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Abstract 
 

The Cold-Gas Dynamic-Spray process also known as Cold Spray (CS) has been 

researched for three decades. The CS process is a solid-state deposition technique via supersonic 

velocity of powder particles at a temperature significantly below the melting point of the spray 

material. This thesis presents background on the overall CS process parameters, and additional 

information on the microstructural and mechanical properties of typical Cold Sprayed materials.  

This Thesis primarily presents a study on the microstructural annealing response of CS 

Al 6061. It should be noted that for this study, the term “annealing” is used in the sense of the 

classical metallurgical definition of annealing, and not a specific temper designation for the 6061 

alloy. Cross sections of CS Al 6061 were imaged with a scanning electron microscope (SEM) in 

secondary electron (SE), backscatter electron (BSE), and electron backscatter diffraction (EBSD) 

imaging mode for quantitative and qualitative information on the grain size and orientation of the 

CS microstructure. The detailed SE, BSE and EBSD mode images present the grain size and 

grain orientation of the original powder, as received (AR) state and after heat treating at 200°C 

for 1 hour, 10 hours, and 100 hours. Three different regions, characterized with distinctly 

differing microstructures, are labeled as low, medium, and high deformation regions, and their 

microstructures, and evolving features are discussed.  

Vickers microhardness testing are performed to examine the differences in hardness 

values between different heat treatments, and for correlation with the level of deformation and 

grain refinement in the microstructure. SEM imaging was used in BSE mode to correlate 

microhardness variation to the different regions within the CS microstructure.  
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Chapter 1: Introduction 
 

 This process was first pioneered in early to mid-1980s at the institute of Theoretical and 

Applied Mechanics of the Russian Academy of Sciences in Novosibirsk by Dr. Anatolii Papyrin 

and his colleagues. The first U.S. patent of Cold Spray was issued in 1994 [1]. The Cold Spray 

process deposits metal powders onto a substrate using an apparatus that entrains the powder into 

a supersonic gas stream to deposit powder at a high impact velocity. The process imparts cold 

work to the substrate, and deposited powder particle from the initial and subsequent impacts, 

forming a heavily deformed, layered structure.  

The irregular particle shape distorts the surface and results in different deformation 

regions in the CS microstructure. These different deformation sites require characterization to 

assess grain reduction and change in grain orientation from the cold work. With better 

understanding of the microstructure, properties of CS coatings and bulk deposits can be more 

accurately modeled. 

1.1 Research Objectives 

The scope of this project includes characterizing the Cold Spray structure of the 6061 

aluminum, which includes grain size, and grain orientation. Therefore, the following research 

objectives were generated: To identify the annealing change in the microstructures of the 

aluminum Cold Spray samples for different regions, to correlate the hardness indents on the Cold 

Spray deformation regions, to determine anomalies that could occur during electron backscatter 

diffraction.  
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1.2 Thesis Description  

 Chapter 2 presents background information on the Cold Spray process and previous 

literature relevant to the characterization methods involved in the current study. The background 

includes an overview of the process and parameters used to create the microstructures that are 

found in the Cold Spray materials, as well as a discussion of the previous efforts to characterize 

the microstructure of these materials and the limitations of the methodologies used. The 

background also includes the annealing behavior of CS and deformed Al, and microstructural 

characterization of the CS regions. 

 Chapter 3 presents the design of experiment and experimental procedures that were used 

for this study, including sample preparation, characterization, and material testing. The 

microstructural characterization procedures included scanning electron microscopy (SEM), and 

electron backscatter diffraction (EBSD). The technique used for post processing of EBSD 

samples is described. The experimental process for microhardness testing was performed to 

assess the dependence of microhardness on the microstructure under the indent, and to determine 

the change in properties within regions of differing degrees of deformation, due to the various 

exposure times at an elevated temperature. 

