict is not a tool for securing water,
then assuming these empirical results are valid, the question is why would water
scarcity lead nations to have higher levels of military spending. Assuming that
nations behave rationally, this military spending must result in a gain to nations
involved, relative to one or both not doing so. We propose that such a mechanism
exists, principally through the crowding out effect military spending can have on
other investments that can consume more water. Thus, if a downstream nation
can induce an upstream rival to spend on its military rather than on water using
investments, it can secure more water for itself.

Although unable to explicitly identify water wars, the empirical evidence is not
unequivocal. Some empirical research suggests that violent conflict between cul-
tural groups can be an effort to capture resources, particularly when the risk of
natural disasters is high (Ember and Ember, 1992). There is also evidence suggest-
ing that population pressure is related to involvement in military conflicts (Tir and
Diehl, 1998). Further, modern asymmetries in military technology may increase the
attractiveness of using force on the part of the stronger adversary (Orme, 1997).
Although agreeing that resource scarcity can increase conflict, Homer-Dixon (1991,
1994, 1999) argues violence is more likely to occur within, rather than between,
nations as interest groups battle for resource access. According to Homer-Dixon,
international wars over water are likely only when a downstream nation is highly
dependent on a water source that an upstream nation can substantially disrupt,
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that there is a history of antagonism between the nations, and that the down-
stream nation has substantially superior military power!. Based on a review of the
literature relating the environment and violent conflict, Gleditsch (1998) finds that
to date, little research had effectively tested these relationships. In this paper we
show that if a military superiority can be modelled as Stackleberg leadership in
military expenditures, then the Homer-Dixon conjecture may be wrong.

Recent work has brought greater empiricism to bear on the water and conflict
question. Giordano and Wolf (2003) and Wolf et al. (2003), on the basis of an
extensive data base on international river basins, interpret the lack of obvious wa-
ter wars as supporting the hypothesis that cooperation is enhanced when scarcity
increases. They nuance this by arguing that water scarcity may both be a cause
of conflict and stimulus to cooperation. Likewise Dinar and Dinar (2004), argue
that although water wars have been rare, this does not mean that they will never
occur, and emphasize that governance and scarcity interact to affect the degree
of cooperation. Toset et al. (2000) and Gleditsch et al. (2004) bridge the differ-
ence between the 'water-war’ and ’water-cooperation’ schools. Using a database
on international conflicts from 1880-1992, they find that the probability of inter-
national conflict increases in the presence of shared rivers. Further, they show
that the presence of major powers results in a higher risk of conflict. However,
they argue that “this is not evidence for 'water wars’ but [that] shared water re-
sources can stimulate low-level interstate conflict” (Gleditsch et al. (2004), p. 22).
They agree with LeMarquand (1977), that upstream-downstream relationships are
conflict prone and that “military threat and boycots routinely become part of bar-
gaining behavior” (Toset et al. (2000), p.977). However, they suggest that this may
be an incentive to cooperate. This paper contributes to this discussion by exploring
theoretically how the likelihood of upstream-downstream disputes over scarce water
resources are affected by the presence of a ’leader’ nation, and conditions affecting
military escalation or cooperation.

The Nile basin is commonly cited as a case where military posturing may influ-
ence water sharing. The Nile has the characteristics described by Homer-Dixon and
Toset et al. (2000) as creating a situation particularly prone to dispute. Although
the recent Nile Basin Initiative (NBI), aimed at more cooperative management of
the Nile Basin, is cause for optimism, it is likely premature to conclude that ag-
gressive acts have been banished forever. Egypt, at the bottom of the Nile, relies
on the river for virtually all of its water needs. It also has the largest military,
largest economy, and one of the largest populations of any nation in the basin (Di-
nar and Alemu, 2000; Rached et al., 1996). Ethiopia, among the poorest nations
in the basin, is the source of over 70% of the water reaching Egypt. Following
recent droughts, Ethiopia is keenly aware of how it could benefit by capturing and
using more of the water that falls within its boundaries. It has been very hesi-
tant to participate in any agreements that would commit it to a particular sharing
arrangement (Swain, 1997). However, Egypt is also aware that any increase in stor-
age capacity and water usage by Ethiopia may threaten its water security. Egypt
has indicated it will take any action necessary, including military action, to defend
its water supply, a key input into its economy (Gleick, 1993; Ndege, 1996; Wiebe,

1We will refer to this idea as the “Homer-Dixon conjecture.” This terminology is, as far as we can
tell, unique to this paper.
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2001). It is within this context that the riparian nations of the Nile basin are seek-
ing arrangements to share the Nile waters (Council of Ministers of Water Affairs of
the Nile Basin States, 2001). There are a range of ways in which cooperative devel-
opment of the Nile could benefit the riparian nations (Wichelns et al., 2003), but
these would involve levels of political and economic integration that will be difficult
to implement (Dinar and Wolf, 1994; Dinar and Alemu, 2000). Understanding the
strategic issues that will impact on these negotiations is particularly important at
this time, an understanding to which this paper contributes.

Our analysis builds on the resource capture games literature, which examines
when cooperation can be sustained between agents who can steal from each other,
in an environment absent a regulator. Military expenditures enter a conflict func-
tion, which determines the likelihood of successful resource capture. Skaperdas
(1992) highlights the importance of the relative productivity of military investment
in determining whether an equilibrium without engagement can be supported. Hir-
shleifer (1995) develops a resource capture model to evaluate the relative stability
of ’anarchy’, defined as a situation “in which contenders struggle to conquer and
defend durable resources, without effective regulation by either higher authorities
or social pressures (Hirshleifer, 1995, p. 27).” It is shown that changes in the
effectiveness of military power or relative strength are important factors in deter-
mining whether ’anarchy’ is stable. A particularly interesting result is that when
one nation can act as a leader, it is able to gain in absolute terms, but in relative
terms the follower gains more. Cothren (2000) integrates these approaches. In his
model, the only impact of military accumulation is through the conflict function.
Nash equilibria exist where both nations have sufficient military capacity to deter
potential attacks by their rival, with both nations indifferent between attacking and
not attacking.

Our analysis adds to the conflict versus cooperation debate by explicitly examin-
ing the role of leadership. In particular, we focus on the “Homer-Dixon conjecture,”
whereby conflict is more likely when nations are militarily asymmetric. Our ap-
proach is similar to Cothren, in its use of an anarchy environment and a tradeoff
between productive and military expenditures. We extend this approach with char-
acteristics of a riparian system, and explore the difference between a simultaneous
and sequential move game. The paper proceeds as follows. In the next section we
describe a two period, two nation model, where nations first decide how to divide an
endowment between a productive activity and military expenditures, and then one
decides whether or not to attack. A numerical demonstration follows, illustrating
the impact of simultaneous versus sequential ’leadership’ play. The final section
concludes the paper with a discussion of model extensions and implications.

2. MODEL

We consider a model of two riparian neighbors, both dependent on a shared river,
which originates within the upstream neighbour. If w; and w9 are the water volumes
used by the upstream and downstream nations respectively, and V is the total water,
then 0 < wy <V and 0 < wy <V —wy.2 The water each nation captures for use
depends on a capital stock K;. The function g;(K;) measures the share of the river’s

2For simplicity, the hydrological dynamics of the river are not considered. In fact, w; represents
the difference between the water uptake and return flow into the river. The analysis of a more
complex environment is left to future work.
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flow nation 7 is able to capture. The capture function is assumed continuous, with
continuous derivatives to at least the second order, and satisfying d¢;/0K; > 0,
029;/0K? < 0, gi(0) = 0 and limg, . gi(K;) = 1. This last assumption ensures
that with finite capital stocks, the downstream nation always receives some water.
With these definitions, w1 = Vg1 (K1) and we = V[1 — g1(K1)]g2(K2), which gives
us that 811)2/8[(1 < 0.

