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ABSTRACT 

 

Powerful, handheld computing devices have proliferated among consumers in recent 

years. Combined with new cameras and sensors capable of detecting objects in three-

dimensional space, new gesture-based paradigms of human computer interaction are 

becoming available. One possible application of these developments is an automated sign 

language recognition system. This thesis reviews the existing body of work regarding 

computer recognition of sign language gestures as well as the design of systems for 

speech recognition, a similar problem. Little work has been done to apply the well-known 

architectural patterns of speech recognition systems to the domain of sign language 

recognition. This work creates a functional prototype of such a system, applying three 

architectures seen in speech recognition systems, using a Hidden Markov classifier with 

75-90% accuracy. A thorough search of the literature indicates that no cloud-based 

system has yet been created for sign language recognition and this is the first 

implementation of its kind. Accordingly, there have been no empirical performance 

analyses regarding a cloud-based Automatic Sign Language Recognition (ASLR) system, 

which this research provides. The performance impact of each architecture, as well as the 

data interchange format, is then measured based on response time, CPU, memory, and 

network usage across an increasing vocabulary of sign language gestures. The results 

discussed herein suggest that a partially-offloaded client-server architecture, where 

feature extraction occurs on the client device and classification occurs in the cloud, is the 

ideal selection for all but the smallest vocabularies. Additionally, the results indicate that 
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for the potentially large data sets transmitted for 3D gesture classification, a fast binary 

interchange protocol such as Protobuf has vastly superior performance to a text-based 

protocol such as JSON. 
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Chapter 1 
 

INTRODUCTION 

 

1.1 Background 

 

Recent years have seen the widespread proliferation of powerful, affordable computing 

devices to an ever-growing set of users. Frequently, these devices are hand held and 

capable of fast calculation far beyond the capacity of desktop computers of just a few 

years ago. Along with the development of new sensing technologies such as capacitive 

multi-touch displays [Chang10] and cameras capable of sensing 3D depth, many new 

paradigms of physical interaction with our computers have arisen. 

 

Sensors such as the Microsoft Kinect have greatly expanded the ability for software to 

recognize gestures in three-dimensional space. Specifically, the Kinect and similar 

devices can provide depth data in addition to RGB video, making them suitable 

candidates to employ with software seeking to recognize the gestures of American Sign 

Language. Additionally, the increasing inclusion of faster CPUs and powerful graphics 

processing units (GPUs) in mobile devices may allow for computer vision approaches to 

3D gesture recognition on even these small, portable devices. 

 

In addition to the developments in personal computing devices and sensing technology, 

recent years have seen an explosion in the availability of inexpensive, elastic compute 
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platforms in the commercial public cloud [Mirash10, Furht10]. This significantly lowers 

the barrier to entry for new applications, greatly simplifies the construction of highly 

distributed systems, and allows software running on mobile devices to easily off-load 

computationally intensive tasks to more powerful servers. This ability to distribute 

workloads between mobile devices and network servers allows countless mobile 

applications to very quickly perform tasks some modern desktop computers cannot 

complete on their own. 

 

One widely known example of this strategy exists in the "virtual assistant" application 

that runs on modern smartphones such as Apple's Siri, Microsoft's Cortana, and Google 

Now. These systems leverage automatic speech recognition (ASR) to allow users to 

interact with the assistant using only speech. To accomplish this, the mobile device 

records and encodes audio spoken by its user but offloads much of the necessary 

processing to cloud services. The cloud services then interpret the audio input and return 

a transcribed result, usually based on large, robust models, providing a much more 

intelligent experience than the mobile devices could provide in isolation. 

 

1.2 Problem Statement 

 

Developing software applications to assist sign language communication with deaf 

people is an important area of work. Applications of this type could be used to aid deaf 

people so that they can interact with computer systems using sign language. Translation 

systems built on automated sign language recognition (ASLR) could assist 



 

 - 3 - 

communication between deaf people and people who may not know sign language. 

Additionally, ASLR systems could be used to aid in the teaching of sign languages. 

 

Some work has been done on ASLR, but it is not a fully mature knowledge area. Ong and 

Ranganath provided an excellent survey of the ASLR state of the art, including a review 

of major contributions as well as an analysis of neglected areas and suggestions for future 

work [Ong05]. Fortunately, ASLR has many similarities to automatic speech recognition 

(ASR), so it may serve as a useful reference point for designing ASLR systems as well as 

analyzing their performance. Herein, literature relevant to ASLR and ASR is reviewed, 

the gaps relevant to the proposed work are identified, and further research in the area is 

proposed. 
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Chapter 2 

LITERATURE REVIEW 

 

2.1 American Sign Language Recognition 

 

American sign language, and sign languages generally, consist of manual and non-

manual signing gestures. Manual signing consists of gestures isolated to the hands and 

arms. Non-manual signing encompasses broader movements of the head and torso as well 

as facial expressions. Manual signs can typically convey most of the lexical meaning in a 

sentence. Additional details are then provided by the non-manual aspects of the sign. 

These details may include intonation, verb tense, or intensity of action. While an ideal 

ASLR system would incorporate both manual and non-manual gestures, doing so is non-

trivial. Especially in a mobile environment, accurate capture and analysis of non-manual 

signing may prove extremely difficult. Despite the constrained vocabulary afforded by 

this limitation, many useful applications may still be constructed using only manual 

signs. 

 

The basic components of a manual sign consist of the shape, orientation, location, and 

movement of the hand, including both the palm and fingers. Perlmutter considers signs to 

be comprised of two segment types: position and movement [Permutter92]. Within these 

segments there are also secondary movements which can be seen as “internal 

movements” of the fingers relative to the hand. For accurate classification, an ASLR 
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system must be able to model both the static and moving components of signs. 

Additionally, when signs are composed to form sentences, there is movement between 

the individual signs that are not part of a sign and do not actually convey any meaning. 

This is similar to speech in the sense that the sound of a word may be affected by the 

words preceding and following it in a sentence. Finally, some signs may involve 

positions where some fingers obscure others, or if both hands are involved, one hand may 

partially obscure the other. More generally, signs are not flat but exist in three-

dimensional space, so this must be accounted for when capturing data for an ASLR 

system. 

 

2.2 Sign Gesture Capture and Classification 

 

Computer vision and direct capture using gloves [Ong05] are the primary methods of 

capturing hand gesture data for ASLR. Generally, computer vision is a more desirable 

approach because it does not require specialized equipment and the user does not have to 

wear a special device to use the system. As such, a large body of research exists using 

computer-vision based approaches. With vision approaches, the two primary concerns 

related to ASLR are tracking of the hands and feature extraction. In regard to hand 

tracking, usually the full upper body of the signer needs to be in the camera’s field of 

view. Using 2D video from a standard camera usually requires some restriction on the 

background and the clothing worn by the signer. Three-dimensional video using stereo 

cameras can overcome many of these limitations at the expense of greater computational 

cost. Critical features for detecting full signs include hand position (relative to the body), 
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shape, and orientation. Additionally, motion trajectories of the hands may be useful for 

some classifications. An in-depth discussion of tracking and feature extraction can be 

found in the survey by Ong and Ranganath [Ong05]. 

