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Abstract

This paper develops a wavelet (spectral) approach to test the presence of a unit root in a
stochastic process. The wavelet approach is appealing, since it is based directly on the different
behavior of the spectra of a unit root process and that of a short memory stationary process.
By decomposing the variance (energy) of the underlying process into the variance of its low
frequency components and that of its high frequency components via the discrete wavelet trans-
formation (DWT), we design unit root tests against near unit root alternatives. Since DWT
is an energy preserving transformation and able to disbalance energy across high and low fre-
quency components of a series, it is possible to isolate the most persistent component of a series
in a small number of scaling coefficients. We demonstrate the size and power properties of our
tests through Monte Carlo simulations.
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1 Introduction

As Granger (1966) pointed out, the vast majority of economic variables, after removal of any
trend in mean and seasonal components, have similar shaped power spectra where the power of
the spectrum peaks at the lowest frequency with exponential decline towards higher frequencies.
Since Nelson and Plosser (1982) argued that this persistence was captured by modeling the series
as having a unit autoregressive root, designing tests for unit root has attracted the attention of
many researchers. The well-known Dickey and Fuller (1979) unit root tests have limited power to
separate a unit root process from near unit root alternatives in small samples. Phillips (1986) and
Phillips (1987) pioneered the use of the functional central limit theorem to establish the asymptotic
distribution of statistics constructed from unit root processes. To construct unit root tests with
serially correlated errors, one approach is due to Phillips (1987) and Phillips and Perron (1988) by
adjusting the test statistic to take account for the serial correlation and heteroskedasticity in the
disturbances. The other approach is due to Dickey and Fuller (1979) by adding lagged dependent
variables as explanatory variables in the regression. Other important contributions are Chan and
Wei (1987), Park and Phillips (1988), Park and Phillips (1989), Sims et al. (1990), Phillips and Solo
(1992) and Park and Fuller (1995). In general, unit root tests cannot distinguish highly persistent
stationary processes from nonstationary processes and the power of unit root tests diminish as
deterministic terms are added to the test regressions. For maximum power against very persistent
alternatives, Elliott et al. (1996) (ERS) use a framework similar to Dufour and King (1991) (DK)
to derive the asymptotic power envelope for point-optimal tests of a unit root under various trend
specifications. Ng and Perron (2001) exploits the finding of ERS and DK to develop modified tests
with enhanced power subject to proper selection of a truncation lag.

Most existing unit root tests make direct use of time domain estimators of the coefficient of the
lagged value of the variable in a regression with its current value as the dependent variable, except
the Von Neumann variance ratio (VN) tests of Sargan and Bhargava (1983) and their extensions.
Recently, Cai and Shintani (2006) provide alternative VN tests based on combinations of consistent
and inconsistent long run variance estimators. Phillips and Xiao (1998) and Stock (1999) provide
a helpful review of the main tests and an extensive list of references.

In this paper, we develop a general wavelet spectral approach to testing unit roots inspired by
Granger (1966). The method of wavelets decomposes a stochastic process into its components, each
of which is associated with a particular frequency band. The wavelet power spectrum measures
the contribution of the variance at a particular frequency band relative to the overall variance of
the process. If a particular band contributes substantially more to the overall variance relative
to another frequency band, it is considered an important driver of this process. Recall that the
spectrum of a unit root process is infinite at the origin, and hence the variance of a unit root process
is largely contributed by low frequencies. By decomposing the variance1 of the underlying process
into the variance of its low frequency components and that of its high frequency components via
the discrete wavelet transformation (DWT), we design wavelet-based unit root tests. Since DWT
is an energy preserving transformation and able to disbalance energy across high and low frequency
components of a series, it is possible to isolate the most persistent component of a series in a small

1In the signal processing literature, the variance of a process is referred to as the energy of the process. In this
paper, we use the two terminologies interchangeably.
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number of coefficients referred to as the scaling coefficients. Our tests utilize the scaling coefficients
of the unit scale. In particular, we construct test statistics from the ratio of the energy from the unit
scale to the total energy (variance) of the time series. We establish asymptotic properties of our
tests, including their asymptotic null distributions, consistency, and local power properties. Our
tests are easy to implement, as their asymptotic null distributions are nuisance parameter free and
the corresponding critical values can be tabulated. The Monte Carlo simulations are conducted to
compare the empirical size and power of our tests to the Dickey and Fuller (1979) (ADF), Phillips
and Perron (1988) (PP), Elliott et al. (1996) (ERS) and Ng and Perron (2001) (MPP) tests. Our
tests have good size and comparable power against near unit root alternatives in finite samples.

The DWT is an orthonormal transformation which may be relaxed through an oversampling
approach termed as the maximum overlap DWT (MODWT), see, for example, Percival and Mofjeld
(1997).2 The VN tests of Sargan and Bhargava (1983) are based on the ratio of the sample variance
of the first differences and the levels of the time series. These tests avoid the problem of redundant
trend to gain efficiency. Sargan and Bhargava (1983) suggested using the VN statistic for testing the
Gaussian random walk hypothesis, and Bhargava (1986) extended to the case of the time trend.
Stock (1995) studied unit root tests with a linear time trend and Schmidt and Phillips (1992),
working with polynomial trends, showed that the Lagrange multiplier principle leads to a VN test.
Interestingly, we show that the VN tests are special cases of our wavelet tests when we use the
Haar wavelet filter and unit scale MODWT. The Haar wavelet filter is the member of Daubechies
compactly supported wavelet filter of the shortest length. By using Daubechies wavelet filter of
longer length, our tests gain power over the VN tests in finite samples.

An alternative spectral approach to time series analysis is that of the Fourier spectral analysis.
The Fourier approach is appealing when working with stationary time series. However, restricting
ourselves to stationary time series is not appealing since most economic/financial time series exhibit
quite complicated patterns over time (e.g., trends, abrupt changes, and volatility clustering). In
fact, if the frequency components are not stationary such that they may appear, disappear, and
then reappear over time, traditional spectral tools may miss such frequency components. Wavelet
filters provide a natural platform to deal with the time-varying characteristics found in most real-
world time series, and thus the assumption of stationarity may be avoided. The wavelet transform
intelligently adapts itself to capture features across a wide range of frequencies and thus has the
ability to capture events that are local in time. This makes the wavelet transform an ideal tool
for studying nonstationary time series. Early applications of wavelets in economics and finance
include Davidson et al. (1998) who investigate U.S. commodity prices via wavelets and a series of
papers by Ramsey and his coauthors (see Ramsey (1999) for a review and references) who explore
the use of DWT in decomposing various economic and financial data. Gençay et al. (2003, 2005)
propose a wavelet approach for estimating the systematic risk or the beta of an asset in a capital
asset pricing model. The proposed method is based on a wavelet multiscaling approach where the
wavelet variance of the market return and the wavelet covariance between the market return and a
portfolio are calculated to obtain an estimate of the portfolios systematic risk (beta) at each scale.
In time series econometrics, one example of the successful application of wavelets is in the context

