
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2018

Self-Assembly of DNA Graphs and Postman Tours Self-Assembly of DNA Graphs and Postman Tours

Katie Bakewell
University of North Florida, n00184316@ospreys.unf.edu

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Discrete Mathematics and Combinatorics Commons, Geometry and Topology Commons,

and the Other Mathematics Commons

Suggested Citation Suggested Citation
Bakewell, Katie, "Self-Assembly of DNA Graphs and Postman Tours" (2018). UNF Graduate Theses and
Dissertations. 857.
https://digitalcommons.unf.edu/etd/857

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 2018 All Rights Reserved

http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.unf.edu%2Fetd%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=digitalcommons.unf.edu%2Fetd%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.unf.edu%2Fetd%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/857?utm_source=digitalcommons.unf.edu%2Fetd%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

Self-Assembly of DNA Graphs and Postman Tours

by

Katie Bakewell

A thesis submitted in partial fulfillment
of the requirements for the degree of

Masters of Science
Department of Mathematics and Statistics

College of Arts and Sciences
University of North Florida

Chairperson: Daniela Genova, Ph.D.
Michelle DeDeo, Ph.D.

Sami Hamid, Ph.D.

Date of Approval:
August 10, 2018

Keywords: Thickened graphs, Boundary components, Windy Postman Problem,
Reporter strands, DNA computing

c©Copyright 2018, Katie Bakewell

Table of Contents

Abstract ii

1 Introduction 1

2 Graph Theoretic and Topological Background 4

2.1 Graph Theoretic Notions . 4

2.2 Postman Tours and Associated Problems 8

2.3 Topological Background . 12

3 Self-Assembly of DNA Graphs 23

3.1 Solving the 3-SAT Problem through Self-Assembly 27

3.2 Solving the k-colorability Problem through Self-Assembly 29

3.3 Covering Graphs . 30

3.4 Weighting of Self-Assembled Graphs 31

4 Thickened Graphs 33

4.1 Properties of Thickened Graphs . 33

4.2 Constructing the Family of Thickened Graphs F(G) 36

4.3 Thickened Graphs and DNA Graphs 40

5 3-Valent Graphs 42

5.1 Reduction to 3-Valency . 43

5.2 A 3-Degree Perturbation of K5 . 46

5.3 Lifting the 3-Valent Graph . 48

i

6 The Existence of Reporter Strands 54

6.1 Thickened Graphs with Only Two Boundary Components 54

6.2 Identifying a Reporter Strand in a Graph G 57

7 Relating Postman Tours to Reporter Strands 67

7.1 Classifying Postman Tours by Reporter Strands 67

7.2 Containment in Reporter Strands 71

7.3 A Language Theoretic Approach to Removing Edges 74

8 Conclusion 77

References 79

About the Author End Page

ii

Abstract

DNA graph structures can self-assemble from branched junction molecules to yield

solutions to computational problems. Self-assembly of graphs have previously been

shown to give polynomial time solutions to hard computational problems such as

3-SAT and k-colorability problems. Jonoska et al. [13] have proposed studying

self-assembly of graphs topologically, considering the boundary components of their

thickened graphs, which allows for reading the solutions to computational problems

through reporter strands. We discuss weighting algorithms and consider applica-

tions of self-assembly of graphs and the boundary components of their thickened

graphs to problems involving minimal weight Eulerian walks such as the Chinese

Postman Problem and the Windy Postman Problem.

Chapter 1

Introduction

In 1994, Adleman showed in [1] that a polynomial time algorithm can identify

solutions to the Hamiltonian Path Problem using solely DNA strands and their

Watson-Crick self-assembly properties, and thus, he initiated DNA Computing.

Since then, DNA computing and nano-technology have been of interest in solving

many, computationally hard, mathematical problems. One such method is the self-

assembly of DNA graphs. The 3-colorability and 3-SAT problems have been shown,

e.g. in [16, 10, 11, 26], to give solutions in polynomial number of steps using DNA

self-assembly algorithms, thus, showing that any other nondeterminstic polynomial

problem could be solved in polynomial time using encoded DNA molecules. Since a

self-assembled DNA graph represents each edge of the graph by a double-stranded

DNA molecule, which in essence, traverses an edge twice in opposite directions,

Jonoska et al. [13] proposed to study such self-assembled graphs topologically, as

thickened graphs, where each of the two strands representing an edge can be viewed

as part of a boundary component of the underlying topological space. In [13], the

authors showed that for every connected multi-graph, there exists a boundary com-

ponent which traverses every edge of the graph at least once and not more than

twice.

Postman tour problems relate to the problem of identifying a minimal Eulerian

walk over a graph given certain conditions. The most general case, the Chinese

Postman Problem, is solvable in polynomial time. More specific cases, such as the

1

Windy Postman Problem, are nondeterministic polynomial. The Windy Postman

problem, discussed here, is NP- Complete, with current optimal solutions using

cutting-plane algorithms.

In this work, the relationship between such boundary components and postman

tours is considered. Additionally, the possibility of self-assembled solutions to the

family of postman tour problems through DNA self-assembly is discussed.

This paper is organized as follows. Chapter 2 is a review of the graph theo-

retic and topological notions used in this work. An overview of self-assembly of

DNA graphs, along with two computational algorithms using polynomial number

of steps to find solutions to NP-complete problems in laboratory testing, is provided

in Chapter 3. Additionally, the concept of embedding weights within a DNA-based

graph is discussed there, as well.

Chapter 4 introduces thickened graphs which are manifolds that contain a graph

as a deformation retract. The properties of thickened graphs and some topologi-

cal analysis of the surfaces is provided, followed by the construction of additional

thickened graphs through elementary operations on the boundary components. The

relationship between thickened graphs and DNA self-assembly is explored.

An algorithm reducing any connected graph to a 3-valent graph is provided in

Chapter 5, along with an example of the algorithm for K5 given in detail. The

topological “lift” of this 3-valent graph is also discussed. Subsequently, in Chapter

6, the proof for the existence of reporter strands for 3-valent connected graphs is

discussed in detail.

Finally, Chapter 7 considers the relationship between postman tours and re-

porter strands. A theorem discussing the existance of a reporter strand, which

contains a given postman tour is proven, followed by an algorithm to identify the

2

embedded postman tour as a subgraph. This chapter also presents a language the-

oretic approach to removing edges from reporter strands to obtain postman tours.

Concluding remarks and a discussion of future work are presented in Chapter 8.

3

Chapter 2

Graph Theoretic and Topological Background

In this chapter, we recall the definitions and basic properties from graph theory

and topology that are relevant to the notions we discuss. We define and review

the graph theoretic terminology used, including paths and cycles, digraphs, and

graph homomorphisms. In the second section, postman tour problems are reviewed.

The topology section recalls manifolds and their properties, invariants such as the

Betti Numbers, lifting and covering maps, and finally, homologies and deformation

retracts.

2.1 Graph Theoretic Notions

We begin this section reviewing the notions of undirected graphs and paths and

cycles within undirected graphs and conclude with a review of directed graphs. We

follow the definitions as stated in [5].

A graph G is composed of a set of vertices, V , and a set of edges, E. An edge

{u, v} is an unordered pair of vertices u, v ∈ V . An edge that is joined to a vertex

is said to be incident with that vertex. Two vertices that are joined by an edge are

called adjacent. The degree of a vertex v ∈ V , denoted by deg(v) is the number of

edges incident with that vertex. A vertex is called odd (resp. even), if its degree

is an odd (resp. even) number. We sometimes use valency to mean degree. A

corollary to the Fundamental Theorem of Graph Theory states that the number of

4

odd vertices in a graph must be even, see [5].

For an integer k, a k-valent or a k-regular graph has only vertices of degree k.

The order of a graph is the number of its vertices, |V |. The size of a graph is the

number of edges, denoted by |E|. For a k-valent graph of order n, the number of

edges is |E| = kn
2

.

Within a graph, a sequence beginning with a vertex, followed by alternating

edges and vertices and ending with a vertex is called a walk. If the initial and final

vertex of a walk are the same vertex, the walk is called closed. A walk with no

repeated edges is called a trail. Note that vertices in a trail may repeat. A trail

with no repeated vertices is called a path. A closed path (with the same initial and

terminal vertex) is called a cycle.

A graph is said to be Eulerian if there exists a closed trail, called an Eulerian

cycle, which contains every edge of the graph. It can be shown (see [5]) that having

only vertices of even degree is a necessary and sufficient condition for a graph to be

Eulerian. Furthermore, a graph can have an Eulerian trail, also called an Eulerian

walk or an Eulerian path, that is a trail containing each edge of the graph, but

not a cycle, if and only if the graph has exactly two vertices of odd degree. To

relate this to the previous result, one can create an edge between the two vertices of

odd degree, which will result in a closed trail and all vertices would be of even degree.

Since a graph that is not Eulerian has an even (positive) number of odd vertices,

one can construct an Eulerian graph from it by adding edges that join two odd

vertices until all odd vertices have become even. Thus, the minimum number of

edges that need to be added is half the number of odd vertices. Another way to

construct Eulerian graphs from non-Eulerian is to take a closed walk which contains

every edge and create a new parallel edge anytime an edge is repeated. This way,

an additional edge represents traversing the edge twice. An example of this method

5

Figure 2.1: An Eulerian graph is constructed by adding the green dashed edges.

is shown in Figure 2.1 with the green dashed edges representing the added edges.

Weights can be assigned to the edges of a graph. These weights allow for the

calculation of an aggregate weight for cycles. Weighted graphs allow for many in-

teresting optimization problems such as the Traveling Salesman Problem and the

family of postman tours problems discussed in this paper.

For graphs G = (V,E) and G′ = (V ′, E ′), a graph homomorphism φ : G→ G′ is

a mapping from V to V ′ such that for every adjacent pair of vertices in G there is

an adjacent pair of vertices in G′. That is, if {u, v} ∈ E, then {f(u), f(v)} ∈ E ′.

If there exists a graph homomorphism between G and G′, then G′ is said to be a

homomorphic image of G.

Throughout this paper, we consider multiple successive graph homomorphisms

on a single graph. Such composition of graph homomorphisms is itself a graph ho-

momorphism.

Edges in graphs can be undirected or directed. When edges are undirected we

denote them as unordered pairs of vertices, e.g. {u, v}, while directed edges (arcs)

are denoted as ordered pairs of vertices, e.g. (u, v). So far, we have discussed graphs

containing undirected edges only. Such graphs are called undirected graphs, whereas

6

a graph containing only directed edges is a called a directed graph or a digraph. A

graph can contain both directed and undirected edges, in which case it is called a

mixed graph. Undirected graphs which have at most one edge joining each pair of

vertices are called simple. When parallel edges between the same pair of vertcies are

allowed, the graph is called a multigraph, and when, in addition, loops are allowed,

the graph is called a general graph. The notion of a multigraph can be extended

to directed graphs and a directed multigraph can contain self-loops. The graphs

considered throughout this paper are directed graphs, with at most two arcs joining

any two vertices. If two directed edges join the same pair of vertices, then they

have opposite orientation. One way to transform an undirected graph into directed

is to replace each undirected edge {u, v} by two directed edges in opposite direction

(u, v) and (v, u). A digraph is Eulerian if the indegree (the number of edges going to

a vertex) and the outdegree (the number of edges going out of a vertex) are equal.

Thus, a digraph obtained from an undirected graph by replacing each edge with

two oppositely oriented arcs is necessarily Eulerian.

Graphs in this paper are denoted by G = (V,E, t) where V is the set of vertices

in G, E is the set of edges of G, and t : E → W , where W is a set of one and two

element subsets of V defining the endpoints of the edges. If v ∈ V and e ∈ E, we

say that v ∈ t(e) if and only if e is incident with v. Note that multiedges and loops

are allowed in G. If t(e) = t(e′) = {u, v} (respectively, if t(e) = t(e′) = (u, v)), we

say that e and e′ are undirected (resp. directed) parallel edges. For digraphs, the

set W is called the set of adjacent vertex ordered pairs in G. An adjacent vertex

ordered pair defines a pair of vertices (u, v) which has a directed edge going out of

u and into v. In the case of a loop at vertex v, the ordered pair (v, v) is included

in t(G) = t(E) = W . Since we are interested in representing undirected edges by

directed edges, in the case of an undirected edge {u, v}, two vertex pairs (u, v) and

(v, u) are included in t(G), representing the traversal of {u, v} in either direction.

7

2.2 Postman Tours and Associated Problems

A postman tour τ is a closed walk that contains every edge of a graph, or else,

that traverses each edge at least once. This tour is named due to the imagery of a

postman having to walk down every street at least once without regard to whether

he must occasionally duplicate a street. Thus, there is an inherent connection be-

tween postman tours and Eulerian graphs, and also, between postman tours and

constructions that transform a graph into an Eulerian one.

Two optimization problems arise from postman tours: identifying the minimal

length closed walk that contains each edge and identifying the minimal weight closed

walk that traverses each edge. When weights are included in the identification of

postman tours, then the family of minimal weight Eulerian walk problems, often

called Postman or Route Inspection Problems, arises. The most basic problem in-

volves the identification of a minimal weight postman tour in a connected graph.

This problem is often referred to as the Chinese Postman Problem (CPP), named in

honor of Chinese mathematician Guan Meigu (also known as Mei-Ko Kwan through

phonetic spelling), who proposed it in 1962, see [22].

Postman problems have a wide variety of real world applications in mathemati-

cal programming and operations research. Obviously, route inspections and postal

routes can be planned this way as can other city services such as street sweeping

and garbage collection. In addition, applications in flow and network management

increase the importance of solving this class of problems.

Note that every Eulerian cycle is a postman tour. If a graph is Eulerian, then

a minimal length postman tour is one of the Eulerian cycles contained within G.

Thus, the interest in solving postman tour problems typically focuses on graphs

whose vertices are not all of even degree. Also note that every graph can be made

Eulerian by duplicating each of its edges. Thus, we consider only postman tours

8

which visit each edge at least once and no more than twice.