 

Upon feature extraction, signs are generally classified by either taking a sign as a whole 

and using a single classification step, or by breaking the sign into multiple components, 

classifying each component, and making a final classification based on the results of the 

components. The primary classification methods in the literature are neural networks and 

hidden Markov models (HMM) [Ong05]. Both methods have been shown to yield good 

results, but frequently each excels at different types of signs. Neural network-based 

approaches are frequently well-suited to classification of non-moving signs. HMMs, 

which are good at classifying time-series data, are best suited to dynamic, moving signs 

and series of signs formed into sentences. 

 

2.3 Recent Work 

 

While a consumer-ready mobile platform for sign language gesture recognition is not yet 

available, a large body of work exists on the problem of accurately interpreting sign 

language gestures in real time. Lichtenauer et al. demonstrated a system using stereo 

video cameras for gesture recognition in ASL by detecting skin as well as hand and head 

position in the video [Lichtenauer07]. Impressively, they were able to achieve 95% 

accuracy on 120 distinct signs performed by 70 people. The authors present a novel 

method for sign language gesture classification: acknowledging that many current 



 

 - 7 - 

approaches use either Hidden Markov Models (HMM) or Dynamic Time Warping 

(DTW), they propose a new variation on the DTW approach. Using two cameras in order 

to collect 3D information, reference samples were taken for 120 different signs. For each 

of these a Bayesian binary classifier was then trained using samples taken from 70 

persons, using DTW to normalize for different time-lengths and feature distribution 

within the gesture. Additionally, 50% Winsorization was performed on the training data 

to mitigate the impact of noise. Winsorization is a statistical technique, similar in effect to 

clipping in signal processing, that sets all outliers to a specified percentile of the data. In 

this case, all data below the 25th percentile was set to the 25th percentile and data above 

the 75th percentile set to the 75th percentile. These weak classifiers were then combined 

to form the main sign classifier, choosing the sign with the highest correctness. A 7-fold 

cross validation yielded a 95% true positive rate and 5% false positive rate. Additionally, 

the same data were tested using an HMM with 40 states using outcomes normalized by 

sequence length. This resulted in more than double the false negatives. Finally, the DTW 

Bayesian combined-classifier approach returned classification results within 50 ms, 

which is suitable for real-time applications. 

 

Phadtare et al. presented a new method for feature extraction of hand and finger position 

data for static signs [Phadtare12]. To test their algorithm, they captured gestures using a 

Microsoft Kinect and processed the video with the open-source OpenNI library. Their 

work focuses on two sets of features: hand shape and palm orientation. The palm 

orientation is determined by finding the location of the wrist joint in the image as well as 

the contour created by the outer edge of the palm. The equation for the plane of the palm 
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is determined from these features. The core of this work lies in the hand shape detection 

algorithm. The authors proposed a three-dimensional extension of the Belongie shape 

context classification algorithm [Belongie02] which traditionally works in two 

dimensions. N points are sampled from the training shapes along the surface of the plane. 

The shape context is then constructed by computing the radial distance, radial angle, and 

altitude between each point and all the other sample points, and K-bin histograms of the 

distances are generated for each point. These histograms then constitute the trained 

model. Classification using this model involves a form of nearest-neighbors algorithm 

using the Chi-square distance metric. The authors tested their proposed algorithm using a 

set of 40 hand shapes. They report that the algorithm fails to differentiate shapes which 

only differ by slight variations in finger position. However, they report 20 shapes 

correctly classified and 10 shapes classified incorrectly but misclassified to a shape that 

was highly similar. The authors proposed increasing N and K to increase the accuracy of 

their approach. Finally, they noted that their algorithm is easily parallelizable and can 

take advantage of multi-core CPUs or even GPUs using technologies such as CUDA. 

 

Kumarage et al. proposed new algorithms for computer-vision based sign language 

recognition to significantly decrease the compute intensity and allow for parallelism in 

the gesture processing [Kumarage11]. Their approach involved using combined learners 

to separately classify samples based on static features and movement features. The 

starting image, ending image, and movement sequence can be processed in parallel, 

increasing performance of the system. Additionally, by processing the starting image 

separately, the possible candidate classes were narrowed significantly, increasing the 
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performance of the final classification. For the still images, features were extracted to 

describe the shape and position of the hand and fingers. These features were then 

compared to training data stored in a database and possible candidate classes were 

assigned weights, although the authors are not clear about how these weights were 

generated. For motion classification, only the position of the hand was taken into account. 

Points were sampled along the hand's trajectory, and a least-squares approach is used to 

generate a best fit curve for the trajectory. The coefficients of the resulting polynomial 

were then compared to candidate classes in the database and weights were also generated. 

These weights were then combined to determine the final class for the gesture. While the 

specific classification algorithms used in this work do not seem novel, significant 

performance benefits from parallelizing the tasks were realized. 

 

In addition to video feed, much work on automated sign language recognition uses 

features extracted from other 3D sensors. In work by Chuan et al., data are collected 

instead using a new 3D sensor called Leap Motion [Chuan14]. The Leap Motion 

controller includes an SDK with high level APIs. These APIs provide access to many 

features describing the position and movements of the hand and fingers. In this work, the 

authors demonstrate methods for deriving more meaningful features from the base feature 

set: average distance, which describes the average movement of all fingers between 

frames; average spread, which estimates the spread of the palm by averaging the distance 

between adjacent finger tips; and average tri-spread, which estimates the average 

triangular area between adjacent fingers. Additionally, several features are derived for the 

fingers which provide information about the finger relative to the palm instead of the 
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finger's absolute position within the frame. The data set studied in the work was 

comprised of the 24 static signs of the American Sign Language alphabet. The classifiers 

used were k-nearest neighbors (k-NN) and support vector machine (SVM). The highest 

performance reported was 84.5% with k=169 using the KNN classifier, with an average 

performance of 72.78% with k=7. The highest performance reported for the SVM 

classifier was 83.39% using the Gaussian RBF kernel, with an average performance of 

79.93%. 

 

Elakkiya et al. proposed a machine learning-based system for recognizing sign language 

gestures [Elakkiya14]. In their approach, the system does not use predetermined signs 

stored in a database for classification. Instead, it uses supervised learning to learn new 

words and phrases and gain feedback from the user on its interpretation of gestures. This 

approach is similar to many speech recognition systems and could lead to the 

development of a highly flexible and scalable system for sign language recognition. 

 

Finally, the body of research on sign language gesture recognition is not confined to the 

English language or American Sign Language. Much work has also been done in this 

area in other languages, including but not limited to Indian, Korean, Arabic, Malay, 

Chinese, and Japanese [e.g., Min07, Swee07, Wang05, Lu97, Shanableh07, Baranwal14]. 
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2.4 Considerations for Mobile Devices 

 

While modern mobile devices have grown extremely powerful in recent years, user 

expectations have also grown. Many of the services users have come to expect require 

compute-intensive processes. These processes can present performance and energy 

consumption challenges on the mobile platform, so the most intensive aspects of these 

tasks are commonly offloaded to cloud services to increase performance and conserve 

energy. Automatic speech recognition (ASR) is one such service that is now frequently 

implemented using the cloud, including that seen in virtual assistants such as Apple's Siri 

and Microsoft's Cortana. Very early in the development of these types of systems, Rose 

et al. prototyped a system using server-based recognition to implement ASR on mobile 

devices [Rose01]. Their work highlighted several challenges inherent in these systems, 

including limited processing power on the device, energy consumption issues, and 

network bandwidth concerns for achieving real-time performance. 