2The MODWT goes by several names in the literature, such as the stationary DWT by Nason and Silverman
(1995) and the translation-invariant DWT by Coifman and Donoho (1995). A detailed treatment of MODWT can
be found in Percival and Walden (2000) and Gençay et al. (2001).
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of long memory processes where a number of estimation methods have been developed. These
include wavelet-based OLS, the approximate wavelet-based maximum likelihood approach, and
wavelet-based Bayesian approach. Fan (2003) and Fan and Whitcher (2003) provide an extensive
list of references. The success of these methods relies on the so called ‘approximate decorrelation’
property of the DWT of a possibly nonstationary long memory process, see Fan (2003) for a rigorous
proof of this result for a nonstationary fractionally differenced process. Fan and Whitcher (2003)
propose overcoming the problem of spurious regression between fractionally differenced processes
by applying the DWT to both processes and then estimating the regression in the wavelet domain.
Other examples of applications of wavelets in econometrics include wavelet-based spectral density
estimators and their applications in testing for serial correlation/conditional heteroscedasticity,
see e.g., Hong (2000), Hong and Lee (2001), Lee and Hong (2001), Duchesne (2006a), Duchesne
(2006b), and Hong and Kao (2004).

This paper provides another context in which the use of the wavelet (spectral) approach may
have advantages over the time domain approach or the Fourier approach. Unlike Hong (2000),
Hong and Lee (2001), Lee and Hong (2001), Duchesne (2006a), Duchesne (2006b), and Hong and
Kao (2004) who develop and/or make use of wavelet estimators of spectral density functions of
the relevant processes, we employ directly the DWT of the observed time series. We contribute
to the unit root literature on three different fronts. First, we propose a unified wavelet spectral
approach to unit root testing; second, we provide a spectral interpretation of existing VN unit root
tests; and finally, we propose higher order wavelet filters to capture low-frequency stochastic trends
parsimoniously and gain power against near unit root alternatives.

In section two, we begin with a brief overview of wavelets, discrete wavelet filters and discrete
wavelet transformation. In section three, we develop our wavelet-based unit root tests against
purely stationary alternatives and trend stationary alternatives. Section four provides Monte Carlo
simulations on the size and power properties of our tests. We conclude thereafter. An appendix
contains technical proofs. Throughout this paper, we use =⇒ to denote weak convergence. All
the limits are taken as the sample size approaches ∞.

2 Discrete Wavelet Transformation

A wavelet is a small wave which grows and decays in a limited time period.3 To formalize the notion
of a wavelet, let ψ(.) be a real valued function such that its integral is zero,

∫∞
−∞ ψ(t) dt = 0, and

its square integrates to unity,
∫∞
−∞ ψ(t)2 dt = 1. Thus, although ψ(.) has to make some excursions

away from zero, any excursions it makes above zero must cancel out excursions below zero, i.e.,
ψ(.) is a small wave, or a wavelet.

Fundamental properties of the continuous wavelet functions (filters), such as integration to zero
and unit energy, have discrete counterparts. Let h = (h0, . . . , hL−1) be a finite length discrete
wavelet (or high pass) filter such that it integrates (sums) to zero,

∑L−1
l=0 hl = 0, and has unit

energy,
∑L−1

l=0 h2
l = 1. In addition, the wavelet filter h is orthogonal to its even shifts; that is,

L−1∑

l=0

hlhl+2n =
∞∑

l=−∞
hlhl+2n = 0, for all nonzero integers n. (1)

3This section closely follows Gençay et al. (2001), see also Percival and Walden (2000). The contrasting notion is
a big wave such as the sine function which keeps oscillating indefinitely.
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The natural object to complement a high-pass filter is a low-pass (scaling) filter g. We will
denote a low-pass filter as g = (g0, . . . , gL−1). The low-pass filter coefficients are determined by the
quadrature mirror relationship4

gl = (−1)l+1hL−1−l for l = 0, . . . , L− 1 (2)

and the inverse relationship is given by hl = (−1)lgL−1−l. The basic properties of the scaling filter
are:

∑L−1
l=0 gl =

√
2,
∑L−1

l=0 g2
l = 1,

L−1∑

l=0

glgl+2n =
∞∑

l=−∞
glgl+2n = 0, (3)

for all nonzero integers n, and

L−1∑

l=0

glhl+2n =
∞∑

l=−∞
glhl+2n = 0 (4)

for all integers n. Thus, scaling filters are average filters and their coefficients satisfy the orthonor-
mality property that they possess unit energy and are orthogonal to even shifts.

By applying both h and g to an observed time series, we can separate high-frequency oscillations
from low-frequency ones. Let y = {yt}T

t=1 be a dyadic length vector (T = 2M ) of observations where
M = log2(T ). The length T vector of discrete wavelet coefficients w is obtained by w = Wy, where
W is a T ×T real-valued orthonormal matrix defining the DWT which satisfies WTW = IT (T ×T
identity matrix). We refer the interested reader to Percival and Walden (2000) for a detailed
discussion on the construction of W from the wavelet and scaling filters. The vector of wavelet
coefficients may be organized into M + 1 vectors,

w = [w1,w2, . . . ,wM ,vM ]T , (5)

where wj is a length T/2j vector of wavelet coefficients associated with changes on a scale of length
λj = 2j−1 and vM is a length T/2M vector of scaling coefficients associated with averages on a
scale of length 2M = 2λM .

In practice the DWT is implemented via a pyramid algorithm of Mallat (1989, 1998). The
first iteration of the pyramid algorithm begins by filtering (convolving) the data with each filter to
obtain the unit-scale wavelet and scaling coefficients:

Wt,1 =
L−1∑

l=0

hly2t−l mod T and Vt,1 =
L−1∑

l=0

gly2t−l mod T ,

where t = 1, . . . , T/2. Let w1 =
(
W1,1, ...,WT/2,1

)′ and v1 =
(
V1,1, ..., VT/2,1

)′ denote respectively
the vectors of unit-scale wavelet and scaling coefficients. We obtain the level 1 partial DWT
w = [w1, v1]T .

