
UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2018

Architectures for Real-Time Automatic Sign
Language Recognition on Resource-Constrained
Device
James M. Blair
University of North Florida

This Master's Thesis is brought to you for free and open access by the
Student Scholarship at UNF Digital Commons. It has been accepted for
inclusion in UNF Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more information, please
contact Digital Projects.
© 2018 All Rights Reserved

Suggested Citation
Blair, James M., "Architectures for Real-Time Automatic Sign Language Recognition on Resource-Constrained Device" (2018). UNF
Graduate Theses and Dissertations. 851.
https://digitalcommons.unf.edu/etd/851

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/213900039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu
https://digitalcommons.unf.edu
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu
http://digitalcommons.unf.edu

ARCHITECTURES FOR REAL-TIME AUTOMATIC SIGN LANGUAGE
RECOGNITION ON RESOURCE-CONSTRAINED DEVICES

by

James Blair

A thesis submitted to the
School of Computing

in partial fulfillment of the requirements for the degree of

Master of Science in Computing and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

August, 2018

ii

Copyright (©) 2018 James Blair

All rights reserved. Reproduction in whole or in part in any form requires the prior
written permission of James Blair or designated representative.

iii

The thesis "Architectures for Real Time Automatic Sign Language Recognition on
Resource Constrained Devices" submitted by James Blair in partial fulfillment of the
requirements for the degree of Master of Science in Computing and Information Sciences
has been

Approved by the thesis committee: Date

_______________________________ ____________________
Dr. Ching-Hua Chuan
Thesis Advisor and Committee Chairperson

_______________________________ ____________________
Dr. Roger Eggen

_______________________________ ____________________
Dr. Sanjay Ahuja

Accepted for the School of Computing:

_______________________________ ____________________
Dr. Sherif Elfayoumy
Director of the School of Computing

Accepted for the College of Computing, Engineering, and Construction:

_______________________________ ____________________
Dr. William Klostermeyer
Interim Dean of the College

Accepted for the University:

_______________________________ ____________________
Dr. John Kantner
Dean of the Graduate School

 iv

ACKNOWLEDGEMENT

I would first like to thank my advisor, Dr. Ching-Hua Chuan. Her mentorship and advice

provided invaluable support on my path to completing this work. I would also like to

thank my colleagues who have always encouraged me and been willing to lend an ear

when I needed feedback.

Finally, I must express my very profound gratitude to my parents, Glen and Sharon, for

their constant encouragement and support throughout my years of study, and to my wife,

Jess, for her incredible patience with my many late nights working and endless

discussions of my research.

This accomplishment would not have been possible without all of you. Thank you.

 v

CONTENTS

List of Figures ... vii

List of Tables ... viii

Abstract .. ix

Chapter 1: Introduction ..1

 1.1 Background ..1

 1.2 Problem Statement ...2

Chapter 2: Literature Review ...4

 2.1 American Sign Language Recognition ..4

 2.2 Sign Gesture Capture and Classification ...5

 2.3 Recent Work ..6

 2.4 Considerations for Mobile Devices ...11

 2.5 ASR Architecture ...15

 2.6 Conclusions ..19

Chapter 3: Research Design ...21

 3.1 Questions and Objectives ...21

 3.2 Methodology ..22

Chapter 4: Hidden Markov Model Training ..24

 4.1 Raw Sign Data Collection ..24

 4.2 Feature Extraction ..25

 4.3 Model Training ..27

 vi

Chapter 5: Implementation of ASLR Architectures ..28

 5.1 Common Implementation ..29

 5.2 Common Network Details ...30

 5.2.1 Serialization Protocols ..31

 5.3 Kinect Recording Playback..32

 5.4 Client-Only Architecture ...33

 5.5 Fully-Offloaded Client-Server Architecture ..34

 5.5.1 Thin Client Implementation ..34

 5.5.2 Cloud Service ..35

 5.6 Partially-Offloaded Client-Server Architecture ...36

 5.6.1 Client Implementation ..36

 5.6.2 Cloud Service ..37

 5.7 Performance Instrumentation ...38

 5.7.1 High-Resolution Stopwatch ..38

 5.7.2 .NET Performance Counters ...39

Chapter 6: Performance Analysis ..41

 6.1 CPU Usage and Response Time ..42

 6.2 Network and Memory Usage ...45

Chapter 7: Conclusions ..48

References ..50

Appendix A: American Sign Language Gestures ..54

Appendix B: IRB Approval ...55

Vita ...57

 vii

FIGURES

Figure 1: Embedded Speech Recognition Architecture ...16

Figure 2: Network Speech Recognition Architecture ..17

Figure 3: Distributed Speech Recognition Architecture ..18

Figure 4: Diagram of feature derived from Kinect skeletal tracking data26

Figure 5: Architecture diagram of ASLR system ..28

Figure 6: Average CPU clock measurements ..42

Figure 7: Average response time (wall clock) ...43

Figure 8: Average network usage measurements (total kilobytes)45

 viii

TABLES

Table 1: Aggregate memory usage by number of garbage collections46

 ix

ABSTRACT

Powerful, handheld computing devices have proliferated among consumers in recent

years. Combined with new cameras and sensors capable of detecting objects in three-

dimensional space, new gesture-based paradigms of human computer interaction are

becoming available. One possible application of these developments is an automated sign

language recognition system. This thesis reviews the existing body of work regarding

computer recognition of sign language gestures as well as the design of systems for

speech recognition, a similar problem. Little work has been done to apply the well-known

architectural patterns of speech recognition systems to the domain of sign language

recognition. This work creates a functional prototype of such a system, applying three

architectures seen in speech recognition systems, using a Hidden Markov classifier with

75-90% accuracy. A thorough search of the literature indicates that no cloud-based

system has yet been created for sign language recognition and this is the first

implementation of its kind. Accordingly, there have been no empirical performance

analyses regarding a cloud-based Automatic Sign Language Recognition (ASLR) system,

which this research provides. The performance impact of each architecture, as well as the

data interchange format, is then measured based on response time, CPU, memory, and

network usage across an increasing vocabulary of sign language gestures. The results

discussed herein suggest that a partially-offloaded client-server architecture, where

feature extraction occurs on the client device and classification occurs in the cloud, is the

ideal selection for all but the smallest vocabularies. Additionally, the results indicate that

 x

for the potentially large data sets transmitted for 3D gesture classification, a fast binary

interchange protocol such as Protobuf has vastly superior performance to a text-based

protocol such as JSON.

 - 1 -

Chapter 1

INTRODUCTION

1.1 Background

Recent years have seen the widespread proliferation of powerful, affordable computing

devices to an ever-growing set of users. Frequently, these devices are hand held and

capable of fast calculation far beyond the capacity of desktop computers of just a few

years ago. Along with the development of new sensing technologies such as capacitive

multi-touch displays [Chang10] and cameras capable of sensing 3D depth, many new

paradigms of physical interaction with our computers have arisen.

Sensors such as the Microsoft Kinect have greatly expanded the ability for software to

recognize gestures in three-dimensional space. Specifically, the Kinect and similar

devices can provide depth data in addition to RGB video, making them suitable

candidates to employ with software seeking to recognize the gestures of American Sign

Language. Additionally, the increasing inclusion of faster CPUs and powerful graphics

processing units (GPUs) in mobile devices may allow for computer vision approaches to

3D gesture recognition on even these small, portable devices.

In addition to the developments in personal computing devices and sensing technology,

recent years have seen an explosion in the availability of inexpensive, elastic compute

 - 2 -

platforms in the commercial public cloud [Mirash10, Furht10]. This significantly lowers

the barrier to entry for new applications, greatly simplifies the construction of highly

distributed systems, and allows software running on mobile devices to easily off-load

computationally intensive tasks to more powerful servers. This ability to distribute

workloads between mobile devices and network servers allows countless mobile

applications to very quickly perform tasks some modern desktop computers cannot

complete on their own.

One widely known example of this strategy exists in the "virtual assistant" application

that runs on modern smartphones such as Apple's Siri, Microsoft's Cortana, and Google

Now. These systems leverage automatic speech recognition (ASR) to allow users to

interact with the assistant using only speech. To accomplish this, the mobile device

records and encodes audio spoken by its user but offloads much of the necessary

processing to cloud services. The cloud services then interpret the audio input and return

a transcribed result, usually based on large, robust models, providing a much more

intelligent experience than the mobile devices could provide in isolation.

1.2 Problem Statement

Developing software applications to assist sign language communication with deaf

people is an important area of work. Applications of this type could be used to aid deaf

people so that they can interact with computer systems using sign language. Translation

systems built on automated sign language recognition (ASLR) could assist

 - 3 -

communication between deaf people and people who may not know sign language.

Additionally, ASLR systems could be used to aid in the teaching of sign languages.