Water is the only input constraining production, and the only factor affecting
water capture is capital. Water enters a production function f;(w;), assumed con-
tinuous to at least two derivatives, satisfying df;/Ow; > 0 and 8? f;/0w? < 0. For
simplicity, we write F(K;) and G(K1, K3) for the upstream and downstream na-
tions’ production functions. For functions with partial derivatives, subscripts will
index the argument with respect to which the derivative is taken. Using the defi-
nitions of w;, it quickly follows that Fy > 0, F1; < 0, G; <0, G11 > 0, G2 > 0,
Gao < 0and G12 < 0. Welfare is a function of output, which depends on capital, but
not military spending. To concentrate on the decision to start a military conflict,
we focus exclusively on the relationship between capital and military investment
when a downstream riparian neighbor can choose to attack its upstream neighbor’s
capital stock. For simplicity, we do not consider the case when the upstream nation
can attack the downstream nation.

Like Cothren (2000), military expenditures affect the probability of a successful
attack, using resources that could otherwise be invested in production. We too
compare Nash equilibria with and without a military attack. However, we extend
the Cothren analysis in the following ways. First, the interaction of our nations
rests on a shared resource, rather than the potential to capture the rival’s output.
Second, the attack option is targeted at capital affecting resource availability, rather
than at capturing output. Thirdly, we use a more complicated production function
that captures critical features of the resource process integrating the nations of our
model. We will also consider solutions to three investment choice game structures,
a simultaneous move game, and two sequential move games.

We develop the simultaneous investment game as a baseline to compare with
the sequential investment games. The analysis proceeds in four steps. First we
characterize the equilibria for two degenerate games, one where an attack never
occurs in the second period and the second where it always occurs. We then show
how the reaction functions are affected by allowing a second stage attack choice.
The relationships demonstrated allow us to prove that a game of this form cannot
have pure strategy equilibria where the downstream nation is indifferent between
attacking and not attacking. Finally, we argue that in most situations of this type,
an attack would be less likely with a downstream leader than with no leader.

If the only choice facing each nation is the investment level, then each nation
would invest its endowment, with the downstream nation enduring lower returns as
a consequence of the water captured by the upstream nation. The welfare function
for the two nations is Wi = F(K7) and Wy = G(K7, K>) if there is no attack. The
assumptions on the water capture and production functions together ensure that
W1 and Wy satisfy strict quasi-concavity over the range of available K7 and K,
values, allowing us to make the following proposition:

Proposition 2.1. For the ranges 0 < K1 < p1 and 0 < Ko < uo, where p; is
the endowment available to nation i, and assuming each nation seeks to mazimize
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its welfare, the best response functions for the two nations are K1(K2) = p1 and
K3(Ky) = p2, absent an attack option.

Proof. The proof is straightforward. For the upstream nation W7 = F(K7). Since
Fy > 0 for all values of K7, it immediately follows that 0W;/0K; > 0, so that to
maximize welfare, the upstream nation will choose K7 = pp. Similarly, for each
value of K; € [0, pi1], we have that G2 > 0 ensuring that OWs/0Ks > 0. Therefore,
downstream welfare is maximized by choosing Ko = ps. ([

The result which follows from this proposition is that the Nash, upstream leader
and downstream leader equilibria all coincide at K7 = pu; and Ko = puo. For
completeness then,

Corollary 2.2. For two nations engaged in a non-cooperative simultaneous move,
upstream leader, or downstream leader game, with strategies and payoffs as in
Proposition 2.1, all three games have the same solution, K1 = 1 and Ko = pa.

Proof. Since K1(K32) = p1 and Ko(Kq) = pa, where K;(K;) denotes the best
response of nation i to strategy K;, the result immediately follows. ([

This game is rather uninteresting, as the downstream nation cannot influence
the decision of the upstream nation. We therefore extend the game by allowing a
second stage decision for the downstream nation, to attack the upstream nation’s
capital stock.

For the extended game, we focus exclusively on the use of military expenditure
to influence the probability of a successful attack. A successful downstream attack
reduces the upstream capital stock to K;. Conceptually, K; is considered to be
a structure such as a dam, and an attack either reduces the dam capacity to a
specific low level or does nothing. The scale of the engagement is not explicitly
modelled. The probability of a successful attack, the conflict function (Clarke,
1993) is ¢(M7, M2), where M; is the military stock held by country i. ¢(M7, Ms)
is assumed continuous to at least two derivatives, with d¢/0M; < 0, Op/OMz > 0,
9?¢/OM}E > 0, and 92¢/OMZ < 0. The derivatives in M; reflect increasing up-
stream military expenditures increasing the probability of successful defense, while
those in M reflect increasing downstream military expenditures increasing attack
success probability. Both types of expenditures have diminishing returns. We also
assume that ¢(¢,0) = 0 and ¢(0,¢) = 1 for all positive e. With no downstream
military, very little defense is needed, while with no upstream military, attack
success is guaranteed with very little downstream military expenditure. Finally,
with endowment p; split such that K; + M; = u;, then the conflict function is
(K1, K2) = ¢(p1 — K1, pe — K»), satisfying m > 0, m11 < 0, m2 < 0 and 7ae > 0.

Before considering the two stage game, we describe the features of the game
when an attack always occurs. In this case the expected welfare functions are

(1) WKL Es) = w(Ky, K2)F(Ky) + (1 —w(Ky, Ko) | F(K))

(2) W3'(K1,Ka) = w(Ky1, K2)G(K,, Ko) + [L — m(Kq, K2)|G(K1, Ka) — Co
where K is the level to which a successful downstream attack reduces upstream
capital, and C5 is the cost of that attack to the downstream nation. This cost
measures impacts to the downstream nation that would not occur if the nation did

not choose to attack. This could be the cost of the military equipment used, the
impact of sanctions imposed by the international community, or any other cost that
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would not be experienced absent an attack. A defense cost for the upstream nation
could also be included. However, as the upstream nation is not choosing whether
or not to defend, such a cost is irrelevant to the upstream nation’s choice. It is
therefore not explicitly included. With 8W1A/8K1’K1:K1 = (1—-m)F >0 for all
K, it follows that K1 (K2) > K,. By assuming that for K1 < K, F(K,) = F(K1)
and G(K,,K2) = G(K1,K3), then if K1 < K;, an attack has no effect. No
attack will therefore occur if K; < K. For conciseness, we define F = F(K),
F = F(Ki1), G = G(K1,K>3) and G = G(K;, K»). Since the upstream nation’s
output is increasing in K7, and since K; does not crowd out consumption, the
upstream nation will therefore never choose K; < K,;. Thus, we only need to
consider values of K that lie between K; and p;. Using the assumptions outlined
above, it is relatively easy to show that (1) is strictly concave with respect to K4
and that (2) is strictly concave with respect to K5. The convexity of the welfare
functions when an attack always occurs ensures that the best response function is
single valued. The derivative conditions and boundary conditions also ensure that
it will be interior. We state this as a proposition.