Figure 2.2: A solution to the CPP for G using additional edges in dashed green lines.

Many polynomial time algorithms exist for the CPP. One such algorithm is based

on constructing an Eulerian graph from a non-Eulerian graph by joining pairs of

odd vertices. All possible pairings of odd vertices are created and their respective

weights are calculated. The weight of edges between sets of adjacent vertex pairs are

considered, providing the pairing creates an Eulerian graph. The minimal weight

combination(s) of pairing edges is(are) identified. Those edges are then added to

the graph as parallel edges, and then an Eulearian path is identified. An example of

such a solution is given in Figure 2.2, where the two edges traversed twice (dotted

in green), provide the minimal edge weight duplication such that all vertices are

even.

Further refinements of this process can improve computational time. Given l

as the length of a postman tour, we can define p(G) = l − |E(G)| to be the num-

ber of edges that are traversed more than once in order to construct a minimal

length postman tour. Bounds on p(G) for certain type of graphs were found due to

postamn tours constructed by Kostochka and Tulai [14].

Definition 2.2.1 The robustness of a graph G relates to its ability to withstand

damage. An m-robust graph will remain connected with any m edges removed from

9

the graph.

If G is a (2r + 1)-regular 2t-edge-connected m-robust multigraph, where m is

odd, then

p(G) ≤ n

2
+ max(0,

n− 2m

(r + t)/(r − t)(m+ 1)
).

We consider 3-regular graphs, where r = 1 which gives that

p(G) ≤ n

2
+ max(0,

n− 2m

(1 + t)/(1− t)(m+ 1)
.

Suil O and Douglas West, see [20], further refined sharp bounds for p(G) in 3-

regular multigraphs. Additionally, they conjecture that similar construction could

be applied to (2r + 1)-regular graphs.

There are many variants of postman problems that are non-polynomial due to

the computational complexity of calculating all possible postman tours. The Windy

Postman Problem (WPP) requires identification of the minimal weight postman

tour on a directed weighted graph. After introducing the Chinese Postman Prob-

lem, Meigo Guan proposed this WPP generalization in 1984 and proved that the

WPP is NP-complete, see [6].

It has been proven that the Mixed Postman Problem (MPP), requiring finding

a minimal weight postman tour on a mixed graph, is NP-hard. The theorem below

shows that the WPP can be reduced to the MPP, and vice versa. This shows that

the Windy Postman Problem is both NP-complete and NP-hard, see [6].

Theorem 2.2.2 WPP is NP-hard.

Proof. In order to show that the Mixed Postman Problem can be reduced to the

Windy Postman Problem, let G be a mixed graph, with some edges being directed

and some edges being undirected. Construct G′ by adding a parallel edge (vj, vi)

for each edge e = (vi, vj), oriented in the opposite direction. Assign an arbitrarily

10

high weight for these edges, M . Consider the undirected edges as two parallel equal

weight edges, one in each direction. For each edge in G, this newly constructed G′

is a symmetric graph.

Any postman tour in G′ that uses only the original edges will also exist in G,

with the same weight. Identifying postman tours in G′ including newly added edges

will not optimize the solution, as long as M is sufficiently high, and thus the solution

of the Windy Postman Problem will solve the Mixed Postman Problem.

As it has been shown that the Mixed Postman Problem is NP-hard, the Windy

Postman Problem, in turn, must also be NP-Hard.

As the Windy Postman Problem is NP-hard and can be reduced efficiently to

another NP-hard problem, we can conclude the Windy Postman Problem (and thus

the MPP) is NP-Complete.

Additional variants of these problems include the Rural Postman Problem and

the Street Sweeper Problem. The Rural Postman Problem (RPP) requires iden-

tification of the minimal weight postman tour on a graph where some edges may

not be required, though may be necessary to optimize the solution. The Street

Sweeper Problem (SSP) requires identification of the minimal weight postman tour

on a graph where some edges may only exist in one direction. Combined problems

are also considered, such as the Windy Rural Postman Problem.

Here we focus specifically on the Windy Postman Problem. For Eulerian graphs,

the Windy Postman Problem has been shown to be solvable in polynomial time,

see [25]. In that paper, Win showed an algorithm, generalizing to all graphs, which

requires at most twice the optimal computational time.

Many algorithms have been explored to improve the time needed to solve these

11

complex problems. Branch and Cut algorithms have shown success in reducing

the computational complexity of nondeterministic polynomial postman problems

including the WPP. These approaches rely on the construction of subsets of edges,

with vertices falling within subsets of V (G), and the use of linear programming to

optimize solutions within subsets of the graph. Corberan et al., in [3], developed a

polynomial time solution to identify violated subsets and a heuristic for the combi-

nation of cut pieces to develop a solution to the problem. In 2012, Corberan tested

his WPP solution against published methods on 36 graphs with orders ranging from

52 to 264 and size ranging from 78 to 489, with the cut and branch algorithm being

the most efficient in 31 of the 36 instances.

2.3 Topological Background

The construction and application of thickened graphs in this paper depends on

the topological properties of these graphs. This section includes a brief review of

the notions and properties necessary for the discussion of thickened graphs. First,

we recall some definitions and properties of manifolds (specifically surfaces), then

we introduce Betti numbers, homotopy, and homeomorphisms. Finally, we discuss

retractions and lifting. Topological definitions and notations here are from Munkres’

Topology, see [18].

Definition 2.3.1 A topology on a set X is a collection T of subsets of X having

the following properties:

1. The empty set ∅ and X are in T .

2. The union of the elements of any subcollection of T is in T .

3. The intersection of the elements of any finite subcollection of T is in T .

A set X for which a topology T has been specified is called a topological space.

If X is a topological space with topology T , a subset U of X is called an open set

12

of X, if U belongs to the collection T . A subset A of a topological space X is said

to be closed if X − A is open. The following theorem outlines basic properties of

topological spaces.

Theorem 2.3.2 Let X be a topological space. Then the following conditions hold:

1. The empty set ∅ and X are closed.

2. Arbitrary intersections of closed sets are closed.

3. Finite unions of closed sets are closed.

Proof.

1. Consider X. The compliment of X is the empty set ∅, which is vacuously

closed. Similarly, ∅ has the open set X as a complement, and thus, ∅ must

also be closed. Hence, since the open sets X and ∅ are complements of each

other, they are also closed.

2. Let {Aα}α∈J be a collection of closed sets Aα. Then

X −
⋂
α∈J

(Aa) =
⋃
α∈J

(X − Aα)

by DeMorgan’s Law. Note that

X − Aα = X ∩ Acα

and by definition Acα is open, as it is the complement of a closed set. Thus,

X − Aα is open for all α ∈ J . Since an arbitrary union of open sets is open,

this gives that
⋂
α∈J Aα is closed, and thus arbitrary intersections of closed

sets are closed.

13

3. Let Ai be a closed set for i ∈ [1, n]. Then again, using DeMorgan’s Law

X −
n⋃
i=1

(Ai) =
n⋂
i=1

(X − Ai).

In a similar reasoning as above, all X −Ai sets are open. Since finite intersec-

tions of open sets are open, the intersection of the n sets X −Ai must also be

open which gives that
⋃
Ai is a closed set.

Due to the above definition, there exist topologies where one-point sets are not

closed. However, these topologies are rarely studied, as they behave strangely and

present issues in proving generalized theorems. Felix Hausdorff constructed a defi-

nition that removes these examples to ensure that the spaces considered in a proof

do not have such examples.

Definition 2.3.3 A topological space X is called a Hausdorff space if for each pair

x1, x2 of distinct points of X, there exist neighborhoods U1 and U2 of x1 and x2,

respectively, that are disjoint.

Any subset of a Hausdorff space also meets the criteria of a Hausdorff space.

Some notions of topological (in this case Hausdorff) spaces are helpful in discussing

the structures considered in this paper.

Definition 2.3.4 A collection A of subsets of a space X is said to cover X, or to

be a covering of X, if the union of elements of A is equal to X.

If all of the elements of a cover of X are open subsets of X, then this is called an

open covering. Based on the properties of an open covering of X, the space may be

considered compact. An example of a cover and open covering of a compact space

X is shown in Figure 2.3.

14

Figure 2.3: A cover and an open covering of a space E .

Definition 2.3.5 A space X is said to be compact if every open covering A of X

contains a finite subcollection that also covers X.

One useful property of reducing the set of topological spaces considered to only

those meeting the Hausdorff condition is that all compact Hausdorff spaces are

closed. This allows the properties of closed spaces to apply to all the spaces consid-

ered.

In this paper, we consider a subset of Hausdorff spaces, called manifolds. We

first review the concept of homeomorphism and then introduce the notion of a man-

ifold.

Definition 2.3.6 Let X and Y be topological spaces and let f : X → Y be a

bijection. If both the function f and the inverse function

f−1 : Y → X

are continuous, then f is called a homeomorphism.

Manifolds are a useful type of topological spaces. They are extensively studied

in differential geometry and algebraic topology. For each point in the space, the

15

local neighborhood is homeomorphic to an Euclidean space. Manifolds can be ben-

eficial as the properties of Euclidean spaces can be used locally, as opposed to a

more complex structure. The dimensionality of that space can be identified using

the more specific m−manifold.

Definition 2.3.7 Given a set X, a basis for a topology on X is a collection B of

subsets of X (called basis elements) such that

1. For each x ∈ X, there is at least one basis element B containing x.

2. If x belongs to the intersection of two basis elements B1 and B2, then there is

a basis element B3 containig x such that B3 ⊂ B1 ∩B2.

Definition 2.3.8 An m-manifold is a Hausdorff space X with a countable basis

such that each point x of X has a neighborhood that is homeomorphic with an

open subset of Rm. A 1−manifold is called a curve, while a 2−manifold is called

a surface.

Theorem 2.3.9 If X is a compact m-manifold, then X can be embedded in RN for

some positive integer N .

That is, for a compact surface S, S can be embedded in a finite dimensional

Euclidean space. In this paper, we will discuss graphs as surfaces, and focus on

analyzing the points at the “boundaries” of the surface.

Let E be a subspace of a space X. Consider a point x ∈ X. If every open ball

centered at x has elements from the set E and from the set X−E, then x is called a

boundary point of E. A continuous set of boundary points on a space is a boundary

component of E, see [23]. The set of all boundary components of E is denoted δ(E).

16

Figure 2.4: A boundary point of E is represented by the green point x and the red dashed
curve is a boundary component of E, an element in δ(E).

Topological invariants are essential to the study of topological spaces. Invariants

are properties of the space that are preserved under homeomorphisms. One such set

of invariants, the Betti Numbers, are particularly useful in the application discussed

here. The maximum number of cuts that can be made to a surface without dividing

it into two components is called the Betti Number of a surface. In other words, the

kth Betti Number, βk, of a surface represents the number of k-dimensional holes

or voids in the surface. Thus, when considering the topology of graphs, the zeroth

Betti number is the number of connected components in the graph.

Lemma 2.3.10 Given G has n vertices, m edges, and k connected components, we

can calculate the first Betti number of G as

β1(G) = m− n+ k

Proof.

We proceed by mathematical induction on the number of edges m.

Consider a graph G of n vertices, with no edges. G has n connected components,

each consisting of one isolated vertex connected to itself by a trivial path. G should,

therefore, have a Betti number of 0, as no cuts are required to separate the the

17

components. Thus, for this graph,

β1(G) = 0− n+ n = 0

.

Assume that for m = j, G has k components, β1(G) = j − n+ k. By adding an

additional edge e to G, one of two possible cases occurs.

Case 1. Let C be a single component within the graph G. Then G = C. Adding

an additional edge to G will join two vertices within C, but the number of connected

components in G will remain k.

Case 2. If G contains two or more components consider C1 and C2 to be two

compenents. Adding the edge e connecting C1 and C2, decreases the number of

connected components contained in G by one. Although G has one fewer connected

component, the maximum number of cuts to separate the graph into two pieces

will remain the same, that is β1(G + e) = β1(G). This follows from β1(G + e) =

j + 1− n+ k − 1 = j − n+ k = β1(G) as anticipated.

We can generalize this lemma to state that for a graph consisting of a single

connected component, the first Betti number is the difference between the number

of edges and the number of vertices plus one.

Another topological invariant is the genus. The genus of a surface is the number

of “handles”, such as the the one formed by the hole in the center of a torus. A

sphere has genus 0, while a torus has genus 1, see [12].

Further, if a surface is divided into polyhedral regions, the Euler Characteristic

is defined by

χ(S) = |V | − |E|+ |F |

18

where |V |, |E|, and |F | are the number of vertices, edges, and, faces respectively,

see [12].

In addition to the properties of topological spaces and invariants, the construc-

tion of a thickened graph, discussed in Chapter 4 depends on the notion of a defor-

mation retract, and thus, we discuss homotopy. For the following, let I be defined

as the closed interval [0, 1].

Definition 2.3.11 If f and f ′ are continuous maps of the space X into the space

Y , we say that f is homotopic to f ′ if there is a continuous map F : X × I → Y

such that

F (x, 0) = f(x)

and

F (x, 1) = f ′(x)

for each x ∈ X. The map F is called a homotopy between f and f ′. If f is homotopic

to f ′ then we write f ' f ′.

If f ' f ′ and f ′ is a constant map, f is nulhomotopic.

A homotopy is essentially a parametric equation for the parameter t ∈ I. Given

the homotopy f , we can say f continuously deforms the map f to the map f ′

as t increases throughout the interval I ([0, 1] as defined above). These maps are

incredibly useful in identifying the existence, or lack thereof, of a homeomorphic

relationship between two spaces.

Definition 2.3.12 Let p : E → B be a continuous surjective map. The open set U

of B is said to be evenly covered by p if the inverse image p−1(U) can be written as

the union of disjoint open sets Vα in E such that for each α, the restriction of p to

19

Vα is a homeomorphism of Vα onto U . The collection Vα will be called a partition

of p−1(U) into slices.