Chapter 4 presents the microstructural characterization results of the powder of the 

different deformation regions (low, medium, and high) within the CS samples (AR, 1 hr, 10 hr, 

and 100 hr). These results show correlative data between the SE, BSE, and EBSD mode images 

per region and sample. The data presented in chapter 4 also indicates the different average grain 

sizes between the low, medium, and high deformation regions, and grain growth in the high 

deformation regions between the AR, 1 hr, 10 hr, and 100hr. Additionally, the results of 

microhardness indents are presented with correlative BSE mode images per region and sample.  
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Chapter 5 presents conclusions drawn from the results from chapter 4 which includes the 

grain size, grain orientation, and microhardness data. The microhardness data results were 

consistent with expectations; as the amount of localized deformation increased, microhardness 

increased. The microhardness decreased in each deformation region the longer it was annealed, 

which is also consistent with expectations. A brief presentation of future works that could further 

the understanding of CS microstructures is included.  
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Chapter 2: Literature review 
 

2.1 Background 

Cold-Gas Dynamic-Spray was first developed in the early to mid-1980s at the Institute of 

Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences 

in Novosibirsk [2]. The Cold-Gas Dynamic-Spray process also known as “Cold Spray” (CS) is a 

solid-state material deposition technique used to bond powder particles to a substrate. These 

particles deform due to the high velocity impact resulting in a large amount of plastic 

deformation. The velocity of these particles is governed by numerous process variables of the CS 

apparatus such as the geometry of the de Laval nozzle, type of process gas, temperature of gas, 

pressure of gas, particle size and morphology [3-15]. Other factors that will change the 

deposition of powder particles in the CS process are feedstock material properties, oxide films, 

substrate, and standoff distance [3, 4, 16]. These parameters will be discussed in detail later in 

the chapter.  

In the CS process compressed gas enters the apparatus as powder is being released into 

the gas stream and flows through the de Laval nozzle to obtain a supersonic velocity. To increase 

the velocities through the nozzle there is sometimes a gas heater that will preheat gas 

temperatures in excess of 900K, according to the ideal gas law and KE = 3/2RT the velocities of 

the gas increases with increasing temperature [5]. The gas temperature for Cold Spray is 

dependent on the melting temperature of the materials. The powder particles time in the gas 

stream is short and does not increase the temperature of the powder above cold working [5]. 

Figure 1 displays a schematic of a typical CS apparatus. 
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Figure 1.  Schematic representation of a typical CS Apparatus [17]. 

 

2.1.1 Thermal Spray and its relation to Cold Spray 

Prior to the development of CS, the preferred spray technique used for material 

deposition for coating applications was Thermal Spray (TS). TS employs melting of the 

feedstock material, which results in fusion. There are six common types of TS apparatuses; four 

are based on combustion process and two on electric arc. The combustion process apparatuses 

are Powder Flame Spraying (PFS), Wire Flame Spraying (WFS), Detonation Gun (DG), and 

High Velocity Oxygen Fuel (HVOF). The electric arc processes are Arc Spraying (AS), and 

Plasma Spray (PS) [18] . The TS combustion and the arc process are both similar in that they 

both melt the material being deposited to the substrate prior to deposition; feedstock melting 

does not occur in the CS process.  

TS combustion processes use a fuel gas, (such as acetylene, hydrogen, propane, or 

propylene), to melt the feedstock material and propel the melted material. The electric arc 

process uses a DC electric arc in order to melt the feedstock material [18]. These spray coating 

processes are effective at applying the feedstock material to the substrate, but oxidation occurs 

within the process due to the high temperatures, and presence of oxygen in the carrier gas. Figure 

2 shows the different TS and CS processes for the average range of velocities and temperatures 

reached per process [19].  
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Figure 2.  Particle temperatures and velocities obtained in different thermal spray and cold spray processes, as a measure 
of high density materials. The trend bar is of recent developments in the spray process. [19]. 