Proposition 2.3. For all values of Ko € [0, u2), the best response function K;(Ks)
satisfies 0 < K1(K2) < p1, and for all values of K1 € (K, p1],the best response
function K>(Ky) satisfies 0 < Ka(K1) < pa, provided that G, + m5(G — G) < 0.
Also, K1(p2) = p1 and for K1 € [0, K], Ko(K1) = po.

Proof. Since both welfare functions are concave, by virtue of the assumptions on
the component functions, we only need toshow that over the indicated ranges, the
welfare functions are increasing on the lower boundary and decreasing on the upper
boundary. For the upstream nation, an‘/aKl\Kl:Kl =(1—-mF, >0 and, as

m(pr, Ka) = 1 forall Ko < po, OW{ /8K1|K1:m = m (F—F) < 0. This establishes
the first result. For the downstream nation, 8W2A/8K2|K2:0 = 71Ga+(1—-m)Gy > 0
and 8W2A/8K2‘K2:#2 = mo(G — G) + Gy when Ky € (K;,p1]. Thus, if my(G —
G) + G, < 0, an interior maximum exists. When Ko = ug, m(K71, p2) = 0, so that

Ki(u2) = p1. Finally, when K; € [0, K], 0W3'/0Ks = G5 > 0 for all K1, so that
Ky(K1) = po. O

The additional condition G, + 75 (G — G) < 0 means that the change in expected
gain resulting from a reduction in K5 (increase in military expenditure), 7, (G —G),
must be greater than the loss in output, G5, when Ko = uo. If this were not the
case, then it would never be worthwhile investing in the military, reducing the
exercise to the solution for proposition 2.1.

Corollary 2.4. A game with payoff functions as in equations 1 and 2, with m4(G —
G) + G, < 0, must have an interior pure strategy Nash equilibrium.

Proof. Proposition 2.3 establishes that the best responses are interior, relative to
their arguments, over the range K1 € (K, p1] and Ko € [0, u2). Continuity as-
sumptions on the components of the welfare functions result in the best response
functions being continuous in both arguments in this region. The assumption that
6W1A/6K1’K1:K1 > 0, which implies that K;(K2) > K, everywhere, ensures
that the upstream best response does not pass through the discontinuity in the
downstream best response at K ;. All the requirements of Kakutani’s fixed point
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theorem are therefore strictly satisfied on the restricted range (K, p1] x [0, pol,
which confirms the result. O

When the second stage attack decision is part of the game, and the downstream
nation is assumed to attack whenever this is expected return maximizing, then the
investment choice space can be partitioned into those investment pairs that will
result in an attack and those that will not. Let the attack set be called Q*, which
is defined as

QY = {(K1, K3) € [0, pu1] X [0, pa] |7 G + (1 — m)G — C2 > G}

—A
Also let Q“(K) be the subset of Q4 where the value of K| is fixed. Further let Q
be the complement of @4, the set of strategy combinations where an attack will
not occur. The fact that Q4 is open on the interior of the strategy space means

—A . . .
that @ is closed on the interior. Both sets are closed along the boundary of the
strategy space. See figure 2 for a graphical presentation of these set definitions.

[Figure 2 about here.]

Notice that so long as Co > 0, it follows immediately that Q“ will not contain
the boundaries K1 = 0, Ko = 0 and Ko = pus. To see this, consider each case in
turn. First, when K; = 0, 7G + (1 — m)G — Cy = G — Cs, because G = G when
K1 =0. Since G — C < G for all C > 0, we have the first result. When K5 = 0,
G =G =0, s0 that 7G + (1 — 7)G — C = —C < 0, establishing the second result.
Finally, when Ky = g, then 7 = 0, which leads to 7G+(1-71)G-C=G-C < G
for all C' > 0, completing the set. Using these facts, we can conclude that the
downstream best response curve must have a discontinuity in the two stage game,

and that the upstream best response cannot include points in the interior of Q" .
We state these results as two propositions.

Proposition 2.5. For the two stage game, the downstream best response function
in the first stage, applying sub-game perfection to the second stage, has at least one
discontinuous break.

Proof. Let K4'(K;) be the best response conditional on an attack always occur-
ring. Proposition 2.1 establishes that the best response functions when there
is no attack are Ky = p; and Ko = ps. Thus, when the sub-game does not
result in an attack, which occurs for all K; where Q#(K;) is empty or where
WKy, K3'(K1)) < Wa(Ky,pu2), then the best response is Ko = ps. When
WK1, K§(K1)) > Wa(Ki, p2) , proposition 2.3 shows that Ko (K7) is interior. At
values of K; when W2A(K1, K§4(K1)) = Wa(K7, u2), the best response consists of
two Ko values, Ko = uo and a K value in the interior of QA(Kl). This latter point
must be true because with Go > 0, which leads to 9W,/0K5 > 0, there must be
a region between K3'(K7) and ps where OW5! /0K, < 0 or we could not have that
WK1, K§(K1)) > Wa(K1,p2). Since one best response is interior to Q4 (K1)
and the boundary is not in Q4 (kK), there must be a discontinuous break. O

This proposition establishes that there must be a gap between points b and c
in figure 2. Beginning at point b, the return to the downstream nation falls as Ky
is reduced. Likewise, beginning from ¢, the return falls as K» is increased. The
return is lowest at the boundary between Q* and @A. Since K is equal at points
b and ¢, and the return to the downstream nation is greatest for this level of K; at
points b and ¢, only points b and ¢ can be in the best response Ko(K7).
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Proposition 2.6. For the two stage game, the upstream best response function in
the first stage, applying sub-game perfection to the second stage, is either on the

—A . . . . . .
boundary of Q° or contains strateqy combinations in the interior of Q4.

Proof. Assume that C' > 0, so that @A has an interior. For all strategy combina-
tions in @A, Wi = F(K;). Since Fy > 0 for all K», for any points not on the bound-
ary of @A, W1 can be increased by increasing K. Notice that the K7 = 0 cannot be
in a best response. The best response will be {K; € @A(K2)|K1 = max[@A (K2)l},

the boundary of @, except where F(max[@A(Kg)]) <
max g, cAa(x,) Wi (K1, K2). In this latter case, the best response is interior to

QA O

Propositions 2.5 and 2.6 establish the conditions sufficient to show that there
cannot be a pure strategy Nash equilibrium for games of this form where, at the
equilibrium, the downstream nation is indifferent between attacking and not at-
tacking. If attacking is ever a best response, any pure strategy Nash equilibrium
without an attack must be on this boundary. Thus, with the asymmetry introduced
by the riparian environment, the armed standoff equilibrium common in resource
capture games does not occur. By establishing that such equilibria do not exist, we
can then conclude that if there is a Nash equilibrium, it must be a mixed strategy
equilibrium, and our function definitions ensure that these mixed strategy equilib-
ria cannot put zero weight on realizations not in Q. Using this result we can then
argue that in many such situations, leadership will not lead to attack while not
having a leader has a nonzero attack probability. This contradicts Homer-Dixon’s
conjecture.

Let T be a two stage game where payoffs are either F(K;) and G(K71, K3) or as
in equations 1 and 2, with properties as outlined earlier. Player two chooses which
payoff functions will apply in the second stage of the game, after both players have
chosen values for K7 and K5. We state the non-existence result as a theorem.