4Quadrature mirror filters (QMFs) are often used in the engineering literature because of their ability for perfect
reconstruction of a signal without aliasing effects. Aliasing occurs when a continuous signal is sampled to obtain a
discrete time series.
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The second step of the pyramid algorithm starts by defining the “data” to be the scaling
coefficients v1 from the first iteration and apply the filtering operations as above to obtain the
second level of wavelet and scaling coefficients:

Wt,2 =
L−1∑

l=0

hlV2t−l,1 mod T/2 and Vt,2 =
L−1∑

l=0

glV2t−l,1 mod T/2,

t = 1, . . . , T/4. Keeping all vectors of wavelet coefficients, and the final level of scaling coefficients,
we have the following length T decomposition w = [w1, w2, v2]T , where w2, v2 denote respectively
the vectors of second scale wavelet and scaling coefficients. This procedure may be repeated up to
M times where M = log2(T ) and gives the vector of wavelet coefficients in Equation (5).

The orthonormality of the matrix W implies that the DWT is a variance preserving transfor-
mation:

‖w‖2 =
T/2M∑

t=1

V 2
t,M +

M∑

j=1




T/2j∑

t=1

W 2
t,j


 =

T∑

t=1

y2
t = ‖y‖2 .

This can be easily proven through basic matrix manipulation via

‖y‖2 = yTy = (Ww)TWw = wTWTWw = wTw = ‖w‖2 .

Given the structure of the wavelet coefficients, ‖y‖2 is decomposed on a scale-by-scale basis via

‖y‖2 =
M∑

j=1

‖wj‖2 + ‖vM‖2 , (6)

where ‖wj‖2 =
∑T/2j

t=1 W 2
t,j is the sum of squared variation of y due to changes at scale λj and

‖vM‖2 =
∑T/2M

t=1 V 2
t,M is the information due to changes at scales λM and higher.

The idea behind our wavelet unit root tests can be best understood through the energy (vari-
ance) decomposition of a white noise process and that of a unit root process. To illustrate,
in Figure 1, the dot chart of a Gaussian white noise process is plotted for 1024 observations
(M = 210 = 1024). A six level (J = 6)5 DWT is used. “Data” represents the total energy of
the data which is normalized at one, wi, i = 1, . . . , 6 represents the percentage energy of wavelet
coefficients, and v6 is the percentage energy of the scaling coefficients. The sum of the energies
of the wavelet and the scaling coefficients is equal to the total energy of the data. The energy is
the highest at the highest frequency wavelet coefficient (w1) and declines gradually towards the
lowest frequency wavelet coefficient (w6). The percentage energy of the scaling coefficient (v6), i.e.,
‖vJ‖2 / ‖y‖2, is close to zero. In Figure 2, the dot chart of a unit root process

yt = yt−1 + ut, ut ∼ i.i.d. N(0, 1) (7)

is plotted for y0 = 0 and t = 1, 2, . . . , 1024 observations. The energy is the highest for the scaling
coefficients and almost zero at all wavelet coefficients. The percentage energy of the scaling coef-
ficients (v6), i.e., ‖vJ‖2 / ‖y‖2, is almost equal to one. The number of coefficients needed equals
41 (41/1024 = 4%) of the total number of coefficients to account for almost all energy of the data.

5There is no specific reason for choosing J = 6. Any level J < M could be used.
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Heuristically, when a white noise process is added up (say, as in a unit root process), the high
frequencies are smoothed out (those spikes in the white noise disappear) and what is left is the
long term stochastic trend. On the contrary, when we do differencing (e.g., first differencing to a
unit root, then we are back to the white noise series), we get rid of the long term trend, and what
is left is the high frequencies (spikes) with mean zero. Since a unit root process can be succinctly
approximated by a few scaling coefficients and the energy of the scaling coefficients is almost equal
to the total energy of the data, we develop our statistical tests for a unit root process based on this
principle of energy decomposition.

3 New Unit Root Tests

Let {yt}T
t=1 be a univariate time series generated by

yt = ρyt−1 + ut, (8)

where {ut} is a weakly stationary zero-mean error with a strictly positive long run variance defined
by ω2 ≡ γ0 + 2

∑∞
j=1 γj where γj = E(utut−j). Throughout this paper, the initial condition is set

to y0 = Op(1) and the following assumption on the error term is maintained.
Assumption 1:

(a) {ut} is a linear process defined as ut = ψ(L)εt =
∑∞

j=0 ψjεt−j , ψ(1) 6= 0, and
∑∞

j=0 j|ψj| <∞;

(b) {εt} is i.i.d. with E(εt) = 0, V ar(εt) = σ2, and finite fourth cumulants, and εs = 0 for s ≤ 0.

The last condition in Assumption 1(a) is referred to as 1-summability of ψ(L). The assumption
εs = 0 for s ≤ 0 in Assumption 1(b) is made for convenience. Under Assumption 1, we have ω2 =
ψ(1)2σ2 and T−1/2

∑[T ·]
t=1 ut =⇒ ωW (·) where [Tr] denotes the integer part of Tr and W (·) denotes

a standard Brownian motion defined on C[0, 1], the space of continuous functions on [0, 1]. It is
known that the weak convergence result: T−1/2

∑[T ·]
t=1 ut =⇒ ωW (·) holds for more general/other

classes of processes than the class of linear processes specified in Assumption 1. It is possible to
extend the results to be developed in this paper to these other processes. For ease of exposition,
we will stick to Assumption 1 in this paper.

In Subsections 3.1 and 3.2, we consider tests forH0 : ρ = 1 againstH1 : |ρ| < 1 in (8). Under the
alternative hypothesis, {yt} is a zero-mean stationary process with the long run variance (1− ρ)−2

ω2. As mentioned in Section 2, our tests for unit root are based on the different behavior of the
energy decomposition of a unit root process and that of a short-memory such as a white noise
process. To introduce the fundamental idea, we first develop a test based on the Haar wavelet
filter and unit scale DWT in Subsection 3.1. In Subsection 3.2, we extend it to tests based on any
Daubechies (1992) compactly supported wavelet filter of finite length. Finally, we extend the tests
developed in Subsections 3.1 and 3.2 to trend stationary alternatives in Subsection 3.3.
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3.1 The first test — Haar wavelet filter

Consider the unit scale Haar DWT of {yt}T
t=1 where T is assumed to be even. The wavelet and

scaling coefficients are given by

Wt,1 =
1√
2
(y2t − y2t−1), t = 1, 2, . . . , T/2, (9)

Vt,1 =
1√
2
(y2t + y2t−1), t = 1, 2, . . . , T/2. (10)

The wavelet coefficients {Wt,1} capture the behavior of {yt} in the high frequency band [1/2, 1],
while the scaling coefficients {Vt,1} capture the behavior of {yt} in the low frequency band [0, 1/2].
The total energy of {yt}T

t=1 is given by the sum of the energies of {Wt,1} and {Vt,1}. Since for a unit
root process, the energy of the scaling coefficients {Vt,1} dominates that of the wavelet coefficients
{Wt,1} , we propose the following test statistic:

ŜT,1 =

∑T/2
t=1 V

2
t,1∑T/2

t=1 V
2
t,1 +

∑T/2
t=1 W

2
t,1

. (11)

Heuristically, under H0, ŜT,1 should be close to 1, since
∑T/2

t=1 V
2
t,1 dominates

∑T/2
t=1 W

2
t,1, while under

H1, ŜT,1 should be smaller than 1. We formalize these statements in the following lemma.