A simple approach for considering even coverings is the notion of a map p evenly

covering an open set U thought of as considering the inverse images p−1(U) as a

“stack of pancakes”. Each “pancake” is an evenly sized slice of U . The map p can

then “squash” these slices onto U .

Definition 2.3.13 Let p : E → B be continuous and surjective. If every point b

of B has a neighborhood U that is evenly covered by p then p is called a covering

map and E is said to be a covering space of B.

Let X be a topological space. Then the covering map for the stack of pancakes

example can be given by defining a space E as X × {1, . . . , n}. Then E consists of

n copies of the space X “stacked” on top of each other. A covering map for E can

be defined as

p : E → X

where p(x, i) = x for all i ∈ {1, . . . , n}.

Restricting a covering map to a subspace does not necessarily result in a cov-

ering map of that subspace. However, conditions can be employed such that this

is the case. When considering covering maps, the existence of a lift is a useful notion.

Definition 2.3.14 Let p : E → B be a map. If f is a continuous mapping of some

space X into B, a lifting of f is a map f̃ : X → E such that p ◦ f̃ = f .

Consider Figure 2.5. By the the existence of a continuous mapping f : X → B

and the mapping p : E → B, we say that B can be “lifted” to E by the mapping f̃ .

20

Figure 2.5: f̃ is a lifting of f .

Some special maps exist from a space to a subspace of itself. These maps provide

the generalized topology related to graphs and thickened graphs discussed through-

out this paper.

Definition 2.3.15 If A ⊂ X, a retraction of X onto A is a continuous map r : X →

A such that r|A is the identity map of A. That is, r(a) = a for each a ∈ A.

Definition 2.3.16 Let f : X → Y and g : Y → X be continuous maps. Suppose

that the map g ◦ f : X → X is homotopic to the identity map of X and the map

f ◦ g : Y → Y is homotopic to the identity map on Y . Then the maps f and g

are called homotopy equivalences and each is said to be a homotopy inverse of the

other.

In addition to the general notion of a retract, we consider a specific case of a re-

tract: the deformation retract. A deformation retract is a special case of homotopy

equivalence representing a map that continuously shrinks a space X into A : A ⊂ X.

Definition 2.3.17 Let A be a subspace of X. We say that A is a deformation

retract of X if the identity map of X is homotopic to a map that carries all of X

into A such that each point of A remains fixed during the homotopy. This means

21

Figure 2.6: The space X is bounded by black boundary components and its deformation
retract A is the green circle.

that there is a continuous map H : X × I such that H(x, 0) = x and H(x, 1) ∈ A

for all x ∈ X and H(a, t) = a for all a ∈ A.

If A is a deformation retract of X, then X is homotopic to A, and X and A

share the same homotopy type.

An example of a deformation retract is given in Figure 2.6. A skeleton is another

term for a deformation retract of the space that it defines. The skeleton is equidis-

tant to its boundaries at each point and preserves the topology. Studying a space

through its skeleton can be useful as the properties of the shape are emphasized.

22

Chapter 3

Self-Assembly of DNA Graphs

DNA-based computing has been a topic of study in mathematics and theoretical

computer science since the Adleman experiment from 1994, see [1]. Mathematical

properties of DNA were studied prior to Adleman, e.g. in [7], Tom Head defined

the splicing operation on DNA strands spliced by enzymes as a formal operation

on strings and sets of strings (languages). However, after Adleman showed that

molecules can, in fact, compute the answer to a mathematical problem, the multi-

disciplinary field of natural computing, a term coined by G. Rozenberg in the 70s,

found its true identity. In addition to mathematics and computer science, natu-

ral computing also brings together scientists from biochemistry, molecular biology,

bioengineering, and medicine to name a few. When considering DNA for compu-

tational purposes, see [1, 21], there are significant benefits to DNA computation

versus traditional computing. By allowing millions of molecules to interact simul-

taneously, DNA computing is capable of achieving a massive parallelism that is not

feasible with traditional computing. Additionally, the storage potential and energy

efficiency of DNA far outweighs classical computing technologies, see [1].

Dioxyribonucleic Acid (DNA) is a molecule constructed of nucleotides. Each

nucleotide consists of a phosphate group, a base, and a sugar and there are four

different types of nucleotides based on their bases: Adenine (A), Guanine (G),

Thymine (T), and Cytosine (C). The nucleotides used in constructing DNA are

also classified as purines (Adenine and Guanine) and pyrimidines (Cytosine and

23

Thymine). Nucleotides can attach to each other by covalent (strong) bonds in any

order to form a single strand in the direction of 5′ to the 3′ end denoting the phos-

phate end and the hydroxyl group end respectively. Hence, these singe DNA strands

are oriented. In addition, nucleotides form hydrogen bonds (weaker) between two

strands, if the strands are the Watson-Crick complements of each other, i.e. A and

T bind together (are complements of each other) and also C and G. When two

strands bind together to form a double-stranded molecule, as found in nature, the

strands are oppositely oriented.

The structure of the nucleotide bonds is integral to the weighting methods we

consider later. As shown in Figure 3.1, the A/T bonds require two hydrogen bonds

to coalesce, while the C/G bonds require three hydrogen bonds to coalesce. This

creates a stronger bond between the C/G base pairs versus the A/T base pairs.

Short, single stranded DNA molecules called oligonucleotides can be constructed

with user defined sequencing for research purposes, including DNA Computing.

When single strands of DNA are placed in a solution, strands with complementary

bases attach to each other on their own due to the Watson-Crick complementarity

and form hydrogen bonds to create the traditional double stranded molecule found

in nature. In this process of hybridization, open nicks may form between two neigh-

boring nucleotides in a strand. These can be naturally repaired by an enzyme called

ligase when added to the solution and the covalent bonds between such nucleotides

can be formed to create the double stranded DNA molecule. Thus, single stands

are unstable and if they meet their complements in a solution, they will attach to

them when there is a significant portion of complementary pairs. That is why it

is imperative that this property is considered when the encoding of a problem into

DNA sequences is determined. This gave rise, see [9], to the study of unwanted

hybridization through involution mappings and DNA codes, which led to a gener-

alization of classical coding theory concepts.

24

In short, a mathematical problem can be encoded on DNA single strands, or

single stranded overhangs of otherwise double stranded molecules and left in a solu-

tion to self-assemble, i.e. to form double strands by themselves due to the Watson-

Crick complementarity. The encoded building blocks may also be branched junction

molecules with “sticky” single stranded ends resembling a vertex and its incident

edges attached to it as “arms”. Different problems are studied using a variety of

algorithms in which different building blocks are used. Once a DNA computer pro-

duces a desired structure, i.e., solves a problem, the resulting solution is encoded in

a DNA molecule or it is the existence of the molecule itself. Strands that form in

the ligase solution can be isolated and read through gel electrophoresis. To aid in

the extraction of solutions, enzymes can be employed to destroy bonds or strands

that do not meet the structural requirements of a solution.

The limitations of current DNA computing capacity are consistently being chal-

lenged in the lab. In 2009, Wu et al. [26], showed that the reporter strand solution

to the 3-colorability problem hypothesized by Jonoska et al. [10] could be com-

pleted in an experimental lab. The DNA solution to this problem was a strand of

804 nucleotides. This experiment additionally identified the presumed bound on the

size of graphs as at most 13 vertices and 28 edges for this method based on current

technology.

Given a graph, its vertices can be encoded on branched junction molecules and

edges can be encoded on duplex (double stranded) molecules. These molecular

building blocks have single-stranded (sticky) piece at each end. This sticky end

carries appropriate encoding and leaves the end of the block ready to bond only

with allowed complimentary molecules. For graph problems, edges are represented

by DNA strands and vertices are represented by k-armed junction molecules (k-

armed double helixes joined at a single point, each with a sticky overhang), see [10].

When put into a ligase solution, these molecular building blocks will autonomously

assemble into graph structures. This process of DNA building blocks assembling

25

Figure 3.1: Hydrogen bonds between various nucleotides in two DNA strands.

into complete structures is called self-assembly and if it represents graphs, then it

is referred to as self-assembly of DNA graphs.

Following self-assembly, resulting molecules can be read using a method such

as gel electrophoresis. This allows the solution to problems solved though self-

assembly to be decoded. DNA computing has been shown to give polynomial time

solutions (polynomial number of steps in the algorithm) to nondeterministic poly-

nomial problems, beginning with Adleman’s Hamiltonian Path Problem solution,

see [1]. Self-assembly has shown to give polynomial time solutions to the 3-SAT and

3-colorability problems (both examples of NP-complete problems), see [10, 11, 26].

There are, however, limits to the computational capabilities of DNA with the present

technology. Wu et al. [26] showed that the 3-colorbility DNA-based computing so-

lution is limited to graphs with at most seven vertices and 23 edges. In 2003,

Jonoska et al. [10] showed the application of self-assembly in solving the 3-SAT

and k-colorability problems with a theoretical method and laboratory testing. As

with prior experiments, these algorithms, though requiring exponentially increasing

biological materials, do not increase in complexity as the magnitude of the prob-

lem increases and thus represent a polynomial time solution. These processes are

highlighted below.

26

3.1 Solving the 3-SAT Problem through Self-Assembly

The SAT problem asks whether there exists a set of truth value assignments for

the boolean variables in a logical formula, such that the logical formula takes value

“true” or 1. In 1971 Cook proved in the now famous Cook’s Theorem, see [8],

that the SAT problem is NP-complete and it became the classic example of an NP-

complete problem that other problems are often reduced to in order to establish

their NP-completeness. Since any logical formula can be converted into Conjunc-

tive Normal Form (CNF) in polynomial number of steps, we only need to investigate

the computational complexity of CNF formulas. A formula is in CNF if it is a con-

junction of clauses, such that every clause is a disjunction of literals (variables or

their negation). If all clauses have three literals, the form is called 3-Conjunctive

Normal Form or 3-CNF. Since even solving the 3-SAT problem, i.e., the instance

when the formula is in 3-CNF is NP-complete, we can only consider that special case.

Consider, the following formula in 3-CNF which consists of three clasues and

has three boolean variables:

α = (x̄+ y + z̄)(x+ ȳ + z)(x̄+ ȳ + z).

Here each clause is in paretheses. The literals in a clause are separated by a “+”

denoting disjunction and the sign for conjunction is omitted. The bar of a variable,

e.g., x̄ denotes the negation, or else, complement of x and the set of boolean vari-

ables is {x, y, z}. Since the formula α is small, it is easy to verify that it is satifiable,

since we can check all eight truth value assignments to the variables and can see

that some, e.g. {1, 1, 1}, make the formula true. In general, there are no known fast

algorithms and when the number of variables grows, the possibilities of truth value

assignments grow exponentially.

Two methods have been proposed for self-assembly solutions of the 3-SAT prob-

lem by Jonoska et al. [10, 11]. One algorithm uses contact networks, where a self-

27

assembled structure traverses through junctions beginning with a source and ending

with a target and representing whether or not each clause has been satisfied. The

second method constructs a graph, G(α), and then constructs molecular “building

blocks” each representing one clause or one variable. This method is described be-

low.

As each clause has three literals, each clause molecule is 3-armed and each arm

has a sticky end unique to the clause and to the truthvalue of the literal it rep-

resents. Each variable molecule has as many arms as the number of clauses the

variable is included in, plus it is connected to its negation and the negation itself

has as many arms as the number of clauses it appears in. For example, the junction

molecule for x and x̄ has one arm on the side of x and two arms on the side of x̄.

The following algorithm is proposed.

1. Combine all variable building blocks with all clause junctions in a single test

tube and allow the complementary ends to hybridize and be ligated.

2. Determine whether the DNA graph structure corresponding toG(α) has formed

by:

(a) Removing partially formed 3D DNA structures with open ends that have

not been matched.

(b) From the graphs formed in the above steps, remove the graphs that are

larger than the original graph.

(c) If there are graph structures remaining in the tube, then we conclude that

the formula is satisfiable, i.e. that there are variable assignments that give

the formula value 1. Otherwise, the formula is not satisfiable.

This algorithm remains in constant number of steps, regardless of the number

of variables or clauses in the formula. The amount of DNA based material used in

the experiment grows at a non-polynomial rate as this number increases.

28

3.2 Solving the k-colorability Problem through Self-Assembly

Also NP-complete, the k-colorability problem asks whether for a given graph, it

is possible to color its vertices using k colors in such a way that no two adjacent

vertices have the same color. This problem can be addressed using self-assembly in

a manner similar to that used in the 3-SAT problem.

For each edge in a graph, a double stranded molecule is constructed with two

sticky ends, each of which represents a different “color” and is encoded to be the

complement of the vertex it is incident with. Many-junctioned molecules are con-

structed to represent the vertices of differing degree. All sticky ends of all arms

of one vertex are encoded with one “color” and each arm is encoded relative to a

specific edge incident with the vertex. The algorithm used to generate the solution

(or lack thereof) for the k-colorability problem follows a similar path as that of the

3-SAT problem [11].

1. Combine all vertex building blocks with all edge building blocks in a single

test tube and allow the complementary ends to hybridize and be ligated.

2. Determine whether the DNA graph structure has formed by:

(a) Removing partially formed 3D DNA structures with open ends that have

not been matched.

(b) From the graphs formed in the above steps, remove the graphs that are

larger than the original graph (possible dimers and trimers).

(c) If there are graph structures remaining in the tube, then we conclude that

the graph can be colored with k colors.

For both of these problems, laboratory tests were conducted, see [10, 11]. The

pitfalls of the experimentation, such as yield are discussed in [10, 11], but for each

circumstance, the expected solution molecule was obtained which shows that these

29

Figure 3.2: A Graph and its covering graph.

algorithms provide feasible biological solutions to these NP-complete problems.