 

Automated speech recognition has much in common with automated sign language 

gesture recognition. In both types of systems, there is grammatical structure, and the data 

are generally treated as a time series, which lends to processing with HMMs. Especially 

for systems with very large vocabularies, classification using an HMM can be very 

computationally expensive. Due to this, Veitch et al. demonstrated the acceleration of 

ASR classification using general-purpose GPU computing [Veitch11]. They demonstrate 

that certain optimizations of the HMM algorithm, specifically the Gaussian calculation, 

can allow for massive single-instruction, multiple-data (SIMD) parallelism. In addition to 
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implementation on a GPU, the authors also implemented the algorithm using field-

programmable gate arrays (FPGA) and compared the results. They also investigated the 

effect of parallelizing different aspects of the algorithm: one thread per model, one thread 

per mixture, or one thread per coefficient. The result showed that one thread per model 

resulted in the most efficient use of the GPU and the least memory transfer between GPU 

and CPU memory. With the optimized GPU implementation, the authors report the 

fastest performance to be 3.75 times faster than real time (10 ms), or 2.6ms per frame. 

They also report that this result is a 10-fold speed up from their optimized sequential 

CPU implementation. This significant speedup reduced classification latency to a level 

that is barely, if at all, perceptible by users. Keeping such low latency is crucial to 

providing near real-time interaction in such a system.  

 

Chang et al. also prototyped a system for cloud-assisted ASR for mobile devices 

[Chang11]. Their approach attempted to accelerate performance and increase accuracy by 

incorporating a learning/training element for highly tailoring recognition to the user's 

voice. While many speech recognition systems are user-independent to make training 

unnecessary, this may sacrifice the accuracy of the system. In this work, the authors 

create a prototype that is initially user-independent but allows training over time to 

incorporate some user-dependent functionality. Additionally, their system anonymously 

uses this training data to improve the system for all users. To this end, the system must be 

“cloud-assisted” because cloud storage is abundant, relatively cheap, and allows sharing 

the model between all users. The cloud additionally provides the benefit of higher 

performance computing resources than those available on mobile devices. However, a 
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basic model was still stored on the mobile device to allow limited functionality even in a 

limited-network environment. This prototype system was able to greatly increase 

performance and accuracy relative to commodity ASR systems, leading to much greater 

user satisfaction and demonstrating the benefits of distributing workloads when cloud 

resources are available. 

 

Nicholson and Noble conducted a more general investigation into network considerations 

on mobile devices [Nicholson08]. Acknowledging the resource constraints of mobile 

devices and the widely changing network environments of mobile users, they sought to 

develop a method of predicting future network connectivity. Using such a prediction, 

mobile applications could make more intelligent choices about network usage to optimize 

performance and energy usage. A system called BreadCrumbs was developed to track the 

performance of access points encountered at various locations visited by the user. At 

discrete timer intervals, the system scanned and tested all available access points within 

its immediate vicinity. As the user moved over time, changes in network performance 

were used to generate a second-order Markov model. This model then allowed the system 

to predict future network performance as the user changed location. Using only a short 

training period of a week, the system was able to accurately predict future bandwidth 

within 10 KB/s half the time and within 50 KB/s 80% of the time. Using these 

predictions, the authors were able to demonstrate improved performance and reduced 

battery consumption in several sample applications. This work concretely demonstrates 

the critical role network availability and usage may play in ASR applications. 
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Finally, Cuervo et al. proposed a system called MAUI, which enables offloading code 

execution from a mobile device to remote infrastructure [Cuervo10]. Included in this 

work, the authors demonstrate their system using a sample face-recognition application, 

which has similar compute demands to an ASLR system. Their system leverages the 

portability of the .NET Common Language Runtime (CLR), which uses an intermediate 

language and Just-In-Time (JIT) compilation to enable execution on different CPU 

architectures. The CLR also provides rich reflection capabilities. Using these capabilities, 

MAUI generates proxies for methods that allow remote execution, inspects application 

state at runtime, and transparently executes these methods remotely as needed. The 

system decides dynamically whether to use remote execution based on battery and 

network conditions towards a goal of minimizing energy consumption while 

simultaneously increasing application performance. In designing the system, the authors 

also studied the effects of network latency on energy consumption. They found that 

higher latency, such as that experienced on slower cellular connections, dramatically 

increased energy consumption, potentially negating the benefits of remote execution. 

Latency issues notwithstanding, the authors demonstrated very large gains in 

performance and reduction in energy usage when applying their system to the face-

recognition application. These results show that offloading compute-intensive work may 

yield significant benefits in an ASLR application. 
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2.5 ASR Architecture 

 

In 2008, Zaykovsky reviewed the current state of the art for mobile ASR systems and 

outlined three architectural possibilities for creating a mobile ASR system and details the 

primary concerns of each as well as the tradeoffs that exist between them [Zaykovsky08]. 

The primary tasks that must be accomplished by such a system are the capture of speech 

audio, feature extraction from the audio, and performing an ASR search to determine the 

most likely sequence of words that produced the audio input, usually using a Hidden 

Markov Model and Viterbi search. 

 

The primary architectural approaches to this type of ASR system consist of Embedded 

Speech Recognition Systems, Network Speech Recognition Systems, and Distributed 

Speech Recognition Systems. The embedded approach consists of performing the entire 

set of ASR tasks on the mobile device using only the resources locally available. The 

Network Speech Recognition approach streams speech audio data to servers over the 

network, and these servers perform both feature extraction and the ASR search. Finally, 

the Distributed Speech Recognition approach combines the first two approaches, 

performing feature extraction on the mobile device, streaming the feature data to servers 

over the network, and performing the ASR search on these servers. 

 

Embedded ASR systems, as shown in Figure 1, have the distinct advantage of not being 

dependent on a robust network connection. As discussed in [Zaykovsky08], the device 

acts in isolation and performs the entire ASR process independently. Implementation of 



 

 - 16 - 

an embedded ASR system is becoming more attainable as mobile device hardware 

becomes more powerful. However, as users continue to expect systems to grow more 

sophisticated with the hardware, many of the constraints noted in early embedded ASR 

systems are still highly relevant. Primary among these constraints are limited storage, 

primary memory, execution speed, and battery capacity. Storage is quickly becoming a 

smaller concern, and algorithms can be optimized to somewhat overcome limitations in 

memory and processing power. Despite these possible optimizations, embedded ASR is 

best suited to the most powerful mobile devices and systems that make use of limited 

vocabularies. 

 

 
 

Figure 1: Embedded Speech Recognition Architecture 

 

The second possible architecture, Network Speech Recognition, as shown in Figure 2, 

removes the constraints imposed by limited mobile device hardware resources and allows 
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applications to use state-of-the-art feature extraction and ASR search implementations 

executed on powerful servers. Raw or compressed audio data is streamed over the 

network to backend servers. On these servers, features are extracted, and ASR search is 

performed. Results of the ASR search are then streamed back to the mobile client over 

the network. More details can be found in [Zaykovsky08]. 