Theorem 2.7. For any two stage, two player game with the form of T, a pure
strateqy Nash equilibrium where the payoff choosing player is indifferent between
second stage choices does not exist.

Proof. Proposition 2.6 establishes that the upstream best response is either on the

boundary outside Q*, inside @4, or equal to u;. Along the boundary of @A,
adjacent to Q4, Wa(Ky, Ks) = W5 (K, Ks). Proposition 2.1 shows that when
(K1, K2(K1)) € Q) Ko(K1) = pa. When C > 0, so that Q" has an interior,
2 cannot be in the set of points that define the boundary of @A adjacent to
Q*. Therefore, since the gap(s) in the downstream best response occur where
G(K1, K2(K1)) = G(K1, pe) (proposition 2.5), these gaps must span the boundary.
Since pure strategy Nash equilibria with the downstream nation indifferent about
attacking must lie on the boundary, no such Nash equilibria can exist. ([

Graphically, the gap between points b and ¢ in figure 2 cannot contact the

boundary between @A and Q4. As a result, an equilbria cannot exist where the
downstream nation is just indifferent between attacking and not attacking. The
only Nash equilibria possible for this game are therefore mixed strategy equilibria.
Further, since the structure introduces a non-concavity into the payoff functions
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of the overall game, there is no guarantee that there will be a mixed strategy
equilibria either (see Osborne and Rubenstein 1994 for existence conditions for
Nash equilibria). It can be shown that the upstream nation’s payoff functions both
with and without an attack are strictly quasi-concave for the arguments K; and
Ky. Strict quasi-concavity means that for any set of Ky values and probability
distribution over those values, there will be a single K; value that maximizes the
expected payoff. Therefore, the upstream nation will only have a pure strategy best
response to any mixed strategy played by the downstream nation if the realizations
are either all in Q# or all in @A. Since Ko(K7) is also single valued in these
regions, no mixed strategy equilibria can exists which does not generate realizations
in both Q4 and @A. This means that if we observed a large number of independent
replications of this game, when a mixed strategy Nash equilibrium exists, we would
expect to see the attack option being exercised in some realizations.

With reference to the proposal that water wars are more likely when there is a
downstream leader, to support it we must show that a downstream leader would
play a strategy that is more likely to lead to an attack. A downstream leader
chooses Ko, incorporating the upstream best response K;(K3). There are three
cases to consider, when the upstream best response lies entirely outside the attack
region, when there is a Nash equilibrium inside the attack region, and when there
is no Nash equilibrium, but a portion of the upstream best response function lies

in the attack region. In the first case, clearly, when K;(K>) is entirely in @A, all

downstream leader outcomes will involve (K7, K») € @A, which will never result
in an attack. Thus, in these cases the likelihood of a downstream leader attacking
cannot exceed that for the simultaneous move game. For the second case, note that
when a pure strategy Nash equilibrium exists for the simultaneous move game, it
will always involve an attack in the second stage. As such, in this situation, a
downstream leader cannot increase the likelihood of an attack.

The only cases where downstream leadership may increase the risk of violence
is when the upstream best response includes a segment inside @ not intersecting
Ko(K1) inside Q4. The downstream leader may now prefer a point on K;(K3)
where attacking is rational, while without a leader it need not always involve an
attack. Unfortunately for our analysis, within this region, whether or not it is
rational for the downstream nation to attack depends on the forms for the produc-
tion and attack success functions. To explore this, consider a case where a down-
stream leader is indifferent between attacking and not attacking. Let K1 = K7 (K>)
when K5 maximizes G(K1, Ks) for K3 in @A, and let K{* = K;(K4') when K3'
maximizes Wo(Ki{', K5') in Q4. To simplify the exposition, let 7 = 7(K;, K3),
14 = tA(K{ K$), G = G(K1,Ks), G = G(K,,Ks), G* = G(K{!, K§') and
G* = G(K,,K3").

When the downstream leader is indifferent between choosing K7 and K7, it must
be true that G = 4G4 + (1 — 7G4 — Cy. Since (K1, K>) is on the boundary
of @A, it must also be true that G = 7G + (1 — m)G — C3. This second relation
requires that at the boundary, G = G — Cy /7. Taking this result together with the
indifference conditions, it follows that 74G* + (1 — 74)GA = G — Cy(1/7 — 1), or
that 74 (G4 — G*) 4 (G — G*) = Ca(1/m — 1). Whether or not this can be satisfied
depends on the forms of 7 and G.
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The critical question is whether this condition can be satisfied while a Nash
equilibrium does not exist. To do this, we consider a limiting case, that where
there is only one interior point in K;(K32). In figure 2 in this case, points d and
f and points ¢ and g coincide. When this is true, G* = G, so that indifference
for the downstream leader requires that (1 — 74)(G — GA) = Ca(1/7 — 1). Since
G > G4 (Ksis fixed) and 74 < 1, there is no contradition. All that is required
is the right functional forms. If this point is to be a Nash equilibrium, it must
also satisfy Ky = K,(K{'). Since there is nothing about the indifference along
K, that requires K» to also maximize Wy at K{*, in particular for Ky in Q4(K{)
, it is entirely possible that it may be rational for a leader to choose to attack
while no Nash equilibrium exists. Whether or not this is the case then depends
on the functional forms involved. For the numerical example shown below, no
such cases were found. Consequently, if downstream leadership is to increase the
likelihood of interstate military conflict, relative to the case with no leader, a rather
specific set of relationships must be in place. Thus, although we are unable to rule
out downstream leadership on a river increasing the likelihood of war in some
circumstances, we can rule out the conclusion that the presence of a militarily
superior downstream riparian in itself increases the likelihood of military conflict
over water.

3. NUMERICAL EXAMPLE

To illustrate the analytical results, we use a numerical example. The assumptions
on the water capture functions are satisfied by implementing them as

wy = P(l—e9f)
wy = (P —w)(l—e 92K2)

where P is the precipitation in the upstream nation and g; is the effectiveness of
investment at water capture. This water enters a production function

Fi(Ky) = [w (Kq)]™
Fy (K, K2) = [wa (K7, K2)]*?

where 0 < a; < 1 ensures diminishing marginal productivity. The conflict function,
identical to that used by Cothren (2000), is

po — Ko
(1 — K1) + (u2 — Ka)

with 7(p1, pe) = 0. Figure 3 shows the production and conflict functions, both
defined in terms investment levels K7 and K5, with parameters pu; = po = 10,
P =10, 91 = g2 = 0.5, and a; = as = 0.75. Notice that with symmetric parameter
values, Fy (K;) = F5(0, K1), so that the upstream production function can also be
seen in figure 3, where K; = 0. All results and graphics were generated using R
(Thaka and Gentleman, 1996).

[Figure 3 about here.]

WK(Kl,KQ) =

Figure 4 shows the best response functions for the two nations, for four different
attack costs. In all cases, a portion of the upstream nation’s best response curve
follows the boundary between the regions where a second stage attack is rational and
where it is not. With low attack cost (C2 = 0.5), a large segment of the upstream
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best response lies inside the attack region. A pure strategy Nash equilibrium exists,
and is located inside the attack region, at the intersection of the best response
curves. The sequential game equilibria, both with pure strategies, lie close to the
Nash equilibria. The investment levels and expected payoffs are given in table 2.

[Figure 4 about here.]