Lemma 3.1 Under H0, ŜT,1 = 1+op(1), while under H1, ŜT,1 = E(y2t+y2t−1)2

E(y2t+y2t−1)2+E(y2t−y2t−1)2
+op(1).

Note that:
E(y2t + y2t−1)2

E(y2t + y2t−1)2 + E(y2t − y2t−1)2
=

E
(
V 2

t,1

)

E
(
V 2

t,1

)
+E

(
W 2

t,1

) < 1.

We conclude that it is the relative magnitude of the energy of the scaling coefficients to that of
the wavelet coefficients that determines the power of the test based on ŜT,1 and we expect our test
based on ŜT,1 to have power against H1.

The asymptotic distribution of ŜT,1 under H0 is summarized in the following theorem.

Theorem 3.2 Under H0, T (ŜT,1 − 1) =⇒ − γ0

λ2
v

∫ 1
0 [W (r)]2dr

, where λ2
v = 4ω2.

The proof of Theorem 3.2 in the Appendix makes it clear that it is the energy of the scaling
coefficients that drives the asymptotic behavior of ŜT,1 under the null hypothesis. Alternatively,
noting the energy decomposition:

∑T/2
t=1 V

2
t,1 +

∑T/2
t=1 W

2
t,1 =

∑T
t=1 y

2
t , we get immediately,

T (ŜT,1 − 1) = −
T−1

∑T/2
t=1

(
W 2

t,1 − EW 2
t,1

)

T−2
∑T

t=1 y
2
t

−
1
2EW

2
t,1

T−2
∑T

t=1 y
2
t

= − op(1)

ω2
∫ 1
0 [W (r)]2dr

− γ0

4ω2
∫ 1
0 [W (r)]2dr

= − γ0

λ2
v

∫ 1
0 [W (r)]2dr

+ op(1) under H0.

There are two unknown parameters in the asymptotic null distribution of ŜT,1: γ0 = E(u2
2t)

and λ2
v or ω2. To estimate these parameters, we let ût = yt − ρ̂yt−1 denote the OLS residual. Then

7



γ̂0 = T−1
∑T

t=1 û
2
t is a consistent estimator of γ0. Being the long run variance of {ut} , ω2 can be

consistently estimated by a nonparametric kernel estimator with the Bartlett kernel:

ω̂2 = 4γ̂0 + 2
q∑

j=1

[1 − j/(q + 1)]γ̂j,

where q is the bandwidth/lag truncation parameter and γ̂j = T−1
∑T

t=j+1 ûtût−j , see Newey and
West (1987).6 Andrews (1991) showed that this long run variance estimator is consistent when the
bandwidth q grows at a rate slower than T 1/2, with an optimal growth rate being T 1/3 under some
moment conditions. Let λ̂2

v = 4ω̂2 and define the test statistic as

FG1 =
Tλ̂2

v

γ̂0

[
ŜT,1 − 1

]
.

Then under the null hypothesis, the limiting distribution of the test statistic FG1 is given by the
distribution of

− 1∫ 1
0 [W (r)]2dr

.

The limiting distribution of FG1under H0 is free from nuisance parameters and is extremely easy
to simulate, see MacKinnon (2000) for a detailed treatment. The critical values of this test are
tabulated in the first row of Table 1.

We note that an alternative way to estimate γ0 is via the wavelet variance estimators. We
will elaborate on this approach in the next subsection when we allow the use of a general filter.
Also, ω2 can be estimated by any existing long run variance estimators, including the wavelet-based
estimator of Hong (2000).

3.2 A general test — Daubechies compactly supported wavelet filter

For a general Daubechies compactly supported wavelet filter {hl}L−1
l=0 , the boundary-independent

(BI) unit scale wavelet and scaling coefficients are given by

Wt,1 =
L−1∑

l=0

hly2t−l, Vt,1 =
L−1∑

l=0

gly2t−l, (12)

where t = L1, L1+1, . . . , T/2 with L1 = L/2. Again the wavelet coefficients {Wt,1} extract the high
frequency information in {yt}. Since any Daubechies wavelet filter has a difference filter embedded
in it, {Wt,1} is stationary under bothH0 andH1. However the sequence of scaling coefficients {Vt,1},
extracting the low frequency information in {yt}, is nonstationary under H0 and stationary under
H1. Reflected in their respective energies, this implies that the energy of the scaling coefficients
dominates that of the wavelet coefficients under H0, which forms the basis for our tests.

Define7

ŜL
T,1 =

∑T/2
t=L1

V 2
t,1∑T/2

t=L1
V 2

t,1 +
∑T/2

t=L1
W 2

t,1

.

6Newey and West (1987) suggest setting the bandwidth using the sample size dependent rule of 4(T/100)2/9 . We
use this rule with Bartlett kernel in this paper.

7Instead of using the BI wavelet and scaling coefficients only, one could use all the wavelet and scaling coefficients.
This would not change the asymptotic results, as there is only a finite number of boundary dependent wavelet and
scaling coefficients.
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We will construct a test for unit root based on the following asymptotic properties of ŜL
T,1.

Theorem 3.3 (i) ŜL
T,1 = 1+op(1) under H0 and ŜL

T,1 = cL+op(1) under H1 with cL =
E(V 2

t,1)
E(V 2

t,1)+E(W 2
t,1)

<

1; (ii)
(

T
2

)
(ŜL

T,1 − 1) =⇒ − E(W 2
t,1)

λ2
v

∫ 1
0 [W (r)]2dr

under H0.

Theorem 3.3(i) implies that a consistent test for unit root can be based on ŜL
T,1. Theorem 3.3(ii)

extends Theorem 3.2 from the Haar filter to any Daubechies compactly supported wavelet filter
of finite length. Since as the length of the filter increases, the approximation of the Daubechies
wavelet filter to the ideal high-pass filter improves8, we expect tests based on ŜL

T,1 to gain power
over the test based on the Haar filter for L ≥ 4 in finite samples.