Some work has been done on ASLR, but it is not a fully mature knowledge area. Ong and

Ranganath provided an excellent survey of the ASLR state of the art, including a review

of major contributions as well as an analysis of neglected areas and suggestions for future

work [Ong05]. Fortunately, ASLR has many similarities to automatic speech recognition

(ASR), so it may serve as a useful reference point for designing ASLR systems as well as

analyzing their performance. Herein, literature relevant to ASLR and ASR is reviewed,

the gaps relevant to the proposed work are identified, and further research in the area is

proposed.

 - 4 -

Chapter 2

LITERATURE REVIEW

2.1 American Sign Language Recognition

American sign language, and sign languages generally, consist of manual and non-

manual signing gestures. Manual signing consists of gestures isolated to the hands and

arms. Non-manual signing encompasses broader movements of the head and torso as well

as facial expressions. Manual signs can typically convey most of the lexical meaning in a

sentence. Additional details are then provided by the non-manual aspects of the sign.

These details may include intonation, verb tense, or intensity of action. While an ideal

ASLR system would incorporate both manual and non-manual gestures, doing so is non-

trivial. Especially in a mobile environment, accurate capture and analysis of non-manual

signing may prove extremely difficult. Despite the constrained vocabulary afforded by

this limitation, many useful applications may still be constructed using only manual

signs.

The basic components of a manual sign consist of the shape, orientation, location, and

movement of the hand, including both the palm and fingers. Perlmutter considers signs to

be comprised of two segment types: position and movement [Permutter92]. Within these

segments there are also secondary movements which can be seen as “internal

movements” of the fingers relative to the hand. For accurate classification, an ASLR

 - 5 -

system must be able to model both the static and moving components of signs.

Additionally, when signs are composed to form sentences, there is movement between

the individual signs that are not part of a sign and do not actually convey any meaning.

This is similar to speech in the sense that the sound of a word may be affected by the

words preceding and following it in a sentence. Finally, some signs may involve

positions where some fingers obscure others, or if both hands are involved, one hand may

partially obscure the other. More generally, signs are not flat but exist in three-

dimensional space, so this must be accounted for when capturing data for an ASLR

system.

2.2 Sign Gesture Capture and Classification

Computer vision and direct capture using gloves [Ong05] are the primary methods of

capturing hand gesture data for ASLR. Generally, computer vision is a more desirable

approach because it does not require specialized equipment and the user does not have to

wear a special device to use the system. As such, a large body of research exists using

computer-vision based approaches. With vision approaches, the two primary concerns

related to ASLR are tracking of the hands and feature extraction. In regard to hand

tracking, usually the full upper body of the signer needs to be in the camera’s field of

view. Using 2D video from a standard camera usually requires some restriction on the

background and the clothing worn by the signer. Three-dimensional video using stereo

cameras can overcome many of these limitations at the expense of greater computational

cost. Critical features for detecting full signs include hand position (relative to the body),

 - 6 -

shape, and orientation. Additionally, motion trajectories of the hands may be useful for

some classifications. An in-depth discussion of tracking and feature extraction can be

found in the survey by Ong and Ranganath [Ong05].

Upon feature extraction, signs are generally classified by either taking a sign as a whole

and using a single classification step, or by breaking the sign into multiple components,

classifying each component, and making a final classification based on the results of the

components. The primary classification methods in the literature are neural networks and

hidden Markov models (HMM) [Ong05]. Both methods have been shown to yield good

results, but frequently each excels at different types of signs. Neural network-based

approaches are frequently well-suited to classification of non-moving signs. HMMs,

which are good at classifying time-series data, are best suited to dynamic, moving signs

and series of signs formed into sentences.

2.3 Recent Work

While a consumer-ready mobile platform for sign language gesture recognition is not yet

available, a large body of work exists on the problem of accurately interpreting sign

language gestures in real time. Lichtenauer et al. demonstrated a system using stereo

video cameras for gesture recognition in ASL by detecting skin as well as hand and head

position in the video [Lichtenauer07]. Impressively, they were able to achieve 95%

accuracy on 120 distinct signs performed by 70 people. The authors present a novel

method for sign language gesture classification: acknowledging that many current

 - 7 -

approaches use either Hidden Markov Models (HMM) or Dynamic Time Warping

(DTW), they propose a new variation on the DTW approach. Using two cameras in order

to collect 3D information, reference samples were taken for 120 different signs. For each

of these a Bayesian binary classifier was then trained using samples taken from 70

persons, using DTW to normalize for different time-lengths and feature distribution

within the gesture. Additionally, 50% Winsorization was performed on the training data

to mitigate the impact of noise. Winsorization is a statistical technique, similar in effect to

clipping in signal processing, that sets all outliers to a specified percentile of the data. In

this case, all data below the 25th percentile was set to the 25th percentile and data above

the 75th percentile set to the 75th percentile. These weak classifiers were then combined

to form the main sign classifier, choosing the sign with the highest correctness. A 7-fold

cross validation yielded a 95% true positive rate and 5% false positive rate. Additionally,

the same data were tested using an HMM with 40 states using outcomes normalized by

sequence length. This resulted in more than double the false negatives. Finally, the DTW

Bayesian combined-classifier approach returned classification results within 50 ms,

which is suitable for real-time applications.

Phadtare et al. presented a new method for feature extraction of hand and finger position

data for static signs [Phadtare12]. To test their algorithm, they captured gestures using a

Microsoft Kinect and processed the video with the open-source OpenNI library. Their

work focuses on two sets of features: hand shape and palm orientation. The palm

orientation is determined by finding the location of the wrist joint in the image as well as

the contour created by the outer edge of the palm. The equation for the plane of the palm

 - 8 -

is determined from these features. The core of this work lies in the hand shape detection

algorithm. The authors proposed a three-dimensional extension of the Belongie shape

context classification algorithm [Belongie02] which traditionally works in two

dimensions. N points are sampled from the training shapes along the surface of the plane.

The shape context is then constructed by computing the radial distance, radial angle, and

altitude between each point and all the other sample points, and K-bin histograms of the

distances are generated for each point. These histograms then constitute the trained

model. Classification using this model involves a form of nearest-neighbors algorithm

using the Chi-square distance metric. The authors tested their proposed algorithm using a

set of 40 hand shapes. They report that the algorithm fails to differentiate shapes which

only differ by slight variations in finger position. However, they report 20 shapes

correctly classified and 10 shapes classified incorrectly but misclassified to a shape that

was highly similar. The authors proposed increasing N and K to increase the accuracy of

their approach. Finally, they noted that their algorithm is easily parallelizable and can

take advantage of multi-core CPUs or even GPUs using technologies such as CUDA.

Kumarage et al. proposed new algorithms for computer-vision based sign language

recognition to significantly decrease the compute intensity and allow for parallelism in

the gesture processing [Kumarage11]. Their approach involved using combined learners

to separately classify samples based on static features and movement features. The

starting image, ending image, and movement sequence can be processed in parallel,

increasing performance of the system. Additionally, by processing the starting image

separately, the possible candidate classes were narrowed significantly, increasing the

 - 9 -

performance of the final classification. For the still images, features were extracted to

describe the shape and position of the hand and fingers. These features were then

compared to training data stored in a database and possible candidate classes were

assigned weights, although the authors are not clear about how these weights were

generated. For motion classification, only the position of the hand was taken into account.

Points were sampled along the hand's trajectory, and a least-squares approach is used to

generate a best fit curve for the trajectory. The coefficients of the resulting polynomial

were then compared to candidate classes in the database and weights were also generated.

These weights were then combined to determine the final class for the gesture. While the

specific classification algorithms used in this work do not seem novel, significant

performance benefits from parallelizing the tasks were realized.

In addition to video feed, much work on automated sign language recognition uses

features extracted from other 3D sensors. In work by Chuan et al., data are collected

instead using a new 3D sensor called Leap Motion [Chuan14]. The Leap Motion

controller includes an SDK with high level APIs. These APIs provide access to many

features describing the position and movements of the hand and fingers. In this work, the

authors demonstrate methods for deriving more meaningful features from the base feature

set: average distance, which describes the average movement of all fingers between

frames; average spread, which estimates the spread of the palm by averaging the distance

between adjacent finger tips; and average tri-spread, which estimates the average

triangular area between adjacent fingers. Additionally, several features are derived for the

fingers which provide information about the finger relative to the palm instead of the

 - 10 -

finger's absolute position within the frame. The data set studied in the work was

comprised of the 24 static signs of the American Sign Language alphabet. The classifiers

used were k-nearest neighbors (k-NN) and support vector machine (SVM). The highest

performance reported was 84.5% with k=169 using the KNN classifier, with an average

performance of 72.78% with k=7. The highest performance reported for the SVM

classifier was 83.39% using the Gaussian RBF kernel, with an average performance of

79.93%.

Elakkiya et al. proposed a machine learning-based system for recognizing sign language

gestures [Elakkiya14]. In their approach, the system does not use predetermined signs

stored in a database for classification. Instead, it uses supervised learning to learn new

words and phrases and gain feedback from the user on its interpretation of gestures. This

approach is similar to many speech recognition systems and could lead to the

development of a highly flexible and scalable system for sign language recognition.

