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Average tree solutions for graph games

R. Baron ∗ S. Béal † E. Rémila ‡ P. Solal §¶

July 31, 2008

Abstract

In this paper we consider cooperative graph games being TU-games
in which players cooperate if they are connected in the communication
graph. We focus our attention to the average tree solutions introduced
by Herings, van der Laan and Talman [6] and Herings, van der Laan,
Talman and Yang [7]. Each average tree solution is defined with re-
spect to a set, say T , of admissible rooted spanning trees. Each average
tree solution is characterized by efficiency, linearity and an axiom of T -
hierarchy on the class of all graph games with a fixed communication
graph. We also establish that the set of admissible rooted spanning
trees introduced by Herings, van der Laan, Talman and Yang [7] is the
largest set of rooted spanning trees such that the corresponding aver-
age tree solution is a Harsanyi solution. One the other hand, we show
that this set of rooted spanning trees cannot be constructed by a dis-
tributed algorithm. Finally, we propose a larger set of spanning trees
which coincides with the set of all rooted spanning trees in clique-free
graphs and that can be computed by a distributed algorithm.

1 Introduction

A situation in which a finite set of agents can obtain certain payoffs by coop-
eration can be described by a cooperative game with transferable utility. In
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standard cooperative game theory it is assumed that any coalition of agents
may form. On the other hand, in many social situations the collection of
possible coalitions is restricted by social, hierarchical or communicational
structures. Examples are games with communication structures (see, e.g.
Myerson [9]), games with permission structures (see, e.g. Gilles, Owen and
van den Brink [5]), games with precedence constraints (see, e.g. Faigle and
Kern [4]) and more general models of games restricted on regular systems
(see, e.g. Lange and Grabisch [8]). In this paper we restrict ourselves to co-
operative games with communication structures. A communication structure
is represented by an undirected graph. The vertices in the graph represent
the agents and the edges represent the communication links between agents.
A coalition of agents can only cooperate if they are connected. This yields a
so-called graph game. A (single-valued) solution is a mapping that assigns to
each graph game a vector of payoffs. In Herings, van der Laan and Talman
[6] and Herings, van der Laan, Talman and Yang [7] (henceforth abbreviated
HLT and HLTY respectively) average tree solutions are introduced. From
the undirected graph, a set of rooted spanning trees is defined. Each rooted
spanning tree describes how information travels across the graph and induces
a specific marginal contribution vector. A solution is called an average tree
solution if it is the average of those marginal contribution vectors over a set
of admissible rooted spanning trees. HLT [6] restrict the analysis to cycle-
free graph games and consider the set of all rooted spanning trees. Using
efficiency and component fairness, the authors characterize the correspond-
ing average tree solution for cycle-free graph games. Component fairness
means that deleting a link between two agents yields for both resulting com-
ponents the same average change in payoff, where the average is taken over
the agents in the component. In case the undirected graph is arbitrary,
HLTY [7] construct a specific set of admissible rooted spanning trees. The
induced average tree solution has several advantages. It coincides with the
Shapley value when the underlying graph is complete and with the average
tree solution as defined by HLT [6] when the underlying graph is cycle-free.
In addition, a link-convexity condition for graph games to have their average
tree solution in the core is given.

Here we present an axiomatic characterization of the average tree solu-
tions. The domain on which we establish this characterization consists of all
graph games with a fixed undirected graph. Besides linearity and efficiency,
we use an axiom of hierarchy defined with respect to a set of admissible
rooted spanning trees. This third axiom is stated for unanimity graph games
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and requires that the payoff of any agent is proportional to the number of
times his position is decisive in a rooted spanning tree. These three logi-
cally independent axioms uniquely determine the corresponding average tree
solution for graph games.

We also discuss the properties of the set of admissible rooted spanning
trees studied in HLTY [7]. We provide a simple characterization of this
set and show that it is the largest set of rooted spanning trees making the
corresponding average tree solution a Harsanyi solution (see Vasil’ev [11]). A
Harsanyi solution distributes the Harsanyi dividends over the agents in the
corresponding coalitions according to a chosen sharing system. The latter
assigns to every (connected) coalition a sharing vector which specifies for each
of its members the share in the dividend associated with the coalition. The
payoff to each agent is thus equal to the sum of its shares in the dividends
of all coalitions she belongs to.

In order to compare different average tree solutions in terms of the dis-
tribution of the Harsanyi dividends, we introduce a new set of admissible
rooted spanning trees, the set of triangle-free trees. This set is larger than
the set of admissible trees introduced in HLTY [7], and so, from above,
the corresponding average tree solution can not be a Harsanyi solution. A
connected coalition may give up a share of its Harsanyi dividend in favor
of non-members if they play a decisive role in some trees. On the other
hand, this average tree solution yields the Shapley value on the class of com-
plete graph games and coincides with the average tree solution for cycle-free
graphs as defined in HLT [6]. The basic idea in HLT [6] is to consider all
possible rooted spanning trees. The set of triangle-free trees is equal to the
set of all rooted spanning trees in clique free-graphs. In this way, the average
tree solution defined with respect to the set of triangle-free trees generalizes
the average tree solution defined in HLT [6] from cycle-free graph games to
clique-free graph games.

We elaborate further on the proposed set of triangle-free trees by provid-
ing additional computational properties it satisfies. Assume that the agents
have the opportunity to orientate links in order to create a rooted spanning
tree. They communicate with their neighbors on the graph by sending mes-
sages over communication links and have only the ability to perform local
computation using information concerning their neighborhood. Computa-
tion and message transmission between agents are asynchronous. Such a
message-passing computation corresponds to a distributed algorithm. We
design a distributed algorithm which finds triangle-free trees such that once

3



a link has been selected, its orientation will never be reconsidered. Finally,
we prove that no such algorithm exists for finding the admissible rooted
spanning trees introduced in HLTY [7].