3.3 Covering Graphs

The graph structures created through self-assembly can be regarded as 1-complexes,

and thus topological properties can be applied to the structure. One possible com-

plication of self-assembly is the accidental creation of a covering graph. Physically,

this case occurs where there are cases where local ligations that occur correctly,

however they create globally larger graphs that represent multiple copies of the

original graph. Mathematically, this follows the definition of a covering map from

Section 2.3. The exposed end has locally homeomorphic images in the solution that

are globally dissimilar.

For each problem, the implications of covering graphs must be considered. In

the case of the contact network solution to the 3-SAT problem, the construction of a

covering graph is not indicitive of a false positive. However, when considering the 3-

colorability solution using self-assembled vertex and edge building block molecules,

30

it is possible for a covering graph to be created representing a false positive for

3-colorability. An example of such a covering graph is provided in Figure 3.2, where

the graph is not 3-colorable but the covering graph formed is 3-colorable. Since

such false positives must be excluded from the test tube with possible solutions,

Step 2(b) is needed in the algorithm.

3.4 Weighting of Self-Assembled Graphs

Using the Watson-Crick complementarity and the hydrogen bonds shown in figure

3.1 to form pairs, the choice of nucleotides in an oligoneucleotide can be used to

simulate the graph theory concept of weight in self-assembled DNA molecules. By

assigning the number of Cytosine and Guanine nucleotides in an oligoneucleotide

proportionately to the weight of an edge, the graph theoretic concept of weight can

be translated to DNA graphs, see [24].

In the case of constructing a weighting schema for a self-assembled directed

graph, three representative strands for each edge are necessary. For the edge, one

weight represents the lowest weighted path, one weight represents the higher weight

edge, and then the final weight represents the combined weights of the arcs, travers-

ing the edge in both directions. If only strands representing the two individual

directed edges were introduced to the ligase solution, the strand incorporating both

elements could not be represented as each strand can only self-assemble with a

matching complement.

Li et al., see [15], describe a variety of prior weighting schema for DNA based

graphs. One of the first described weighting methods for self-assembly was cre-

ated by Narayanan and Zorbalas in [24]. This algorithm creates weighted molecules

with the number of nucleotide pairs constructing the edge proportionate to the

weight of the edge [19]. For graphs with a relatively small range of edge weights,

31

such encoding seems reasonable. The method was tested on travelling salesman

problems with positive results. However, this method fails to account for the cir-

cumstances where edge weights may differ by orders of magnitude. The likelihood

that longer oligonucleotides will hybridize (join together) is much higher than for

shorter oligonucleotides.

The next weighting method considered was proposed by Yamamura et al. in [24],

where the actual concentration of oligonucleotides present in the ligase solution is

representative of the weights (edges with higher weights would have less represen-

tation in the solution), see [27]. However, this method can’t guarantee that the

optimal solutions are recognized and requires a high degree of difficulty in practical

circumstances.

Li et al. described in [15] a method for encoding of numerical data on DNA

used for computation through a temperature gradient. This approach relies on

the “melting temperature” required to denature the DNA such that the strands

with a lower melting temperature will separate more quickly and the solution with

the highest melting temperature will remain. This method was applied to the

traveling salesman problem as a test case and showed a satisfactory solution. In

the laboratory, this could represent a reduction in the computation time for the

solution discussed here.

32

Chapter 4

Thickened Graphs

Throughout this paper graphs and their associated postman tours are studied by

embedding graphs within a topological surface. These surfaces, called thickened

graphs, are introduced in this chapter and the construction of homeomorphic sur-

faces is identified. In studying thickened graphs, we can widen the amount of

information generated about a graph by analyzing the surface based on its topolog-

ical invariants. The relationship between thickened graphs and DNA self-assembly

is also explored.

4.1 Properties of Thickened Graphs

A thickened graph is a graph where each undirected edge is expanded to two directed

edges oriented in opposite direction. The face created between the directed edges

along with the edges themselves make up the edge ribbon. We proceed with the

definitions and terminology defined in [12].

Definition 4.1.1 Let G be a finite graph. A thickened graph F (G) (of G) is a

compact orientable surface (2-dimensional manifold) such that G is topologically

embedded (as a 1-complex) in F (G) as a deformation retract.

As G is embedded in F (G) as a deformation retract, G is the skeleton of F (G).

33

The most intuitive construction of F (G) is constructed by simply “thickening”

each edge in the graph and converting the line segment representing an edge to an

edge ribbon as shown in the middle image of 4.1. However, F (G) is not uniquely

defined by G. For a graph G, there may be many thickened graphs. The thickened

graphs of G need not be homeomorphic. We denote the family of all thickened

graphs of G by T (G). An example of a thickened graph is shown in Figure 4.1.

Given the definition of a thickened graph, G is a skeleton of any F (G) that is cre-

ated.

Though the concept of thickened graphs is most easily seen intuitively within

planar graphs, non planar graphs can also be thickened with each point on an edge

ribbon being locally two-dimensional despite crossing over another edge.

Figure 4.1: A graph G, a thickened graph F (G), and a thickened graph F ′(G) following
an elementary boundary operation.

For each thickened graph F (G), the boundary components of the surface δ(F (G))

can be identified. We denote the number of boundary components in F (G) as

|δ(F (G))|. The maximal number of boundary components, also called the maximal

double strand number, of any thickened graph in T (G) is denoted by DS(G) while

the minimal double strand number is denoted by ds(G).

For a graph G that is the union of two disjoint graphs G1 and G2 the graph G

34

will always have two distinct sets of boundary components: those belonging to G1

and those belonging to G2. This gives that

DS(G) = DS(G1) +DS(G2)

and the similar result for the minimal double strand number of G.

The concept of Betti numbers relates well to topological graph theory. The first

two Betti numbers β0 and β1 have intuitive definitions. The zeroth Betti number,

β0 represents the number of components in a graph while the first Betti number, β1

is equal to the number of loops within a graph. Subsequent Betti numbers are not

considered in this paper.

A graph G can be embedded in a surface S. The minimal genus of a surface in the

set of the surfaces in which G could be embedded is defined as the minimal genus of

G denoted γ(G). Similarly, the maximal genus of G is denoted γm(G), following [12].

Additionally, if the empty surface between boundary components of a thickened

graph F (G) were filled with a disk to create a solid surface without boundary, the

Euler characteristic χ(G) can be calculated.

Jonoska and Saito showed in [12] that

DS(G) = 2− χ(G)− 2γ(G) = (β1(G) + 1)− 2γ(G).

Lemma 4.1.2 The bounds of DS(G) can be defined as follows:

ds(G) ≤ DS(G) ≤ β1(G) + 1

where β1(G) is the first Betti number of the graph.

35

Proof. By the definition, the minimal number of boundary components of a

thickened graph is at most equal to the maximal number of boundary compo-

nents of a thickened graph. Thus, we focus on the second half of the inequality

DS(G) ≤ β1(G) + 1.

From the prior statement, DS(G) = (β1(G) + 1) − 2γ(G). If a thickened con-

nected 3-valent graphs can be embedded in a sphere, then 2γ(G) = 0 and then

equality holds, i.e., DS(G) = β1(G) + 1. Otherwise, 2γ(G) ≥ 1, which results in a

strict inequality. Thus, ds(G) ≤ DS(G) ≤ β1(G) + 1.

Beyond constructing an upper bound for the maximal double strand number,

the first Betti number, β1(G), is also of opposite parity to a potential |δ(F (G))| for

any F (G) that can be constructed.

Lemma 4.1.3 The number of boundary components of a thickened graph F (G) ∈

T (G) must be of the same parity as β1(G) + 1. That is:

|δ(F (G))| = (β1(G) + 1)(mod2)

for all F (G) ∈ T (G).

Recalling the equation from Section 2.3, the Betti Number of a topologically

embedded graph G can be calculated as β1(G) = m − n + k where m = |E(G)|,

n = |V (G)|, and k is the number of components in G. Considering a 3-valent

connected graph of order n, the number of edges must be 3n
2

and the number of

components must be one. Thus, DS(G) ≤ n+2
2

.

4.2 Constructing the Family of Thickened Graphs F(G)

From a thickened graph F (G), multiple thickened graphs can be created through

elementary boundary operations at one or more of the vertices of F (G), as shown

on the right of Figure 4.1. An elementary boundary operation (EBO) at a vertex is

36

a permutation of the edges incident with a vertex. Considering a vertex of degree

3, there are two possible permutations: (123) and (132) that create 3-cycles. A

representation of these two permutations is shown in Figure 4.2.

Figure 4.2: A vertex v before and after an EBO.

By performing an elementary boundary operation at one or more of the vertices

of a graph G additional surfaces are constructed. As stated above, these surfaces

need not be topologically homeomorphic, however they must maintain the same

parity of boundary components in T (G).

The effect of elementary boundary operations on the number of boundary com-

ponents involved with a vertex of a thickened graph has interesting properties. For

a thickened graph F (G) an elementary boundary operation can be performed at a

vertex v, creating another thickened graph F (G′). The number of boundary com-

ponents involved with v in G′ depends on the number of boundary components

involved with v in G. Given a 3-valent graph, the number of boundary components

involved with v can be either 1, 2, or 3.

Lemma 4.2.1 Performing an elementary boundary operation from (123) to (132)

at vertex v changes the number of components involved with v. These changes to

the number of involved components can be represented as 1↔ 1, 2↔ 2 and 1↔ 3.

That is, if the number of boundary components involved with v is 1, then the EBO

will result in 1 or 3 involved components. If the number is 2, then the number

37

Figure 4.3: Resulting changes tothe number of boundary components.

remains unchanged. If the number is 3, then there the resulting graph will have 1

component involved with v.

Proof. This property can be shown by performing the operations as shown in Fig-

ure 4.2. Figure 4.3 shows the boundary components within the local neighborhood

of a vertex v as solid lines and the extension to the rest of the graph in dashed lines.

Each local vertex area is shown before and after an elementary boundary operation

for each possible case.

As there are only two permutations of (123), each relationship is bidirectional.

That is, if 1 component can become 3 following an elementary boundary operation

then 3 components can become 1. The three possible cases are considered below.

There are two possible scenarios where the vertex has one involved component.

Case 1. The first case, shown in the left two images of Figure 4.3, considers a

component which traces an edge from v, visits one or more other vertices in V (G),

and then returns to v using the same edge. In this case, the EBO will maintain the

same structure locally with one involved component at v, though the path of the

boundary component will change.

Case 2. If v has only one involved component and does not fit case one, it must

have the structure shown in the right of Figure 4.3, where each traversal of v returns

to the vertex using an in-edge different than the out-edge. Following a boundary

38

operation, this unifies three prior involved components into one component.

Otherwise, there are two components involved at v, resulting in the final case.

Case 3. If v is involved with two components, it must have the structure of the

center two graphs in Figure 4.3. Given {e1, e2, e3} = E(G), one component visits

v using e1 and leaves using e2. The second component must then traverse e1 and

e2 in the opposite orientation and traverse e3 in both directions. An elementary

boundary operation changes which pair of edges is traversed by the first boundary

component with the complement and retains the remaining structure.

As these properties are bidirectional, the only possibility for a vertex involved

with three boundary components is addressed in case two, and thus these three

cases define all possible conditions.

An additional property of boundary components of thickened graphs is how a

boundary component interacts with specific edge types within a graph. Each edge

ribbon may be traversed by two oppositely oriented boundary components or by a

single boundary component in each direction. In a graph that is constructed as two

components connected through a single edge, e, that edge is called a bridge.

Lemma 4.2.2 Given a graph G with a bridge e, a boundary component σ in the

thickened graph T (G) either does not traverse e or traverses e twice.

Proof. Assume there exists a σ in the boundary components of T (G) such that

σ traverses e exactly once. Let e separate components C1 and C2, such that

C1

⋃
e
⋃
C2 = G. Then p(σ) = pσ1epσ2 where σ1 traverses edges exclusively in

C1 and σ2 traverses edges exclusively in C2. By definition, p(σ) must begin and

terminate at the same vertex v. This vertex must reside in C1 or in C2. Without

loss of generality, assume v is in C1. As defined, p(σ) can not be complete and

39

must return to C1. However, the only edge connecting C1 and C2 is e, which σ has

already traversed. This is a contradiction. Either p(σ) traverses only edges in C1

and thus doesn’t traverse e or p(σ) traverses e twice.

4.3 Thickened Graphs and DNA Graphs

Thickened graphs can be directly correlated to the structure created when graphs

self-assemble from DNA structures.

Figure 4.4: DNA Structure representing a thickened graph of K4.

Each edge ribbon in a thickened graph is represented by double stranded DNA

molecule. The orientability of the manifold is necessary in the DNA representation,

as the strands paired by the Watson-Crick complementarity must run in opposite

directions (a strand from 5′ → 3′ must pair with a strand oriented from 3′ → 5′).

When an elementary boundary operation is performed, the now permuted in

and out edges can change the orientation of the boundary component it is joining.

Additionally, the manner in which this join is oriented can change the number of

boundary components within the graph.

A boundary component of a thickened graph is respresented by a single strand

40

of DNA. If this boundary component is extracted from the self-assembled structure,

it can be read through gel electrophoresis or electron microscopy. Reading this

structure will give the details of the sequence and the orientation of the path that

the boundary component represents.

41

Chapter 5

3-Valent Graphs

Regular graphs are graphs in which all vertices have the same degree. This leads

to some simplification in investigating graph preperties. An r-regular graph is a

graph, each of whose vertices has degree r. We investigate graphs for which r = 3,

since it was shown in [13] that complex graphs can be reduced to 3-valency, thus

providing for more uniformity and for additional beneficial properties that can be

added to the analysis.

In Chapter 4, it was shown that for G = G1 ∪G2 with G1 and G2 being distinct

components,

|δ(F (G))| = |δ(F (G1 ∪G2))| = |δ(F (G1))|+ |δ(F (G2))|.