 

2.1.2 Cold Spray Applications 

 The CS process offers a large range of applications that include; metal restoration and 

sealing, thermal barriers, heat dissipation, electrically conductive coatings, dielectric coatings, 

localized corrosion protection, additive manufacturing, and more [18, 20-24]. One of the greatest 

advantages of CS is the ability to deposit feedstock material without any thermally induced phase 

transformations in either the feedstock or substrate; this is due to the feedstock material being 

heated below the melting temperatures, thus solid state deformation can occur [1]. 

Other benefits to CS include, high density compaction, minimal surface preparation, 

building of multilayer deposits, no undesirable chemical reactions, waste powder can be 

recycled, reduction in material input and the future elimination of mold and melt pour costs with 

increasing CS technology [18, 20].  These benefits can help produce more economically and 
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environmentally friendly parts. For example when magnesium (Mg) rotorcraft components are 

damaged from corrosion the part can be restored with Mg by utilizing CS rather than 

replacement of the entire component at significant cost [22]. Example of the CS application also 

includes applying corrosion resistant layer of aluminum to create a corrosion resistant barrier, 

thus extending the service life of a part [22].  

2.2 Parameters of Cold Spray Process  

 The most important parameter for successful CS is the velocity of the particles; therefore 

parameters relating to the velocity affect the particle deposition efficiency (DE) which is a 

measure of success. The velocity is the most direct indicator of DE, therefore the parameters that 

affect velocity are of the most important. Parameters that change the velocity include the 

geometry of the de Laval nozzle, type of process gas, temperature of gas, pressure of gas, particle 

geometry, and particle size [3-14].  

A critical velocity range must be maintained for the particles to bond, or else the particles 

at a velocity significantly lower or higher than critical velocity range can either ricochet or cause 

erosion to the  surface [7]. To maintain these critical values the parameters that effect velocity of 

the CS process can be altered to achieve the critical velocity range. These parameters will be 

discussed in detail in individual sections. 

2.2.1 De Laval Nozzle  

 Numerous studies have been performed on the fluid dynamic of converging nozzles. The 

de Laval nozzle (Figure 3) is a convergent-divergent nozzle that allows for the particle to 

approach high velocities of up to 1200 m/s [1]. In the literature four different nozzle geometries, 

nozzles A, B, C, and D (Table 1) were compared; in nozzle A and C the expansion ratio (i.e., the 



24 
 

exit cross section divided by the throat cross section) has a ratio of 6, while the expansion ratio in 

B and D has a ratio of 9. Figure 4 shows the DE based on the study of the different expansion 

ratio and nozzle geometries shown in Table 1 for nozzles A, B, C, and D [5]. 

 

Figure 3.  Schematic of De Laval nozzle drawing for a CS apparatus, the arrow represents the direction of flow. 

 

Table 1.  Change in geometry of two different nozzle geometries (conical) A, B, and (bell shaped) C, and D. Data attained 
from literature [5]. 

Nozzle 
Expansion 

ratio Divergent Section Shape 
Length 
ratio 

A 6 Conical  
Set 

Length 

B 9 Conical  B = A 

C 6 Bell Shaped C = 1.5*A 

D 9 Bell Shaped D = 1.8*A 
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Figure 4.  Deposition efficiency for CS of Cu with four different nozzle geometries A, B conical and  C, and D bell shaped 
[5]. 

 

Fluid dynamic calculations suggest that boundary layer phenomena lead to a significant 

loss in energy for narrower nozzles. Wider nozzles minimize the boundary layer influence and 

may increase the particle velocity up to 60 m/s [6]. In one study, a theoretical comparison 

between a trumpet-shaped nozzle and a bell-shaped nozzle with nitrogen as the process gas at an 

inlet pressure of 30 bars and gas temperature of 320 ̊C. The bell-shaped nozzle typically results 

in exit velocities greater than 50 m/s with respect to the trumpet-shaped nozzle for different 

particle sizes. Studies have proven that the bell-shaped nozzle is better for deposition compared 

to the trumpet-shaped [7, 8].  
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2.2.2 Process Gas 

 There are three commonly used gases used for the CS process; air, helium (He) and 

nitrogen (N2) [3, 4].  The pressure and temperature of the process gas along with the type of gas 

will change the particle velocity. The most readily available and economically feasible process 

gas is air. But due to the higher density of air with respect to other process gases, air produces a 

lower DE at the same process conditions as N2 or He. He provides a higher DE and lower 

porosity at the same process conditions than air or N2. However, He is more expensive, due to 

the added expense of recovery and recapture of the gas given the current worldwide shortage [3].  