This paper is organized as follows. Section 2 is a preliminary section
containing concepts from cooperative graph games. In section 3 we prove
that efficiency, linearity and hierarchy uniquely determine an average tree
solution on the class of all graph games with a fixed undirected graph. In
section 4, we characterize the set of admissible trees introduced in HLTY
[7], and the corresponding average tree solution is discussed in terms of the
distribution of the Harsanyi dividends. A comparison with the average tree
solution constructed from the set of all triangle-free trees is also given and
a distributed algorithm to build triangle-free trees is proposed. Section 5
concludes.

2 Preliminaries

Consider a finite set of agents N = {1, 2, . . . , n}, n ∈ N, who face restric-
tions on communication. Each subset S of N is called a coalition. The
bilateral communication possibilities between the agents are represented by
an undirected graph (N, L), where the set of nodes coincides with the set of
agents N , and the set of links L is a subset of the set of unordered pairs of
elements of N . For each agent i ∈ N , the set Li = {j ∈ N | {i, j} ∈ L}
denotes the neighborhood of i in (N, L). For each non-empty coalition S of
N , L(S) = {{i, j} ∈ L | i, j ∈ S} is the set of links between agents in S. The
graph (S, L(S)) is the subgraph of (N, L) induced by S. A sequence of distinct
agents (i1, i2, . . . , ip) is a path in (N, L) if {iq, iq+1} ∈ L for q = 1, . . . , p− 1.
Two agents i and j are connected in (N, L) if i = j or there exists a path
from i to j. A graph (N, L) is connected if any two agents i and j in N are
connected. A coalition S is connected in (N, L) if (S, L(S)) is a connected
graph. Denote by C(L) the set of connected coalitions in (N, L). It is as-
sumed that only connected coalitions are able to cooperate. If a coalition S
belongs to C(L), then its members can fully coordinate their actions. The
worth obtained by cooperation between connected agents is described by the
function v : C(L) −→ R such that v(∅) = 0. In order to guarantee that the
grand coalition N can form, we assume that (N, L) is connected. The func-
tion v defines a graph game with transferable utility on (N, L). We take the
communication graph (N, L) to be fixed, and therefore consider the vector
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space CN,L of all graph games v on (N, L). For each coalition S ∈ C(L)\{∅},
define the unanimity graph game uS on C(L) by uS(T ) = 1 if S ⊆ T , and
uS(T ) = 0 otherwise. It is well known that the set of unanimity graph games
forms a basis for CN,L. Therefore, for each v ∈ CN,L, there exist unique real
numbers aS, S ∈ C(L), such that v =

∑

S∈C(L)\{∅} aSuS. These real numbers
are called the Harsanyi dividends.

A single-valued solution on CN,L is a function f that assigns to every
v ∈ CN,L a payoff vector f(v) ∈ R

n. The Shapley value (Shapley [10]) is
a solution on CKN

, where KN denotes the complete graph on N . Let ΣN

be the set of all permutations σ on N . For a given σ ∈ ΣN and i ∈ N ,
we define Sσ

i = {σ(1), σ(2), . . . , σ(i)} and Sσ
0 = ∅. Pick any v ∈ CKN

and
consider the marginal contribution vector mσ(v) on R

n defined by mσ
σ(i)(v) =

v(Sσ
i ) − v(Sσ

i−1) for every i ∈ N . The Shapley value is the solution Sh(v)
that assigns to every game v ∈ CKN

the average of all marginal contribution
vectors mσ(v), i.e.

Sh(v) =
1

n!

∑

σ∈ΣN

mσ(v) (2.1)

In HLT [6] and HLTY [7] the so-called average tree solutions are proposed.
A solution is an average tree solution if it is the average of specific marginal
contribution vectors. Each of such vectors is determined by a rooted spanning
tree. A spanning tree of a connected graph is a minimal set of links that
connect all agents. A spanning tree is rooted if one agent has been designated
the root, in which case the links have a natural orientation. Denote by ti
such a spanning tree rooted at agent i. For any rooted spanning tree ti, any
agent j ∈ N , ti(j) ∈ N denotes the unique predecessor of j in ti, with the
convention that ti(i) = i, which amounts to say that the set of ordered pairs
{(ti(j), j) | j ∈ N \ {i}} is the set of directed links of ti. The inverse image
of j ∈ N under ti, denoted by t−1

i (j), is the possibly empty set of successors
of j in ti. An agent k is a subordinate of j in ti if there is a directed path
from j to k, i.e. if there is a sequence of distinct agents (i1, i2, . . . , ip) such
that i1 = j, ip = k and for each q = 1, 2, . . . , p−1, iq+1 ∈ t−1

i (iq). The set Sti
j

denotes the union of the set of all subordinates of j in ti and {j}. So, we have
t−1
i (j) ⊆ Sti

j \{j}. Pick any v ∈ CN,L and consider the marginal contribution

vector mti(v) on R
n defined by mti

j (v) = v(Sti
j ) −

∑

k∈t−1
i (j) v(Sti

k ) for every

j ∈ N . The marginal contribution mti
j (v) of j ∈ N in ti is thus equal to

the worth of the coalition consisting of agent j and all his subordinates in ti
minus the sum of the worths of the coalitions consisting of any successor of
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j and all subordinates of this successor in ti. Denote by TN,L a non-empty
set of admissible rooted spanning trees on (N, L). The average tree solution
AT(v) with respect to TN,L assigns to every game v ∈ CN,L the average of all
marginal contribution vectors mti(v), i.e.

AT(v) =
1

|TN,L|

∑

ti∈TN,L

mti(v). (2.2)

3 Axiomatic characterization

In this section we characterize the average tree solutions given by (2.2) as the
unique solution on CN,L satisfying a collection of three logically independent
axioms. The first two axioms are standard axioms in cooperative game
theory.

Efficiency A solution f on CN,L is efficient if for any v ∈ CN,L, it holds that
∑

i∈N fi(v) = v(N).