Finally, the body of research on sign language gesture recognition is not confined to the

English language or American Sign Language. Much work has also been done in this

area in other languages, including but not limited to Indian, Korean, Arabic, Malay,

Chinese, and Japanese [e.g., Min07, Swee07, Wang05, Lu97, Shanableh07, Baranwal14].

 - 11 -

2.4 Considerations for Mobile Devices

While modern mobile devices have grown extremely powerful in recent years, user

expectations have also grown. Many of the services users have come to expect require

compute-intensive processes. These processes can present performance and energy

consumption challenges on the mobile platform, so the most intensive aspects of these

tasks are commonly offloaded to cloud services to increase performance and conserve

energy. Automatic speech recognition (ASR) is one such service that is now frequently

implemented using the cloud, including that seen in virtual assistants such as Apple's Siri

and Microsoft's Cortana. Very early in the development of these types of systems, Rose

et al. prototyped a system using server-based recognition to implement ASR on mobile

devices [Rose01]. Their work highlighted several challenges inherent in these systems,

including limited processing power on the device, energy consumption issues, and

network bandwidth concerns for achieving real-time performance.

Automated speech recognition has much in common with automated sign language

gesture recognition. In both types of systems, there is grammatical structure, and the data

are generally treated as a time series, which lends to processing with HMMs. Especially

for systems with very large vocabularies, classification using an HMM can be very

computationally expensive. Due to this, Veitch et al. demonstrated the acceleration of

ASR classification using general-purpose GPU computing [Veitch11]. They demonstrate

that certain optimizations of the HMM algorithm, specifically the Gaussian calculation,

can allow for massive single-instruction, multiple-data (SIMD) parallelism. In addition to

 - 12 -

implementation on a GPU, the authors also implemented the algorithm using field-

programmable gate arrays (FPGA) and compared the results. They also investigated the

effect of parallelizing different aspects of the algorithm: one thread per model, one thread

per mixture, or one thread per coefficient. The result showed that one thread per model

resulted in the most efficient use of the GPU and the least memory transfer between GPU

and CPU memory. With the optimized GPU implementation, the authors report the

fastest performance to be 3.75 times faster than real time (10 ms), or 2.6ms per frame.

They also report that this result is a 10-fold speed up from their optimized sequential

CPU implementation. This significant speedup reduced classification latency to a level

that is barely, if at all, perceptible by users. Keeping such low latency is crucial to

providing near real-time interaction in such a system.

Chang et al. also prototyped a system for cloud-assisted ASR for mobile devices

[Chang11]. Their approach attempted to accelerate performance and increase accuracy by

incorporating a learning/training element for highly tailoring recognition to the user's

voice. While many speech recognition systems are user-independent to make training

unnecessary, this may sacrifice the accuracy of the system. In this work, the authors

create a prototype that is initially user-independent but allows training over time to

incorporate some user-dependent functionality. Additionally, their system anonymously

uses this training data to improve the system for all users. To this end, the system must be

“cloud-assisted” because cloud storage is abundant, relatively cheap, and allows sharing

the model between all users. The cloud additionally provides the benefit of higher

performance computing resources than those available on mobile devices. However, a

 - 13 -

basic model was still stored on the mobile device to allow limited functionality even in a

limited-network environment. This prototype system was able to greatly increase

performance and accuracy relative to commodity ASR systems, leading to much greater

user satisfaction and demonstrating the benefits of distributing workloads when cloud

resources are available.

Nicholson and Noble conducted a more general investigation into network considerations

on mobile devices [Nicholson08]. Acknowledging the resource constraints of mobile

devices and the widely changing network environments of mobile users, they sought to

develop a method of predicting future network connectivity. Using such a prediction,

mobile applications could make more intelligent choices about network usage to optimize

performance and energy usage. A system called BreadCrumbs was developed to track the

performance of access points encountered at various locations visited by the user. At

discrete timer intervals, the system scanned and tested all available access points within

its immediate vicinity. As the user moved over time, changes in network performance

were used to generate a second-order Markov model. This model then allowed the system

to predict future network performance as the user changed location. Using only a short

training period of a week, the system was able to accurately predict future bandwidth

within 10 KB/s half the time and within 50 KB/s 80% of the time. Using these

predictions, the authors were able to demonstrate improved performance and reduced

battery consumption in several sample applications. This work concretely demonstrates

the critical role network availability and usage may play in ASR applications.

 - 14 -

Finally, Cuervo et al. proposed a system called MAUI, which enables offloading code

execution from a mobile device to remote infrastructure [Cuervo10]. Included in this

work, the authors demonstrate their system using a sample face-recognition application,

which has similar compute demands to an ASLR system. Their system leverages the

portability of the .NET Common Language Runtime (CLR), which uses an intermediate

language and Just-In-Time (JIT) compilation to enable execution on different CPU

architectures. The CLR also provides rich reflection capabilities. Using these capabilities,

MAUI generates proxies for methods that allow remote execution, inspects application

state at runtime, and transparently executes these methods remotely as needed. The

system decides dynamically whether to use remote execution based on battery and

network conditions towards a goal of minimizing energy consumption while

simultaneously increasing application performance. In designing the system, the authors

also studied the effects of network latency on energy consumption. They found that

higher latency, such as that experienced on slower cellular connections, dramatically

increased energy consumption, potentially negating the benefits of remote execution.

Latency issues notwithstanding, the authors demonstrated very large gains in

performance and reduction in energy usage when applying their system to the face-

recognition application. These results show that offloading compute-intensive work may

yield significant benefits in an ASLR application.

 - 15 -

2.5 ASR Architecture

In 2008, Zaykovsky reviewed the current state of the art for mobile ASR systems and

outlined three architectural possibilities for creating a mobile ASR system and details the

primary concerns of each as well as the tradeoffs that exist between them [Zaykovsky08].

The primary tasks that must be accomplished by such a system are the capture of speech

audio, feature extraction from the audio, and performing an ASR search to determine the

most likely sequence of words that produced the audio input, usually using a Hidden

Markov Model and Viterbi search.

The primary architectural approaches to this type of ASR system consist of Embedded

Speech Recognition Systems, Network Speech Recognition Systems, and Distributed

Speech Recognition Systems. The embedded approach consists of performing the entire

set of ASR tasks on the mobile device using only the resources locally available. The

Network Speech Recognition approach streams speech audio data to servers over the

network, and these servers perform both feature extraction and the ASR search. Finally,

the Distributed Speech Recognition approach combines the first two approaches,

performing feature extraction on the mobile device, streaming the feature data to servers

over the network, and performing the ASR search on these servers.

Embedded ASR systems, as shown in Figure 1, have the distinct advantage of not being

dependent on a robust network connection. As discussed in [Zaykovsky08], the device

acts in isolation and performs the entire ASR process independently. Implementation of

 - 16 -

an embedded ASR system is becoming more attainable as mobile device hardware

becomes more powerful. However, as users continue to expect systems to grow more

sophisticated with the hardware, many of the constraints noted in early embedded ASR

systems are still highly relevant. Primary among these constraints are limited storage,

primary memory, execution speed, and battery capacity. Storage is quickly becoming a

smaller concern, and algorithms can be optimized to somewhat overcome limitations in

memory and processing power. Despite these possible optimizations, embedded ASR is

best suited to the most powerful mobile devices and systems that make use of limited

vocabularies.

Figure 1: Embedded Speech Recognition Architecture

The second possible architecture, Network Speech Recognition, as shown in Figure 2,

removes the constraints imposed by limited mobile device hardware resources and allows

 - 17 -

applications to use state-of-the-art feature extraction and ASR search implementations

executed on powerful servers. Raw or compressed audio data is streamed over the

network to backend servers. On these servers, features are extracted, and ASR search is

performed. Results of the ASR search are then streamed back to the mobile client over

the network. More details can be found in [Zaykovsky08].

Another principal advantage of moving the processing away from the mobile device is

that very large vocabularies may be used with the large storage available to the servers.

Unfortunately, these systems also tether mobile devices to the network and ASR

capability becomes limited if not impossible without a robust network connection since

all captured audio data must be streamed over the network. Depending on the specific

design of the system, this limitation can be somewhat overcome by certain audio

encoding and/or compression algorithms to minimize network bandwidth requirements.

Encoding and compression may inadvertently lose data important to the feature

extraction process and result in less accurate ASR search results.

Figure 2: Network Speech Recognition Architecture

 - 18 -

The final possible architecture, Distributed Speech Recognition outlined by Zaykovsky as

shown in Figure 3, leverages the resources of both the mobile device and network servers

to accomplish the ASR task. An overview of the distributed system design is provided in

[Zaykovsky08]. In this type of system, feature extraction is performed on the mobile

device, eliminating the high bandwidth requirement for streaming raw audio or the data

loss incurred through compression. Extracted features are then streamed over the network

to servers that perform ASR search.