 

Another principal advantage of moving the processing away from the mobile device is 

that very large vocabularies may be used with the large storage available to the servers. 

Unfortunately, these systems also tether mobile devices to the network and ASR 

capability becomes limited if not impossible without a robust network connection since 

all captured audio data must be streamed over the network. Depending on the specific 

design of the system, this limitation can be somewhat overcome by certain audio 

encoding and/or compression algorithms to minimize network bandwidth requirements. 

Encoding and compression may inadvertently lose data important to the feature 

extraction process and result in less accurate ASR search results. 

 

 
 

Figure 2: Network Speech Recognition Architecture 
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The final possible architecture, Distributed Speech Recognition outlined by Zaykovsky as 

shown in Figure 3, leverages the resources of both the mobile device and network servers 

to accomplish the ASR task. An overview of the distributed system design is provided in 

[Zaykovsky08]. In this type of system, feature extraction is performed on the mobile 

device, eliminating the high bandwidth requirement for streaming raw audio or the data 

loss incurred through compression. Extracted features are then streamed over the network 

to servers that perform ASR search. 

 

 
 

Figure 3: Distributed Speech Recognition Architecture 

 

Rose and Arizmendi detail many common problems encountered with Distributed Speech 

Recognition systems and describe a client-server ASR framework to make optimal use of 

available resources and greatly boost performance, measured by both speed and accuracy, 

in a production ASR system [Rose06]. 
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2.6 Conclusions 

 

As previously outlined, there are three broad concepts involved in designing and 

constructing an automated sign language interpretation system for mobile devices: 3D 

sensing, sign language interpretation, and cloud-offloading of compute-intensive 

interpretation tasks. Each of these represents a grouping of more specific, related 

concepts. Within each group these concepts sometimes support each other and sometime 

are in conflict. 

 

The first major concept is the issue of 3D sensing. Under this umbrella are several other 

concepts. The first of these is the type of sensing device used. Some researchers focus on 

sensors worn by the user or sensors in a device held by the user, while others detect "in-

air" gestures using cameras and computer vision techniques. Another concept involved in 

3D sensing is the interpretation of motion data and the recognition and categorization of 

gestures. Increasingly, this involves the use of neural networks but may also use a variety 

of other machine learning techniques. A final concept involved in 3D sensing is related to 

the user experience and determining gestures that are both natural and meaningful to the 

user as well as easily interpreted and identified by a computer system. 

 

The second major concept identified is automated sign language interpretation. Within 

this larger concept there are also several related, more specific concepts. The first concept 

identified is related to the type of data captured for sign language interpretation and the 

ideal sensors for capturing such data. A second concept is that of interpretation and 
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identification of signs. This concept has two components. The first of these is the 

determination of the algorithm used, usually using a machine learning technique. The 

next of these is optimization of the chosen technique to increase performance and reduce 

compute requirements. 

 

The final major concept is the need to use the cloud for the compute-intensive processing 

required by many of the machine learning techniques employed in gesture recognition 

and sign language interpretation. Within this area are also several related ideas. The first 

of these are the inherent limitations of mobile devices in terms of processing power and 

energy availability. Another concept is the effect of network bandwidth on performance 

as a distributed system is introduced. A final concept is the need to determine an optimal 

distribution of processing between the mobile device and cloud services. 

 

Significant research has been conducted targeting each of the three major concepts 

identified. However, there is a dearth of work to integrate these concepts towards a 

mobile, real-time, automated sign language recognition system. The framework outlines 

within each of these concepts the key areas related to the development of such a system, 

as well as the inherent tensions between some of these concepts, such as the conflict 

between energy conservation and real-time performance. 
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Chapter 3 

RESEARCH DESIGN 

 

3.1 Questions and Objectives 

 

The primary objective of this thesis is to create a proof-of-concept automated sign 

language gesture recognition system using cloud resources, demonstrating and evaluating 

various architectural strategies for implementing such a system using a mobile device and 

the cloud. To the best of our knowledge, no such system has yet been developed. 

Additionally, this research seeks to generate empirical data to support an analysis of the 

tradeoffs between the different architectural options and draw conclusions about the 

factors that might support choosing one option over another. The prototype system was 

created with three architectural variants, following the embedded, distributed, and 

network architectures outlined by Zaykovsky, and key system metrics were observed in 

each setting. Zaykovsky’s language describing the architectural variants is somewhat 

dated in the context of cloud computing. In light of this, updated terms are used 

henceforth: “client-only”, “partially-offloaded client-server”, and “fully offloaded client-

server”, reflecting the amount, if any, that compute-intensive tasks are offloaded to cloud 

resources. Additionally, two serialization/interchange protocols were used for 

transmitting data over the network for the partially-offloaded and fully-offloaded client-

server architectures to observe the effects of data interchange format for large payloads. 
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3.2 Methodology 

 

For the purpose of this research, the term "application" describes all the components 

required to implement the features of a basic ASLR system. Depending on the 

architecture being examined, this may include only software running on a client device, 

or it may also include software running on a network server (possibly in the cloud). A 

prototype is created for each of the three architectures being studied. Since this study 

examines the effect of distributing ASLR processing across multiple systems, algorithms 

are implemented as similarly as possible, whether they are running on a mobile device or 

on a network server. ASLR recognition tasks are conducted using the three prototypes, 

and key metrics are recorded during the use of each prototype. The metrics being 

examined include application response time, mobile device CPU usage, mobile device 

memory usage, and network bandwidth usage. 

 

Experiments are performed to compare the performance of client-only, partially-

offloaded client-server, and fully-offloaded client-server ASLR architectures. The Kinect 

V2 for Windows sensor is used to capture gesture data. Due to limitations of the Kinect 

SDK, data from the sensor are recorded and replayed on a resource-limited device such 

as an Intel Compute Stick. The Kinect for Windows SDK is used to provide useful 

features from the raw sensor data feed. Development and testing of the prototype system 

is done on a 2.8 GHz Intel Core i7 MacBook Pro. 
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The implemented ASLR algorithm is Hidden Markov Model, provided by the well-

known library Accord.NET for the .NET Framework. The model is trained using data 

from the signs listed below with at least 6 instances of each sign. The signs used 

comprise 11 categories and are listed in Appendix A. 

 

In each experiment requiring the use of a network server, the server application is 

constructed using Microsoft's open-source ASP.NET web technologies. The application 

runs in the Microsoft Azure public cloud to simulate the environment of a real-world 

application. The server application code is instrumented using the built-in 

instrumentation tools available with the .NET framework, as well as some custom 

wrappers around lower-level Windows APIs. These libraries provide low-overhead, high-

resolution stopwatches and performance counters for measurement of memory usage. 

 

The next chapter discusses in depth the extraction of useful features from data provided 

by the Kinect API and the training of Hidden Markov models for ASL gesture 

recognition. Following this is a detailed discussion on the implementation of the three 

architectures examined by this study. 
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Chapter 4 

HIDDEN MARKOV MODEL TRAINING 

 

In this chapter, the training of a Hidden Markov Model to classify American Sign 

Language gestures is discussed. Recordings were made using the Kinect Sensor and 

Kinect Studio software tool. After collecting these recordings, routines were created to 

extract derived features from the raw body-tracking data. These derived features were 

then used to train a Hidden Markov Model implemented by the open-source Accord.NET 

framework. The trained model achieved approximately 80% accuracy. 