With costs at Cy = 1.0, the share of the upstream best response located along the
boundary of the attack region increases. A pure strategy Nash equilibrium in the
attack region no longer exists. Although not a Nash equilibria in a one shot game,
the average of a best response cycle is indicated in the figure. A best response cycle
is a sequence of strategy profiles, where each strategy profile is the best response for
each player to the rival’s strategy in the previous point in the cycle. For this cycle,
an attack is rational for approximately 63% of cycle strategy combinations. For
both sequential games, attacking is not rational. When the upstream nation leads,
it selects the largest K; such that the downstream nation chooses Ky = po, where
an attack is not rational. With a downstream leader, K5 is chosen along K;(K3)
to maximize downstream welfare. This occurs for a point on the attack region
boundary, again where an attack is not rational. Notice that relative to the cycle
average, the downstream leader has reduced investment (increased its military)
which induces lower upstream investment (larger upstream military), resulting in
greater downstream welfare. Thus, this downstream lead ’arms race’ has increased
downstream welfare and reduced upstream welfare.

[Table 2 about here.]

Further increasing the attack cost to Cy = 2.0 closes the discontinuity in the up-
stream best response. The upstream best response now coincides with the boundary
of the attack region. The upstream nation now only responds with investment levels
that make it irrational for an attack in the second stage. However, the disconti-
nuity in the downstream best response curve is such that no pure strategy Nash
equilibrium exists. If the upstream nation leads, it chooses the largest K such
that the downstream response is Ko = u9 and no attack. If the downstream nation
leads, it chooses the point along the boundary of the attack region where its welfare
is maximized. Even without an attack, military spending again exceeds the cycle
average, while increasing downstream welfare.

Finally, panel (d), plots the Co = 6.0 case. Now there is only a small set of
strategy pairs where an attack is optimal. The cycle average continues to have a
relatively high attack rate at 60%. If the upstream nation chooses its investment
first, it is able to increase its return by keeping K; = 10. However, when the
downstream nation leads, it is unable to increase its welfare relative to the cycle
average. Downstream leadership now has no advantage.

Since leadership by either nation is questionable when both nations are identical,
we also consider three cases where downstream leadership is more credible. These
are shown in figure 5, with numerical values in table 3. Panel (a) reproduces the
results of panel (b) in figure 4. In panel (b), the downstream endowment has been
increased to pus = 30. As a share of endowment, the upstream best response has
shifted down; with a larger endowment, a larger share is devoted to the military.
Conceptually, the larger endowment increases the relative marginal productivity of
military spending, used to ’liberate’ upstream water. With the downstream leader,
the solution does not involve an attack. Further, relative to the cycle average, a 56%
reduction in productive investment, from 22.7 units down to 9.99 units, results in a
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43% increase in welfare, from 5.29 to 7.59 units. This compares to a 43% reduction
in investment generating a 26% increase in return for the pe = 10 case. With a
larger endowment, a downstream leader is again better off not attacking, and gains
more in relative terms than when endowments are equal.

[Figure 5 about here.]
[Table 3 about here.]

Panel (c) increases the effectiveness of the downstream water capture investment.
As for the endowment increase, the downstream best response shifts down. This
results in a greater share of water released by an attack being captured. There
is again no interior Nash equilibrium for the simultaneous move game. However,
the downstream leader is still better off choosing a strategy that does not lead to
an attack. In this case, a 1.3% reduction in capital investment, from 2.98 to 2.94,
increases downstream return by 37%.

Panel (d) puts the upstream nation at a technological disadvantage, in terms of
water capture effectiveness, by setting a; = 0.5. The effect appears in table 3 as an
increase in K3 and a reduction in Wi, relative to the panel (a) results. No portion
of the upstream best response curve is now in the interior of the attack region, so
that the downstream leader can only choose points that will not result in an attack.
In this case, a 43% reduction in investment relative to the cycle average results in a
28% increase in return. This is the smallest increase in return, but still larger than
the 26%, from 4.24 to 5.78, increase in return when both technology parameters
are equal. In all four panels, if the upstream nation is the leader, it will choose a
strategy that results in Ko = uo and no attack.

In both figure 4 and figure 5, strategy combinations that generate greater ex-
pected welfare for both nations than the Nash equilibrium or cycle average are
identified. The existence of these strategy combinations in all four panels shows
that this game has aspects of a prisoner’s dilemma. This highlights that there
is scope for Folk theorem results, where repetition permits cooperation, allowing
Pareto improvements to be realized. From the point where the upstream best
response function becomes continuous, the range of strategy combinations which
support such cooperation increases as costs increase, with none involving an at-
tack. When the upstream best response is not continuous, the set of mutually
advantageous strategies increases as costs fall. However, some lie in the attack
region. With cheap attack costs, strategies can be coordinated to increase mutual
gain while, somewhat perversely, the downstream nation continues to attack the
upstream nation’s infrastructure.

Beyond pure and mixed strategy Nash equilibria, there are other solution con-
cepts. Best response cycles with various belief structures may generate equilibria.
Naive expectations, adaptive expectations and moving average expectations were
tried in this numerical example, always resulting in periodic attacks. A version
of this model, focusing only on the simultaneous move form, was implemented as
an experiment (Janmaat, 2004). Subjects playing repeated rounds were unable to
coordinate on no attack solutions, although average behavior tended to lie between
the attack always Nash equilibrium and a no attack point consistent with the Folk
Theorem. Further experiments will explore the impact of leadership, and seek to
identify relevant solution concepts.
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4. DISCUSSION

In this paper we constructed a model in which two countries are connected by a
natural resource, water, and able to invest in military hardware. Downstream mil-
itary investment creates a threat to the upstream nation, while upstream military
investment provides protection against that threat. In both cases, military invest-
ment provides no direct utility or productivity impact. Thus military expenditure
is costly in terms of foregone production, and provides no benefit beyond its impact
on attack success probabilities.

One general result is that for a one shot two stage game where a downstream
'leader’ nation’s threat can persuade an upstream neighbour to consume less wa-
ter, the likelihood of an attack occurring is likely less than absent a leader. This
contrasts with Homer-Dixon (1999) and Gleditsch et al. (2004), who argue that
militarily and economically superior nations, such as Egypt with respect to its up-
stream neighbors, are more likely to resort to force than when there is no such
dominance. Historically, Egypt was well known for threatening to use force to pro-
tect its water security. However, perhaps it is the credibility of this threat that
provides Egypt with water security, relative to a situation where its superiority is
not so apparent.

Although motivated by the Nile basin example, our results may be relevant in
other cases where resources are sequentially shared between nations. An example
without clear leadership is the dispute between India and Pakistan over the Kash-
mir region. Even though this region is an important headwater for the Indus, the
existence of a water sharing treaty suggests water is not an immediate cause of the
wars these nations have fought. However, the results of this paper suggest that the
military buildup may be in part caused by concerns over water security. Several
other river systems, such as the Jordan, the Tigris and Euphrates, the Ganges and
Brahmaputra, the Danube and the Rhine, also flow from one country to another.
The Ganges and Brahmaputra have been identified as potentially vulnerable for
conflict, negotiations have recently been taking place around the Jordan and the
Tigris and Euphrates (Wolf et al., 2003). In contrast to arid region rivers, nations
along the Rhine and Danube have a long history of cooperation. Other sequential
resource movements, such as animal migration or dispersion patterns, may also fit
this framework. The recent Turbot War’ between Canada and Spain, surround-
ing fishing immediately outside Canada’s territorial water, is a possible example
(Missios and Plourde, 1996). Likewise, for trans-boundary aquifers or oil reserves,
military buildup may enable the nation more vulnerable to rapid drawdown of the
reservoir to induce a slower extraction rate by its neighbour.