Figure 3: Distributed Speech Recognition Architecture

Rose and Arizmendi detail many common problems encountered with Distributed Speech

Recognition systems and describe a client-server ASR framework to make optimal use of

available resources and greatly boost performance, measured by both speed and accuracy,

in a production ASR system [Rose06].

 - 19 -

2.6 Conclusions

As previously outlined, there are three broad concepts involved in designing and

constructing an automated sign language interpretation system for mobile devices: 3D

sensing, sign language interpretation, and cloud-offloading of compute-intensive

interpretation tasks. Each of these represents a grouping of more specific, related

concepts. Within each group these concepts sometimes support each other and sometime

are in conflict.

The first major concept is the issue of 3D sensing. Under this umbrella are several other

concepts. The first of these is the type of sensing device used. Some researchers focus on

sensors worn by the user or sensors in a device held by the user, while others detect "in-

air" gestures using cameras and computer vision techniques. Another concept involved in

3D sensing is the interpretation of motion data and the recognition and categorization of

gestures. Increasingly, this involves the use of neural networks but may also use a variety

of other machine learning techniques. A final concept involved in 3D sensing is related to

the user experience and determining gestures that are both natural and meaningful to the

user as well as easily interpreted and identified by a computer system.

The second major concept identified is automated sign language interpretation. Within

this larger concept there are also several related, more specific concepts. The first concept

identified is related to the type of data captured for sign language interpretation and the

ideal sensors for capturing such data. A second concept is that of interpretation and

 - 20 -

identification of signs. This concept has two components. The first of these is the

determination of the algorithm used, usually using a machine learning technique. The

next of these is optimization of the chosen technique to increase performance and reduce

compute requirements.

The final major concept is the need to use the cloud for the compute-intensive processing

required by many of the machine learning techniques employed in gesture recognition

and sign language interpretation. Within this area are also several related ideas. The first

of these are the inherent limitations of mobile devices in terms of processing power and

energy availability. Another concept is the effect of network bandwidth on performance

as a distributed system is introduced. A final concept is the need to determine an optimal

distribution of processing between the mobile device and cloud services.

Significant research has been conducted targeting each of the three major concepts

identified. However, there is a dearth of work to integrate these concepts towards a

mobile, real-time, automated sign language recognition system. The framework outlines

within each of these concepts the key areas related to the development of such a system,

as well as the inherent tensions between some of these concepts, such as the conflict

between energy conservation and real-time performance.

 - 21 -

Chapter 3

RESEARCH DESIGN

3.1 Questions and Objectives

The primary objective of this thesis is to create a proof-of-concept automated sign

language gesture recognition system using cloud resources, demonstrating and evaluating

various architectural strategies for implementing such a system using a mobile device and

the cloud. To the best of our knowledge, no such system has yet been developed.

Additionally, this research seeks to generate empirical data to support an analysis of the

tradeoffs between the different architectural options and draw conclusions about the

factors that might support choosing one option over another. The prototype system was

created with three architectural variants, following the embedded, distributed, and

network architectures outlined by Zaykovsky, and key system metrics were observed in

each setting. Zaykovsky’s language describing the architectural variants is somewhat

dated in the context of cloud computing. In light of this, updated terms are used

henceforth: “client-only”, “partially-offloaded client-server”, and “fully offloaded client-

server”, reflecting the amount, if any, that compute-intensive tasks are offloaded to cloud

resources. Additionally, two serialization/interchange protocols were used for

transmitting data over the network for the partially-offloaded and fully-offloaded client-

server architectures to observe the effects of data interchange format for large payloads.

 - 22 -

3.2 Methodology

For the purpose of this research, the term "application" describes all the components

required to implement the features of a basic ASLR system. Depending on the

architecture being examined, this may include only software running on a client device,

or it may also include software running on a network server (possibly in the cloud). A

prototype is created for each of the three architectures being studied. Since this study

examines the effect of distributing ASLR processing across multiple systems, algorithms

are implemented as similarly as possible, whether they are running on a mobile device or

on a network server. ASLR recognition tasks are conducted using the three prototypes,

and key metrics are recorded during the use of each prototype. The metrics being

examined include application response time, mobile device CPU usage, mobile device

memory usage, and network bandwidth usage.

Experiments are performed to compare the performance of client-only, partially-

offloaded client-server, and fully-offloaded client-server ASLR architectures. The Kinect

V2 for Windows sensor is used to capture gesture data. Due to limitations of the Kinect

SDK, data from the sensor are recorded and replayed on a resource-limited device such

as an Intel Compute Stick. The Kinect for Windows SDK is used to provide useful

features from the raw sensor data feed. Development and testing of the prototype system

is done on a 2.8 GHz Intel Core i7 MacBook Pro.

 - 23 -

The implemented ASLR algorithm is Hidden Markov Model, provided by the well-

known library Accord.NET for the .NET Framework. The model is trained using data

from the signs listed below with at least 6 instances of each sign. The signs used

comprise 11 categories and are listed in Appendix A.

In each experiment requiring the use of a network server, the server application is

constructed using Microsoft's open-source ASP.NET web technologies. The application

runs in the Microsoft Azure public cloud to simulate the environment of a real-world

application. The server application code is instrumented using the built-in

instrumentation tools available with the .NET framework, as well as some custom

wrappers around lower-level Windows APIs. These libraries provide low-overhead, high-

resolution stopwatches and performance counters for measurement of memory usage.

The next chapter discusses in depth the extraction of useful features from data provided

by the Kinect API and the training of Hidden Markov models for ASL gesture

recognition. Following this is a detailed discussion on the implementation of the three

architectures examined by this study.

 - 24 -

Chapter 4

HIDDEN MARKOV MODEL TRAINING

In this chapter, the training of a Hidden Markov Model to classify American Sign

Language gestures is discussed. Recordings were made using the Kinect Sensor and

Kinect Studio software tool. After collecting these recordings, routines were created to

extract derived features from the raw body-tracking data. These derived features were

then used to train a Hidden Markov Model implemented by the open-source Accord.NET

framework. The trained model achieved approximately 80% accuracy.

4.1 Raw Sign Data Collection

Recordings containing all available channels from the Kinect Sensor (including 1080p

color video) requires and excess of storage space. To reduce the amount of storage space

required, recordings excluded the high-definition color and audio channels, since these

are not necessary for obtaining body-tracking information. Instead, only the IR/depth and

body-tracking channels were retained. This reduced the file size per raw recording to

approximately 150 megabytes.

 - 25 -

4.2 Feature Extraction

The raw body-tracking data available via the Kinect SDK includes a wealth of skeletal

data points. Included in the available set are positions and angles for major joints:

shoulder, elbow, and wrist; upper, middle, and lower spine; head and neck; hips, knee,

ankle, and foot; and hand tip and thumb positions. The Kinect SDK provides several

additional features such as body lean and hand tracking confidence. These features, in

their raw form, are not useful for training a Hidden Markov Model that can detect

American Sign Language gestures.

In order to train a useful model, several transformations were required to arrive at

suitable derived features. The first transformation involved normalization of the raw

features for consistency between the recordings from people of different body sizes and

to account for slight variations in distance from the sensor during recording. The

normalization consisted of two phases. First, the joint positions were repositioned such

that the mid-spine position was a reference point at the zero-coordinate in all three

dimensions. After repositioning, the joint positions were scaled. A reference scale was

created by computing the Euclidean distance between the top and base of the spine. Each

point was then divided by the reference distance.

After normalization, fourteen features were derived from the normalized joint positions.

These consisted of three inter-joint distances, two joint angles, and the hand area on each

side of the body. The features were as follows: 1) the Euclidean distance between the

 - 26 -

wrist joint and the mid-spine, 2) the Euclidean distance between the elbow joint and the

mid-spine, 3) the angle of the elbow joint, 4) the angle of the shoulder joint, 5) the wrist-

to-wrist distance, 6) the hand area, and 7) the angle between the thumb and hand tip.

These features are shown in Figure 4 below.

Figure 4: Diagram of features derived from Kinect skeletal tracking data.

Finally, after the derived features were computed, a final smoothing step was undertaken

to reduce noise in the feature set. The smoothing was accomplished by averaging the

features from each frame with the corresponding features in the prior and upcoming

frames.

 - 27 -

4.3 Model Training and Validation

For this experiment, a Hidden Markov classifier was trained by creating a Hidden

Markov Model for each of the ten recording signs, using the derived features described

above. An off-the-shelf implementation was used from the open-source Accord.NET

library. This library provides several classes to facilitate training of a Hidden Markov

classifier.

First, an instance of the HiddenMarkovClassifier<TDistribution,

TObservation> class was initialized. The TDistribution generic parameter used in

this case was MultivariateNormalDistribution, and the TObservation

parameter was double[]. An instance of the

HiddenMarkovClassifierLearning class was then used to train the classifier

using the Baum-Welch learning algorithm. The learner was configured to parallelize

using all the CPU cores available on the training machine (4 physical, 8 virtual).