Thus, for the analysis of reporter strands, only connected graphs need to be

considered. To further reduce the complexity, we consider only 3-valent graphs.

For graphs with vertices of more than degree three, a 3-degree perturbation can be

employed to reduce the graph to a 3-regular graph. This chapter details the process

of reducing an arbitrary graph to 3-valency and how the content of this paper can

be extended to all graphs. It provides a construction of a 3-regular graph from K5.

42

5.1 Reduction to 3-Valency

The reduction of any multi-graph to a 3-valent graph allows properties of 3-regular

graphs to be extended to the graph in question. For the graphs discussed here, the

initial considerations made are vertices of degree one (pendants) or degree two.

In order to construct an Eulerian cycle on a graph with a vertex of degree one (a

pendant), p, the edge connecting p to the remainder of the graph must be traversed

twice sequentially. When considering a DNA based structure, this is considered a

hairpin formation. These need not be considered as the topology of the thickened

graph remains unchanged.

Similarly, the edges incident to a vertex of degree two must be traversed in or-

der according to orientation. These two edges ei, ei+1 and the associated vertex vi,

forming the path vi−1eiviei+1vi+1 can be collapsed to form another edge e′ with a

resulting path vi−1e′vi+1 representing the path vi−1eiviei+1vi+1 connecting vi−1 and

vi+1. Because of this construction to replace a vertex of degree two, there is no

topological change to the graph by replacing the vertex, so these vertices are not

considered. Going forward, only graphs with vertices of degree 3 or higher are con-

sidered.

In Figure 5.1, the left image shows a graph G which is similar to the graph K4

with two additional vertices, one of degree 2 and one of degree 1. The center image

shows a thickened G, and the right image shows a topologically equivalent surface.

The vertices of degree one and two can be removed from the graph without chang-

ing the topology of the surface. Thus, we only consider vertices of degree 3 or higher.

In order to reduce a vertex of degree four or higher, a 3-degree perturbation

is performed. The 3-degree perturbation is defined by Jonoska et al. in [13] and

shown in Figure 5.2. Given a graph G = (V,E, t) with a vertex v ∈ V of degree

43

Figure 5.1: A graph G, it’s thickened graph F (G), and the thickened graph F (G′), where
G′ is obtained from G by removing the pendant.

k, with k ≥ 4, add k − 3 vertices to the graph to form G′ = (V ′, E ′, t′) with

V ′ = V ∪ {u1, u2, . . . , u(k−3)}. Similarly, we add corresponding edges to the set of

edges to create

E ′ = (E \ {e3, . . . , ek}) ∪ {f1, . . . , fk−3, e′3, . . . , e′k}

satisfying:

t′(fi) = {(ui−1, ui) | i = 1, . . . , k − 3} with u0 = v, the vertex being perturbed.

t′(e′j) = {(vj, uj−2) | j = 3, . . . , k} with uk−2 = uk−3

and

t′(e) = t(e) for e ∈ E.

Figure 5.2: A 5-degree vertex that has been perturbed.

An example of a 5-degree vertex that has been perturbed to a set of 3-valent

vertices is given in Figure 5.2.

44

Theorem 5.1.1 If G′ is a 3-degree perturbation at a vertex v of G, then G is a

homomorphic image of G′.

Proof. Let φ : G′ → G be a graph homomorphism defined by the following: for

each v ∈ V , φ(v) = v and for each e ∈ E, φ(e) = e. For each new vertex in G′,

uj ∈ V ′ \ V , φ(uj) = v for j = 1, . . . , k− 3. For each new edge in G′, φ(fj) = v and

φ(e′j) = ej. By the construction of G′, φ is a graph homomorphism and is surjective.

Definition 5.1.2 A perturbed 3-degree graph denoted TG for a graph G = (V,E, t)

is a graph obtained from G by successive 3-degree perturbations at every vertex of

degree 4 or higher.

The value of these perturbed graphs is two-fold: the properties of 3-regular

graphs can be applied to the perturbed graph, while the perturbation maintains the

underlying structure of G as a graph homomorphism.

It is valuable to note that a perturbation of series of perturbations of a the ver-

tices of a graph G result in a homomorphic image G′. That is, the perturbation

preserves the structure of G. If a vertex in v in G is adjacent to u in G then this

adjacency is preserved in the perturbation of G.

Corollary 5.1.3 Let TG = (VT , ET , tT) be a perturbed 3-degree graph of G =

(V,E, t). Then G is a homomorphic image of TG.

Proof. Let G = G0, G1, . . . , TG = Gk be a sequence such that Gi is a 3-degree

perturbation at a vertex of Gi−1 for all i = 1, . . . , k. Then, by the theorem above,

there are graph homomorphisms φi : Gi → Gi−1. The composition φ1 ◦ . . .◦φk = φT

of graph homomorphisms is a graph homomorphism from TG onto G.

45

Figure 5.3: A 3-degree perturbation of a 4-degree vertex, a permutation of the edges, and
the lift.

Given that TG is a perturbed 3-valent graph of G, we can consider the homo-

morphism between TG and G. The perturbation map defines this relationship.

Definition 5.1.4 Let TG be a perturbed 3-degree graph of G and let the sequence

G = G0, G1, . . . , Gk = TG be such that Gi is the 3-degree perturbation at a vertex

of Gi−1 for all i = 1, . . . , k. Let φi : Gi → Gi−1 be the corresponding vertex

perturbations. The homomorphism φT : TG → G obtained as the composition

φT = φ1 ◦ . . . ◦ φk is called a perturbation map.

Generally speaking, the perturbation map is the map that maps the perturbed

graph TG to the original graph G. The perturbation map is a composition of each

individual map φi : TGi
→ G where TGi

is the graph G with the ith vertex perturbed

to 3-regularity.

5.2 A 3-Degree Perturbation of K5

In order to display the construction of a 3-valent pertubed graph, we show the

process over K5, the 4-regular graph of order 5. As stated in the definition of the

46

construction, for each vertex v of degree higher than 3, deg(v)−3 additional vertices

are added. For K5, there are five vertices of degree 4, resulting in five perturbations,

each of which creates one new vertex. These five perturbations of vertices of degree

4 result in a 3-regular graph of order 10. The first perturbation is shown in the left

two graphs of Figure 5.4. A perturbed 3-valent graph of K5 is shown on the right.

Figure 5.4: The stages of creating a perturbed 3-valent graph of K5.

For the example above, the graph G initially begins defined as follows:

G = (V,E, t)

V = {r, y, g, b, p}

E = {{r, y}, {r, g}, {r, b}, {r, p}, {y, g}, {y, b}, {y, p}, {g, b}, {g, p}, {b, p}}

After the first perturbation on the red vertex, r, the edge set, vertex set, and

ordered pairs of G are changed to represent G′ as follows:

G = (V,E, t)

V = {r, r′y, g, b, p}

E = {{r′, y}, {r, r′}, {r, g}, {r, b}, {r, p}, {y, g}, {y, b}, {y, p}, {g, b}, {g, p}, {b, p}}

47

After the final perturbation, TG is defined as follows:

G = (V,E, t)

V = {r, r′, y, y′g, g′b, b′p, p′}

E = {{r, r′}, {y, y′}, {g, g′}, {b, b′}, {p, p′}, {p′, r}, {r′, y}, {y′, g}, {g′, b}, {b′, p},

{r, b′}, {r′, g}, {y, p′}, {y′, b}, {g, r′}, {g′, p}, {b, y′}, {b′, r}, {p, g′}, {p′, y}}

In most cases, a 3-degree perturbation could be performed at a vertex in multi-

ple ways. In the case of the example given, the outer cycle is maintained and the

internal edges adjacent edges are perturbed. However, this example represents only

one possible perturbation map.

5.3 Lifting the 3-Valent Graph

The ability to return to the original construction following the perturbation is nec-

essary. In order to map to the original graph G following the perturbation, the

thickened graph is lifted. The general concept of lifting a surface is described in

the topological background section (Section 2.3). As thickened graphs are topolog-

ical surfaces, the concept of lifting can be applied to thickened graphs as shown by

Jonoska et al. in [13]. This process is defined in the following section.

Within a thickened graph, each boundary component σ is oriented with oppos-

ing orientations on the boundaries of each edge ribbon. For a graph G, define F (G)

as a thickened graph of G. Within F (G), each edge must be traversed twice, once

in each direction. The edges of this edge ribbon may be traversed by one boundary

component or by two boundary components.

Define an orientation of F (G) as O. A boundary component σ traverses some

48

number of edges ei ∈ G separated by vertices wi in F (G). A path pσ = (w0e1w1 . . .

en−1enw0)σ can be assigned as the path is traversed by σ. The order of the path

pσ is uniquely determined by the orientation. If pσ traverses the path eiwiei+1 then

V O(ei) = ei+1.

A permutation is called a cyclic permutation if and only if the non-fixed elements

of the permutation are contained in exactly one cycle. If S is the subset of non-fixed

elements of a cyclic permutation and |S| = k, then the permutation is a k-cycle.

Lemma 5.3.1 If v is a vertex in G of degree k, then for every oriented thickened

graph F (G), the permutation vO is a k-cycle.

Proof. Let S ⊂ {e1, . . . , ek} exists such that vO(S) = S. This gives |S| < k. Let σ

be a boundary component visiting vertex v. Then, either σ traverses a pair (pairs)

of edges ei, ej ∈ S or traverses two edges not in S.

No edges in {e1, . . . , ek}\S are traversed by σ, otherwise the number of edge

ribbons at v is |S| < k, but v is of degree k by the hypothesis.

In this case, when a deformation retract reduces the thickened graph to its skele-

ton, G, the ribbons representing each edge would retract to one point for the edges

in S and each edge not in S would map to at least one separate point.

Thus, as each edge in S is permuted in exactly one cycle and each edge not in

S remains fixed, S forms a cyclic permutation. Given that the complete edge set is

of cardinality k, we can conclude that S is a k-cycle.

Given a graph G, the process contained here considers perturbing G to create

TG and then thickening G to create F (TG). It is important to show that the prop-

49

erties identified for F (TG) can be identified in a thickened graph of G. That is,

we must show that F (TG), the thickened graph of TG, can be lifted to a thickened

graph FT (G) of G. The following lemma shows that for a boundary component in a

perturbed thickened graph, the same boundary component exists in the thickened

original graph.

Theorem 5.3.2 Let G be a connected multigraph and F (TG) be a thickened graph of

a perturbed 3-degree graph TG of G. Let FT (G) be the lift of F (TG). Then for every

boundary component σ′ in ∂(F (TG)) there is a boundary component σ in ∂(FT (G))

such that φT (pσ′) = pσ where φT : TG → G is the perturbation map. Moreover, this

correspondence is one-to-one, i.e., if σ′ 6= σ′′ in ∂(F (TG)) then φT (p′σ) 6= φT (p′′σ).

Proof. Let G = (V,E, t) be a graph and TG be a 3-degree perturbation of G with

F (TG) as a thickened graph of TG. Then FT (G) is the lift of the thickened graph

F (TG) containing G as a deformation retract.

Let σ be a boundary component in FT (G), and define the path traversed by σ

as

pσ = (w0e2w1 . . . wn−1enw0)σ

with orientationO. That is, σ traverses n edges and terminates in its starting vertex.

Because σ is a k-cycle, (w1 . . . wn−1w0)
O(e1) = e1 and (wi . . . wi+r−1)

O(ei) = ei+r.

Similarly, let σ′ be a boundary component in the perturbed graph F (TG) and

define

pσ′ = (x0f1 . . . xm−1fmx0)σ′

with orientation O. With this construction, as the path traverses and edge fi to

fi+1 for i ∈ (1,m), XOi (f1) = fi+1.

50

The set of edges E ′ is then the inverse image of E over the map φT . Restricting

the map to edges not in E ′ then gives φT |E′ : E ′ → E is a one-to-one map.

A subpath U of pσ′ can then be identified such that U = (xifi+1 . . . xi+r−1) for

some positive integer r where the edges are edges in TG and are not inverse images

of E over φT and thus fi, fi+r ∈ E ′. Within this subpath, the vertices xi, . . . , xi+r−1

are vertices obtained in the perturbation of vi ∈ V . Thus each of these r vertices,

when lifted, will map to v. That is φT (xi) = φT (xi+r−1) = v. If v was a vertex of

degree 3 in G then U = xi and φT (xi) = v.

The path pσ′ is then equivalent to the concatenation of subpaths Ui which con-

tain no edges in E ′, separated by edges in E ′. Given that Uj = (xifi+1 . . . xi+r−1),

fi = f ′j and fi+r = f ′j+1. Thus, (xi . . . xi+r−1)
O(f ′j) = f ′j+1 This gives that the per-

turbation map φT maps each element in the sequence to v. Given that φT maps f ′j

and fi to ej and f ′j+1 to ej+1, the lift mapping gives that v maps ej to ej+1 with

respect to the orientation O.

Because the lift results in this map, a boundary components σj ∈ δ(FT (G)) ex-

ists which traverses an edge f ′j, the vertex defined by the perturbation map φT (Uj)

and then traverses f ′j+1. Recall if the vertex v is not perturbed then Uj is a single

element. That is, the boundary component traverses pσj containing the substring

(f ′jφT (Uj)f
′
j+1) for each j. Because the boundary component travels with respect to

the orientation O, the boundary component σj and the boundary component which

maps to ej+1vj+1ej+2 must then connect, as they share a path traversing the edge

ej+1. Thus, all of the boundary components σj representing these subpaths must

be pieces of the boundary components σ ∈ δ(FT (G)).

Applying the perturbation map φT to the elements of σ′ ∈ δ(F (TG)), we see that

the map is the equivalent of applying the map at each U and each separating edge,

51

which map to the vertices and edges in the boundary component of σ ∈ δ(FT (G))

φT (pσ′) = (φT (x0)φT (fi) . . . φT (x0)

= (φT (U0)φT (f ′1) . . . φT (Us−1)φT (f ′s)φT (U0))

= (v0e1 . . . vs−1esv0) = pσ.