Note that E
(
W 2

t,1

)
equals twice of the so-called wavelet variance at the unit scale. As a result,

existing wavelet variance estimators can be used to estimate E
(
W 2

t,1

)
, see Percival (1995) for a

detailed comparison of the wavelet variance estimators based on DWT and MODWT respectively.
Based on DWT, 2υ̂2

y,1 is a consistent estimator of the wavelet variance, where

υ̂2
y,1 =

1
(T/2− L1 + 1)

T/2∑

t=L1

W 2
t,1. (13)

Define the test statistic:

FGL
1 =

(
T

2

)
λ̂2

v

υ̂2
y,1

[
ŜL

T,1 − 1
]
.

Under the null hypothesis, the limiting distribution of FGL
1 is the same as that of FG1. The

following theorem shows consistency of our test.

Theorem 3.4 Under H1, Pr
(
FGL

1 < −c
)
→ 1 for any fixed positive constant c.

3.3 Tests against trend stationarity

Tests developed in the previous subsections can be extended to deal with trend stationary alter-
natives. We adopt the components representation of a time series and work with the detrended
series, see Schmidt and Phillips (1992), Phillips and Xiao (1998), and Stock (1999). For ease of
exposition, we restrict ourselves to non-zero mean and linear trend cases only. Phillips and Xiao
(1998) also have a detailed discussion on efficient detrending for general trends.

The process {yt} is assumed to be of the form:

yt = µ + αt + ys
t , (14)

where {ys
t } is generated by model (8). Under H0 : ρ = 1, {ys

t } is a unit root process while
under H0 : |ρ| < 1, {ys

t } is a zero mean stationary process. If α = 0, we consider the demeaned
series {yt − y} , where y = T−1

∑T
t=1 yt is the sample mean of {yt}. If α 6= 0, we work with the

detrended series
{
ỹt − ỹ

}
, where ỹt =

∑t
j=1

(
∆yj − ∆y

)
and ỹ is the sample mean of {ỹt}, in which

8Percival and Walden (2000) provides an excellent discussion on this.
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∆yt = yt − yt−1 and ∆y is the sample mean of {∆yt} . Alternative expressions for the detrended
series

{
ỹt − ỹ

}
can be found in Schmidt and Phillips (1992).

Let
{
WM

t,1

}
and

{
VM

t,1

}
denote respectively the unit scale DWT wavelet and scaling coefficients

of the demeaned series {yt − y}. We will construct our tests based on

ŜLM
T,1 =

∑T/2
t=1(VM

t,1 )2
∑T

t=1(yt − y)2
.

Similarly, let
{
W d

t,1

}
and

{
V d

t,1

}
denote respectively the unit scale DWT wavelet and scaling coef-

ficients of the detrended series
{
ỹt − ỹ

}
. We will construct our tests based on

ŜLd
T,1 = −

∑T/2
t=1(V d

t,1)
2

∑T
t=1(ỹt − ỹ)2

.

UnderH0, it is known that T−2
∑T

t=1(yt−y)2 =⇒ ω2
∫ 1
0 [Wµ(r)]2 dr and T−2

∑T
t=1(ỹt−ỹ)2 =⇒

ω2
∫ 1
0 [Vµ(r)]2 dr, where Wµ(r) = W (r) −

∫ 1
0 W (u)du and Vµ(r) = V (r) −

∫ 1
0 V (u)du in which

V (r) = W (r) − rW (1).

Theorem 3.5 Under H0, we have: (i) T
(
ŜLM

T,1 − 1
)

=⇒ − E(W M
t,1)2

2ω2
∫ 1
0 [Wµ(r)]2dr

; (ii) T
(
ŜLd

T,1 − 1
)

=⇒

− E(W d
t,1)2

2ω2
∫ 1
0 [Vµ(r)]2dr

.

To estimate ω2, we take the OLS residuals from a regression of yt on a linear trend and yt−1

and then apply a nonparametric kernel estimator with the Bartlett kernel to the residuals.

Remark 3.1. It is interesting to note that when the Haar wavelet filter is used,

ŜLM
T,1 = 1−

∑T/2
t=1(y2t − y2t−1)2/2∑T

t=1(yt − y)2
.

This expression resembles that of the Sargan and Bhargava (1983) and Bhargava (1986) test. In
fact, we can obtain the Sargan and Bhargava (1983) and Bhargava (1986) test from an extension
of ŜLM

T,1 by using MODWT instead of DWT. To see this, we recall that apart from a factor of
√

2,
the unit scale MODWT wavelet and scaling coefficients of {yt − y} are given by

W̃t,1 =
L−1∑

l=0

hlyt−l mod T , Ṽt,1 =
L−1∑

l=0

gl (yt−l mod T − y) , (15)

where t = 1, . . . , T . It is easy to see that the DWT coefficients are obtained from the correspond-
ing MODWT coefficients via downsampling by 2. At each scale, there are T MODWT wavelet
coefficients and T MODWT scaling coefficients. Let

S̃LM
T,1 =

∑T
t=1 Ṽ

2
t,1∑T

t=1 Ṽ
2
t,1 +

∑T
t=1 W̃

2
t,1

.

With the Haar wavelet filter, apart from one coefficient Ṽ 2
1,1 in the numerator, S̃LM

T,1 reduces to

S̃LM
T,1 = 1 −

∑T
t=2(yt − yt−1)2∑T

t=1(yt − y)2
,
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so that
(
1 − S̃LM

T,1

)
with the Haar wavelet filter is the VN ratio used in Sargan and Bhargava (1983).

Remark 3.2. We now develop asymptotic power functions for unit root tests by considering
the sequence of local alternatives given by

ρ = exp
( c
T

)
∼ 1 +

c

T
(16)

for a particular value of c < 0. We first consider model (8) with stationary alternatives. Under this
sequence of local alternatives, it is well known that

T−2
T∑

t=1

y2
t =⇒ ω2

∫ 1

0
[Jc(r)]

2 dr,

where
Jc(r) =

∫ r

0
exp {(r− u)c}dW (u)

is the Ornstein-Uhlenbeck process generated in continuous time by the stochastic differential equa-
tion dJc(r) = cJc(r)dr+ dW (r). Using this, one can easily show that under this sequence of local
alternatives, the asymptotic distributions of the test statistics developed in Subsections 3.1 and 3.2
are of the same form as those under the null hypothesis except that the Brownian motion W (·)
is replaced with the Ornstein-Uhlenbeck process Jc(·), i.e., −1/

∫ 1
0 [Jc(r)]

2 dr. In particular, this
leads to the conclusion that all these tests have the same asymptotic power (to the first order)
against the sequence of local alternatives of the form (16). Generalizing this to trend stationary
alternatives, we can show that under this sequence of local alternatives, the asymptotic distribu-
tions of the test statistics developed in this subsection are of the same form as those under the
null hypothesis except that the Brownian motion W (·) is replaced with the Ornstein-Uhlenbeck
process JM

c (·) when α = 0 and with Jd
c (·) when α 6= 0, where JM

c (r) =
∫ r
0 exp {(r − u)c}dWµ(u)

and Jd
c (r) =

∫ r
0 exp {(r − u)c}dVµ(u). This implies that their asymptotic power is the same as that

of Sargan-Bhargava test. Hence, the local power analysis provided in Elliott et al. (1996) (ERS)
applies to our tests.