Military investment decisions are made in a far more complex environment than
that captured in a one shot game. Generally, the interaction is repeated. Following
the Folk theorem, if this game was repeated, we expect nations to be able to
coordinate on a strategy where both are better off. As attacks destroy capital,
the repeated game equilibrium is less likely to include an attack. Further, with
the accumulation of military capital, an upstream leader may attack a downstream
rival so as to reduce its military stock, or reduce the economic output needed
to produce this military stock. For the numerical example, the sequential move
game almost never involves an attack, regardless of who leads. With repetition, an
attack is probably less likely yet. In line with the dynamics of repetition, capital
and military assets are normally accumulated over time. The opportunity cost of
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capital destruction is greater, in terms of time to rebuild. This likely increases the
incentive for the upstream nation to invest in defense, and the effectiveness of the
downstream threat. It is expected that the interaction of these effects will further
reduce the likelihood of war. We leave the details of these dynamic analyses for
future work.

While long run expected river discharge can be considered constant, for other
resources this is not true. For example, an oil field is analogous to an aquifer, with
no natural recharge. A key variable for analyzing these situations is the size of the
resource pool, which declines over time with extraction. Although not presented,
increasing the resource supply to divide increases the likelihood of war in the nu-
merical example. With greater resource abundance, provided abundance does not
generate costs (see Janmaat and Ruijs, 2004 for impact of flooding risk on cooper-
ation), capture investment has a larger expected return, as the gain to a successful
attack is greater. The key role of the value that can be captured implies that re-
source wars are most likely to occur when scarcity has sufficiently increased the
value of disputed resource reserves, with enough left to make it worth fighting over.
Therefore, rather than mayhem and anarchy when oil supplies approach exhaus-
tion, as some pundits suggest, it may occur sooner, when supplies are relatively
abundant but of high value.

Our results indicate that water scarcity need not cause international violent
conflict, and that when one riparian is dominant, violence is unlikely. However, in
most equilibria the downstream nation is indifferent between war and peace. In the
symmetric model of Cothren (2000), nations are also indifferent between attacking
and not attacking at the Nash equilibrium. Hauge and Ellingsen (1998) and Toset
et al. (2000) found a positive relationship between domestic conflict and environ-
mental scarcity. However, they also found that military expenditure was the best
predictor of the severity of conflict. “The sources of civil conflict are not necessarily
closely related to the severity of the conflict. Although environmental scarcity is a
cause of conflict, it is not necessarily also a catalyst (Hauge and Ellingsen, 1998,
p. 314)”. In the current model, water scarcity stimulates arms accumulation, but
not necessarily violent conflict. Stochastic effects that change the economic or mil-
itary positions may upset this delicate balance and trigger violence. Consequently,
international military conflicts may be more common where states are resource de-
pendent, even though not directly triggered by resource scarcity. In this vein, Tir
and Diehl (1998) find a strong interaction between military capacity and population
growth as predictors of involvement in military conflict, while Toset et al. (2000)
and Gleditsch et al. (2004), examining the relation between factors such as water
scarcity, leadership, regime type and conflict, find results consistent with ours.

The current model also highlights the critical role played by the cost of the attack
to the attacking nation. If the cost is low relative to the expected gain, then an
attack is rational, while if the cost is high, it is neither rational to attack nor to
invest in the military. These costs may play a key part in determining what triggers
can transform an arms race into a war. In particular, the prospect of sanctions or
other economic censure from the international community may serve to increase the
costs. This would reduce the need for the upstream nation to invest in its military,
allowing an increase productive capital investment.

Dynamically, productive capital accumulation stimulates economic growth, while
the impact of military accumulation on growth is less clear. A number of studies
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have examined the relationship between economic growth and military expendi-
tures. At a theoretical level (Zou, 1995; Blomberg, 1996; Shieh et al., 2002; Gong
and Zou, 2003), this work suggests that the effects are ambiguous. Military expen-
ditures may crowd out more productive investments - as in the model we develop
- and thereby reduce economic growth. However, this investment may also en-
hance growth by building human capital, providing social stability, etc. Empirical
analyses of this relationship - many of which preceeded the theoretical work - find
similarly inconclusive results (LaCivita and Frederiksen, 1991; Looney, 1993; Kusi,
1994; Blomberg, 1996; Dakurah et al., 2001). Several authors conclude that this is a
consequence of the importance of context. Our results support this by highlighting
the role of one element of that context, where a nation lies in a watershed. For
an upstream nation, increasing military expenditure is likely to reduce economic
growth by crowding out productive investment. In contrast, downstream military
expenditure may, via its threat effect, lead to more water reaching the downstream
nation. Thus, whether military spending stimulates or retards economc growth
may depend on riparian position.

There are at least three empirical implications of this model that can be explored.
First, where resources are scarce and shared, the level of militarization is likely to
be high. Second, international conflicts are also likely to be more frequent and
more violent where heirarchical resource dependencies exist, even though it may be
difficult to directly identify that resource scarcity is a cause. Toset et al. (2000) and
Gleditsch et al. (2004) find support for this hypothesis. Third, as outlined above,
the correlation between economic growth and military expenditure will depend
on whether a nation provides a critical resource to a neighbour or depends on a
neighbour for a critical resource. In the former case it would be negative, while in
the latter positive. We leave detailed empirical analyses to the future.

Finally, this work points to the importance of considering the broader context
within which international conflict develops. Arms accumulation may be a response
to water scarcity and dependence, while escalations may not directly flow from
the resource. The military balance may actually contribute to maintaining shar-
ing arrangements, by making defection sufficiently costly. Unwinding this delicate
web requires recognition of the resource underpinning. Embedding arms reduction
agreements in broader arrangements including trade and resource access is more
likely to be successful than focusing on arms alone. Further expanding to regional
arrangements may both increase the cost to downstream riparians of an attack,
while putting greater pressure on upstream riparians to respect resource sharing
arrangements. The Nile Basin Initiative may represent a move in this direction,
and we hope it proves successful.

REFERENCES

Blomberg, S. B., 1996. Growth, political instability and the defense burden. Eco-
nomica 63 (252), 649-672.

Clarke, R., 1993. Water: The International Crisis. The MIT Press, Cambridge,
Massachusetts.

Cothren, R., 2000. A model of military spending and economic growth. Public
Choice 110, 121-142.



INVESTING IN ARMS TO SECURE WATER 17

Council of Ministers of Water Affairs of the Nile Basin States, 2001. Socio-economic
development and benefit sharing. Project document, Nile Basin Initiative Shared
Vision Program.

Dakurah, A. H., Davies, S. P., Sampath., R. K., 2001. Defense spending and eco-
nomic growth in developing countries: A causality analysis. Journal of Policy
Modeling 23, 651-658.

Dinar, A., Alemu, S., 2000. The process of negotiation over international water
disputes: The case of the Nile basin. International Negotiation 5, 331-356.

Dinar, A., Wolf, A., 1994. Economic potential and political considerations of re-
gional water trade: The western Middle East example. Resource and Energy
Economics 16, 335-356.