Linearity A solution f on CN,L is linear if for any v, w ∈ CN,L and any
a ∈ R, it holds that f(av) = af(v) and f(v + w) = f(v) + f(w).

Before introducing the third axiom, we need a few more definitions and
notations. Let TN,L be a non-empty set of rooted spanning trees. For each
S ∈ C(L)\{∅} and each ti ∈ TN,L denote the smallest subtree of ti that

contains S by t̂i(S) and denote its root by rt̂i(S). Note that if S remains a

connected coalition in ti, t̂i(S) is the subtree ti(S) of ti induced by S and so
the root of ti(S) is a member of S. A system on C(L)\{∅} is a collection of
vectors h = (hS)S∈C(L)\{∅} where hS ∈ R

n
+ for each S ∈ C(L). Consider the

following system on C(L)\{∅}: for each S ∈ C(L)\{∅} and each i ∈ N , hS
i

is equal to the average number of times agent i is the root of such a subtree
that contains S, i.e. hS

i = |{tk ∈ TN,L | i = rt̂k(S)}|/|TN,L|. The support

of hS, consisting of all agents with a strictly positive weight in hS, will be
denoted by B(hS) = {i ∈ N | hS

i > 0}.

TN,L-hierarchy A solution f on CN,L satisfies TN,L-hierarchy if for any
unanimity graph game uS, S ∈ C(L)\{∅}, and any pair of distinct agents
{i, j}, it holds that hS

i fj(uS) = hS
j fi(uS).
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The TN,L-hierarchy axiom is reminiscent of the hierarchical strength axiom
introduced by Faigle and Kern [4] in order to characterize a Shapley value
for cooperative games with precedence constraints.

Proposition 3.1 For each non-empty set TN,L, there is a unique solution f
on CN,L that satisfies efficiency, linearity and TN,L-hierarchy.

Proof. Fix a non-empty set TN,L. Pick any S ∈ C(L)\{∅}. By definition,
uS(N) = 1. By TN,L-hierarchy, hS

i fj(uS) = hS
j fi(uS) for each distinct pair of

agents {i, j}. Assume that i ∈ B(hS) and j 6∈ B(hS). Then, 0 = hS
i fj(uS)

and so fj(uS) = 0. Thus, efficiency becomes
∑

j∈B(hS) fj(uS) = 1. Combining

this equation with the TN,L-hierarchy axiom, we first get for each i ∈ B(hS):

∑

j∈B(hS)

fj(uS) =
∑

j∈B(hS)

fi(uS)
hS

j

hS
i

= 1,

which in turn gives for each i ∈ B(hS):

fi(uS) = hS
i (3.1)

One easily checks that, conversely, the proposed solution satisfies efficiency
and TN,L-hierarchy. Thus, f is uniquely determined on unanimity graph
games. Because the collection of unanimity graph games is a basis for CN,L,
there exist aS ∈ R, S ∈ C(L)\{∅}, such that v =

∑

S∈C(L)\{∅} aSuS. There-

fore, f(v) =
∑

S∈C(L)\{∅} aSf(us) by linearity and so f is uniquely determined
on CN,L. �

Proposition 3.2 For each non-empty set TN,L, the average tree solution
given by (2.2) satisfies efficiency, linearity and TN,L-hierarchy on CN,L.

Proof. Pick any v ∈ CN,L, any non-empty set TN,L, and consider the corre-
sponding average tree solution AT(v) given by (2.2).
Efficiency We first show that for each ti ∈ TN,L and each j ∈ N ,
∑

k∈S
ti
j

mti
k (v) = v(Sti

j ). We proceed by induction on the number of agents

in Sti
j .

Initial step: assume that Sti
j = {j}. Then, mti

j (v) = v({j})− v(∅). Thus, the
assertion is true when j is a leaf of ti.
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Induction step: assume that the assertion holds for each Sti
j with at most p

agents, and pick any Sti
j with p + 1 agents. We get,

v(Sti
j ) = mti

j (v) +
∑

k∈t−1
i (j)

v(Sti
k ).

By the induction hypothesis, v(Sti
k ) =

∑

q∈S
ti
k

mti
q (v). Because Sti

j is the

disjoint union of {j} and the sets Sti
k , k ∈ t−1

i (j), we obtain
∑

q∈S
ti
j

mti
q (v) =

v(Sti
j ), as desired.

Because for each ti ∈ TN,L, Sti
i = N , we get

∑

j∈N mti
j (v) = v(N). By

(2.2), we conclude that the average tree solution satisfies efficiency.
Linearity The average tree solution is linear as the average of |TN,L|marginal
contribution vectors.
TN,L-hierarchy Pick any connected coalition S ∈ C(L)\{∅}, any agent i ∈
N and any tk ∈ TN,L. Observe the following facts:

1. If i 6= rt̂k(S), then either Stk
i 6⊇ S or rt̂k(S) ∈ Stk

i . In both cases mtk
i (uS) =

0.

2. If i = rt̂k(S), then Stk
i ⊇ S and so uS(Stk

i ) = 1. Because t̂k(S) is

the smallest subtree of tk that contains S, we have Stk
j 6⊇ S and so

uS(Stk
j ) = 0 for each j ∈ t−1

k (i). Hence, mtk
i (uS) = 1.

From (1) and (2), we get for each i ∈ N ,

ATi(uS) =
1

|TN,L|











∑

tk∈TN,L:
i=rt̂k(S)

mtk
i (uS) +

∑

tk∈TN,L:
i6=rt̂k(S)

mtk
i (uS)











=
1

|TN,L|

∑

tk∈TN,L:
i=rt̂k(S)

1

= hS
i

= fi(uS) (3.2)

where the last equality follows from (3.1). By proposition 3.1, we conclude
that AT satisfies TN,L-hierarchy. This completes the proof of proposition 3.2.
�
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By proposition 3.1 and proposition 3.2, the average tree solution with
respect to TN,L can be written as

ATi(v) =
∑

S∈C(L):
i∈B(hS)

hS
i aS (3.3)

for each v =
∑

S∈C(L)\{∅} aSuS in CN,L and each i ∈ N .