For each sign, six recordings were collected. Five of each were used to train the model

with one set aside for model validation. After training, a classifier was created that could

differentiate the signs with approximately 80% accuracy. While a real-world system

would ideally have significantly higher accuracy, for the purposes of this experiment –

measuring architectural effects on performance – this level of accuracy was sufficient.

Persisted to disk, this model required 140 kilobytes of storage.

 - 28 -

Chapter 5

IMPLEMENTATION OF ASLR ARCHITECTURES

In this chapter, the details of each architectural implementation (client-only, partially-

offloaded client-server, fully-offloaded client-server) are described. While each

implementation is unique, code was shared between each architecture when possible in

the interest of implementation efficiency as well as a reduction in the number of variables

between each that could affect performance. All implementations were written in the C#

language using the .NET Framework. The Visual Studio IDE was used throughout the

implementation process for code editing, compilation, and debugging. After detailing the

implementation of each of the three architectures, a discussion of performance

instrumentation follows.

Figure 5: Architecture diagram of ASLR system.

A diagram of the overall system architecture is shown in Figure 5 above. The application

first captures or replays sensor tracking data. Subsequently, useful features are extracted

 - 29 -

from this raw data. In the client-only and partially-offloaded client-server architectures,

this is done on the same client device where raw data capture/replay occurs. In the fully-

offloaded architecture, the raw data are sent over the network and feature extraction is

performed on a cloud server. These features are then used as parameters to the Hidden

Markov Model (HMM) classifier, which provides a classification of which gesture was

performed. In the client-only architecture, this step is also performed on the same client

device. In the client-server architectures it is performed in the cloud service; in the

partially-offloaded case, the extracted features are sent over the network to the cloud

service. With this high-level overview of the system, the rest of this chapter will describe

the details of each architecture.

5.1 Common Implementation Details

While incredibly useful, the majority of data types provided by the Kinect SDK are

opaque. In order to control serialization, as well as the ability to stream Kinect tracking

data to a cloud service where the SDK was not installed, proxy classes were created for

all relevant Kinect SDK data types. This includes core geometric types like PointF,

Vector3, and Vector4; the body-tracking types BodyFrame, Body, BodyJoint,

and JointOrientation; and various enumerated types for body/joint tracking

details: TrackingState, TrackingConfidence, JointType, and HandState.

Each proxy type perfectly mimicked the corresponding Kinect type, but without any

dependency on the Kinect SDK. Additionally, these proxy types were configured using

C# attributes for JSON and Protobuf serialization.

 - 30 -

A C# class was created to model the experiment for each of the three architectures being

tested: ClientOnlyExperiment, FullOffloadExperiment, and

PartialOffloadExperiment. Because of commonalities between each

architecture, as well as “boilerplate” code required for each experiment, the classes

modelling each experiment were derived from one or more abstract base classes

containing the common behavior. The common base class, AbstractExperiment, is

responsible for loading the Hidden Markov Model from the filesystem, initializing

stopwatches and performance counters, and measuring the performance information of

the algorithms implemented by its concrete subclasses.

5.2 Common Network Details

Inheriting directly from AbstractExperiment is the NetworkedExperiment

abstract class. This class is responsible for the serialization of raw Kinect body-tracking

data or derived features to JavaScript Object Notation (JSON) or Protobuf format for the

experiments that rely on a network-connected cloud service. This class makes use of C#

generics to implement a common serialization routine regardless of whether the concrete

subclass is working with raw body-tracking data or derived features. In addition to

reducing the amount of required code, this reuse also ensures no unintended performance

differences due to serialization between the fully-offloaded and partially-offloaded client-

server architectures.

 - 31 -

5.2.1 Serialization Protocols

For the experiments that required data to be sent over the network, two different

serialization methods were used so that the effect of serialization on performance for

network-based architectures could be measured. The first serialization protocol used was

JSON, a portable, text-based data interchange format based on the conventions of the

JavaScript (ECMAScript) programming language. The JSON protocol [Json17] supports

several primitive data types, as well as the structured data types object and array. It is a

widely used data-interchange protocol, with client libraries for a multitude of

programming languages and environments. The strength of the JSON protocol is its

flexibility and, therefore, portability. For the experiments described here, the popular

Newtonsoft Json.NET library was used to provide JSON serialization [JamesNK18].

The second serialization protocol used was Protobuf, a binary data-interchange format

created by Google [Protobuf18]. While Protobuf aims for high portability, its primary

aim is performance. The Protobuf protocol imposes more constraints than highly-flexible

protocols like JSON and XML in the name of faster serialization/deserialization and

smaller binary message footprint. A domain-specific language (DSL) is used to define

Protobuf message specifications, from which serialization and deserialization code is

generated. This is traditionally accomplished using proto files, containing the DSL,

which are compiled with the protogen compiler utility. Various other utilities can then be

used to generate message proxy code in common programming languages such as C++,

Java, or C#.

 - 32 -

An alternative method, used in this case, is to have the proto specifications and proxy

code dynamically generated at runtime by a library. In .NET applications, this is

accomplished using the Protobuf.NET library [mgravel18]. This library employs the

reflection and runtime code-generation facilities of C# and the .NET Runtime to create

proto specifications by inspecting C# attributes decorating members of “plain old CLR

objects” (POCOs). While runtime reflection and code generation can be computationally

expensive, the output is cached by the library, so the computational cost must only be

paid the first time the code is executed within the process. This approach greatly eases the

use of the Protobuf interchange format and makes for easier-to-read, more maintainable

code.

5.3 Kinect Recording Playback

Finally, a core common feature shared among each experiment implementation is the

replay of the Kinect SDK recordings. These recordings are stored on the local filesystem.

In each case, the recordings are replayed using the Kinect Studio APIs, which provide the

data for consuming applications via the Kinect service. Replaying the recordings using

this method mimics having a real Kinect sensor connected during the experiment. The

experiment code uses the exact same APIs as connecting to a physical sensor, and it

receives data as if it were being collected in real-time from a sensor. In addition to this,

by replaying the data via the Kinect service, real-world constraints are present, such as

dropped frames due to poorly-performing application code. The file replay functionality

 - 33 -

was abstracted into its own class, the KinectFilePlayer, which hides the low-level

details and provides a clean API surface for the consuming code.

5.4 Client-Only Architecture

In the client-only architecture, all processing is done on a single device, with none of the

workload distributed to the cloud. An Intel Compute Stick (Model STK2M364CC) was

used as a stand-in for a mobile device, such as a smartphone. This device’s CPU was an

Intel Core m3-6Y30 processor, with 4 MB cache and a clock speed of up to 2.2GHz. The

device had 4 GB of LPDDR3-1866 main memory, and 64 GB of embedded storage. The

fairly limited hardware resources available on this model of Compute Stick make it

comparable to many premium smartphones currently on the market, and the CPU in the

compute stick performs similarly to the processor in high-end smartphones such as the

iPhone 6s or iPhone 7.

The implementation of the ClientOnlyExperiment class was fairly straightforward.

Inheriting from AbstractExperiment, the abstract RunCoreAsync method was

overridden to provide the core functionality which was measured. In this method, features

were first extracted from the body-tracking data provided by the replayed Kinect

recording. After feature extraction, the Hidden Markov classifier was loaded from disk.

Then, the extracted features were passed to the classifier to obtain a result.

 - 34 -

5.5 Fully-Offloaded Architecture

In the fully-offloaded architecture, after reading the body-tracking from the Kinect

recording, all processing was offloaded to a cloud service. The client device acted as a

“thin client”, doing no heavy processing of its own. As in the client-only architecture, the

client device was an Intel Compute stick. The cloud service was an ASP.NET Core Web

API Application, hosted in the Microsoft Azure public cloud. Specifically, the application

was hosted in an Azure App Service plan at the B1 pricing tier. This tier provides one

virtual CPU core, 1.75 GB RAM, and 10 GB storage.

5.5.1 Thin Client Implementation

The thin client of the fully-offloaded architecture was implemented by the

FullOffloadExperiment class. Like the client-only implementation, the core logic

was implemented by overriding the abstract RunCoreAsync method. In this case, the

method was responsible for reading the raw body-tracking data from the Kinect

recording, configuring an HTTP client to communicate with the cloud service, serializing

the body-tracking data, and sending an HTTP request.

The HTTP client used was the System.Net.Http.HttpClient class, provided by

the .NET framework. The body-tracking data were transmitted in the body of a POST

request and were serialized as either JSON or Protobuf. To avoid doubled memory usage

due to serialization, the output of the serializer was written directly to the request stream,

 - 35 -

instead of using an in-memory buffer. This was accomplished using built-in framework

classes: the high-level ObjectContent<T> class for JSON and the

PushStreamContent class for Protobuf because there is no high-level built-in class

suitable for the Protobuf implementation.