Because the segments are distinct oriented paths with no repeating edges or ver-

tices, the boundary component σ′ uniquely determines σ. Further, the perturbation

map for the edges f ′j is a bijection.

The lifting property that shows that an arbitrary boundary component in a

thickened perturbed graph will exist in the thickened original graph. Jonoska et al.

in [13] give the following corollary showing that a boundary component of F (TG)

that traverses every edge of TG at least once could then be lifted to a boundary

component in FT (G) that traverses every edge of G at least once.

Corollary 5.3.3 Let G be a connected multigraph, F (TG) be a thickened graph of

a perturbed 3-degree graph TG of G. If there is a boundary component σ′ ∈ ∂F (TG)

that traverses every edge of TG, then there is a boundary component σ ∈ ∂FT (G) in

the lift of F (TG) that traverses every edge of G.

Proof. Consider the statement provided in Lemma 5.3.2. Let G = (V,E, t) be a

graph and TG be it’s 3-degree perturbation. The thickened graph F (TG) can be

lifted to the thickened graph of G, FT (G). If a boundary component σ′ ∈ δ(F (TG)

of the perturbed graph traverses every edge of the graph, then we can define the

path of σ′ as pσ′ = (x0f1x1 . . . fnx0) such that ET = f1, . . . , fn. That is, the edges

traversed by pσ′ fi, i = (1, n) are equal to the edge set for the perturbed graph TG,

thus the edges fi map to E via the perturbation map φT .

52

Because every edge in TG is traversed by σ′, it follows that the map of pσ′ is equal

to pσ. This gives that σ traverses (v0e1v1 . . . env0) where the elements ei, i = (1, n)

make up the edge set of G, and thus σ traverses every edge in G.

Given that a boundary component traversing every edge of the perturbed graph

can be lifted to a boundary component traversing every edge in the original non-

perturbed graph, the question of identifying an Eulerian walk in a graph is raised.

53

Chapter 6

The Existence of Reporter Strands

A reporter strand is as a boundary component which traverses each edge of a thick-

ened graph at least once and no more than twice. Identifying a reporter strand

within a thickened graph would allow for study of the structure of the graph through

its topological properties. The first consideration is the case of identifying a reporter

strand within a thickened graph with exactly two boundary components.

6.1 Thickened Graphs with Only Two Boundary Components

Lemma 6.1.1 Let G be a 3-valent graph and T (G) a thickened graph of G. If T (G)

has only two boundary components σ1 and σ2, then there is a thickened graph T̂ (G)

obtained from T (G) by elementary boundary operations which has two boundary

components σ̂1 and σ̂2 such that σ̂1 traverses every edge of G.

Proof. We label the two boundary components red (σ1) and blue (σ2). For each

vertex, there are three edges, each traversed twice by one or both of the boundary

components. For each vertex, v, one of the following circumstances occurs with

respect to the edges incident to the vertex (shown in Figure 6.1):

1. v is a red vertex. All edges are traversed by σ1.

2. v is a blue vertex. All edges are traversed by σ2.

54

Figure 6.1: The four possible boundary component configurations at v given that only
two boundary components exist.

3. v is a Redb vertex. One edge incident to v is traversed exclusively by σ1. The

other two edges are traversed once by σ1 and once by σ2.

4. v is a Bluer vertex. One edge incident to v is traversed exclusively by σ2. The

other two edges are traversed once by σ1 and once by σ2.

Without loss of generality, if there are no vertices labeled as blue (blue or bluer),

then every edge in T (G) is traversed at least once by the red boundary component

σ1. This implies that σ1 is a strand traversing every edge and the lemma holds.

Otherwise, there must be at least one vertex that is bluer. Let v be the bluer

vertex, such that σ1, the red boundary component, traverses two edges incident to

v one time. Then σ2, the blue boundary component traverses two edges incident to

v once and traverses the third edge twice. Call this doubly traversed edge e. By the

orientation of TG, σ2 must visit v, then exit v via e, visiting one or more additional

vertices, then return to v via the second traversal of e. Let w be the second vertex

incident to e. As e is incident to w, w is a blue or bluer vertex.

Performing a boundary operation at v will construct a new thickened graph

55

Figure 6.2: The vertex v ∈ F (TG) and the vertices v ∈ F (T ′G).

F (T ′G), which will have two new boundary components from σ1 and σ2 to σ̂1 and

σ̂2 respectively. The connections at v are changed by this permutation, as shown in

Figure 6.2.

This gives that if w were bluer, then w is now red. Otherwise, w was blue and

is now either red or redb. The path between the first and second visit to w was

previously traversed by σ2 and will now be traversed by σ̂1. This operation creates

no new boundary component and preserves the two prior boundary components,

and thus F (T ′G) has two boundary components. As all graphs considered are finite,

a finite number of elementary boundary operations will ensure that each vertex is

either red or redb. Once each vertex is Red or Redb, the graph is in the state of the

initial case, and thus has a boundary component that traverses every edge.

56

Figure 6.3: The two graphs of order 2.

6.2 Identifying a Reporter Strand in a Graph G

This result is further generalized in the following theorem given by Jonoska et al.

in On the existence of reporter strands in DNA-based graph structures[13].

Theorem 6.2.1 Given a connected 3-valent graph G = (V,E, t), there is a thick-

ened graph F (G) and σ ∈ δ(F (G)) such that pσ = (v0e1v2 . . . vnenv0) and {e1, . . . , en} =

E

Proof. We proceed by mathematical induction on the number of vertices in G.

Consider the basis case. There are two 3-valent graphs of order two, shown in

Figure 6.3. The graph of three parallel edges has a single reporter strand following

an elementary boundary operation at one of the two vertices. This reporter strand

traverses every edge twice. The lollipop graph with two loops has three boundary

components: two components traverse the interior of each loop and the third tra-

verses the loops once and the single edge twice.

Assume that the theorem holds for all connected 3-valent graphs with 2n ver-

tices. We show that the theorem holds for graphs with 2n + 2 = 2(n + 1) vertices.

(Recall: a graph can not have an odd number of odd degreed vertices, thus the next

case for a three-valent graph requires the addition of a pair of vertices). Let G be

a graph of order 2n + 2 and let v and w denote the two vertices. There are two

57

general cases for the incorporation of v and w into the graph, given below:

Case 1. The graph G has two edges incident to both v and w.

Assume that there are two parallel edges between the v and w. There are then

two possible cases of this scenario depending on how v and w interact with the

remaining graph. In the first case, case 1a, v and w are adjacent to a single third

vertex, x. This case is shown in Figure 6.4. In the second case, case 1b, v is adjacent

to x and w is adjacent to y. The two subsets of this case are shown in Figures 6.5

and 6.6.

In both cases, it is necessary to ensure that the graph can be reduced to the

graph of order 2n, G′, through the removal of v and w, with each vertex adjacent

to v and w of degree three. In the case of 1a, v and w can be replaced with a loop

at x. The non-loop edge incident to x would remain, and the including the loop, x

would have degree 3, and thus G′ meets the criteria of the hypothesis. In the case

of 1b, v and w could be replaced by a single edge joining x and y. Without loss

of generality, the two edges incident to x not incident to v remain, and the new

edge adjacent to y creates the third incident edge, and thus x (and therefore y) is

of degree 3.

In each case, we begin with G′ and its reporter strand σ and show that the

addition of the two vertices creates G and the extension to σ creates σ̂.

Case 1a. G has a parallel edge and v, w are adjacent to a single vertex.

Consider the thickened graph of order 2n, T (G′). By the inductive hypothesis,

T (G′) has a reporter strand σ traversing every edge at least once and no more than

twice. So each edge in T (G′) is traversed twice, either by a single boundary compo-

nent or by two boundary components. The edge e must be traversed by σ at least

58

one time. As boundary components must by cyclic and e is a bridge, e must be

traversed by σ in both directions.

Figure 6.4: The graph G, the graph G′ with its reporter strand σ in red, the extension of
σ in G, and the creation of σ̂ in red.

Because the orientation of a thickened graph must be preserved, the interior

boundary of the loop can not be traversed by the same boundary component as the

exterior of the loop. This gives that the boundary component that traverses e twice

and the exterior of the loop must be σ.

In order to construct G, we expand the loop and add two vertices v and w,

then add an additional edge between v and w. The resulting graph, shown in the

third image in Figure 6.4, creates the boundary component σ̂ traversing the exterior

and the boundary component from the inside of the loop and additionally adds a

boundary component between the two parallel edges.

Without loss of generalization, consider v. As three boundary components visit

v, an elementary boundary operation at v will result in the three boundary com-

ponents becoming a single boundary component due to Lemma 4.2.1. This new

boundary component is shown on the right of Figure 6.4.

By the inductive hypothesis, σ̂ also traverses the remaining edges in the rest of

59

G, and thus σ̂ is a reporter strand traversing every edge at least once.

Case 1b. G has a parallel edge and v, w are each adjacent to a separate vertex

Consider the thickened graph, T (G′). Let f be the edge incident to x and y.

Removing the edge f reduces x and y to degree two. This allows adding an edge

to x incident to v and an edge to y incident to w. Adding parallel edges between v

and w creates a 3-valent graph.

By the inductive hypothesis, there is a reporter strand σ in G′ that traverses

every edge at least once and no more than twice. There are two possible cases for

the placement of σ̂, shown in Figures 6.5 and 6.6.

Consider the case shown in Figure 6.5, where σ traverses f once. When x and

y are added to G′, σ̂ traverses the exterior of the path from x to y via the new ver-

tices. Two additional boundary components are present, one traversing the interior

portion and some of the rest of G and one inside the two parallel edges between

v and w. Without loss of generality, consider v. As with case 1a, three boundary

components visit v. Thus, a boundary operation at v will result in a single boundary

component. As one of the boundary components visiting v traversed the remaining

edges of the graph at least once, there exists a σ̂ traversing every edge at least once.

Otherwise, σ must traverse f twice. Going from G′ to G, the boundary compo-

nent traversing f will then traverse each new edge twice, as shown in Figure 6.6.

As the boundary component in G′ traversed every edge at least once, σ̂ traverses

every edge in T (G) at least once.

Case 2. The graph G has no parallel edges

Consider the graph G′ of order 2n. A graph G of order 2n + 2 could be con-

60

Figure 6.5: The graph G with parallel edges, the graph G′ with its reporter strand σ in
red, the extension of σ in G, and the reporter strand σ̂ of G in red.

Figure 6.6: The graph G with parallel edges, the graph G′ with its reporter strand σ in
red, and the extension of σ to σ̂ in red.

structed by adding the vertex v on the edge fv ∈ G′ creating ev and ev′ . Similarly,

the vertex w on the edge fw ∈ G′, creating ew and ew′ . To construct G as a 3-valent

graph, we add an edge e between v and w.

The thickened graph T (G′) has up to four boundary components traversing fv

and fw. Denote these boundary components σ1, σ2, σ3, and σ4, with σ1 and σ2

traversing fw in opposite orientations and σ3 and σ4 traversing fv in opposite direc-

tions. Constructing T (G) with the new vertices v and w will change these boundary

components to σ̂1, σ̂2, σ̂3 and σ̂4, with σ̂1 visiting w and traversing ew and e′w and

similarly σ̂4 visiting v and traversing ev and e′v. σ̂2 will now traverse ew, visit w, then

61

Figure 6.7: The graph G, G′ with its reporter strand σ in red, and the extension of σ to
σ̂ in G.

traverse e, visit v, and traverse ev. σ̂3 will now traverse e′v, visit v, then traverse e,

visit w, and traverse e′w. Note that σ̂2 and σ̂3 each traverse e in opposite orientation

along the edge ribbon which deforms to e.

By the inductive hypothesis, T (G′) has a boundary component σ that traverses

fv and fw at least once and no more than twice. Thus, at least two of σ̂1, σ̂2, σ̂3 and

σ̂4 are the same boundary component. Consider the following subcases:

(a) σ traverses both edges fv and fw once.

(b) σ traverses one of fw, fv twice and the other once.

(c) σ traverses both fw and fv twice.

We consider each of these three subcases below.

Case 2a. σ traverses fv and fw each once.

This case is illustrated in Figure 6.8.

In the case that σ traverses each edge fw and fv exactly once, then two of

σ1, σ2, σ3, σ4 are both a part of σ. Without loss of generality, assume that σ1 and

σ4 are the part of σ. The two remaining boundary components could either be a

singular boundary component δ 6= σ or part of two distinct boundary components

62

Figure 6.8: If σ traverses the edges of G′ exactly once, then the extension to G constructed
by including v and w and the edge incident to both will have 3 boundary components. A
boundary operation at v will result in the reporter strand σ̂ shown in red.

δ and ξ, both of which are distinct from σ.

Assume that δ is the boundary component traversing both of the opposite ori-

entation boundaries of the edge ribbons of fv and fw in T (G′), as shown on the top

left of Figure 6.8. The inclusion of v and w to create T (G) will maintain σ’s traver-

sal of the outer edges of the ribbons created by ev, e
′
v, ew and e′w creating σ̂. The

boundary component δ will be split by e in T (G), creating δ̂ and ξ̂. The boundary

component δ will traverse e′w, visit w, traverse e, visit v and then traverse e′v, then

traverse some path in G and return to e′w. The boundary component ξ will then

traverse the non-prime edges and e in a similar manner. This structure results in

three boundary components visiting the vertices v and w, σ̂, δ̂ and ξ̂. Without loss

of generality, consider an elementary boundary operation at v. As three boundary

components visit v, this boundary operation will result in a unification of the three

components. Because one of the components that is unified is σ̂, this resulting

boundary component is a reporter strand, traversing every edge at least once.