4 Sets of admissible trees

The study of the previous section holds for any non empty set of rooted
spanning trees chosen as admissible trees. Here, we examine the relative
interest of AT(v) for various sets of admissible trees.

4.1 Cycle-free graphs

The basic idea is to consider the set T a
N,L of all possible rooted spanning

trees of a graph (N, L). This has been done by HLT [6] for cycle-free graph
games. In this context, each agent i induces exactly one rooted spanning
tree ti in the following way: ti(i) = i and for each sequence of distinct agents
(i1, . . . , ip) such that i1 = i and {iq, iq+1} ∈ L for q = 1, . . . , p − 1, set
ti(iq+1) = iq. Hence, T a

N,L contains exactly n elements. It has been shown
(HLT [6], Theorem 5.1) that, for each i ∈ N , the corresponding average tree
solution can be written as

ATi(v) =
1

n

∑

ti∈T a
N,L

mti(v) =
∑

S∈C(L):
i∈S

1 + pL
S(i)

|S|+
∑

j∈S pL
S(j)

aS (4.1)

where pL
S(j), j ∈ S, is the number of agents outside S that j represents. An

agent j ∈ S represents agent k outside S if k is connected to j and on the
unique path connecting j and k all agents between j and k are outside S.
Denote by P L

S (j) the set of agents outside S that j ∈ S represents. Because
the graph (N, L) is cycle-free, it holds that B(hS) = S, and it is not difficult
to verify that for each i ∈ S,

hS
i =

1 + pL
S(i)

|S|+
∑

j∈S pL
S(j)

(4.2)
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Firstly, note that {P L
S (j)}j∈S forms a partition of N\S, i.e P L

S (j) ∩
P L

S (i) = ∅ for each i, j ∈ S, i 6= j, and ∪j∈SP L
S (j) = N\S. It follows that

|S|+
∑

j∈S pL
S(j) = n. Secondly, for each i ∈ S there is a unique ti ∈ T a

N,L and
agent i is such that rt̂i(S) = i. This corresponds to the unit in the numerator

of (4.2). Thirdly, for each tk ∈ T a
N,L, t̂k(S) = tk(S). If i represents k, then

S is a subset of the set of subordinates of i in tk so that rtk(S) = i. If i does
not represent k, there exists an agent j ∈ S who represents k and so i is a
subordinate of j in tk. This implies that i 6= rtk(S). Conclude that rtk(S) = i
if and only if i represents k. Therefore, |{tk ∈ T a

N,L | i = rt̂k(S)}| = 1 + pL
S(i).

Thus, (4.2) holds.

4.2 Harsanyi trees

In [7], HLTY consider the average tree solution with respect to a specific set
of admissible rooted spanning trees constructed as follows. Let B = (Bi)i∈N

be a collection of coalitions satisfying the following conditions:

1. For each i ∈ N , it holds that i ∈ Bi and Bi ∈ C(L);

2. For all i, j ∈ N , i 6= j, it holds that either Bi ⊆ Bj\{j} or Bj ⊆ Bi\{i}
or both Bi ∩Bj = ∅ and Bi ∪ Bj 6∈ C(L);

3. For each i ∈ N and each connected component C of the subgraph of
(N, L) induced by the set of agents Bi\{i}, it holds that C = Bj for
some j ∈ N such that {i, j} ∈ L.

Any collection B = (Bi)i∈N satisfying conditions 1, 2 and 3 induces a unique
rooted spanning tree, say tBi , in such a way that (j, k) is a directed edge of tBi if

and only if Bk is a component of Bj\{j}. Therefore, tBi is such that S
tBi
j = Bj

for each j ∈ N . Denote by T b
N,L the set of such of rooted spanning trees for

the communication graph (N, L). For reasons that will appear shortly, an
element of T b

N,L will be called a Harsanyi tree. The following proposition
provides a simple characterization of the set T b

N,L, which will prove useful
throughout this section.

Proposition 4.1 Let (N, L) be a graph on N . A rooted spanning tree tk
belongs to T b

N,L if and only if for each {i, j} ∈ L it holds that either i ∈ Stk
j

or j ∈ Stk
i .
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Proof. Pick any tk ∈ T b
N,L and any {i, j} ∈ L. We have to show that

either i ∈ Stk
j or j ∈ Stk

i . Consider the unique agent r ∈ N such that
{i, j} ⊆ Br = Stk

r and for any other agent p ∈ N , where {i, j} ⊆ Bp = Stk
p ,

we have r ∈ Stk
p . Assume that r 6∈ {i, j}. Because {i, j} ∈ L, condition 3

described above implies that there exists a successor of r, say sr, such that
{i, j} ⊆ Stk

sr
= Bsr

. But, we have a contradiction with the definition of r.
We conclude that r ∈ {i, j}, which gives the desired result.

For the converse part, pick any rooted spanning tree tk of (N, L) such
that for each {i, j} ∈ L, it holds that either i ∈ Stk

j or j ∈ Stk
i . We have to

show that the collection of coalitions (Stk
1 , . . . , Stk

n ) satisfies conditions 1, 2
and 3 described above.

Condition 1 follows from the definition of Stk
i , i ∈ N .

By definition of a rooted spanning tree, for each pair of distinct agents
{i, j}, it holds that either Stk

i ⊆ Stk
j \{j} or Stk

j ⊆ Stk
i \{i}, or Stk

i ∩ Stk
j = ∅.

Assume that there is a pair of distinct agents {i, j} such that Stk
i ∩ Stk

j = ∅.

Then, for each ic ∈ Stk
i and each jc ∈ Stk

j , we have ic 6∈ Stk
jc

and jc 6∈ Stk
ic

and so {ic, jc} 6∈ L. Therefore, Stk
i ∪ Stk

j can not be a connected coalition of
(N, L). We conclude that condition 2 holds.