 

4.1 Raw Sign Data Collection 

 

Recordings containing all available channels from the Kinect Sensor (including 1080p 

color video) requires and excess of storage space. To reduce the amount of storage space 

required, recordings excluded the high-definition color and audio channels, since these 

are not necessary for obtaining body-tracking information. Instead, only the IR/depth and 

body-tracking channels were retained. This reduced the file size per raw recording to 

approximately 150 megabytes. 
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4.2 Feature Extraction 

 

The raw body-tracking data available via the Kinect SDK includes a wealth of skeletal 

data points. Included in the available set are positions and angles for major joints: 

shoulder, elbow, and wrist; upper, middle, and lower spine; head and neck; hips, knee, 

ankle, and foot; and hand tip and thumb positions. The Kinect SDK provides several 

additional features such as body lean and hand tracking confidence. These features, in 

their raw form, are not useful for training a Hidden Markov Model that can detect 

American Sign Language gestures. 

 

In order to train a useful model, several transformations were required to arrive at 

suitable derived features. The first transformation involved normalization of the raw 

features for consistency between the recordings from people of different body sizes and 

to account for slight variations in distance from the sensor during recording. The 

normalization consisted of two phases. First, the joint positions were repositioned such 

that the mid-spine position was a reference point at the zero-coordinate in all three 

dimensions. After repositioning, the joint positions were scaled. A reference scale was 

created by computing the Euclidean distance between the top and base of the spine. Each 

point was then divided by the reference distance. 

 

After normalization, fourteen features were derived from the normalized joint positions. 

These consisted of three inter-joint distances, two joint angles, and the hand area on each 

side of the body. The features were as follows: 1) the Euclidean distance between the 
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wrist joint and the mid-spine, 2) the Euclidean distance between the elbow joint and the 

mid-spine, 3) the angle of the elbow joint, 4) the angle of the shoulder joint, 5) the wrist-

to-wrist distance, 6) the hand area, and 7) the angle between the thumb and hand tip. 

These features are shown in Figure 4 below. 

 

 
 

Figure 4: Diagram of features derived from Kinect skeletal tracking data. 

 

Finally, after the derived features were computed, a final smoothing step was undertaken 

to reduce noise in the feature set. The smoothing was accomplished by averaging the 

features from each frame with the corresponding features in the prior and upcoming 

frames. 
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4.3 Model Training and Validation 

 

For this experiment, a Hidden Markov classifier was trained by creating a Hidden 

Markov Model for each of the ten recording signs, using the derived features described 

above. An off-the-shelf implementation was used from the open-source Accord.NET 

library. This library provides several classes to facilitate training of a Hidden Markov 

classifier. 

 

First, an instance of the HiddenMarkovClassifier<TDistribution, 

TObservation> class was initialized. The TDistribution generic parameter used in 

this case was MultivariateNormalDistribution, and the TObservation 

parameter was double[]. An instance of the 

HiddenMarkovClassifierLearning class was then used to train the classifier 

using the Baum-Welch learning algorithm. The learner was configured to parallelize 

using all the CPU cores available on the training machine (4 physical, 8 virtual). 

 

For each sign, six recordings were collected. Five of each were used to train the model 

with one set aside for model validation. After training, a classifier was created that could 

differentiate the signs with approximately 80% accuracy. While a real-world system 

would ideally have significantly higher accuracy, for the purposes of this experiment – 

measuring architectural effects on performance – this level of accuracy was sufficient. 

Persisted to disk, this model required 140 kilobytes of storage. 
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Chapter 5 

IMPLEMENTATION OF ASLR ARCHITECTURES 

 

In this chapter, the details of each architectural implementation (client-only, partially-

offloaded client-server, fully-offloaded client-server) are described. While each 

implementation is unique, code was shared between each architecture when possible in 

the interest of implementation efficiency as well as a reduction in the number of variables 

between each that could affect performance. All implementations were written in the C# 

language using the .NET Framework. The Visual Studio IDE was used throughout the 

implementation process for code editing, compilation, and debugging. After detailing the 

implementation of each of the three architectures, a discussion of performance 

instrumentation follows. 

 

 
 

Figure 5: Architecture diagram of ASLR system. 

 

A diagram of the overall system architecture is shown in Figure 5 above. The application 

first captures or replays sensor tracking data. Subsequently, useful features are extracted 
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from this raw data. In the client-only and partially-offloaded client-server architectures, 

this is done on the same client device where raw data capture/replay occurs. In the fully-

offloaded architecture, the raw data are sent over the network and feature extraction is 

performed on a cloud server. These features are then used as parameters to the Hidden 

Markov Model (HMM) classifier, which provides a classification of which gesture was 

performed. In the client-only architecture, this step is also performed on the same client 

device. In the client-server architectures it is performed in the cloud service; in the 

partially-offloaded case, the extracted features are sent over the network to the cloud 

service. With this high-level overview of the system, the rest of this chapter will describe 

the details of each architecture. 

 

5.1 Common Implementation Details 

 

While incredibly useful, the majority of data types provided by the Kinect SDK are 

opaque. In order to control serialization, as well as the ability to stream Kinect tracking 

data to a cloud service where the SDK was not installed, proxy classes were created for 

all relevant Kinect SDK data types. This includes core geometric types like PointF, 

Vector3, and Vector4; the body-tracking types BodyFrame, Body, BodyJoint, 

and JointOrientation; and various enumerated types for body/joint tracking 

details: TrackingState, TrackingConfidence, JointType, and HandState. 

Each proxy type perfectly mimicked the corresponding Kinect type, but without any 

dependency on the Kinect SDK. Additionally, these proxy types were configured using 

C# attributes for JSON and Protobuf serialization. 
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A C# class was created to model the experiment for each of the three architectures being 

tested: ClientOnlyExperiment, FullOffloadExperiment, and 

PartialOffloadExperiment. Because of commonalities between each 

architecture, as well as “boilerplate” code required for each experiment, the classes 

modelling each experiment were derived from one or more abstract base classes 

containing the common behavior. The common base class, AbstractExperiment, is 

responsible for loading the Hidden Markov Model from the filesystem, initializing 

stopwatches and performance counters, and measuring the performance information of 

the algorithms implemented by its concrete subclasses. 

 

5.2 Common Network Details 

 

Inheriting directly from AbstractExperiment is the NetworkedExperiment 

abstract class. This class is responsible for the serialization of raw Kinect body-tracking 

data or derived features to JavaScript Object Notation (JSON) or Protobuf format for the 

experiments that rely on a network-connected cloud service. This class makes use of C# 

generics to implement a common serialization routine regardless of whether the concrete 

subclass is working with raw body-tracking data or derived features. In addition to 

reducing the amount of required code, this reuse also ensures no unintended performance 

differences due to serialization between the fully-offloaded and partially-offloaded client-

server architectures. 
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5.2.1 Serialization Protocols 

 

For the experiments that required data to be sent over the network, two different 

serialization methods were used so that the effect of serialization on performance for 

network-based architectures could be measured. The first serialization protocol used was 

JSON, a portable, text-based data interchange format based on the conventions of the 

JavaScript (ECMAScript) programming language. The JSON protocol [Json17] supports 

several primitive data types, as well as the structured data types object and array. It is a 

widely used data-interchange protocol, with client libraries for a multitude of 

programming languages and environments. The strength of the JSON protocol is its 

flexibility and, therefore, portability. For the experiments described here, the popular 

Newtonsoft Json.NET library was used to provide JSON serialization [JamesNK18]. 