4 Monte Carlo Simulations

In this section, we investigate the finite sample performance of the new unit root tests against
trend stationary alternatives and compare them against the Elliott et al. (1996) (ERS) and Ng and
Perron (2001) (MPP) tests. To save space, we restrict ourselves to non-zero mean and linear trend
cases only. The data generating process is given by (14) with ut ∼ i.i.d. N(0, 1), µ = 1, and y0 = 0.

The asymptotic critical values of tests based on ŜLM
T,1 and ŜLd

T,1 are tabulated in Table 1. These
critical values are calculated from one million replications. Table 2 studies the size and power of
the test based on ŜLM

T,1 (α = 0) for a sample size of 1,000 observations and 10,000 replications. We
purposely have chosen ρ values of 0.99 and 0.98 to seek the power of the tests for very near unit
root alternatives. All tests have empirical sizes close to their nominal counterparts. At 5% level,
ŜLM

T,1 provides 19.7 percent gain over MPP test for ρ = 0.99. For ρ = 0.98, this gain is 22 percent.
The power gains of our test relative to ERS are 18% and 23% for ρ = 0.99, 0.98, respectively.

Table 3 studies the size and power of the test based on ŜLd
T,1 (α = 1) with 1,000 observations

and 10,000 replications. All three tests have empirical sizes close to their nominal counterparts.
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At 5% level, ŜLd
T,1 provides 8.6 percent gain over MPP test for ρ = 0.99. For ρ = 0.98, this gain

is 7.7 percent. The power gains of our test relative to ERS are 2.1% and 4.2% for ρ = 0.99, 0.98,
respectively.

In Table 4, we examine the power properties of the wavelet tests when ρ = 0.998 for T = 10, 000.
At 5% level, ŜLM

T,1 provides 26% and 29% power improvements over the ERS and MPP tests.
Similarly, ŜLd

T,1 provides 13% and 16% power improvements over the ERS and MPP tests at the 5%
level.

5 Conclusions

Our unit root tests provide a novel approach in disbalancing the energy in the data by constructing
test statistics from its lower frequency dynamics. We contribute to the unit root literature on
three different fronts. First, we propose a unified wavelet spectral approach to unit root testing;
second, we provide a wavelet spectral interpretation of existing Von Neumann variance ratio tests,
and finally, we propose higher order wavelet filters to capture low-frequency stochastic trends
parsimoniously and gain power against near unit root alternatives in finite samples. In our tests, the
intuitive construction and simplicity are worth emphasizing. The simulation studies demonstrate
the comparable power of our tests with reasonable empirical sizes.

Several extensions of our tests are possible. First, our tests make use of the unit scale DWT only
and hence the energy decomposition of {yt} into frequency bands [0, 1/2] and [1/2, 1]. Heuristically,
these tests are suitable for testing a unit root process against alternatives that have most energy
concentrated in the frequency band [1/2, 1]. To distinguish between a unit root process and a
‘strongly’ dependent process that has substantial energy in frequencies close to zero, we need to
further decompose the low frequency band [0, 1/2]. DWT of higher scales provides a useful device. A
generalization of our unit root tests to make use of DWT of higher scales is currently being pursued
by the authors. Second, we show in the paper that the Sargan and Bhargava test is a special case
of wavelet based tests with MODWT using unit scale Haar wavelet filter. MODWT has proven to
have advantages over DWT in various situations including wavelet variance estimation. It would
be interesting to see if it also has advantages in the context of testing unit root. Thirdly, the unit
root tests developed in this paper can be extended to residual-based tests for cointegration in the
same way that other unit root tests have been extended, see e.g., Phillips and Ouliaris (1990) and
Stock (1999). This is also being investigated by the authors.

Appendix: Technical Proofs

Proof of Lemma 3.1. Suppose H0 holds. Then yt = yt−1 +ut. Equations (9) and (10) imply:

Wt,1 =
1√
2
u2t and Vt,1 =

1√
2
(2y2t−1 + u2t). (17)

Using Equation (17), together with Equation (11), we obtain

ŜT,1 =

∑T/2
t=1 V

2
t,1∑T/2

t=1 V
2
t,1 + 1

2

∑T/2
t=1 u

2
2t

, (18)
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where
T/2∑

t=1

V 2
t,1 =

1
2
{4

T/2∑

t=1

y2
2t−1 + 4

T/2∑

t=1

u2ty2t−1 +
T/2∑

t=1

u2
2t} ≡ 2AT + 2BT +

1
2
CT , (19)

in which AT =
∑T/2

t=1 x
2
t , BT =

∑T/2
t=1 u2txt, and CT =

∑T/2
t=1 u

2
2t with xt ≡ y2t−1 for t =

1, 2, . . . , T/2.
Below, we show that under H0,

AT = Op(T 2), BT = Op(T ), CT = Op(T ). (20)

Let T1 = T
2 . By Proposition 17.2 in Hamilton (1994), we have

xt = x0 +
t∑

j=1

vt = x0 +
2t−1∑

j=0

uj = x0 +



u0 + ψ(1)

2t−1∑

j=1

εj + η2t−1 − η0



 .

Define the partial sum process associated with {vt} as XT1(r) = 1
T1

∑[T1r]
t=1 vt, 0 ≤ r ≤ 1.Then it

follows that

XT1(r)
L=

1
T1
ψ(1)

2[T1r]−1∑

j=1

εj = 2ψ(1)
1
T

[Tr]−1∑

j=1

εj .