Pick any i ∈ N and consider the subgraph (Stk
i \{i}, L(Stk

i \{i})) of (N, L)
induced by Stk

i \{i}. Assume, for the sake of contradiction, that there ex-
ists a connected component C of (Stk

i \{i}, L(Stk
i \{i})) such that C 6= Stk

j

for each j ∈ t−1
k (i). Then, there necessarily exists a set of distinct agents

{j1, j2, . . . , jq} included in t−1
k (i) such that {Stk

j1
, Stk

j2
, . . . , Stk

jq
} forms a par-

tition of C. But, we have a contradiction with condition 2, so condition 3
holds. �

Corollary 4.2 If (N, L) is a cycle-free graph, then the set of all rooted span-
ning trees coincides with the set of Harsanyi trees. If (N, L) is the complete
graph KN , then the set of Harsanyi trees coincides with the set of line-trees,
i.e. the set of all rooted spanning trees where each agent has at most one
successor.

From corollary 4.2, two properties of the corresponding average tree so-
lution emerge. These properties, already proved by HLTY [7], are contained
in the following proposition.

Proposition 4.3 (HLTY [7], Theorem 3.2 and Theorem 3.3) If (N, L) is a
cycle-free graph, then, for each v ∈ CN,L, the average tree solution defined with
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respect to T b
N,L and given by (2.2) is the average of n marginal contribution

vectors and coincides with (4.1). If (N, L) is the complete graph KN , then,
for v ∈ CKN

, the average tree solution defined with respect to T b
N,L and given

by (2.2) is the average of n! marginal contribution vectors and coincides with
the Shapley value given by (2.1).

A sharing system on N is a system z = (zS)S∈C(L)\{∅}, where each sharing
vector zS ∈ R

n
+ is defined as: zS

i = 0 for each i ∈ N\S, zS
i ≥ 0 for each i ∈ S

and
∑

i∈N zS
i = 1. A solution f is a Harsanyi solution if it assigns to each

game v ∈ CN,L and to each i ∈ N the payoff

fi(v) =
∑

S∈C(L):
i∈S

zS
i aS

for some sharing system z. Harsanyi solutions have been proposed by Vasil’ev
[11] and studied for line-graph games by van den Brink, van der Laan and
Vasil’ev [3] (see also van den Brink, van der Laan and Pruzhansky [2]). The
system h = (hS)S∈C(L)\{∅} defined in section 3 is not necessarily a sharing
system since B(hS) may contain agents outside S. In case B(hS) ⊆ S, the
system h is a sharing system. Proposition 4.4 below points out another
advantage of considering Harsanyi trees as the set of admissible trees. It
states that the set of Harsanyi trees is the largest set of rooted spanning trees
such that the corresponding average tree solution is a Harsanyi solution.

Proposition 4.4 Let (N, L) be a graph on N and assume that the set of ad-
missible trees is the set of Harsanyi trees T b

N,L. Then, we have: (i) for each
S ∈ C(L)\{∅}, B(hS) = S. (ii) The set T b

N,L is the largest set of rooted span-
ning trees of (N, L) such that (i) holds. (iii) For each v =

∑

S∈C(L)\{∅} aSuS

in CN,L the average tree solution on T b
N,L assigns to each i ∈ N ,

ATi(v) =
∑

S∈C(L):
i∈S

hS
i aS (4.3)

Proof. (i) Consider the set T b
N,L of Harsanyi trees. Pick any S ∈ C(L)\{∅}.

We first show that B(hS) ⊇ S by proving that, for each agent i ∈ N , there
is at least one spanning tree ti rooted at i such that ti ∈ T b

N,L. We proceed
by induction on the number n of agents in N .

12



Initial step: if n = 1, we are done.
Induction step: assume that the assertion holds for each set of agents N with
at most n agents, and pick N with n + 1 agents. Consider a communication
graph (N, L), an agent i ∈ N and the connected components of the sub-
graph (N\{i}, L(N\{i})) of (N, L) induced by N\{i}. For each connected
component C of (N\{i}, L(N\{i})), there is j ∈ C such that {i, j} ∈ L. By
the induction hypothesis, there is a spanning tree tCj rooted at j such that
tj ∈ T b

C,L(C). For each tCj ∈ T b
C,L(C), construct the directed edge (i, j) and

add it to the tree tCj . By construction, the resulting directed graph on N is
a spanning tree rooted at i and it is easy to see that it belongs to T b

N,L. We
conclude that each i ∈ N is the root of at least one element of T b

N,L, so that
B(hS) ⊇ S.

It remains to show that B(hS) ⊆ S. Assume, for the sake of contradiction,
that there is i ∈ B(hS)\S. Then, there is tk ∈ T b

N,L such that i = rt̂k(S).
Consider the subgraph tk(S) of tk induced by S. It follows that tk(S) is a
forest, and for any pair of agents in S belonging to distinct components of
tk(S), one agent of this pair cannot be the subordinate of the other in tk.
Because S ∈ C(L), there is at least one such a pair of agents incident to
the same edge in (N, L). By proposition 4.1, tk 6∈ T b

N,L, a contradiction.
Conclude that B(hS) ⊆ S. Because S was an arbitrary non-empty coalition
in C(L), we have established that B(hS) = S for each S ∈ C(L)\{∅}.