Other parameters of the process gas include the pressure and temperature of the gas. 

Figure 6 compares the DE of Cu particles, in process gas air, to the (a) change in pressure and (b) 

change in temperature. These two graphs show that a reasonable DE for air is still achievable 

with air as the process gas. The graphs show that the temperature has a higher effect on DE than 

the inlet gas pressure [5].  
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Figure 5.  Influence of (a) gas pressure (b) gas temperature on the deposition efficiency of Cu-powder ranging in size from 
5-25 µm, a spray distance of 30mm, and a standard nozzle B (shown in Table 1) [5]. 

 

 Figure 6 is a comparison between DE versus the gas temperature as well as the particle 

velocity for both He and N2. In the data, the comparison between the two types of gases exhibit 

an increase in DE and mean particle velocity for the He gas [4]. A higher velocity acquired for 

bonding is more easily achievable with He. The velocity range will be discussed in greater detail 

in section 2.2.5.  
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Figure 6.  (a) Effect of the gas temperature and type on deposition efficiency and (b) change of deposition efficiency with 
mean particle velocity for N2 and He at 2MPa [4].  

 

2.2.3 Effect of particle characteristics on the Cold Spray Process 

The particle morphology, size, crystal structure, and the powder production method are 

all important factors to consider when using CS. The morphology of a particle has an effect on 

both the drag force of the particle and the velocity before impact. The manufacturing process of 

the particles can affect, the geometry, size, and how much oxidation occurs to each particle [10-

14, 16, 25].  

Figure 7 shows images of 2618 Aluminum powders produced by atomization (a) and as-

cryomilled (b). The gas atomized powders are more spherical in shape and the as-cryomilled is 

more irregular.  

Table 2 shows the average particle velocity for two different types of powders as well as 

two different powder size ranges sprayed. This demonstrated that both the morphology and the 

size of the particle will affect the particle’s velocity [10]. Similar results were obtained in a study 

between gas atomized and dendritic porous electrolytic Ni powders [12]. 
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(a)                                                                                        (b) 

Figure 7.  SEM micrograph taken in SE mode for 2618 Al as-atomized powder (a) as-cryomilled powder (b)  [10]. 

 

Table 2.  Average particle velocity measure for two different powder morphologies (as-atomized and as-cryomilled) and 
two different powder size ranges (d = particle diameter) [10]. 

 

 

In Figure 8 images of two different gas-atomized Al powders can be seen; the main 

difference between these two gas-atomized powders is morphology. The Valimet H-20 powder 

has more of a spherical shape with an average particle size of 25 µm. The Brodmann Flomaster 

powder has both a spherical and globular shapes with an average particle size of 26 µm. The 

difference in particle morphology demonstrates that the gas atomization process does not 

produce a specific morphology [13].  

Table 2 shows the differences in velocity of particles based on morphology and size. 
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                 (a)                                                                        (b) 
Figure 8.  SEM micrograph taken in SE mode of Valimet H-20 powder (a) and Brodmann Flomaster powder (b)  with 30 

μm scale bars [13]. 
 