5.5.2 Cloud Service Implementation

The cloud service in the fully-offloaded architecture was responsible for deserialization

of the body-tracking data from the HTTP request, feature extraction from the raw

deserialized data, and classification using the Hidden Markov classifier. The service was

implemented using the ASP.NET Core 2.0 Framework, exposing a single endpoint via an

action method on a Controller subclass. The hosting web application was configured

globally to handle deserializing HTTP request bodies as either JSON or Protobuf,

depending on the Content-Type header specified in the request. This was accomplished

using the Newtonsoft Json.NET for the JSON protocol and the Protobuf.Net and

WebApiContrib.Core.Formatter.Protobuf libraries for the Protobuf protocol [WebApi18].

After deserializing the request body and validating the request, processing was delegated

to the GestureClassificationService class. For the fully-offloaded

experiment, this class was responsible for extraction of features from the raw body-

tracking data using the DerivedGestureFeatureExtractor class. Upon

extraction of features, the class then loaded the Hidden Markov classifier from disk, and

 - 36 -

classified the gesture based on the derived features. After returning this classification to

the controller, the controller wrote the classification to the HTTP response as JSON.

5.6 Partially-Offloaded Client-Server Architecture

In the partially-offloaded client-server architecture, after reading the body-tracking from

the Kinect recording, the processing was shared between the client application and a

cloud service. The client device extracted features from the raw data and sent only these

derived data over the network. As in the client-only architecture, the client device was an

Intel Compute stick, and the cloud service was an ASP.NET Core Web API Application,

hosted in the Microsoft Azure public cloud using the same B1 pricing tier.

5.6.1 Client Implementation

The client of the partially-offloaded client-server architecture was implemented by the

PartialOffloadExperiment class. As in the other implementations, the core logic

was implemented by overriding the abstract RunCoreAsync method. In this case, the

method was responsible for reading the raw body-tracking data from the Kinect recording

and extracting features using the DerivedGestureFeatureExtractor class.

Upon extracting features, the method was responsible for configuring an HTTP client to

communicate with the cloud service, serializing the extracted feature data, and sending an

HTTP request.

 - 37 -

As in the fully-offloaded implementation, the HTTP client used was the framework-

provided System.Net.Http.HttpClient class, and the feature data were

transmitted in the body of a POST request, serialized as either JSON or Protobuf. The

data were, as before, written directly into the request stream from the serializer output, to

avoid an unnecessary increase in memory footprint.

5.6.2 Cloud Service Implementation

The cloud service in the partially-offloaded client-server architecture was responsible for

deserialization of the derived feature data from the HTTP request and classification using

the Hidden Markov classifier. The service was implemented using the ASP.NET Core 2.0

Framework, exposing a single endpoint via an action method on a Controller

subclass. As in the fully-offloaded case, the hosting web application was configured

globally to handle deserializing HTTP request bodies as either JSON or Protobuf,

depending on the Content-Type header specified in the request. This was, as before,

accomplished using the Newtonsoft Json.NET library for the JSON protocol and the

Protobuf.Net and WebApiContrib.Core.Formatter.Protobuf libraries for the Protobuf

protocol.

Upon deserializing the request body and validating the request, processing was again

delegated to the GestureClassificationService class. For the partially-

offloaded client-server architecture implementation, this class was responsible for loading

the Hidden Markov classifier from disk and classifying the gesture based on the derived

 - 38 -

feature data provided. As before, upon returning this classification to the controller, the

controller wrote the classification to the HTTP response as JSON.

5.7 Performance Instrumentation

In order to assess system performance across the various architectures, several methods

of measurement were used. To measure the wall time required to complete classification

for a single gesture, the System.Diagnostics.Stopwatch class, provided by the

.NET Framework, was used. This class provides a basic high-resolution stopwatch with a

simple API to start, stop, and measure elapsed time. To measure CPU time, a custom

class was implemented (described in section 5.7.1), since the .NET Framework does not

have a built-in facility for measuring CPU time. To measure network and memory usage,

Windows performance counters were used.

5.7.1 High-Resolution Stopwatch

The .NET Framework contains a built-in high-resolution Stopwatch class. However, this

class is only useful for measuring “wall time” (i.e., real-world clock time) elapsed

between start and stop of the stopwatch. While wall time measurement was useful for the

purposes of this research, a high-resolution measurement of CPU time was also needed.

The .NET Framework does not have built-in support for this measurement, but the Win32

API on Windows does provide this facility. To access this measurement from the .NET

Runtime environment, an ExecutionStopwatch wrapper class was created using the

 - 39 -

P/Invoke feature to call into the Windows kernel API. The class calls into Kernel32.dll,

the Windows system library responsible for exposing the core Windows API, including

functions for process and thread management. This class made use of two Windows API

functions: one to obtain the native Windows process handle for the currently executing

process, and a second to obtain the CPU time used by the process in both kernel and user

space. For the purposes of this experiment, the kernel and user space times were added to

obtain the total amount of CPU time used by the process.

5.7.2 .NET Performance Counters

The .NET Runtime and Windows provide the Performance Counter APIs

[Performance18] for measuring various information regarding usage of compute

resources by a specified process. Included in the available APIs are counters for

measuring network and memory performance.

Because the .NET Runtime provides a managed memory environment with a garbage

collector, it is difficult to measure memory performance in terms of absolute memory

allocations. However, a useful metric in such an environment is a measurement of the

number of garbage collections. The .NET runtime’s garbage collector is generational,

where heap objects are assigned to one of three “generations” based on the amount of

memory used by the object as well as its lifetime. Older generations are reserved for large

and/or long-lived objects, while younger generations are for small and/or quickly-

collected objects. By measuring the number of collections in each generation, insight is

 - 40 -

provided into both the amount of memory required by the process as well as how much

memory churn occurs.

In order to measure the garbage collections for each generation, three different

performance counters were used, each within the “.NET CLR Memory” category: “# Gen

0 Collections”, “# Gen 1 Collections”, and “# Gen 2 Collections”. Specifically, the “Gen

0” counter measures the number of times the garbage collector has executed a collection

of generation-zero objects. These collections occur when the amount of memory

available in the generation-zero heap is insufficient to satisfy a new allocation. The

objects remaining in the generation after collection are promoted to generation one. The

“Gen 1” and “Gen 2” counters measure the number of times the garbage collector has

executed a collection of objects in the generation-one and generation-two heaps,

respectively. In depth information on the .NET Runtime garbage collector is available in

the Microsoft documentation [GarbageCollection18].

To measure network usage, two counters were used in the “.NET CLR Networking”

category: “Bytes Sent”, and “Bytes Received”. These counters measure the total number

of bytes sent and received by all sockets within the AppDomain. Importantly, the

AppDomain represents a lightweight, managed “process” within the .NET Runtime. As

multiple AppDomains can exist simultaneously within the same Win32 process, these

performance counters only measure network usage by the current AppDomain, not the

entire Win32 process.

 - 41 -

Chapter 6

PERFORMANCE ANALYSIS

The implementation of a prototype ASLR system was completed using client-only,

partially-offloaded client-server, and fully-offloaded client-server architectures, using

various data serialization protocols for each of the networked architectures. Each

architecture/serialization combination was tested using HMM classifiers of increasing

vocabulary sizes: 10, 17, and 23 sign language gestures. This system, as implemented,

shows the potential performance bottlenecks of each architecture, which may provide

useful guidance to the implementer of a production-grade ASLR system. The results

show that each of the architectures may be suitable for certain use cases or scenarios, and

a production-grade system may benefit from incorporating elements of each.

Additionally, there was a notable performance difference between the JSON and Protobuf

serialization protocols, highlighting the importance of the data interchange protocol when

transferring the type of data required in an ASLR system.

For each architecture, and for each serialization protocol for networked architectures, the

CPU, network, and memory performance of the system was measured using models of

increasing vocabulary size. A single experiment run consisted of classifying a sample of

each of the signs known to the model, using each of the architecture/serialization

combinations. The experiment was run for 100 iterations.

 - 42 -

Figure 6: Average CPU clock measurements.

6.1 CPU Usage and Response Time

Figure 6 above shows the average CPU clock measurements for each run. Somewhat

surprisingly, the client-only architecture performed very well with a small 10-sign

vocabulary, completing feature extraction and classification in an average of 29

milliseconds. However, as the number of signs in the vocabulary increases, the

classification time steadily increases. The 17-sign model completed classification in 72

ms CPU time, and the 23-sign model completed in 127 ms CPU time. This trend suggests

that significantly larger classifier vocabularies could require considerably more CPU

time, resulting in decreased perceived performance by the user, as well as greater energy

usage. Finally, the fully-offloaded architecture using JSON serialization showed an

enormous increase in CPU time, from 455 to 606 ms used.