By the functional Central Limit Theorem (CLT), we obtain
√
TXT1(·) =⇒ 2ψ(1)σW (·).Observing

that
∑T1

t=1 x
2
t = T 2

1
2

1∫
0

{
TX2

T1
(r)
}
dr, we obtain by the Continuous Mapping Theorem (CMT),

1
T 2

1

T1∑

t=1

x2
t =⇒ 1

2
λ2

v

1∫

0

W 2(r)dr,

where λv = 2ψ(1)σ. As a result, we get

T−2
1 AT =⇒ 1

2
λ2

v

∫ 1

0
[W (r)]2dr. (21)

We now look at BT . Recall that BT =
∑T1

t=1 u2ty2t−1. Simple algebra shows that E (BT ) =
1
2

∑T−1
s=1 (T − s − 1)γs = O(T ) and V ar(T−1BT ) = o(1), where γj = σ2

∑∞
s=0 ψsψs+j , for j =

0, 1, 2, . . .. Hence BT = Op(T ). The order of CT follows from the Law of Large Numbers (LLN).
Hence under H0, we get

∑T1
t=1 V

2
t,1 = Op(T 2) and

∑T1
t=1W

2
t,1 = Op(T ), implying that the energy

of the scaling coefficients dominates that of the wavelet coefficients as mentioned above. Conse-
quently,

ŜT,1 =
T−2

∑T1
t=1 V

2
t,1

T−2(
∑T1

t=1 V
2
t,1 +

∑T1
t=1W

2
t,1)

= 1 + op(1). (22)

Now consider what happens under H1. In this case, |ρ| < 1 so that yt = ρyt−1 + ut and {yt} is
a stationary short memory process. Thus, under H1, both {Vt,1} and {Wt,1} are stationary, short
memory processes. Moreover,

2
T1

T1∑

t=1

W 2
t,1 =

1
T1

T1∑

t=1

y2
2t +

1
T1

T1∑

t=1

y2
2t−1 −

2
T1

T1∑

t=1

y2ty2t−1 =
2γ0

1 + ρ
+ op (1) ,
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implying
∑T1

t=1W
2
t,1 = Op(T ). Similarly, we obtain

∑T1
t=1 V

2
t,1 = Op(T ), since 2

T1

∑T1
t=1 V

2
t,1 = 2γ0

1−ρ +
op (1). As a result, we obtain

ŜT,1 =
T−1

1

∑T1
t=1 V

2
t,1

T−1
1

∑T1
t=1 V

2
t,1 + T−1

1

∑T1
t=1W

2
t,1

=
E(V 2

t,1)
E(V 2

t,1) +E(W 2
t,1)

+ op (1)

=
E(y2t + y2t−1)2

E(y2t + y2t−1)2 + E(y2t − y2t−1)2
+ op (1) . (23)

Proof of Theorem 3.2. Under H0, we note that

ŜT,1 − 1 = −
CT /2− T

4 γ0

2AT + 2BT + CT
−

T
4 γ0

2AT + 2BT + CT
,

where AT , BT , CT are defined in (19). Note that CT =
∑T1

t=1 u
2
2t and E(CT ) = T1E(u2

2t) = T1γ0,
in which γ0 = σ2

∑∞
s=0 ψ

2
s . We obtain T−1

1 CT − γ0 = op (1). This, (21), and the fact that BT =
Op(T ) imply:

T1(ŜT,1 − 1) = −
T−1

1

(
CT /2 − T1

2 γ0

)

2T−2
1 (AT + BT + CT /2)

−
1
2γ0

2T−2
1 (AT + BT + CT /2)

= − op(1)

λ2
v

∫ 1
0 [W (r)]2dr

−
1
2γ0

λ2
v

∫ 1
0 [W (r)]2dr

= − γ0

2λ2
v

∫ 1
0 [W (r)]2dr

+ op(1),

where λ2
v = 4ω2.

Proof of Theorem 3.3. (i) Under H0 : ρ = 1. We now show that T−1
1

∑T1
t=L1

W 2
t,1 =

E
(
W 2

t,1

)
+ op(1) and T−2

1

∑T1
t=L1

V 2
t,1 = Op(1). Hence, under H0, we obtain

ŜL
T,1 =

1

1 +
∑T1

t=L1
W 2

t,1∑T1
t=L1

V 2
t,1

=
1

1 + Op(T )
Op(T 2)

= 1 + op(1).

To show T−1
1

∑T1
t=L1

W 2
t,1 = E

(
W 2

t,1

)
+ op(1), we note:

Wt,1 = y2t+1−L

L−1∑

l=0

hl +
L−2∑

l=0

hl





L−2−l∑

j=0

u2t−j−l



 =

L−2∑

l=0

hl





L−2−l∑

j=0

u2t−j−l



 ,

implying that Wt,1 is a finite linear combination of {ut}. The claim follows immediately from
Assumptions 1 and 2.

Now we consider the order of
∑T1

t=L1
V 2

t,1. Noting that

Vt,1 = y2t+1−L

L−1∑

l=0

gl +
L−2∑

l=0

gl





L−2−l∑

j=0

u2t−j−l



 =

√
2y2t+1−L +

L−2∑

l=0

gl





L−2−l∑

j=0

u2t−j−l



 ,
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we obtain

1
T 2

1

T1∑

t=L1

V 2
t,1 =

1
T 2

1

T1∑

t=L1


√2y2t+1−L +

L−2∑

l=0

gl





L−2−l∑

j=0

u2t−j−l








2

=
2
T 2

1

T1∑

t=L1

y2
2t+1−L +

1
T 2

1

T1∑

t=L1




L−2∑

l=0

gl





L−2−l∑

j=0

u2t−j−l








2

+
2
√

2
T 2

1

T1∑

t=L1

y2t+1−L




L−2∑

l=0

gl





L−2−l∑

j=0

u2t−j−l








=
2
T 2

1

T1∑

t=L1

y2
2t+1−L + op(1)

= Op(1).

If |ρ| < 1, then {yt} is a stationary short memory process. Since both {Wt,1} and {Vt,1} are
obtained from finite linear combinations of {yt}, we can show that T−1

1

∑T1
t=L1

W 2
t,1 = E

(
W 2

t,1

)
+

op(1) and T−1
1

∑T1
t=L1

V 2
t,1 = E

(
V 2

t,1

)
+ op(1), implying ŜL

T,1 =
E(V 2

t,1)
E(V 2

t,1)+E(W 2
t,1)

+ op(1).

(ii) Since under the null hypothesis, 1
T 2

1

∑T1
t=L1

V 2
t,1 = 2

T 2
1

∑T1
t=L1

y2
2t+1−L + op(1), the asymp-

totic distribution of 1
T 2

1

∑T1
t=L1

V 2
t,1 is given by that of 2AL

T ≡ 2
T 2

1

∑T1
t=L1

y2
2t+1−L. Similar to the

derivation of the asymptotic distribution of AT in the proof of Lemma 3.1, one can show that
T−2

1 AL
T =⇒ 1

2λ
2
v

∫ 1
0 [W (r)]2dr. On the other hand, extending the proof of Lemma 3.1, we can show

that T−1
1

∑T1
t=L1

W 2
t,1 − EW 2

t,1 = op(1). Hence under the null hypothesis,

T1(ŜL
T,1 − 1) = −

T−1
1

∑T1
t=L1

(W 2
t,1 − EW 2

t,1)

T−2
1

(∑T1
t=L1

V 2
t,1 +

∑T1−1
t=L1

W 2
t,1

) −
T−1

1 (T1 − L1)EW 2
t,1

T−2
1

(∑T1
t=L1

V 2
t,1 +

∑T1
t=L1

W 2
t,1

)

= − op(1)

λ2
v

∫ 1
0 [W (r)]2dr

−
EW 2

t,1

λ2
v

∫ 1
0 [W (r)]2dr

= −
EW 2

t,1

λ2
v

∫ 1
0 [W (r)]2dr

+ op(1).