 

The second serialization protocol used was Protobuf, a binary data-interchange format 

created by Google [Protobuf18]. While Protobuf aims for high portability, its primary 

aim is performance. The Protobuf protocol imposes more constraints than highly-flexible 

protocols like JSON and XML in the name of faster serialization/deserialization and 

smaller binary message footprint. A domain-specific language (DSL) is used to define 

Protobuf message specifications, from which serialization and deserialization code is 

generated. This is traditionally accomplished using proto files, containing the DSL, 

which are compiled with the protogen compiler utility. Various other utilities can then be 

used to generate message proxy code in common programming languages such as C++, 

Java, or C#. 
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An alternative method, used in this case, is to have the proto specifications and proxy 

code dynamically generated at runtime by a library. In .NET applications, this is 

accomplished using the Protobuf.NET library [mgravel18]. This library employs the 

reflection and runtime code-generation facilities of C# and the .NET Runtime to create 

proto specifications by inspecting C# attributes decorating members of “plain old CLR 

objects” (POCOs). While runtime reflection and code generation can be computationally 

expensive, the output is cached by the library, so the computational cost must only be 

paid the first time the code is executed within the process. This approach greatly eases the 

use of the Protobuf interchange format and makes for easier-to-read, more maintainable 

code. 

 

5.3 Kinect Recording Playback 

 

Finally, a core common feature shared among each experiment implementation is the 

replay of the Kinect SDK recordings. These recordings are stored on the local filesystem. 

In each case, the recordings are replayed using the Kinect Studio APIs, which provide the 

data for consuming applications via the Kinect service. Replaying the recordings using 

this method mimics having a real Kinect sensor connected during the experiment. The 

experiment code uses the exact same APIs as connecting to a physical sensor, and it 

receives data as if it were being collected in real-time from a sensor. In addition to this, 

by replaying the data via the Kinect service, real-world constraints are present, such as 

dropped frames due to poorly-performing application code. The file replay functionality 
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was abstracted into its own class, the KinectFilePlayer, which hides the low-level 

details and provides a clean API surface for the consuming code. 

 

5.4 Client-Only Architecture 

 

In the client-only architecture, all processing is done on a single device, with none of the 

workload distributed to the cloud. An Intel Compute Stick (Model STK2M364CC) was 

used as a stand-in for a mobile device, such as a smartphone. This device’s CPU was an 

Intel Core m3-6Y30 processor, with 4 MB cache and a clock speed of up to 2.2GHz. The 

device had 4 GB of LPDDR3-1866 main memory, and 64 GB of embedded storage. The 

fairly limited hardware resources available on this model of Compute Stick make it 

comparable to many premium smartphones currently on the market, and the CPU in the 

compute stick performs similarly to the processor in high-end smartphones such as the 

iPhone 6s or iPhone 7. 

 

The implementation of the ClientOnlyExperiment class was fairly straightforward. 

Inheriting from AbstractExperiment, the abstract RunCoreAsync method was 

overridden to provide the core functionality which was measured. In this method, features 

were first extracted from the body-tracking data provided by the replayed Kinect 

recording. After feature extraction, the Hidden Markov classifier was loaded from disk. 

Then, the extracted features were passed to the classifier to obtain a result. 
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5.5 Fully-Offloaded Architecture 

 

In the fully-offloaded architecture, after reading the body-tracking from the Kinect 

recording, all processing was offloaded to a cloud service. The client device acted as a 

“thin client”, doing no heavy processing of its own. As in the client-only architecture, the 

client device was an Intel Compute stick. The cloud service was an ASP.NET Core Web 

API Application, hosted in the Microsoft Azure public cloud. Specifically, the application 

was hosted in an Azure App Service plan at the B1 pricing tier. This tier provides one 

virtual CPU core, 1.75 GB RAM, and 10 GB storage. 

 

5.5.1 Thin Client Implementation 

 

The thin client of the fully-offloaded architecture was implemented by the 

FullOffloadExperiment class. Like the client-only implementation, the core logic 

was implemented by overriding the abstract RunCoreAsync method. In this case, the 

method was responsible for reading the raw body-tracking data from the Kinect 

recording, configuring an HTTP client to communicate with the cloud service, serializing 

the body-tracking data, and sending an HTTP request. 

 

The HTTP client used was the System.Net.Http.HttpClient class, provided by 

the .NET framework. The body-tracking data were transmitted in the body of a POST 

request and were serialized as either JSON or Protobuf. To avoid doubled memory usage 

due to serialization, the output of the serializer was written directly to the request stream, 
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instead of using an in-memory buffer. This was accomplished using built-in framework 

classes: the high-level ObjectContent<T> class for JSON and the 

PushStreamContent class for Protobuf because there is no high-level built-in class 

suitable for the Protobuf implementation. 

 

5.5.2 Cloud Service Implementation 

 

The cloud service in the fully-offloaded architecture was responsible for deserialization 

of the body-tracking data from the HTTP request, feature extraction from the raw 

deserialized data, and classification using the Hidden Markov classifier. The service was 

implemented using the ASP.NET Core 2.0 Framework, exposing a single endpoint via an 

action method on a Controller subclass. The hosting web application was configured 

globally to handle deserializing HTTP request bodies as either JSON or Protobuf, 

depending on the Content-Type header specified in the request. This was accomplished 

using the Newtonsoft Json.NET for the JSON protocol and the Protobuf.Net and 

WebApiContrib.Core.Formatter.Protobuf libraries for the Protobuf protocol [WebApi18]. 

 

After deserializing the request body and validating the request, processing was delegated 

to the GestureClassificationService class. For the fully-offloaded 

experiment, this class was responsible for extraction of features from the raw body-

tracking data using the DerivedGestureFeatureExtractor class. Upon 

extraction of features, the class then loaded the Hidden Markov classifier from disk, and 



 

 - 36 - 

classified the gesture based on the derived features. After returning this classification to 

the controller, the controller wrote the classification to the HTTP response as JSON. 

 

5.6 Partially-Offloaded Client-Server Architecture 

 

In the partially-offloaded client-server architecture, after reading the body-tracking from 

the Kinect recording, the processing was shared between the client application and a 

cloud service. The client device extracted features from the raw data and sent only these 

derived data over the network. As in the client-only architecture, the client device was an 

Intel Compute stick, and the cloud service was an ASP.NET Core Web API Application, 

hosted in the Microsoft Azure public cloud using the same B1 pricing tier. 

 

5.6.1 Client Implementation 

 

The client of the partially-offloaded client-server architecture was implemented by the 

PartialOffloadExperiment class. As in the other implementations, the core logic 

was implemented by overriding the abstract RunCoreAsync method. In this case, the 

method was responsible for reading the raw body-tracking data from the Kinect recording 

and extracting features using the DerivedGestureFeatureExtractor class. 