Experiments conducted between two different titanium (Ti) commercially pure powders 

were produced in spherical and globular morphologies. The average particle diameters for the 

powders were 29 µm and 63 µm for spherical and globular. The average velocities ranged from 

608 to 805 m/s for spherical and 652 to 859 m/s for globular, staying consistent with the globular 

geometry having a higher velocity. Figure 9 shows the overall effects of carrier gas, temperature, 

and the pressure on the spherical and globular particle velocity. This study explains that as the 

temperature of the gas increased so did the particle velocity. Figure 10 shows the percentage of 

porosity versus the velocity of spherical or globular particles compared to that of bulk Ti. The 

spherical powders produced coatings typically having less porosity than that of the globular 

powder produced coatings. The CS coatings produced from spherical powder had lower porosity 

than CS coatings produced from globular powder [14].  
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Figure 9.  Effect of the carrier gas, temperature, and pressure on the spherical and globular particle velocity with the 
spherical and non-spherical powder. In open circle and triangle being N2 being sprayed at 3 MPa, the filled circle and 

triangle N2 at 4 MPa, and the black dot shows He sprayed at 4 MPa  [14]. 

 

Figure 10.  Deposition velocity with respect to porosity percentage. The spherical coatings deposited with N2 are plotted 
as filled circles while the spherical coating deposited with He gas is plotted as an open circle. Closed square represents 

Bulk Ti, filled sphere shows spherical coating, and open triangle is non-spherical coatings [14]. 
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 While the size and geometry of the particle are both important characteristics, the crystal 

structure of the material becomes important in deformation and plays the largest role in the 

critical velocity that is needed to apply the coating to the substrate. The material’s crystal 

structure influences the mobility of the dislocations and the interactions that occur during the 

deformation process. The deformation is also associated with other parameters such as grain size 

and phases within the material. There are many metals used in CS; the metals can be easily 

classified into different isomechanical groups. Isomechanical groups have similar mechanical 

properties and are sorted by crystal structure. Three isomechanical groups that have been 

observed for CS include face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal 

close-packed (HCP) [16].  

 The FCC metals are usually easier to deform due to a packing density (PD) of .74 and a 

large number of slip planes. The HCP metals are the second easiest to deform due to a PD of .74 

with a reduced number of slip planes than FCC metals. The BCC metals are the hardest of the 

three groups to deform due to a lower PD of .68 and typically requires more energy to activate 

screw dislocation movement [16]. Therefore, the FCC materials typically exhibit higher 

deformation within the microstructure, due to the large number of slip planes than HCP and 

BCC.   

2.2.4  Cold Spray Process Geometry and Other Parameters 

 The geometry of the CS apparatus includes the tilt angle and the standoff distance, 

distance from the nozzle exit to the substrate. Other parameters of the process include the feed 

rate of the powder into the gas stream, and the traverse intervals [3, 26]. The powder feed rate 

influences the total mass fraction between the gas and particle, reducing or increasing the amount 
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of powder that is feed into the gas stream [3].  The traverse intervals (number of spray cycles) 

changes the thickness of the CS sample [26].  

A comparison between the angled and normal impact (Figure 11), suggests that an angled impact 

is more beneficial for a higher DE at lower velocities [3].  

 

Figure 11.  Deposition efficiency versus mean normal velocity [3]. 

  

The standoff distance can also play an important role as to where the gas stream starts to 

mix with the ambient atmosphere around the apparatus. The substrate can play an influential role 

on moving the particle immediately prior to impact of the particle to the substrate. This effect is 

dependent on the size of the particle. Figure 12 demonstrates that a particle with a diameter of 1 

μm is influenced more drastically by the gas stream in proximity to the substrate surface than the 

5 μm and 22 μm particles [3].  
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Figure 12.  Theoretical calculations of particles deceleration near substrate for 10 mm gun standoff, fully dense Cu 
powder at 27  ̊C with 2.1 MPa and air as the driving gas [3]. 

  

2.2.5 Critical Velocity 

 The critical velocity required for bonding a particle to either the substrate or another 

particle can vary greatly. Therefore, the critical velocity is presented as an estimated range that is 

observed both experimentally and determined theoretically to allow for the most successful 

deposition. Having a particle velocity below the critical velocity range for deposition can result 

in a collision event, which could results in no deposition or disruption of the native oxide layer. 