29

72

127

8 8 7

38
30 29

22 21 19

-20

0

20

40

60

80

100

120

140

10 Signs 17 Signs 23 Signs

CPU Usage (ms) vs Vocabulary Size

Client Only Partial Offload - Protobuf

Full Offload - Protobuf Partial Offload - JSON

 - 43 -

Figure 7: Average response time (wall clock) measurements.

Figure 7 above shows the average response time of the system for each

architecture/serialization combination. The client-only case roughly matches the

measured CPU time for the same case. The slightly increased wall time relative to CPU

time is expected due to the regular context switching that occurs in a multitasking

operating system. Distributing the classification to the cloud service showed a small

increase in response time, with a maximum of about 1.2 seconds. Some increase over the

client-only case was expected, due to network latency and data transmission time. The

relatively small difference in the Protobuf and JSON cases is likely attributable to the

small increase in CPU time in the partially-offloaded/JSON case.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Client Only Partial Offload -
Protobuf

Partial Offload -
JSON

Full Offload -
Protobuf

Full Offload -
JSON

Response Time (ms) by Architecture

10 Signs 17 Signs 23 Signs

 - 44 -

The increase in response time as the number of signs in the vocabulary is likely due to an

increase in CPU time for classification in the cloud service. While this trend would

eventually present a problem with larger sign vocabularies, the cloud architecture allows

for far more optimization than is possible in the client-only case. Strategies similar to the

previously reviewed work by Veitch [Veitch11] – optimizations for massive parallelism

of HMM classifiers – could be employed using pools of cloud resources to significantly

increase the possible vocabulary size with minimal performance degradation.

Finally, the fully-offloaded scenarios had a significantly increased response time, with

the most notable increase in the JSON serialization case. The fully-offloaded/Protobuf

combination yielded classifications in 1.4-1.9 seconds, while the fully-offloaded/JSON

case required 4.1-4.4 seconds to return a classification. Both of these results represent a

significant performance degradation in terms of user-perceived system performance. This

sizeable increase in response time is most likely due to the large data payloads required

when sending raw body-tracking data across the network. Because of the large amount of

data being transmitted, JSON serialization performs especially poorly, due to the

redundant nature of the protocol. While compression could be applied to mitigate this

effect, an increase in CPU usage would likely occur, somewhat negating the benefit of

the compression.

 - 45 -

Figure 8: Average network usage measurements (total kilobytes).

6.2 Network and Memory Usage

Network performance was also measured for each architecture and serialization protocol.

Figure 8 above shows the average network usage for each architecture/serialization

combination. As the network payload is not affected by the number of signs in the model,

the values shown are the average across each model size. The client-only case, by

definition, had no network usage. The partially-offloaded client-server architecture had

relatively low usage, 25.7 KB with Protobuf and 99.5 KB with JSON. The fully-

offloaded client-server architecture required a significant increase in network usage.

Using Protobuf, the fully-offloaded case used 753.5 KB of network bandwidth, while the

JSON case used an enormous 5.68 MB. As discussed above in the context of response

time, compression of the JSON request body could significantly reduce the required

0.000

1000.000

2000.000

3000.000

4000.000

5000.000

6000.000

Client Only Partial Offload -
Protobuf

Partial Offload -
JSON

Full Offload -
Protobuf

Full Offload -
JSON

Network Usage (KB)

Network (KB)

 - 46 -

network bandwidth. However, the extra CPU time required to compress the request may

negate the benefit of reduced network bandwidth.

Finally, memory performance was measured for each architecture and serialization

protocol. Table 1 below shows the aggregate memory performance measurements.

Memory allocations, measured by the number of garbage collections (GCs) performed by

the runtime, are shown here as the minimum and maximum number of collections

observed, since varying system memory conditions affect the runtime’s decision to

perform a collection.

 Serialization Minimum GCs Maximum GCs

Client Only -- 0 6

Partial Offload JSON 0 0

Partial Offload Protobuf 0 2

Full Offload JSON 136 383

Full Offload Protobuf 0 3

Table 1: Aggregate memory usage by number of garbage collections (GCs).

The number of garbage collections performed by the runtime during the client-only

experiment varied from none to six, which is a moderate number of collections.

Somewhat surprisingly, both partially-offloaded cases as well as the fully-

offloaded/Protobuf case had an even lighter memory footprint than the client-only case.

This may indicate that a large part of the memory usage occurs in the HMM classification

step rather than during feature extraction. By moving the HMM step to the server in both

cases, the memory usage on the client device is reduced. In contrast, the fully-

 - 47 -

offloaded/JSON case had an enormous memory footprint. Given the large data set

transmitted in the fully-offloaded case and the repetitive nature of arrays containing

JSON objects, it’s likely many small, short-lived objects were allocated during the

serialization process, contributing to the large number of collections.

 - 48 -

Chapter 7

CONCLUSIONS

This research has examined the performance impacts of various architectural strategies

for the implementation of a real-time automated sign language recognition system in a

resource-constrained environment such as a mobile device. The results, sometimes

surprising, have provided useful insight into which factors and design choices most

impact the performance of such a system. Specifically, the results provide two

noteworthy findings. First, the reasonably good CPU performance of the client-only

architecture demonstrates that systems requiring a small vocabulary, such as command

and control applications, could feasibly be implemented entirely on a mobile device or

similar system, with no need for cloud resources. This is an encouraging result for

systems that may need to function when there is no readily-available Internet access.

However, in a system requiring a large vocabulary, performance in the client-only

scenario may degrade as the vocabulary size increases.

Second, the effect of data payload size sent over the network had a large impact on

system performance. The significant increase in resource usage across the board for the

fully-offloaded client-server architecture compared to the partially-offloaded client-server

architecture shows this clearly. This was further highlighted by the effect of the data

interchange protocol in the networked architectures. Protobuf consistently required less

 - 49 -

CPU time, network bandwidth, and memory allocation than JSON, in some cases

outperforming JSON by an order of magnitude.

Overall, the overall best performance was shown by the partially-offloaded architecture

using the Protobuf data interchange format. These results, together with a general

knowledge of Hidden Markov classifiers, suggest that this would be the best choice in a

real-world scenario with a model trained on a large number of signs. The performance

impact of feature extraction and Protobuf serialization on the resource-limited device was

small, and the cloud is ideally suited to algorithms like Hidden Markov classifiers, which

perform well when highly parallelized.

Crucially, the prototype created by this work is, to the best of our knowledge, the first

automated sign language recognition system to distribute compute-intensive tasks to

cloud resources. This is an invaluable contribution – overcoming difficult implementation

challenges and creating a foundation for future research in this area. While there has been

continuing recent work toward improving the accuracy and performance of classification

methods, the ability to leverage the cloud will be critical to the success of any real-world

sign language recognition system, and this research lays the groundwork for such

systems.

 - 50 -

REFERENCES

Print Publications:

[Baranwal14]
N. Baranwal, N. Singh, and G. C. Nandi, “Indian Sign Language gesture recognition

using Discrete Wavelet Packet Transform”, 2014 International Conference on Signal
Propagation and Computer Technology (ICSPCT), pp. 573–577, Jan. 2014.

[Belongie02]
S. J. Belongie, J. Malik, and J. Puzicha, “Shape Matching and Object Recognition Using

Shape Contexts”, PAMI, vol. 24, no. 4, pp. 509–522, 2002.

[Chang10]
R. Chang, F. Wang, and P. You, “A Survey on the Development of Multi-touch

Technology”, 2010 Asia-Pacific Conference on Wearable Computing Systems
(APWCS), pp. 363–366, Jan. 2010.

[Chang11]
Y.-S. Chang, S.-H. Hung, N. J. C. Wang, and B.-S. Lin, “CSR: A Cloud-Assisted Speech

Recognition Service for Personal Mobile Device”, ICPP ’11: Proceedings of the
2011 International Conference on Parallel Processing, Sep. 2011.

[Chuan14]
C.-H. Chuan, E. Regina, and C. Guardino, “American Sign Language Recognition Using

Leap Motion Sensor”, ICMLA, pp. 541–544, Jan. 2014.

[Cuervo10]
E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl,

“MAUI: making smartphones last longer with code offload”, MobiSys, pp. 49–62,
Jan. 2010.

[Elakkiya14]
R. Elakkiya, K. Selvamani, and S. Kanimozhi, “A framework for recognizing and

segmenting sign language gestures from continuous video sequence using boosted
learning algorithm”, 2014 International Conference on Issues and Challenges in
Intelligent Computing Techniques (ICICT), pp. 498–503, Jan. 2014.

[Furht10]
B. Furht and A. Escalante, “Handbook of Cloud Computing, 1st edition”, Sep. 2010.

 - 51 -

[Kumarage11]
D. Kumarage, S. Fernando, P. Fernando, D. Madushanka, and R. Samarasinghe, “Real-

time sign language gesture recognition using still-image comparison & motion
recognition”, Industrial and Information Systems (ICIIS), 2011 6th IEEE
International Conference on, pp. 169–174, Jan. 2011.