Upon extracting features, the method was responsible for configuring an HTTP client to 

communicate with the cloud service, serializing the extracted feature data, and sending an 

HTTP request. 
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As in the fully-offloaded implementation, the HTTP client used was the framework-

provided System.Net.Http.HttpClient class, and the feature data were 

transmitted in the body of a POST request, serialized as either JSON or Protobuf. The 

data were, as before, written directly into the request stream from the serializer output, to 

avoid an unnecessary increase in memory footprint. 

 

5.6.2 Cloud Service Implementation 

 

The cloud service in the partially-offloaded client-server architecture was responsible for 

deserialization of the derived feature data from the HTTP request and classification using 

the Hidden Markov classifier. The service was implemented using the ASP.NET Core 2.0 

Framework, exposing a single endpoint via an action method on a Controller 

subclass. As in the fully-offloaded case, the hosting web application was configured 

globally to handle deserializing HTTP request bodies as either JSON or Protobuf, 

depending on the Content-Type header specified in the request. This was, as before, 

accomplished using the Newtonsoft Json.NET library for the JSON protocol and the 

Protobuf.Net and WebApiContrib.Core.Formatter.Protobuf libraries for the Protobuf 

protocol. 

 

Upon deserializing the request body and validating the request, processing was again 

delegated to the GestureClassificationService class. For the partially-

offloaded client-server architecture implementation, this class was responsible for loading 

the Hidden Markov classifier from disk and classifying the gesture based on the derived 
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feature data provided. As before, upon returning this classification to the controller, the 

controller wrote the classification to the HTTP response as JSON. 

 

5.7 Performance Instrumentation 

 

In order to assess system performance across the various architectures, several methods 

of measurement were used. To measure the wall time required to complete classification 

for a single gesture, the System.Diagnostics.Stopwatch class, provided by the 

.NET Framework, was used. This class provides a basic high-resolution stopwatch with a 

simple API to start, stop, and measure elapsed time. To measure CPU time, a custom 

class was implemented (described in section 5.7.1), since the .NET Framework does not 

have a built-in facility for measuring CPU time. To measure network and memory usage, 

Windows performance counters were used. 

 

5.7.1 High-Resolution Stopwatch 

 

The .NET Framework contains a built-in high-resolution Stopwatch class. However, this 

class is only useful for measuring “wall time” (i.e., real-world clock time) elapsed 

between start and stop of the stopwatch. While wall time measurement was useful for the 

purposes of this research, a high-resolution measurement of CPU time was also needed. 

The .NET Framework does not have built-in support for this measurement, but the Win32 

API on Windows does provide this facility. To access this measurement from the .NET 

Runtime environment, an ExecutionStopwatch wrapper class was created using the 
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P/Invoke feature to call into the Windows kernel API. The class calls into Kernel32.dll, 

the Windows system library responsible for exposing the core Windows API, including 

functions for process and thread management. This class made use of two Windows API 

functions: one to obtain the native Windows process handle for the currently executing 

process, and a second to obtain the CPU time used by the process in both kernel and user 

space. For the purposes of this experiment, the kernel and user space times were added to 

obtain the total amount of CPU time used by the process. 

 

5.7.2 .NET Performance Counters 

 

The .NET Runtime and Windows provide the Performance Counter APIs 

[Performance18] for measuring various information regarding usage of compute 

resources by a specified process. Included in the available APIs are counters for 

measuring network and memory performance.  

 

Because the .NET Runtime provides a managed memory environment with a garbage 

collector, it is difficult to measure memory performance in terms of absolute memory 

allocations. However, a useful metric in such an environment is a measurement of the 

number of garbage collections. The .NET runtime’s garbage collector is generational, 

where heap objects are assigned to one of three “generations” based on the amount of 

memory used by the object as well as its lifetime. Older generations are reserved for large 

and/or long-lived objects, while younger generations are for small and/or quickly-

collected objects. By measuring the number of collections in each generation, insight is 
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provided into both the amount of memory required by the process as well as how much 

memory churn occurs.  

 

In order to measure the garbage collections for each generation, three different 

performance counters were used, each within the “.NET CLR Memory” category: “# Gen 

0 Collections”, “# Gen 1 Collections”, and “# Gen 2 Collections”. Specifically, the “Gen 

0” counter measures the number of times the garbage collector has executed a collection 

of generation-zero objects. These collections occur when the amount of memory 

available in the generation-zero heap is insufficient to satisfy a new allocation. The 

objects remaining in the generation after collection are promoted to generation one. The 

“Gen 1” and “Gen 2” counters measure the number of times the garbage collector has 

executed a collection of objects in the generation-one and generation-two heaps, 

respectively. In depth information on the .NET Runtime garbage collector is available in 

the Microsoft documentation [GarbageCollection18]. 

 

To measure network usage, two counters were used in the “.NET CLR Networking” 

category: “Bytes Sent”, and “Bytes Received”. These counters measure the total number 

of bytes sent and received by all sockets within the AppDomain. Importantly, the 

AppDomain represents a lightweight, managed “process” within the .NET Runtime. As 

multiple AppDomains can exist simultaneously within the same Win32 process, these 

performance counters only measure network usage by the current AppDomain, not the 

entire Win32 process.
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Chapter 6 

PERFORMANCE ANALYSIS 

 

The implementation of a prototype ASLR system was completed using client-only, 

partially-offloaded client-server, and fully-offloaded client-server architectures, using 

various data serialization protocols for each of the networked architectures. Each 

architecture/serialization combination was tested using HMM classifiers of increasing 

vocabulary sizes: 10, 17, and 23 sign language gestures. This system, as implemented, 

shows the potential performance bottlenecks of each architecture, which may provide 

useful guidance to the implementer of a production-grade ASLR system. The results 

show that each of the architectures may be suitable for certain use cases or scenarios, and 

a production-grade system may benefit from incorporating elements of each. 

Additionally, there was a notable performance difference between the JSON and Protobuf 

serialization protocols, highlighting the importance of the data interchange protocol when 

transferring the type of data required in an ASLR system. 

 

For each architecture, and for each serialization protocol for networked architectures, the 

CPU, network, and memory performance of the system was measured using models of 

increasing vocabulary size. A single experiment run consisted of classifying a sample of 

each of the signs known to the model, using each of the architecture/serialization 

combinations. The experiment was run for 100 iterations.  
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Figure 6: Average CPU clock measurements. 
 
 
 
6.1 CPU Usage and Response Time 

 

Figure 6 above shows the average CPU clock measurements for each run. Somewhat 

surprisingly, the client-only architecture performed very well with a small 10-sign 

vocabulary, completing feature extraction and classification in an average of 29 

milliseconds. However, as the number of signs in the vocabulary increases, the 

classification time steadily increases. The 17-sign model completed classification in 72 

ms CPU time, and the 23-sign model completed in 127 ms CPU time. This trend suggests 

that significantly larger classifier vocabularies could require considerably more CPU 

time, resulting in decreased perceived performance by the user, as well as greater energy 

usage. Finally, the fully-offloaded architecture using JSON serialization showed an 

enormous increase in CPU time, from 455 to 606 ms used.  