Exceeding the critical velocity can induce delamination and erosion of the deposited particles or 

the substrates surface [27, 28]. Figure 13 shows a diagram of the material depositions at different 

stages with a Cu powder on low carbon steel [7].  
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Figure 13.  Schematic correlations between particle velocity, deposition efficiency and impact effects for a constant impact 
temperature [7]. 

 

 The minimum critical velocities (Table 3) were gathered from articles that focused on 20 

µm and 25 µm powders [6-8, 19, 27, 29]. This table presents an approximate starting point for 

the initial window of deposition. Parameters that can affect critical velocity for deposition are the 

substrate and substrate temperature shown on page 40. 
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Table 3.  Typical estimated minimum critical velocities for specific materials, values taken from the following literature 
[6-8, 19, 27, 29].  

Materials Vcrit estimated minimum for 20&25 µm particles (m/s) 
Magnesium                 Mg 760 
Aluminum                    Al 620 
Titanium                       Ti 700 
Tin                               Sn 160 
Zinc                             Zn 360 
Zirconium                    Zr 510 
Iron                              Fe 650 
Stainless Steel 316L 700 
Copper                         Cu 460 
Nickel                          Ni 610 
Niobium                      Nb 575 
Molybdenum              Mo 630 
Silver                           Ag 350 
Lead                             Pb 130 
Tantalum                      Ta 490 
Gold                            Au 250 
Tungsten                      W 480 

 

2.3 Typical Microstructural Features of CS deposits 

  When a particle is sprayed at the substrate and possesses the necessary critical velocity, 

the particle undergoes an extensive deformation when it impacts the substrate. Deformation 

induced by the collision event causes the powder particles to plastically deform from spherical to 

a lenticular, or pancaked, shape (Figure 14). The direct and angled impact of the particle 

typically exhibits-jetting (extrusion of powder material), around the particle [7, 30].  
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Figure 14.  Particle morphology for direct and angled impacts showing shear instability [7]. 

 The grains of the CS microstructure are usually flattened elongated grains perpendicular 

to the spray direction (Figure 15 and Figure 16) [31]. The process typically results in a high 

degree of grain refinement, with the resulting grains exhibiting widths on the order of tens of 

nanometers and a length of hundreds or thousands of nanometers (Figure 17) [32, 33].  

 
Figure 15.  Microstructure image of CS Cu-coatings on Cu-substrate in the as-sprayed state as obtained by OM of etched 

of etched cross-section processed with nitrogen gas [31]. 
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Figure 16.  Microstructure image of CS Cu-coatings on Cu-substrate in the as-sprayed state as obtained by OM of etched 
of etched cross-section processed with helium gas [31]. 

 

Figure 17.  TEM micrograph image of a CS copper coating with elongated grains with a width of some tens of nm and a 
length of several hundred nm [32]. 

 

 A comparison of the porosity between the N2 and He CS microstructures show the He 

sprayed materials contains a much lower porosity then that of N2. The lower porosity can be due 

to the higher velocity achieved by the He gas using the same parameters as the N2 sprayed 

material. In Figure 18 and Figure 19 it was discussed by Stoltenhoff et al. that by switching from 

nitrogen to helium the deposition efficiency only increased by 10 to 20%. Note the black arrow 

in Figure 18 and Figure 19 indicates the interface between the coating and substrate [31].   
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Figure 18.  Microstructure image of CS Cu-coating on Cu-substrate (process gas: nitrogen) [31]. 