Proof of Theorem 3.4. From Theorem 3.3 (i), we know: ŜL
T,1 − 1 = (cL − 1) + op (1), where

cL − 1 = −
E
(
W 2

t,1

)

E
(
W 2

t,1

)
+E

(
V 2

t,1

) < 0.

This, together with the consistency of λ̂2
v and υ̂2

y,1, imply:

T−1
1

(
FGL

1

)
=

λ̂2
v

υ̂2
y,1

[
ŜL

T,1 − 1
]

=
λν

E
(
W 2

t,1

) (cL − 1) + op (1) .

The conclusion follows from this and the fact that λν

E(W 2
t,1)

(cL − 1) < 0.

Proof of Theorem 3.5. It is similar to that of Theorem 3.3 (ii) and is thus omitted.
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Level
1% 5% 10%

FGL
1

-29.04 -17.75 -13.09

ŜLM
T,1

-40.38 -27.38 -21.75

ŜLd
T,1

-50.77 -36.54 -30.23

FGL
1 is the wavelet test for no drift. ŜLM

T,1 and ŜLd
T,1 are the wavelet tests for trend stationary

alternatives without and with linear trends, respectively. Entries are based on one million Monte
Carlo replications.

Table 1: Critical Values of Wavelet Tests
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ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%
ŜLM

T,1 ERS MPP

T = 1000
1.00 0.010 0.050 0.102 0.010 0.053 0.099 0.011 0.049 0.104
0.99 0.164 0.487 0.684 0.133 0.411 0.610 0.121 0.407 0.622
0.98 0.630 0.953 0.995 0.516 0.773 0.868 0.504 0.780 0.875

Table 2: Size and Power of the ŜLM
T,1 - Demeaned Series

The wavelet test statistic is calculated with a unit scale (J = 1) discrete wavelet transformation and with the Haar filter. The data
generating process is yt = µ+ys

t , where ys
t = ρys

t−1+ut, ut ∼ iidN(0, 1), µ = 1 and y0 = 0. Under the null ρ = 1 and under the alternative
ρ < 1. The asymptotic critical values of the ŜLM

T,1 test are tabulated in Table 1. The lag length of the ERS and MPP test regressions are
determined by minimizing the modified AIC with the maximum lag length of 12. All simulations are with 10,000 replications.
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ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%
ŜLd

T,1 ERS MPP

T = 1000
1.00 0.012 0.054 0.098 0.011 0.046 0.092 0.011 0.041 0.085
0.99 0.066 0.239 0.385 0.059 0.234 0.385 0.065 0.220 0.366
0.98 0.349 0.727 0.855 0.335 0.698 0.824 0.344 0.675 0.811

Table 3: Size and Power of the ŜLd
T,1 - GLS Detrended Series

The wavelet test statistic is calculated with a unit scale (J = 1) discrete wavelet transformation and with the Haar filter. The data
generating process is yt = µ+ αt+ ys

t , where ys
t = ρys

t−1 + ut, ut ∼ iidN(0, 1), α = 1, µ = 1 and y0 = 0. Under the null ρ = 1 and under
the alternative ρ < 1. The asymptotic critical values of the ŜLd

T,1 test are tabulated in Table 1. The lag length of the ERS and MPP
test regressions are determined by minimizing the modified AIC with the maximum lag length of 12. All simulations are with 10,000
replications.
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T = 10, 000
ρ 1% 5% 10% 1% 5% 10% 1% 5% 10%

ŜLM
T,1 ERS MPP

1.000 0.010 0.050 0.101 0.011 0.051 0.101 0.011 0.051 0.103
0.998 0.689 0.965 1.00 0.515 0.765 0.915 0.515 0.745 0.915

ŜLd
T,1 ERS MPP

1.000 0.011 0.051 0.100 0.010 0.049 0.098 0.011 0.049 0.098
0.998 0.380 0.691 0.845 0.305 0.610 0.775 0.310 0.595 0.740

Table 4: Size and Power of the ŜLM
T,1 and ŜLd

T,1

The asymptotic critical values of the ŜLM
T,1 and ŜLd

T,1 tests are tabulated in Table 1. The lag length of the ERS and MPP test regressions
are determined by minimizing the modified AIC with the maximum lag length of 12. All simulations are with 1,000 replications.
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Figure 1: Wavelet Variance Decomposition of a White Noise Process
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(b)

The energy decomposition of a white noise process through a six level discrete wavelet decomposition (DWT) with 1024

observations. (a) “Data” represents the total energy of the data which is normalized at one. wi, i = 1, . . . ,6 represents the

percentage energy of the wavelet coefficients. v6 is the percentage energy of the scale coefficients. The energies of the wavelet

and scaling coefficients are equal to the sum of the energy of the data. The energy is the highest at the highest frequency

wavelet coefficient (w1) and declines gradually towards the lowest frequency wavelet coefficient (w6). The percentage energy of

the scaling coefficient (v6) is zero. (b) This figure compares the proportional energy of the data to the proportional energy of

all coefficients. The number of coefficients needed is equal to the number of data points to account for the total energy of the

data. The horizontal axis is on natural logarithmic scale.
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Figure 2: Wavelet Variance Decomposition of a Unit Root Process

Energy (100%)

0.0 0.2 0.4 0.6 0.8 1.0

O

O

O

O

O

O

O

O

Data 

w1 

w2 

w3 

w4 

w5 

w6 

v6 

(a)

Number of Coefficients

C
um

ul
at

iv
e 

P
ro

po
rt

io
na

l E
ne

rg
y

1 5 10 50 100 500 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DWT
Data

(b)

The energy decomposition of a unit root process through a six level discrete wavelet decomposition (DWT) with 1024 observa-

tions. (a) “Data” represents the total energy of the data which is normalized at one. wi, i = 1, . . . , 6 represents the percentage

energy of wavelet coefficients. v6 is the percentage energy of the scaling coefficients. The energies of the wavelet and scaling

coefficients are equal to the sum of the energy of the data. The energy is the highest for the scaling coefficients and close to

zero for wavelet coefficients. The percentage energy of the scaling coefficients (v6) is close to the energy of the data. (b) This

figure compares the proportional energy of the data to the proportional energy of all coefficients. The number of coefficients

needed equals 41 (41/1024 = 4%) of the total number of coefficients to account for the total energy of the data. The horizontal

axis is on natural logarithmic scale.
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