Otherwise, F (TG′) is traversed locally by three boundary components: σ, which

is a reporter strand traversing each edge of G at least once, δ, which traverses fv in

the opposite orientation of σ, and ξ which traverses fw in the opposite orientation

of σ. In this case, an elementary boundary operation at v will produce the edge

ribbon associated with e in F (TG) such that δ remains, but xi and σ are unified to

63

form σ̂. Thus σ̂ traverses every edge in G at least once.

Case 2b. σ traverses one of fv and fw once and the other twice.

Without loss of generality, assume σ traverses fV once and fw twice. Then in

T (G′), σ1, σ3, and σ4 all belong to the same boundary component σ and σ2 belongs

to another component.

Figure 6.9: If σ traverses one edge in G′ twice and the other once, then the resulting
extension to G will have a boundary component that traverses every edge incident to v
or w twice.

Adding vertices v and w and the edge e to construct G results in one unified σ̂

as shown on the left in Figure 6.9. Thus, σ̂ traverses every edge in T (G) at least once.

Case 2c. σ traverses both fv and fw twice.

If both of the edges fv and fw in T (G′) are traversed by the same boundary

component σ, then σ1, σ2, σ3, and σ4 all belong to σ.

In order to construct T (G) from T (G′), we add the vertices v and w along the

edges fv and fw and the edge e joining v and w. The boundary component σ̂ now

traverses each exterior edge ribbon, and then doubly traverses, without loss of gen-

erality, e′w, e, e
′
v. A new boundary component, δ is formed traversing the remaining

64

local edges.

Two scenarios must be considered. If every edge that δ traverses is traversed

exactly once, then σ̂ is a reporter strand.

Figure 6.10: The graph G′ with σ traversing each edge twice and the resulting graph G
with σ extended to σ̂.

If T (G) contains two boundary components, then by Lemma 6.1.1, σ̂ is a bound-

ary component traversing every edge at least once.

Otherwise, suppose T (G) has at least 3 boundary components, two of which area

σ̂ and δ. By the inductive hypothesis, every edge is traversed at least once by one

of σ̂ or δ.

In the case that a vertex v in T (G) is visited by each of the three boundary com-

ponents, then an elementary boundary operation at v will unify the three boundary

components. This gives a boundary component that traverses every edge at least

once within T (G).

Otherwise, δ traverses some number of edges twice. Using the same process as

in Theorem 6.1.1, an elementary boundary operation can reduce these occurrences.

Each edge that δ traverses is either traversed twice by δ or once by δ and once

by σ̂. Traversing δ and performing an EBO every time a doubly traversed edge is

encountered ensures that when no doubly traversed edges exist, σ̂ traverses every

65

edge of G at least one time.

Thus, in any case of two additional vertices, ∃σ ∈ δ(F (G)) such that σ traverses

every edge in G.

In combination with the prior chapters, this result gives that for each connected

multigraph, elementary boundary operations can produce a thickened graph with a

reporter strand traversing each edge at least once.

66

Chapter 7

Relating Postman Tours to Reporter Strands

By definition every reporter strand is also a postman tour, since a reporter strand

traverses every edge at least once and no more than twice. Several other ques-

tions, however, are not as obvious and are worth investigating. One of them is the

converse of this statement. It can be shown through a counterexample that not

every postman tour is a reporter strand. This leads to investigating which types

of postman tours are and which types are not reporter strands. A second question

is that of “containment” and our main result addresses that. We show that every

postman tour is “contained” in a reporter strand. Third, it will be interesting to

know, whether given a reporter strand, which we know is a postman tour, it is

possible to “reduce” it to obtain a minimal postman tour.

7.1 Classifying Postman Tours by Reporter Strands

Since every reporter strand is a postman tour, obviously, at least some postman

tours are reporter strands. It turns out that not all postman tours are reporter

strands. The following counterexample shows that there exist postman tours that

are not a single boundary component, i.e. a reporter strand.

The minimal order 3-valent graph is the basis case in the proof for Theorem

6.2.1 presents such a counterexample. For these two graphs of order two, it is easily

observed that in each case, there are postman tours that cannot be represented as

67

a reporter strand. In the case of the lollipops graph, the maximal postman tour

traversing every edge twice is not a reporter strand. In the case of the three parallel

edges joining the two vertices, the only reporter strand is the maximal reporter

strand. Thus, the postman tour which traverses exactly one edge twice is not a

reporter strand.

Next, we investigate what prevents a postman tour to be a reporter strand. We

proceed by considering simple graphs, i.e. graphs which do not contain multiedges

or loops. The minimal order 3-valent simple graph is K4. For K4, there are three

possible types of postman tours: 1) a tour that traverses exactly two edges twice, 2)

a tour that traverses exactly three edges twice, and 3) the tour that traverses every

edge twice. The parity of |δ(K4)| is even, and thus a singular boundary component

traversing every edge twice can not exist. However, by the sharp bound defined in

2.2, the maximal postman tour is never the tour of minimal length, and thus, the

maximal postman tour cannot not be an optimal path.

As shown in Figure 7.1, performing an elementary boundary operation on one

vertex or on three vertices of K4 results in a reporter strand traversing exactly two

edges twice. Performing an elementary boundary operation on two vertices gives a

reporter strand traversing exactly two edges twice. The thickened graph constructed

by performing a boundary operation on every vertex of K4 results in a thickened

graph with no reporter strand.

For the case of K4, every non-maximal postman tour exists as a reporter strand.

We conjecture that for every postman tour τ of a graph G, there exists a thickened

graph F (G) with a reporter strand σ ∈ δ(F (G)) that exactly represents τ .

Consider the case in Figure ??. Following the boundary for the parity of the

graph described in 2.2, there exists a postman tour τ of minimal length constructed

by adding n
2

edges, specifically between pairs of odd vertices. The magenta lines

68

Figure 7.1: (Clockwise from top left) K4, K4 after 1 boundary operation, K4 after 2
boundary operations, K4 after 3 boundary operations, and K4 after 4 boundary opera-
tions.

in Figure 7.2 creates a semi-Eulerian graph with one such minimal length tour.

However, if this were to be represented as a thickened graph, there are 8 remaining

edges that need to be incorporated as part of a boundary component. The middle

subcycle of 4 edges can not be connected to the outer subcycle of four edges as

each of the vertices connecting the two are traversed twice in τ . These two cycles

must then each be part of separate boundary components. However, the thickened

graph TG has six boundary components, and thus any thickened graph constructed

through boundary operations on TG has an even number of boundary components.

Because the length of each remaining cycle is 4, there are no subcycles, and thus

there must be exactly two additional boundary components to create this structure.

This thickened graph has 3 boundary components and thus could not be constructed

through self assembly.

This issue in a thickened graph F (TG) can be directly related to the behavior of

paths in the original graph G. In order to construct the paths traversing only the

69

Figure 7.2: The graph G has a postman tour τ traversing the 4 maroon edges twice. The
thickened graph F (G) contains a reporter strand σ in blue containing the postman tour
τ and the additional loop in purple.

maroon edges of the graph in Figure 7.2, the path has to traverse an edge only to

visit a vertex and immediately traverse the same edge again in the opposite direction.

Definition 7.1.1 The edge (v, u) is called the reverse of (u, v). If a path includes

two consecutive reverse edges (u, v) and (v, u), i.e. the path includes u, v, u then v

is called a point of reverse. Two reverse arcs are called separated if there is a loop

l between them (which starts at the head of one of the edges and ends at the tail

of the other).

If the loop l which separates two reverse edges, (u, v) and (v, u), is removed,

then the result is a point of reverse at v.

When considering the examples for the graphs of order 6 and order 8, superfluous

sub-cycles occur when the traversed path contains a point of reverse. This structure

can not be constructed in DNA as this would form a hairpin in the thickened graph,

which would be topologically equivalent to the vertex and it’s incident edges being

removed.

70

7.2 Containment in Reporter Strands

While we identified postman tours that can and can not exist as reporter strands,

here we consider whether some of the postman tours that could not exist as a bound-

ary component within a surface. For each 3-valent graph, a thickened graph can

be identified such that for every non-maximal postman tour τ ′, a boundary com-

ponent of the thickened graph contains all the edges of τ and possibly additional

edges. As shown in Figure 7.2, the blue boundary component is a reporter strand,

traversing every edge in τ and additionally traversing one of the subcycles, resolv-

ing the parity issue discussed previously. This additional traversal of the subcycle,

circled in purple allows for σ to be a reporter strand while containing each edge in τ .

Definition 7.2.1 A reporter strand σ is said to contain a postman tour τ if σ = τ

or if every edge in τ is contained in p(σ).

For instance, in the case of Figure 7.2, the graph on the right has a blue bound-

ary component which contains the postman tour τ which traverses the four edges

twice. However, this boundary component is not strictly equal to τ . The boundary

component includes edges not traversed by τ . We use this definition of contains to

state the following theorem:

Theorem 7.2.2 For every non-maximal postman tour τ in a connected 3-valent

graph G, there exists a σ ∈ δ(TG) with the edges of τ embedded as a subgraph G′.

Proof.

We proceed by induction on the number of vertices in G.

The minimal order for a 3-valent graph is 2. There are two non-isomorphic 3-

valent graphs of order 2: the “lollipop” graph with one edge connecting the two

71

vertices and a loop at each vertex and the graph with three parallel edges connect-

ing the two vertices, shown in Figure 6.3.

First, consider the case of the lollipop graph. Because two boundary components

visit a vertex in each case, any elementary boundary operation will result in the

same number of boundary components. Thus the maximal postman tour can not

be constructed. However, reporter strands exist traversing the edge connecting the

two vertices twice, and traversing either the interior or the exterior of each loop.

Performing no elementary boundary operation, the path will traverse the outside of

both loop. Performing one boundary operation, the path will traverse the outside

of one loop and the inside of the second loop. Finally, two boundary operations will

result in the path traversing the inside of each loop. No other possible combinations

can exist, and thus every non-maximal τ has an equivalent σ.

In the case of the order two graph with three parallel edges, the only reporter

strand that can be constructed is the maximal boundary component, traversing ev-

ery edge. Thus, the edges of every τ are contained in σ.

Assume that for every non-maximal postman tour of a graph G′ of order 2n,

there exists a thickened graph such that ∃σ ∈ δ(TG′) that contains the edges of τ .

Consider G a 3-valent graph of order 2n+ 2 constructed by adding two vertices to

G′. The possible cases for the addition of two new vertices, v and w, to construct

G are the same as the cases in Theorem 6.2.1. From Theorem 6.2.1, it is shown

that in each case, a σ̂ can be constructed such that σ̂ extends to the rest of the

graph beyond the local area around v and w. We proceed by showing that the edges

included in any traversal of the neighborhood of v and w by a postman tour τ are

included in some σ̂.

Case 1. The graph G has parallel edges.

72

Within this case, there are two subcases based on how v and w related to the

vertices of G′.

Subcase 1. v and w are adjacent to a single vertex in G′.

As the edge e ∈ G′ is a bridge the component containing v and w, any postman

tour that traverses e must traverse e in each direction. Then τ ′ will traverse the

loop in one orientation or the other. Adding v and w to the loop and creating a

parallel edge between them will result in the structure shown in Figure 6.4. As

shown in the proof of Theorem 6.2.1, the reporter strand traversing G will traverse

each edge local to w and v twice, and thus edges contained in τ are contained in p(σ̂).

Subcase 2. v and w are adjacent to two distinct vertices x and y in G′

Consider a postman tour τ that traverses the the edges of the structure created

when adding two parallel edges to G′. The postman tour τ must follow one of the

following paths:

(a) p(τ) traverses every edge twice.

(b) p(τ) traverses the edge incident to v and x and the edge incident to w and y

once and one of the parallel edges twice.

(c) p(τ) traverses the edge incident to v and x and the edge incident to w and y

each twice and traverses each parallel edge once.

In the cases of (a) and (c), the resulting reporter strands from the proof of Theo-

rem 6.2.1 directly match τ and all of the edges of (b) are contained within the strand

duplicating each edge twice. Thus for the case of two parallel edges, all possible

postman tours are contained within some reporter strand σ̂.

73

Case 2. The graph G does not have parallel edges.

As with case one, this case contains a significant number of possible τ . Consider

the graph structure on the left of Figure 6.7.

(a) p(τ) traverses every edge twice.

(b) Without loss of generality, p(τ) traverses ev and e′w twice and all other edges

once.

(c) evvewew and e′wweve
′
v are subpaths contained in p(τ).

Cases (a) and (c) are contained in the path traversing every edge twice created

in the second subcase (where σ traverses one of fw, fv once and the other twice

in G′). Otherwise, the postman tour τ is contained in the boundary component σ̂

created from σ traversing each edge twice in the G′.

As each possible postman tour τ of G in the cases and subcases described herein

can be contained in a one of the σ̂ that exist, we conclude that for every τ of a

graph G, ∃σ ∈ δ(F (TG)) such that p(σ) contains all the edges of τ .

The proof above shows that for every 3-valent (multi)graph G, every postman

tour is contained within a reporter strand of G. However, in order to provide a

solution to postman tour problems, it is necessary to identify the exact postman

tours, and thus the superfluous traversals must be removed.

7.3 A Language Theoretic Approach to Removing Edges

In order to remove edges, we consider two major possibilities: the removal of edges

through chemical processing (enzymatic cutting once criteria is met, etc.) and the

74

removal of edges through a language theoretic algorithm. Here, we focus on the lan-

guage theoretic approach. A complete solution to removing edges from the reporter

strands created is part of our future work. Provided here is an initial approach to

algorithmically remove unnecessary edges using subword patterns. This approach

focuses on identifying patterns within the sequence generated by reporter strand

whose path has been labeled properly following assembly. Additionally, we consider

heuristics that allow for fewer final paths to be analyzed.

The labeled results of reporter strands that are removed from the solution and

read. This initial step of removal and reading through electron microscopy or gel

electrophoresis poses delay in obtaining a solution. Once a strand has been removed,

the path can be defined as a word w. Subwords contained within w can be identified

as subsequences beginning and terminating with the same vertex v. Loops that are

possibly unnecessary can be isolated by considering the number of times the vertex

is repeated in w.