(ii) The proof of point (i) establishes that if tk ∈ T b
N,L, then rt̂k(S) ∈ S for

each S ∈ C(L)\{∅}. Conversely, if rt̂k(S) ∈ S for each S ∈ C(L)\{∅}, then

tk ∈ T b
N,L. To see this, assume that rt̂k(S) ∈ S for each S ∈ C(L)\{∅} and

tk 6∈ T b
N,L. By proposition 4.1, there exists {i, j} ∈ L such that neither i ∈ Stk

j

nor j ∈ Stk
i . This implies that rt̂k({i,j}) 6∈ {i, j} ∈ C(L), a contradiction. From

this, we obtain that T b
N,L is the largest set of rooted spanning trees of (N, L)

for which B(hS) = S for all S ∈ C(L)\{∅}.
(iii) Equation (4.4) is just a consequence of the fact that, for all S ∈ C(L),

B(hS) = S in equation (3.3). �

4.3 Triangle-free trees

In this section we introduce the set of triangle-free trees. A rooted spanning
tree tk of (N, L) is triangle-free if {i, j} 6∈ L whenever tk(i) = tk(j). Denote
by T ∗

N,L the set of triangle-free trees of (N, L). Note that for each i ∈ N , there
is a least one triangle-free tree rooted at i. An application of proposition 4.1
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gives T ∗
N,L ⊇ T b

N,L.

Example 4.5

Assume that N = {1, 2, 3, 4}, L = {{1, 2}, {1, 3}, {2, 4}, {3, 4}} and con-
struct t3 with the set of directed edges {(3, 1), (3, 4), (1, 2)}. It so happens
that t3 ∈ T ∗

N,L\T
b
N,L.

One of the advantages of the set T ∗
N,L is that it coincides with T a

N,L for the
class of clique-free graphs. A graph (N, L) is clique-free if for any coalition S,
|S| = 3, the induced subgraph (S, L(S)) is different from KS. Hypercubes,
tori, the Petersen graph, among others, are clique-free graphs. On the con-
trary, T a

N,L = T b
N,L if and only if (N, L) is cycle-free. To see this, consider any

cyclic graph (N, L) and i ∈ N involved in a cycle (C, L(C)). As in example
4.5, one can construct a rooted spanning tree tk such that i has two succes-
sors in tk(C). Obviously, such a tree is not a Harsanyi tree. Proposition 4.1
yields T ∗

N,L = T b
N,L in the two extreme cases when (N, L) is either cycle-free

or the complete graph KN . Hence, as in HLTY [7], we directly obtain:

Proposition 4.6 If (N, L) is a cycle-free graph, then, for each v ∈ CN,L,
the average tree solution defined with respect to T ∗

N,L and given by (2.2) is
the average of n marginal contribution vectors and coincides with (4.1). If
(N, L) is the complete graph KN , then, for v ∈ CKN

, the average tree solution
defined with respect to T ∗

N,L and given by (2.2) is the average of n! marginal
contribution vectors and coincides with the Shapley value given by (2.1).

We now examine the two sets T ∗
N,L and T b

N,L from a computational point
of view. We adopt the classical framework of asynchronous distributed
computing (see Attiya and Welch [1]). Suppose that the agents have
to decide on the formation of some rooted spanning tree, knowing the
underlying communication graph. Agents communicate by sending messages
over communication links. An algorithm for this message-passing system
consists of a local program for each agent. A local program for an agent
provides the ability for the agent to perform local computation and to send
messages to and receives messages from each of its neighbors in the graph.
The question concerns which rooted spanning trees can be formed through
such an algorithm.
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General framework

Given a graph (N, L), each agent i ∈ N is modeled as a finite state
machine with state set Xi. The state set Xi contains a non empty subset
of initial states. A configuration is a vector of states x = (x1, . . . , xn) where
xi ∈ Xi for each i ∈ N . An initial configuration is a configuration whose
states are all initial. Each state of agent i ∈ N contains at least 2|Li|
components, inbufi(j) and outbufi(j) for each j ∈ Li. These components are
sets of messages: inbufi(j) holds the last message that has been delivered to i
through the link {i, j}; outbufi(j) holds the last message that i ∈ N has sent
to j through the link {i, j}. These messages contain local information in the
sense that it concerns exclusively the neighborhood of the senders. We model
the fact that any message sent by agent i to agent j is immediately delivered,
i.e. inbufj(i) = outbufi(j). Each state can also contain other internal state
variables that can be used by agent i for the local computation. The agent’s
state, excluding the outbufi(j) components, constitutes the accessible state
of i. A transition on agent i is an ordered pair (si, xi), where si, the input of
the transition, is an accessible state of i and xi, the output of the transition,
is a (complete) state of i. Each component outbufi(j) of xi is the message
sent by i to j during the transition. The transition is passive if the state of
agent i is identical to the old one (in particular no new message is delivered
to his or her neighbors). An algorithm is given by a set of transitions.

A computation step or event on agent i corresponds to the application of
i’s transition function to its current accessible state. Formally, an event on
agent i is a pair formed by a configuration x = (x1, . . . , xn) and a transition
(si, yi) on agent i such that si is the accessible state contained in xi. The
output of the event is the configuration z = (z1, . . . , zn) such that

• zi = yi;

• for each j ∈ Li, zj is identical to xj except for the content of inbufj(i),
which is given by the equality inbufj(i) = outbufi(j);

• zj = xj otherwise.

The first condition indicates that the state of i is updated; the second con-
dition indicates that emitted messages by i are immediately transmitted to
his neighbors; the third condition indicates that the state of the other agents
are not updated.
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In order to handle the case where two or more agents would like to simul-
taneously perform a local computation, we introduce a fictitious agent to act
as chairman. The chairman activates the agents successively during the ex-
ecution of the algorithm, which renders the system asynchronous. Formally,
a chairman is an infinite sequence (iq)q∈N of agents. A chairman is said to
be fair if for each i ∈ N , there is a constant subsequence (ig(q))q∈N equal to
i. The fairness condition ensures that each agent will get the opportunity to
perform local computations in the future.

An execution governed by the above chairman is an infinite sequence of
the following form: x0, e1, x1, e2, x2, e3, . . ., where for each integer q ∈ N∪{0},
xq is a configuration, eq+1 is a transition, (xq, eq+1) is an event on agent iq+1,
xq+1 is the output of (xq, eq+1), and x0 is initial. For the sake of consistency,
the configuration xq will be called the qth configuration of the execution.