[Lichtenauer07]
J. F. Lichtenauer, G. A. ten Holt, E. A. Hendriks, and M. J. T. Reinders, “Sign language

detection using 3D visual cues”, AVSS '07: Proceedings of the 2007 IEEE Conference
on Advanced Video and Signal Based Surveillance, pp. 435-440, Sep. 2007.

[Lu97]
S. Lu, S. Igi, H. Matsuo, and Y. Nagashima, “Towards a Dialogue System Based on

Recognition and Synthesis of Japanese Sign Language”, Proceedings of the
International Gesture Workshop on Gesture and Sign Language in Human-Computer
Interaction, Sep. 1997.

[Min07]
S. Min, S. Oh, G. Kim, T. Yoon, C. Lim, Y. Lee, and K. Jung, “Simple glove-based

Korean finger spelling recognition system”, ICCSA'07: Proceedings of the 2007
International Conference on Computational Science and its Applications, Volume
Part I, pp. 1063-1073, Aug. 2007.

[Nicholson08]
A. J. Nicholson and B. D. Noble, “BreadCrumbs: forecasting mobile connectivity”,

MOBICOM, pp. 46–57, Jan. 2008.

[Ong05]
S. C. W. Ong and S. Ranganath, “Automatic sign language analysis: a survey and the

future beyond lexical meaning”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 27, pp. 873–891, Jan. 2005.

[Perlmutter92]
D. M. Perlmutter, “Sonority and syllable structure in American Sign Language”,

Linguistic Inquiry, vol. 23, no. 3, pp. 407-442, Summer 1992.

[Phadtare12]
L. K. Phadtare, R. S. Kushalnagar, and N. D. Cahill, “Detecting hand-palm orientation

and hand shapes for sign language gesture recognition using 3D images”, Image
Processing Workshop (WNYIPW), 2012 Western New York, pp. 29–32, Jan. 2012.

 - 52 -

[Rose01]
R. C. Rose, S. Parthasarathy, B. Gajic, A. Rosenberg, and S. Narayanan, “On the

implementation of ASR algorithms for hand-held wireless mobile devices”,
Acoustics, Speech, and Signal Processing, 2001. Proceedings ICASSP ’01. 2001
IEEE International Conference on, vol. 1, pp. 17–20, Jan. 2001.

[Rose06]
R. C. Rose and I. Arizmendi, “Efficient client–server based implementations of mobile

speech recognition services”, Speech Communication, vol. 48, no. 11, pp. 1573–1589,
Nov. 2006.

[Shanableh07]
T. Shanableh and K. Assaleh, “Arabic sign language recognition in user-independent

mode”, International Conference on Intelligent and Advanced Systems, pp. 597–600,
Jan. 2007.

[Swee07]
T. T. Swee, S. H. Salleh, A. K. Ariff, C.-M. Ting, S. K. Seng, and L. S. Huat, “Malay

Sign Language Gesture Recognition system”, International Conference on Intelligent
and Advanced Systems, pp. 982–985, Jan. 2007.

[Veitch11]
R. Veitch, R. Woods, and L. M. Aubert, “GPU acceleration of automated speech

recognition for mobile devices”, Industrial Informatics (INDIN), pp. 823–828, Jan.
2011.

[Wang05]
C. Wang, X. Chen, and W. Gao, “A comparison between etymon- and word-based

Chinese sign language recognition systems”, GW'05: Proceedings of the 6th
international conference on Gesture in Human-Computer Interaction and Simulation,
pp. 84-87, May 2005.

[Zaykovsky08]
D. Zaykovsky, “Survey of the Speech Recognition Techniques for Mobile Devices”,

International Journal of Speech Technology, vol. 11, no. 2, pp. 63–72, Jun. 2008.

Electronic Sources:

[Fundamentals18]
Fundamentals of Garbage Collection | Microsoft Docs: 2018.

https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals.
Accessed: 2018-03-26.

 - 53 -

 [JamesNK18]
“JamesNK/Newtonsoft.Json: Json.NET is a popular high-performance JSON framework

for .NET”: 2018: https://github.com/JamesNK/Newtonsoft.Json. Accessed: 2018-03-
26.

[Json17]
RFC 8259 - The JavaScript Object Notation (JSON) Data Interchange Format: 2017.

https://tools.ietf.org/html/rfc8259. Accessed: 2018-03-26.

[mgravell18]
“mgravell/protobuf-net: Protocol Buffers library for idiomatic .NET”: 2018.

https://github.com/mgravell/protobuf-net. Accessed: 2018-03-26.

[Mirashe10]
S. P. Mirashe and N. V. Kalyankar, “Cloud Computing”, 01-Jan-2010. [Online].

Available: http://arxiv.org/abs/1003.4074.

[Performance17]
Performance Counters in the .NET Framework | Microsoft Docs: 2017.

https://docs.microsoft.com/en-us/dotnet/framework/debug-trace-profile/performance-
counters. Accessed: 2018-03-26.

[Protobuf18]
Protocol Buffers | Google Developers: 2018. https://developers.google.com/protocol-

buffers/. Accessed: 2018-03-26.

[WebApi18]
“WebApiContrib/WebAPIContrib.Core: Community Contributions for ASP.NET Core”:

2018. https://github.com/WebApiContrib/WebAPIContrib.Core. Accessed: 2018-03-
26.

 54

APPENDIX A

AMERICAN SIGN LANGUAGE GESTURES

COMMON

• Hello
• No
• Please
• Thank You
• Yes

PEOPLE

• Man
• Woman

SCHOOL

• School
• Student
• Teacher

HOME

• Bathroom
• Bicycle
• House

FAMILY

• Boyfriend
• Father
• Girlfriend
• Husband
• Mother
• Wife

TIME

• Morning
• Night

ANIMALS

• Cat
• Dog

DESCRIPTIONS

• Cold
• Happy
• Hot

 - 55 -

APPENDIX B

IRB APPROVAL

 - 56 -

 - 57 -

VITA

James Blair has a Bachelor of Science degree from Wake Forest University in Chemistry,

2010 as well as a Master of Science degree from The University of North Carolina

Chapel Hill in Chemistry, 2012. After fulfilling several computing prerequisites, James

expects to receive a Master of Science in Computing and Information Systems from the

University of North Florida, April 2018. Dr. Ching-Hua Chuan of the University of North

Florida is serving as James’s thesis advisor. James is currently employed as a lead

software engineer at Feature[23] and has been with the company for 5 years.

James has ongoing interests in mobile and distributed systems, and the patterns and

practices used in the construction of such systems. James has extensive programming

experience in C#, Objective-C, and Swift, as well as familiarity with other languages

such as C++, Java, and Kotlin.

	UNF Digital Commons
	2018

	Architectures for Real-Time Automatic Sign Language Recognition on Resource-Constrained Device
	James M. Blair
	Suggested Citation

	Title Page
	Acknowledgement
	Contents
	Figures
	Tables
	Abstract
	Chapter 1: Introduction
	1.1 Background
	1.2 Problem Statement

	Chapter 2: Literature Review
	2.1 American Sign Language Recognition
	2.2 Sign Gesture Capture and Classification
	2.3 Recent Work
	2.4 Considerations for Mobile Devices
	2.5 ASR Architecture
	Figure 1: Embedded Speech Recognition Architecture
	Figure 2: Network Speech Recognition Architecture
	Figure 3: Distributed Speech Recognition Architecture

	2.6 Conclusions

	Chapter 3: Research Design
	3.1 Questions and Objectives
	3.2 Methodology

	Chapter 4: Hidden Markov Model Training
	4.1 Raw Sign Data Collection
	4.2 Feature Extraction
	Figure 4: Diagram of features derived from Kinect skeletal tracking data

	4.3 Model Training and Validation

	Chapter 5: Implementation of ASLR Architectures
	Figure 5: Architecture diagram of ASLR system
	5.1 Common Implementation Details
	5.2 Common Network Details
	5.2.1 Serialization Protocols

	5.3 Kinect Recording Playback
	5.4 Client-Only Architecture
	5.5 Fully-Offloaded Architecture
	5.5.1 Thin Client Implementation
	5.5.2 Cloud Service Implementation

	5.6 Partially-Offloaded Client-Server Architecture
	5.6.1 Client Implementation
	5.6.2 Cloud Service Implementation

	5.7 Performance Instrumentation
	5.7.1 High-Resolution Stopwatch
	5.7.2 .NET Performance Counters

	Chapter 6: Performance Analysis
	Figure 6: Average CPU clock measurements
	6.1 CPU Usage and Response Time
	Figure 7: Average response time (wall clock) measurements
	Figure 8: Average network usage measurements

	6.2 Network and Memory Usage
	Table 1: Aggregate memory usage by number of garbage collections

	Chapter 7: Conclusions
	References
	Appendix A: American Sign Language Gestures
	Appendix B: IRB Approval
	VITA