Figure 7.3: A reporter strand σ traversing every edge in the neighborhood of v twice with
a superfluous loop (colored in red).

Consider Figure 7.3. If v is traversed by a boundary component with the red

superfluous loop traveling 3→ 1, then the boundary component must travel 1→ 2

and 2 → 3 or the boundary component will no longer be a reporter strand. Thus

we can conclude that any superfluous loop can only occur at a vertex which appears

75

in w three times.

For a vertex v that appears in w three times, call the first visit v1, the second

visit v2 and the third visit v3. There are then three possible loops that can be

removed: the subword between v1 and v2, the subword between v2 and v3 and the

subword consisting of the portion of the word before v1 and the portion of the word

after v3. Each removed subloop can be no longer than n
2
, as this would not meet

the criteria to create a semi-Eulerian graph.

Once each possible superfluous loop is identified, the subwords can be iteratively

removed to create w′ and the following conditions are checked for w′:

1. The path is at least 3n
2

long.

2. Each edge is represented at least once in the sequence.

If these conditions are met, then w′ represents a postman tour. If these condi-

tions are not met, then the removed subword is necessary to the integrity of the

postman tour.

We believe that the further refinement of this language theoretic approach could

create a solution to postman tour style problems.

76

Chapter 8

Conclusion

In this work we propose to study the connection between postman tours and re-

porter strands. Postman tour problems model a wide range of phenomena, and

hence are very applicable, but many variants of them have a high computational

complexity. Finding a postman tour in a graph is solvable in polynomial time, but

the weighted variants of this problem, including the Windy Postman Problem, have

been proven to be NP-hard.

We investigated known results about thickened graphs and boundary compo-

nents. Each graph G can be perturbed to create a 3-valent graph TG. Once these

perturbed graphs are thickened, the resulting structure can be lifted to represent

the thickened original graph. The thickened graphs of TG, denoted F (TG) are not

distinct. Through elementary boundary operations at one or more vertices of the

thickened graph various thickened graphs with different number of boundary com-

ponents can be constructed. One of the main results in this line of research is that

for a given graph G, there exists a reporter stand, a single boundary component

that traverses each edge, in at least one of the thickened graphs F (TG). We discuss

these results in detail and show how we use them to prove our main result.

The main result of this paper states that for every postman tour there exists a

single molecule, i.e. a reporter strand (a single boundary component), containing

all edges of the tour, which can self-assemble in a DNA graph. Thus, the existence

77

of a reporter strand that contains each postman tour makes it possible to study

and analyze postman tours through reporter strands. Since the Windy Postman

Problem is NP-complete, there are no known efficient algorithms for finding a min-

imal weight postman tour. To that effect, we propose to study more efficient ways

to finding postman tours through considering all reporter strands and “extracting”

from them minimal postman tours.

Our study of postman tours through reporter strands points to two new direc-

tions of future research. One direction is to develop polynomial time algorithms to

solve this set of related problems using DNA self-assembly and the other direction

is to use language theoretic tools to obtain postman tour solutions from reporter

strands.

As with other DNA computing models, the first direction is to show how to

solve different variants of the NP-complete postman tour problems efficiently by

employing an enzymatic approach and making use of the massive parallelism prop-

erty of DNA strands. The goal in this approach will be to design and study the

optimal (not only in terms of polynomial number of steps, but also in terms of wet

computation and lab protocols) algorithms using DNA self-assembly.

The second direction of our current and future research is to study graph theo-

retic problems, such as postman tour problems, by transforming them to language

theoretic ones. The existence of reporter strands, which are strands of DNA nu-

cleotides that can ultimately be represented as words over the DNA alphabet makes

it possible to abstract the postman tour problems to languages.

We are currently studying language theoretic approaches which produce solu-

tions to postman tour type problems. A reporter strand can be viewed as a word

and a postman tour consists of some or all of its subwords. Thus, the problem of

finding an optimal postman tour reduces to finding certain subwords of words.

78

References

[1] L. Adleman, Molecular computation of solutions to combinatorial problems,

Science 226 (1994) 1021-1024.

[2] B. Bollobas, Graph theory, Springer-Verlag, New York, 1979.

[3] A. Corberan, G. Mejia, J.M. Sanchis, New Results on the Mixed General Rout-

ing Problem, Mathematical Programming 26 (2005) 363-376.

[4] A. Corberan, M. Oswald, I. Plana, G. Reinelt, J.Sanchis, New results on the

Windy Postman Problem, Mathematical Programming Ser. A 132 (2012) 309-

332.

[5] J.L. Gross, J. Yellen, Handbook of Graph Theory, CRC Press, Boca Raton,

2004.

[6] M. Guan, On The Windy Postman Problem, Discrete Applied Mathematics 9

(1984) 41-46.

[7] T. Head, Formal language theory and DNA: An analysis of the generative ca-

pacity of specific recombinant behaviors, Bulletin of Mathematical Biology 49-6

(1987) 737-759.

[8] J.E. Hopcroft, R. Motwani, J. Ullman, Automata Theory, Languages, and Com-

putation, 3rd edition, Pearson Addison Wesley, 2007.

[9] S. Hussini, L. Kari, S. Konstantinidis, Coding properties of DNA languages,

Theoretical Computer Science 290-3 (2003) 1557-1579.

[10] N. Jonoska, S.A. Karl, M. Saito, Three dimensional DNA structures in com-

puting, BioSystems 51 (1999) 143-153.

[11] N. Jonoska, P. Sa-Ardyen, N. C. Seeman, Computation by Self-assembly of

DNA graphs, Genetic Programming and Evolvable Machines 4 (2003) 123-137.

79

[12] N. Jonoska, M. Saito, Boundary components of thickened graphs, Lecture Notes

in Computer Science 2340 (2002) 70-81.

[13] N. Jonoska, N.C. Seeman, G. Wu, On the existence of reporter strands in DNA-

based graph structures, Theoretical Computer Science 410 (2009) 1448-1460.

[14] A.V. Kostochka, N. Tulai, On the length of the path of a Chinese postman in

homogenous graphs, Sibirsk Zh. Issled. Oper. 1-3 (1994) 20-37.

[15] J. S. Lee, S. Shin, T. Park, B. Zhang, Temperature gradient-based DNA comput-

ing for graph problems with weighted edges, Lecture Notes in Computer Science

2568 (2003) 73-84.

[16] R. Lipton, DNA solution of hard computational problems, Science 268 (1995)

542-545.

[17] E. Minieka, The Chinese potman problem for mixed networks, Management

Science 25 (1979) 643-648.

[18] J.R. Munkres, Topology, A First Course, Prentice-Hall, 1975.

[19] A. Naryanana, S. Zorbalas, DNA algorithms for computing shortest paths, Pro-

ceedings of Genetic Programming (1998) 718-723.

[20] S. O, D.B. West, Sharp bounds for the Chinese Postman Problem in 3-regular

graphs and multigraphs, Discrete Applied Mathematics 190-191 (2015) 163-168.

[21] G. Paun, G. Rozenberg, A. Salomaa, DNA Computing, New Computing

Paradigms, Springer-Verlag Berlin Heidelberg, 1998.

[22] K.H. Rosen, Discrete Mathematics and Its Applications, 7th edition, McGraw-

Hill 2012.

[23] H. Royden, P. Fitzpatrick, Real Analysis, Pearson, 2010.

[24] S. Shin, B. Zhang, S. S. Jun, Solving traveling salesman problems using molecu-

lar programming, Proceedings of Congress on Evolutionary Computation (1999)

994-1000.

[25] Z. Win, On the Windy Postman Problem on Eulerian Graphs, Mathematical

Programming 44 (1989) 97-112.

80

[26] G. Wu, N. Jonoska, N.C. Seeman, Construction of DNA nano-object directly

demonstrates computation, Biosystems 98 (2009) 80-84.

[27] M. Yamamura, Y. Hiroto, T. Matoba, Solutions of shortest path problems by

concentration control, Lecture Notes in Computer Science 2340 (2001) 231-240.

81

About the Author

Katie Bakewell graduated with dual bachelor’s degrees in Mathematics and Statis-

tics from the University of North Florida in 2013. During her undergraduate studies,

she worked with Dr. Daniela Genova on an analysis of Hamiltonian Paths via the

bridges of Jacksonville. This work was presented at the 2012 Florida Mathematical

Association of America meeting.

During her graduate studies, Katie focused on three areas of research. Her main

area of research was the topic of this thesis which she studied with Dr. Genova and

another former graduate student Sudam Surasinghe. The preliminary draft of this

work was presented at the 45th Southeastern International Conference on Combi-

natorics, Graph Theory, and Computing at Florida Atlantic University in February

2016 and at the 21st International Conference on DNA Computing and Molecular

Programming at Harvard University’s Wyss Institute in August 2016. Dr. Gen-

ova and Katie are also working with another graduate student Benjamin Webster

on constructing a multivariate geometric distribution using automata and language

theory. This work was presented at the 2016 Florida Mathematical Association of

America meeting.

Additionally, Katie presented research in forecasting commodities prices using

exogenous regressors at the Conference on Statistical Practice in San Diego. This

presentation was based on research completed with Dr. Pali Sen. Katie is extremely

grateful to have been able to attend these conferences due to travel grants from the

UNF Graduate School, College of Arts and Sciences, and Department of Mathe-

matics and Statistics.

Katie is a lead statistician at NLP Logix, a local predictive modeling company.

She has been with NLP Logix for five years. With NLP Logix, she co-presented sta-

tistical research with the Florida Poison Information Center Network at the 2014 and

2017 North American Congress of Clincal Toxicologist conferences and co-organizes

Big Data Jax.

Katie lives in Jacksonville, FL with her husband, Sagara Lebunu-Hewage.

83

	Self-Assembly of DNA Graphs and Postman Tours
	Suggested Citation

	Title Page
	Table of Contents
	Abstract
	Chapter 1: Introduction
	Chapter 2: Graph Theoretic and Topological Background
	2.1 Graph Theoretic Notions
	Figure 2.1: An Eulerian graph is constructed by adding the green dashed edges

	2.2 Postman Tours and Associated Problems
	Figure 2.2: A solution to the CPP for G using additional edges in dashed green lines
	Definition 2.2.1
	Theorem 2.2.2

	2.3 Topological Background
	Definition 2.3.1
	Theorem 2.3.2
	Definition 2.3.3
	Definition 2.3.4
	Figure 2.3: A cover adn an open covering of a space E

	Definition 2.3.5
	Definition 2.3.6
	Definition 2.3.7
	Definition 2.3.8
	Theorem 2.3.9
	Figure 2.4: A boundary point of E is represented by the green point x and the red dashed curve is a boundary component of E, an in (E)

	Lemma 2.3.10
	Definition 2.3.11
	Definition 2.3.12
	Definition 2.3.13
	Definition 2.3.14
	Definition 2.3.15
	Definition 2.3.16
	Definition 2.3.17
	Figure 2.6: The space X is bounded by black boundary components and its deformation retreat A is the greeen circle

	Chapter 3: Self-Assembly of DNA Graphs
	Figure 3.1: Hydrogen bonds between various nucleotides in two DNA strands
	3.1 Solving the 3-SAT Problem through Self-Assembly
	3.2 Solving the k-colorability Problem through Self-Assembly
	Figure 3.2: A graph and iths covering graph

	3.3 Covering Graphs
	3.4 Weighting of Self-Assembled Graphs

	Chapter 4: Thickened Graphs
	4.1 Properties of Thickened Graphs
	Definition 4.1.1
	Figure 4.1: A graph G, a Thickened graph F(G), and a Thickened graph F'(G) following an elementary boundary operation

	Lemma 4.1.2
	Lemma 4.1.3

	4.2 Constructing the Family of Thickened Graphs
	Figure 4.2: A vertex v before and after an EBO
	Lemma 4.2.1
	Figure 4.3: Resulting changes to the number of boundary components

	Lemma 4.2.2

	4.3 Thickened Graphs and DNA Graphs
	Figure 4.4: DNA structure representing a thickened graph of K4

	Chapter 5: 3-Valent Graphs
	5.1 Reduction to 3-Valency
	Figure 5.1: A graph G, it's thickened graph F (G), and the thickened graph F (G'), wher G' is obtained from G by removing the pendant
	Theorem 5.1.1
	Definition 5.1.2
	Corollary 5.1.3
	Figure 5.3: A 3-degree perturbation of a 4-degree vertex, a permutation of the edges, and the lift

	Definition 5.1.4

	5.2 A 3-Degree Perturbation of K5
	5.4: The stages of creating a perturbed 3-valent graph of K5

	5.3 Lifting the 3-Valent Graph
	Lemma 5.3.1
	Theorem 5.3.2
	Corollary 5.3.3

	Chapter 6: The Existence of Reporter Strands
	6.1 Thickened Graphs with Only Two Boundary Components
	Lemma 6.1.1
	Figure 6.1 The four possible boundary component configurations at v given that only two boundary components exist
	Figure 6.2: The vertex ve f (tg) and the vertices v e F(T g)
	Figure 6.3: The two graphs of order 2

	6.2 Identifying a Reporter Strand in a Graph G
	Theorem 6.2.1
	Figure 6.4: the graph G, the graph G' with its reporter strange o in red, the extension of a in G, and the creation of o in red
	Figure 6.5
	Figure 6.6
	Figure 6.7
	Figure 6.8
	Figure 6.9
	Figure 6.10

	Chapter 7: Relating Postman Tours to Reporter Strands
	7.1 Classifying Postman Tours by Reporter Strands
	Figure 7.1
	Figure 7.2
	Definition 7.1.1

	7.2 Containment in Reporter Strands
	Definition 7.2.1
	Theorem 7.2.2

	7.3 A Language Theoretic Approach to Removing Edges
	Figure 7.3

	Chapter 8: Conclusion
	References
	About the Author