Such an execution is fair if its chairman is fair and for each agent not
all transitions are passive. Here, the fairness condition ensures that each
agent will not ignore indefinitely the received information. The execution
terminates if there exists a positive integer q∗ such that for q > q∗ the
transition eq is passive. In this case, the configuration xq, q > q∗, is the final
configuration. Note that our model has two sources of non determinism: the
choice of a chairman and multiple transitions with the same input.

An algorithm for the construction of triangle-free trees

We describe an algorithm that constructs a triangle-free spanning tree tr
rooted at r, based on a graph (N, L), a fair chairman (iq)q∈N and a root r.
The construction is monotone in the sense that once an edge has been added,
its deletion will never be considered. To this end, two new types of variables
are introduced. In addition to the inbuf and outbuf components, the state of
each agent i ∈ N contains:

• the integer variable p(i), which holds either 0 or i’s unique predecessor;

• a set variable P (i), which holds 0 and the labels of the agents who can
potentially become i’s unique predecessor.

The pseudo-code of our algorithm is in Algorithm 1. In an initial con-
figuration, p(i) = 0 for all i ∈ N since no agent has a predecessor, and
P (i) = {0}, which indicates that no agent in N is yet to become i’s predeces-
sor. Moreover, for each i ∈ N and each j ∈ Li, inbufi(j) and outbufi(j) are
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empty. Some transitions will change the original value of p(i) into an agent’s
label. Because each transition whose input state is such that p(i) = j, j 6= 0,
does not change the value of p(i), our algorithm is monotone. A non empty
message contains one agent’s label, which forbids the recipient to take this
agent as predecessor. Exceptions are messages sent by the root, which con-
tain the label 0.

Lines 1, 2 and 3 of the algorithm encode the non passive transition on the
root r. Lines 4, 5 and 6 encode how the set P (i) is updated: first, neighbors
of i previously put in the tree are added (line 5), afterwards each i’s neighbor
whose predecessor is an element of Li is removed (line 6). Line 7 indicates
how an agent chooses its predecessor. By lines 8 and 9, each neighbor j of i
is informed that p(i) will never become its predecessor.

Algorithm 1

Input: a finite graph (N, L).
Initial conditions: ∀i ∈ N , p(i) = 0, P (i) = {0}, all buffers are empty.

Transitions on agent i:
1: if i = r and p(r) = 0, then
2: p(r)←− r,
3: ∀j ∈ Lr, outbufr(j)←− 0,
4: if i 6= r and p(i) = 0, then
5: P (i)←− P (i) ∪ {j ∈ Li | inbufi(j) 6= ∅},
6: P (i)←− P (i)\{k ∈ N | ∃j ∈ Li such that inbufi(j) contains k},
7: p(i)←− l for some l ∈ P (i),
8: if l 6= 0 then
9: ∀j ∈ Li, outbufi(j)←− l,
10: else, the transition is passive.

Remark that the pseudo-code enforces the following local behavior: when
p(i) = 0, no computation step has previously been done on i; when p(i) 6= 0,
no computation step will be later be done on i. Therefore, for each execution,
we have at most one active transition on each agent i.

Proposition 4.7 Each execution of Algorithm 1 terminates.

Proof. Given an execution (not necessarily fair), consider the set N q of agents
i such that p(i) 6= 0 in the qth configuration. The sequence (N q)q∈N∪{0} is
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non decreasing. Because N is a finite set, there exists an integer q∗ such
that N q∗ = N q for q > q∗. For each i ∈ N q∗ , we have p(i) 6= 0 and so no
more transition is possible on i. By definition, p(i) = 0 for each i 6∈ N q∗ and
each configuration, which means that no active transition has been done on
i. Thus, the q∗

th

configuration is final. �

Proposition 4.8 (i) For every fair execution, Algorithm 1 constructs a
rooted spanning tree tr ∈ T ∗

N,L. (ii) For each tr ∈ T ∗
N,L and each fair chairman

(iq)q∈N, there exists an execution of Algorithm 1, governed by (iq)q∈N, that
constructs tr.

Proof. (i) For any q ∈ N ∪ {0} and any i ∈ N , let pq(i) be the value of p(i)
taken in the qth configuration. Let N q = {i ∈ N | pq(i) 6= 0}. We first prove
by induction the following fact:

Fact 1 For each q ∈ N ∪ {0}, it holds that pq(N q) ⊆ N q. For
each i ∈ N q, the sequence (ik)k∈N∪{0} defined as i0 = i and ik+1 =
pq(ik), k ∈ N ∪ {0}, contains an element im such that im = r.
Moreover, for any pair {i, j} ∈ N q \ {r} × N q \ {r} such that
pq(i) = pq(j), it holds that {i, j} 6∈ L.

Initial step: Because N0 = ∅, Fact 1 holds.
Induction step: Let q ∈ N and assume that N q satisfies Fact 1. It is sufficient
to consider the case N q+1 6= N q. By the pseudo-code of Algorithm 1,
pq(iq+1) = 0, and there exists an agent j ∈ N such that pq+1(iq+1) = j.
Thus, we obtain N q+1 = N q ∪ {iq+1}. From line 5 of Algorithm 1, we get
j ∈ N q. We conclude that pq(N q) ⊆ N q for every q ∈ N∪ {0}. Note that no
(directed) cycle can be created by addition of a pending (directed) link. This
remark and the induction hypothesis together yield that the desired sequence
of agents exists.

Now, pick any pair {i, j} in (N q+1\{r}×N q+1\{r})∩L and assume, for the
sake of contradiction, that pq+1(i) = pq+1(j). By the induction hypothesis,
the set N q satisfies Fact 1. Thus, one agent of this pair, say agent i, is such
that i = iq+1. Consider the event when j takes l = pq+1(i) as predecessor.
This event occurs before the (q + 1)th event. After this event, inbufiq+1(j)
contains l by line 9 and definition of an event. By lines 6 and 7 of Algorithm

1, we cannot have p(iq+1) ←− l at the (q + 1)th event, a contradiction.
Therefore, pq+1(i) 6= pq+1(j), as desired. This completes the proof of Fact 1.
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Lastly, because the execution is fair, not all transitions are passive for
each agent. Thus, there exists q∗ ∈ N such that N q = N for each q > q∗,
and the corresponding set Aq = {(pq(i), i) | i ∈ N \ {r}} constitutes the set
of all directed links of a rooted spanning tree tr ∈ T ∗

N,L. This completes the
proof of point (i).