Dinar, S., Dinar, A., 2004. Scarperation: the role of scarcity in fostering cooper-
ation between international river riparians, florida International University, De-
partment of International Relations and Geography.

Ember, C. R., Ember, M., 1992. Resource unpredictability, mistrust, and war: A
cross-cultural study. The Journal of Conflict Resolution 36 (2), 242-262.

Falkenmark, M., 1990. Global water issues confronting humanity. Journal of Peace
Research 27 (2), 177-190.

Giordano, M. A., Giordano, M., Wolf, A. T., 2002. The geography of water conflict
and cooperation: internal pressure and international manifestation. The Geo-
graphical Journal 168, 293-312.

Giordano, M. A., Wolf, A. T., 2003. Sharing waters: post-Rio international water
management. Natural Resources Forum 27, 163—-171.

Gleditsch, N. P.; 1998. Armed conflict and the environment: A critique of the
literature. Journal of Peace Research 35 (3), 381-400.

Gleditsch, N. P., Owen, T., Furlong, K., Lacina, B., 2004. Conflicts over shared
rivers: resource wars or fuzzy boundaries. In: Paper presented at the 45th annual
convention of the International Studies Association, Montreal, 17-20 March 2004.

Gleick, P. H., Summer 1993. Water and conflict: Fresh water resources and inter-
national security. International Security 18 (1), 79-112.

Gong, L., Zou, H., 2003. Military spending and stochastic growth. Journal of Eco-
nomic Dynamics and Control 28, 153-170.

Hauge, W., Ellingsen, T., 1998. Beyond environmental scarcity: Causal pathways
to conflict. Journal of Peace Research 35 (3), 299-317.

Hirshleifer, J., February 1995. Anarchy and its breakdown. The Journal of Political
Economy 103 (1), 26-52.

Homer-Dixon, T. F., Autumn 1991. On the threshold: Environmental changes as
causes of acute conflict. International Security 16 (2), 76-116.

Homer-Dixon, T. F.,; Summer 1994. Environmental scarcities and violent conflict:
Evidence from cases. International Security 19 (1), 5-40.

Homer-Dixon, T. F., 1999. Environment, Scarcity, and Violence. Princeton Univer-
sity Press, Oxford.

Thaka, R., Gentleman, R., 1996. R: a language for data analysis and graphics.
Journal of Computational and Graphical Statistics 5, 299-314.

Janmaat, J., Ruijs, A., September 2004. Sharing the load? floods, droughts, and
managing transboundary rivers. Hearland Environmental and Resource Econom-
ics Workshop, ames, Iowa.



INVESTING IN ARMS TO SECURE WATER 18

Janmaat, J. A., October 2004. Ultimatums and tantrums: A resource sharing ex-
periment. Canadian Experimental & Behavioral Economics Workshop, calgary,
Alberta.

Kusi, N. K., March 1994. Economic growth and defense spending in developing
countries: A causal analysis. The Journal of Conflict Resolution 38 (1), 152-159.

LaCivita, C. J., Frederiksen, P. C., 1991. Defense spending and economic growth:
An alternative approach to the causality issue. Journal of Development Econom-
ics 35, 117-126.

LeMarquand, D., 1977. International rivers, the politics of cooperation. Westwater
Research Centre, University of British Columbia, Vancouver, Canada.

Looney, R. E.; 1993. Government expenditures and third world economic growth in
the 1980s: The impact of defense expenditures. Canadian Journal of Development
Studies 14 (1), 23-42.

Missios, P. C., Plourde, C., 1996. The Canada-European union turbot war: A brief
game theoretic analysis. Canadian Public Policy 22 (2), 144-150.

Ndege, M. M., 1996. Strain, water demand, and supply directions in the most
stressed water systems of eastern Africa. In: Rached et al. (1996).

Orme, J., 1997. The utility of force in a world of scarcity. International Security
22 (3), 138-167.

Osborne, M. J., Rubenstein, A., 1994. A Course in Game Theory. The MIT Press,
Cambridge, Massachusets.

Rached, E., Rathgeber, E., Brooks, D. B. (Eds.), 1996. Water Management in Africa
and the Middle East: Challenges and Opportunities. International Development
Research Council.

Rosegrant, M. W., March 1997. Water resources in the twenty-first century: Chal-
lenges and implications for action. Food, Agriculture, and the Environment Dis-
cussion Paper 20, International Food Policy Research Institute, Washington, D.C.

Sandler, T., 2000. Economic analysis of conflict. The Journal of Conflict Resolution
44 (6), 723-729.

Serageldin, I., August 1995. Earth faces water crisis. Press Release, World Bank.

Shieh, J., Lai, C., Chang, W., 2002. The impact of military burden on long-run
growth and welfare. Journal of Development Economics 68, 443—454.

Skaperdas, S., September 1992. Cooperation, conflict, and power in the absence of
property rights. The American Economic Review 82 (4), 720-739.

Swain, A., December 1997. Ethiopia, the Sudan, and Egypt: The Nile river dispute.
The Journal of Modern African Studies 35 (4), 675-694.

Tir, J., Diehl, P. F.; 1998. Demographic pressure and interstate conflict: Linking
population growth and density to militarized disputes and wars, 1930-89. Journal
of Peace Research 35 (3), 319-3309.

Toset, H. P. W., Gleditsch, N. P., Hegre, H., 2000. Shared rivers and interstate
conflict. Political Geography 19, 971-996.

Wichelns, D., Barry, Jr., J., Miiller, M., Nakao, M., Philo, L. D., Zitello, A.,
December 2003. Co-operation regarding water and other resources will enhance
economic development in Egypt, Sudan, Ethiopia and Eritrea. Water Resources
Development 19 (4), 535-552.

Wiebe, K., Summer 2001. The Nile river: Potentail for conflict and cooperation in
the face of water degradation. Natural Resources Journal 41 (3), 731-754.



INVESTING IN ARMS TO SECURE WATER 19

Wolf, A. T., Yoffe, S. B., Giordano, M., 2003. International waters: identifying
basins at risk. Water Policy 5, 29-60.

Zou, H., 1995. A dynamic model of capital and arms accumulation. Journal of
Economic Dynamics and Control 19, 371-393.



INVESTING IN ARMS TO SECURE WATER 20

LisT or FIGURES

Military expenditures as affected by per capita water availability, water
dependency, and share of economic output represented by agriculture.
Source: World Resource Institute Earthtrends data (www.wri.org) and
World Bank World Development Indicators (www.worldbank.org). 21

Graphical representation of key sets. K;(K2) and K2(K7) are best
response functions for investment level. Q* is the attack region, the
combinations of K7 and K5 where it is rational for the downstream nation

to attack. @A is its complement. Point @ is a Nash equilibrium. Points b
and ¢ are endpoints of K5(K7), at which the return to the downstream
nation are equal. Points d, e, f, and g are endpoints for K;(K>), at which
the return to the upstream nation are equal. 22