29

72

127

8 8 7

38
30 29

22 21 19

-20

0

20

40

60

80

100

120

140

10 Signs 17 Signs 23 Signs

CPU Usage (ms) vs Vocabulary Size

Client Only Partial Offload - Protobuf

Full Offload - Protobuf Partial Offload - JSON



 

 - 43 - 

 

 
 

Figure 7: Average response time (wall clock) measurements. 
 

 

 

Figure 7 above shows the average response time of the system for each 

architecture/serialization combination. The client-only case roughly matches the 

measured CPU time for the same case. The slightly increased wall time relative to CPU 

time is expected due to the regular context switching that occurs in a multitasking 

operating system. Distributing the classification to the cloud service showed a small 

increase in response time, with a maximum of about 1.2 seconds. Some increase over the 

client-only case was expected, due to network latency and data transmission time. The 

relatively small difference in the Protobuf and JSON cases is likely attributable to the 

small increase in CPU time in the partially-offloaded/JSON case.  
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The increase in response time as the number of signs in the vocabulary is likely due to an 

increase in CPU time for classification in the cloud service. While this trend would 

eventually present a problem with larger sign vocabularies, the cloud architecture allows 

for far more optimization than is possible in the client-only case. Strategies similar to the 

previously reviewed work by Veitch [Veitch11] – optimizations for massive parallelism 

of HMM classifiers – could be employed using pools of cloud resources to significantly 

increase the possible vocabulary size with minimal performance degradation. 

 

Finally, the fully-offloaded scenarios had a significantly increased response time, with 

the most notable increase in the JSON serialization case. The fully-offloaded/Protobuf 

combination yielded classifications in 1.4-1.9 seconds, while the fully-offloaded/JSON 

case required 4.1-4.4 seconds to return a classification. Both of these results represent a 

significant performance degradation in terms of user-perceived system performance. This 

sizeable increase in response time is most likely due to the large data payloads required 

when sending raw body-tracking data across the network. Because of the large amount of 

data being transmitted, JSON serialization performs especially poorly, due to the 

redundant nature of the protocol. While compression could be applied to mitigate this 

effect, an increase in CPU usage would likely occur, somewhat negating the benefit of 

the compression. 
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Figure 8: Average network usage measurements (total kilobytes). 
 
 
 
6.2 Network and Memory Usage 

 

Network performance was also measured for each architecture and serialization protocol. 

Figure 8 above shows the average network usage for each architecture/serialization 

combination. As the network payload is not affected by the number of signs in the model, 

the values shown are the average across each model size. The client-only case, by 

definition, had no network usage. The partially-offloaded client-server architecture had 

relatively low usage, 25.7 KB with Protobuf and 99.5 KB with JSON. The fully-

offloaded client-server architecture required a significant increase in network usage. 

Using Protobuf, the fully-offloaded case used 753.5 KB of network bandwidth, while the 

JSON case used an enormous 5.68 MB. As discussed above in the context of response 

time, compression of the JSON request body could significantly reduce the required 
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network bandwidth. However, the extra CPU time required to compress the request may 

negate the benefit of reduced network bandwidth. 

 

Finally, memory performance was measured for each architecture and serialization 

protocol. Table 1 below shows the aggregate memory performance measurements. 

Memory allocations, measured by the number of garbage collections (GCs) performed by 

the runtime, are shown here as the minimum and maximum number of collections 

observed, since varying system memory conditions affect the runtime’s decision to 

perform a collection. 

 

 Serialization Minimum GCs Maximum GCs 

Client Only -- 0 6 

Partial Offload JSON 0 0 

Partial Offload Protobuf 0 2 

Full Offload JSON 136 383 

Full Offload Protobuf 0 3 

 
Table 1: Aggregate memory usage by number of garbage collections (GCs). 

 
 
 
The number of garbage collections performed by the runtime during the client-only 

experiment varied from none to six, which is a moderate number of collections. 

Somewhat surprisingly, both partially-offloaded cases as well as the fully-

offloaded/Protobuf case had an even lighter memory footprint than the client-only case. 

This may indicate that a large part of the memory usage occurs in the HMM classification 

step rather than during feature extraction. By moving the HMM step to the server in both 

cases, the memory usage on the client device is reduced. In contrast, the fully-
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offloaded/JSON case had an enormous memory footprint. Given the large data set 

transmitted in the fully-offloaded case and the repetitive nature of arrays containing 

JSON objects, it’s likely many small, short-lived objects were allocated during the 

serialization process, contributing to the large number of collections. 
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Chapter 7 

CONCLUSIONS 

 

This research has examined the performance impacts of various architectural strategies 

for the implementation of a real-time automated sign language recognition system in a 

resource-constrained environment such as a mobile device. The results, sometimes 

surprising, have provided useful insight into which factors and design choices most 

impact the performance of such a system. Specifically, the results provide two 

noteworthy findings. First, the reasonably good CPU performance of the client-only 

architecture demonstrates that systems requiring a small vocabulary, such as command 

and control applications, could feasibly be implemented entirely on a mobile device or 

similar system, with no need for cloud resources. This is an encouraging result for 

systems that may need to function when there is no readily-available Internet access. 

However, in a system requiring a large vocabulary, performance in the client-only 

scenario may degrade as the vocabulary size increases. 

 

Second, the effect of data payload size sent over the network had a large impact on 

system performance. The significant increase in resource usage across the board for the 

fully-offloaded client-server architecture compared to the partially-offloaded client-server 

architecture shows this clearly. This was further highlighted by the effect of the data 

interchange protocol in the networked architectures. Protobuf consistently required less 
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CPU time, network bandwidth, and memory allocation than JSON, in some cases 

outperforming JSON by an order of magnitude. 

 

Overall, the overall best performance was shown by the partially-offloaded architecture 

using the Protobuf data interchange format. These results, together with a general 

knowledge of Hidden Markov classifiers, suggest that this would be the best choice in a 

real-world scenario with a model trained on a large number of signs. The performance 

impact of feature extraction and Protobuf serialization on the resource-limited device was 

small, and the cloud is ideally suited to algorithms like Hidden Markov classifiers, which 

perform well when highly parallelized. 

 

Crucially, the prototype created by this work is, to the best of our knowledge, the first 

automated sign language recognition system to distribute compute-intensive tasks to 

cloud resources. This is an invaluable contribution – overcoming difficult implementation 

challenges and creating a foundation for future research in this area. While there has been 

continuing recent work toward improving the accuracy and performance of classification 

methods, the ability to leverage the cloud will be critical to the success of any real-world 

sign language recognition system, and this research lays the groundwork for such 

systems. 
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APPENDIX A 

AMERICAN SIGN LANGUAGE GESTURES 

 

 
COMMON  

• Hello 
• No 
• Please 
• Thank You 
• Yes 

 

PEOPLE 

• Man 
• Woman 

 

SCHOOL 

• School 
• Student 
• Teacher 

 

HOME 

• Bathroom 
• Bicycle 
• House 

FAMILY 

• Boyfriend 
• Father 
• Girlfriend 
• Husband 
• Mother 
• Wife 

 

TIME 

• Morning 
• Night 

 

ANIMALS 

• Cat 
• Dog 

 

DESCRIPTIONS 

• Cold 
• Happy 
• Hot 
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IRB APPROVAL 
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