(ii) Pick any rooted spanning tree tr in T ∗
N,L. There exists a permutation

σ of N such that for each agent i, where i 6= r, we have σ(i) > σ(tr(i)). Note
that σ(r) = 1 for every such permutation. Since (iq)q∈N is fair, there exists
a n-uple (k1, k2, . . . , kn) such that for each agent i, iki = i, kr is the lowest
value such that ikr = r, and for each pair {i, j} of distinct agents such that
σ(i) > σ(j), it holds that ki > kj.

We claim that there exists an execution such that, for each i ∈ N , the
(ki)

th event is an active transition on i which makes: pki(i) ←− tr(i) (all
other transitions being passive). To show this claim, it suffices to prove Fact

2 below. We proceed by induction on the value of σ(i).

Fact 2 The ki first events are possible. After the (ki)
th event,

it holds that {j ∈ N | pki(j) 6= 0} = {j ∈ N | σ(j) ≤ σ(i)}.
Therefore, pki(j) = tr(j) for each such agent j.

Initialisation: If σ(i) = 1, then i = r. By definition of kr each configuration
preceding the (kr)

th event is initial. It follows that the desired transition,
which yields pkr(r)←− r, can be done at the (kr)

th event.
Induction hypothesis: Let p be an integer such that 1 ≤ p < n. Let i be
the integer such that σ(i) = p + 1, and assume that Fact 2 is true for each
integer j such that σ(j) ≤ p. The unique event on tr(i) before the (ki)

th

configuration makes inbufi(tr(i)) not empty. Because tr is triangle-free, there
is no other agent in Li whose predecessor is tr(i). This property and the
induction hypothesis together yield that no buffer inbufi(j) contains tr(i).
It follows that tr(i) is added in P (i) during the (ki)

th event by line 5 of
Algorithm 1, which in turn allows to make pki(i)←− tr(i) during the same
event. This completes the proof of point (ii). �
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A counterexample for Harsanyi trees

As shown by the example below, it is not possible to establish a similar
result for the set of Harsanyi trees.

Proposition 4.9 There does not exist a (monotone) message-passing algo-
rithm such that any fair execution constructs a rooted Harsanyi tree.

Proof. Assume, for the sake of contradiction, that there exists such an algo-
rithm. Inputs can be any connected graph (N, L), any fair chairman (iq)q∈N

and any root r ∈ N . In particular, we can consider the undirected graph
(N, L) given by N = {1, 2, 3, 4, 5} and L = {{1, 2}, {2, 3}, {3, 4}, {4, 5}},
agent 3 as the root and any fair chairman such that the first three activated
agents are i1 = 3, i2 = 2 and i3 = 4. Then, there exists a fair execution of
the algorithm which constructs t3, the unique spanning tree on (N, L) rooted
at agent 3. Further, note that there must exist a fair execution of the algo-
rithm such that the edge (3, 2) is added in the current tree before the edge
(4, 5). Therefore, there is a configuration during this particular execution of
the algorithm such that the tree constructed so far contains both edges (3, 2)
and (3, 4).

Now, execute the same algorithm with inputs given by (N, L∪ {{1, 5}}),
the same fair chairman as above and root 3. Consider the same execution of
the algorithm as before. Because players 2, 3 and 4 have exactly the same
neighbors in (N, L∪{{1, 5}}) and (N, L), the configurations of the algorithm
must be the same as with (N, L) until both edges (3, 2) and (3, 4) have been
added to the current tree. However, by proposition 4.1, there is no element
of T b

N,L∪{{1,5}} containing these two edges, a contradiction. �

5 Conclusion

In this paper we studied average tree solutions for graph games. Each such a
solution is defined with respect to a set of admissible rooted spanning trees.
Given a set of admissible rooted spanning trees, we associated a system that
is used to distribute the Harsanyi dividends over the agents in the popula-
tion. For each connected coalition and each agent, this system measures the
strategic location on the graph of this agent in terms of information that
he or she can receive from this connected coalition. We gave an axiomatic
characterization of the average tree solutions on the class of all graph games
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and showed that the payoff of an agent is equal to the sum of its shares in the
dividends of all connected coalitions for which his or her location is strategic.

Although any set of admissible rooting spanning trees may be considered,
we focused our attention on the set of Harsanyi trees and on the set of
triangle-free trees. We showed that that the average tree solution defined
with respect to the set of Harsanyi trees is a Harsanyi solution. This is not the
case for the average tree solution defined with respect to the set of triangle-
free trees. On the other hand, both solutions can be viewed as generalizations
of the Shapley value and of the average tree solution for cycle-free graph
games as introduced in HLT [6]. The set of triangle-free trees is larger than
the set of Harsanyi trees, which means that there are more ways to transmit
information in the direction of a particular agent in the former case. On the
class of clique-free graphs, the set of triangle-free trees coincides with the set
of all rooted spanning trees. In case the set of admissible rooted spanning
trees is the set of Harsanyi trees, the above property holds if and only if the
underlying graph is cycle-free. Finally, we compared both admissible sets of
rooted spanning trees from a computational point a view. We constructed
a distributed algorithm for searching triangle-free trees. This algorithm is
a growth process of a spanning tree. Starting at the designated root, the
tree is grown by adding at most one (directed) edge at each iteration. Each
computation step relies only on local information received from neighbors
so that the resulting triangle-free tree is, in some sense, the result of agent
computation but not of agent design. We showed that no such distributed
algorithm for searching Harsanyi trees exists.
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