Production and conflict functions, in terms of K; and Ks. Parameters set

at 1 = pe =10, P =10, g1 = g2 = 0.5, and a3 = ap = 0.75. 23
Best response functions, Nash equilibria, and equilibria with upstream or
downstream nation as leader. Lightly shaded region marks investment
combinations where the downstream nation will attack, while darkly

shaded regions are investment combinations that leave both nations better

off than at the Nash equilibrium or cycle average. 24

Best response and attack regions for cases where the downstream nation

has a larger endowment, has better capture technology, and is more
productive in its use of water. Parameter values are Co = 1, uy = puo = 10,

g1 = g2 = 0.5 and a; = ag = 0.75 unless otherwise indicated. 25
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FiGure 1. Military expenditures as affected by per capita water
availability, water dependency, and share of economic output rep-
resented by agriculture. Source: World Resource Institute Earth-
trends data (www.wri.org) and World Bank World Development
Indicators (www.worldbank.org).
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FIGURE 2. Graphical representation of key sets. K;j(K3) and
K5(K1) are best response functions for investment level. Q% is
the attack region, the combinations of K; and Ky where it is ra-
tional for the downstream nation to attack. @A is its complement.
Point a is a Nash equilibrium. Points b and ¢ are endpoints of
K5(K1), at which the return to the downstream nation are equal.
Points d, e, f, and g are endpoints for K7 (K3), at which the return
to the upstream nation are equal.
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FI1GURE 3. Production and conflict functions, in terms of K7 and
K. Parameters set at py = pus = 10, P = 10, g1 = g2 = 0.5, and
a1 = Qg = 0.75.
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FIGURE 4. Best response functions, Nash equilibria, and equilibria
with upstream or downstream nation as leader. Lightly shaded re-
gion marks investment combinations where the downstream nation
will attack, while darkly shaded regions are investment combina-
tions that leave both nations better off than at the Nash equilib-
rium or cycle average.
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FIGURE 5. Best response and attack regions for cases where the
downstream nation has a larger endowment, has better capture
technology, and is more productive in its use of water. Parameter
values are Co = 1, uy = uo = 10,91 = go = 0.5and a3 = as = 0.75
unless otherwise indicated.
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Regression results, Est. reports parameter estimates, and S.E. their
standard error. Variables are per capita renewable water, water
dependency ratio, agriculture value share of GDP, per capita GDP, the
World Bank’s corruption index and political stability index. Per capita
renewable water parameter has been scaled to units of 1000 m® per person
per year, and GDP has been scaled to 1000 US$ per person per year.
Figures in bold are significant at the 5% level.

27

Equilibrium strategies and payoffs for various attack costs. When a Nash
equilibrium does not exist, the average for a best response cycle passing
through (u1, p2) is reported. For the cycles, length is the number of moves
before the same point is returned to, st. dev is the standard deviation of
the payoff for the cycle, and attack indicates what portion of the points
along the cycle result in a second stage attack. For ’1 leads’ and ’2 leads’
results, the leading nation chooses its investment level, using the pure
strategy best response of the other nation in place of taking the other
nation’s strategy as fixed.

28

Equilibrium strategies and payoffs when endowment, capture success and
output elasticity are varied. When a Nash equilibrium does not exist,
the average for a best response cycle passing through (u1, u2) is reported.
For the cycles, length is the number of moves before the same point is
returned to, st. dev is the standard deviation of the payoff for the cycle,
and attack indicates what portion of the points along the cycle result in a
second stage attack. For ’1 leads’ and ’2 leads’ results, the leading nation
chooses its investment level, using the pure strategy best response of the
other nation in place of taking the other nation’s strategy as fixed.
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TABLE 1. Regression results, Est. reports parameter estimates,
and S.E. their standard error. Variables are per capita renewable
water, water dependency ratio, agriculture value share of GDP,
per capita GDP, the World Bank’s corruption index and political
stability index. Per capita renewable water parameter has been
scaled to units of 1000 m® per person per year, and GDP has
been scaled to 1000 US$ per person per year. Figures in bold are

Tables

significant at the 5% level.

27

All Data Per Capita Water < 10,000 m?
Variable Est. S.E. Est. S.E. Est. S.E. Est. S.E.
Water  PC  -0.013 0.010 -0.011 0.009 -0.400 0.145 -0.365 0.151
Dependency 0.000 0.001 0.001 0.009 0.007 0.013 0.007 0.014
Ag Value 0.013 0.019 0.010 0.025 -0.001 0.030 -0.018 0.043
GDP_PC -0.065 0.047 -0.069  0.068
Corruption 1.205 0.724 0.820 1.106
Stability -0.930 0.502 -0.582  0.748
Intercept 2.576 0.494 2.915 0.653 4.108 0.828 4.624 1.031
n 132 87 87
R? 0.053 0.085 0.103




Tables

TABLE 2. Equilibrium strategies and payoffs for various attack
costs. When a Nash equilibrium does not exist, the average for a
best response cycle passing through (i1, u2) is reported. For the
cycles, length is the number of moves before the same point is
returned to, st. dev is the standard deviation of the payoff for the
cycle, and attack indicates what portion of the points along the
cycle result in a second stage attack. For ’1 leads’ and ’2 leads’
results, the leading nation chooses its investment level, using the
pure strategy best response of the other nation in place of taking
the other nation’s strategy as fixed.

Upstream Downstream Cycle

K, W K W Length  St. Dev  Attack
Cy=05
Nash 3.75 4.80 4.20 4.56 1 0.00, 0.00  1.00
1leads 3.44 4.81 427 4.63 - - 1.00
2leads 3.74 4.78 4.12 4.57 - - 1.00
Cy=1.0
Cycle 6.93 514 842 4.24 8 3.90,2.64 0.63
1leads 1.51 5.87 10.0 5.35 - - 0.00
2leads 1.13 5.03 4.83 5.78 - - 0.00
Cy =2.0
Cycle 7.82 5.34 8.67 3.42 8 3.36,2.27 0.63
1leads 2.72 7.57 10.0 3.40 - - 0.00
2leads 2.32 7.13 4.26 3.61 - - 0.00
Cy =6.0
Cycle 9.39 5.04 840 1.16 10 0.78,2.14  0.60
1leads 8.22 9.34 10.0 0.43 - - 0.00

2leads 821 9.34 490 041 - - 0.00
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TABLE 3. Equilibrium strategies and payoffs when endowment,
capture success and output elasticity are varied. When a Nash
equilibrium does not exist, the average for a best response cycle
passing through (1, u2) is reported. For the cycles, length is the
number of moves before the same point is returned to, st. dev
is the standard deviation of the payoff for the cycle, and attack
indicates what portion of the points along the cycle result in a
second stage attack. For '1 leads’ and ’2 leads’ results, the leading
nation chooses its investment level, using the pure strategy best
response of the other nation in place of taking the other nation’s
strategy as fixed.

Upstream Downstream Cycle

K, Wi K W Length  St. Dev  Attack
Cy=1.0
Cycle 6.93 5.14 8.42 4.24 8 3.90,2.64 0.63
1leads 1.51 5.87 10.0 5.35 - - 0.00
2leads 1.13 5.03 4.83 5.78 - - 0.00
p2 =30
Cycle 6.26 4.40 22.7 5.29 8 4.39,9.60 0.49
1leads 0.59 3.40 30.0 7.58 - - 0.00
2leads 0.57 3.33 9.99 7.59 - - 0.00
go = 1.0
Nash 3.64 4.45 298 4.70 1 0.00, 0.00 1.00
1leads 1.06 4.85 10.0 6.36 - - 0.00
2leads 091 444 294 6.46 - - 0.00
a1 = 0.5
Cycle 7.14 279 8.51 4.15 8 3.90,2.64 0.63
1leads 1.51 3.25 10.0 5.34 - - 0.00

2leads 1.13 294 4.83 5.78 - - 0.00