 

Figure 19.  Microstructures image of CS Cu-coatings on Cu-substrate (process gas: helium) [31]. 
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2.4 Inter-particle bonding mechanisms 

 In order to achieve a successful metallic bond through cold spraying, the particles must 

travel at a sufficient velocity to break down oxide films on the particle surfaces. As a result of 

the velocity of impact, the particles undergo plastic deformation. In Figure 20 the particle has 

impacted the substrate and displays both jetting as well as signs of metallic bonding on a 

particle-particle interface, caused by adiabatic shear instability [34]. The jetting process is 

believed to break up the oxide film to allow for metallurgical bonding [35].  The particles will 

also undergo severe tamping due to the building up of particles causing more plastic 

deformation, regardless of if the particles are bonded or not [36, 37].   

 

Figure 20.  SEM micrograph image of CP Ti splats deposited at 750 ̊ C, and 3 MPa (770 m/s) [34]. 
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Different mechanisms of mechanical bonding can be achieved through multi-particle 

interactions such as interlocking and extrusion. The interlocking and extrusion effects are shown 

in Figure 21 and Figure 22 [37]. The mechanical interlocking depends on the topography of the 

impacting surface, including the penetration depth of impacting particles and if an overlap of 

particles occurs. 

 

Figure 21.  Multi-particle interaction for an impacting velocity of 600 m/s: interlocking effect [37]. 

 

 

Figure 22.  Multi-particle interaction for an impacting velocity of 600 m/s: extrusion effect [37]. 

The high impact velocity reached during deposition in the CS process causes large 

amounts of plastic deformation and strain hardening, through plastic shock wave to the adjacent 

particles and substrate. The plastic shock wave is the rapid rise of pressure, which can possibly 

help lead to the continually enhanced bonding of the particles to substrate and other particles. 

[16]. The degree of deformation can be compared to the high collision pressure that is exerted in 

explosive welding [38].  
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2.5 The effect of Heat Treating Cold Sprayed Material 

 Heat treating a CS material after spraying can be extremely beneficial if the cold worked 

microstructure post deposition undergoes the process of recovery, recrystallization and/or grain 

growth, while experiencing sintering of the remaining unbonded particle surfaces. The as-

sprayed samples are cold worked to such a high degree that all the physical and mechanical 

properties are greatly altered from their typical values. It should be noted that for this study, the 

term “annealing” is used in the sense of the classical metallurgical definition of annealing, and 

not a specific temper designation for the 6061 alloy. 

In the recovery stage of annealing, the physical and microstructural properties that 

suffered changes because of cold working begin to recover their original values. While 

movement and annihilation of dislocations are faster with the higher amount of deformation 

within a region, increasing temperature can also speed up the recovery time.  The movement of 

the edge dislocations can form low-angle grain boundaries or subboundaries within deformed 

material [39]. 

 The recrystallization process in CS is dependent on the amount of cold work the regions 

have undergone. The higher the cold work within a region the lower the activation energy 

needed. During recrystallization the hardness starts to decrease, and the realignment of the 

crystal starts to occur, until new grains are formed [39]. Recrystallization has been observed in 

the CS microstructure from the high deformation caused by the CS process [40]. There are two 

types of recrystallization that can be found in CS, dynamic and static recrystallization. Dynamic 

recrystallization is when nucleation of new crystals occurs during deformation, where static 

recrystallization is produced from nucleation and growth of new grains from heat treatment, in 

the absence of ongoing deformation. Dynamic recrystallization has been observed in CS deposits 
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that have no undergone any additional heat treatment. Two possible mechanisms can be found to 

create dynamically recrystallized grains, these are grain boundary migrations and crystalline 

rotational [40]. The mechanism of migration based dynamic recrystallization is characterized by 

the movement of pre-existing high angle grain boundaries creating strain free region in the grain. 

Dynamic recrystallization through crystal rotation is defined as a gradual increase in 

misorientation of a dynamically recovered dislocation sub-cell microstructure [41].  

Similar dynamic recrystallization phenomena have been observed in other processing 

techniques such as equal channel angular pressing (ECAP), in which ultra-fine grains (UFG) 

were observed after processing. These grains were approximately 60 to 100 nm in diameter when 

subgrains were considered. The ECAP process of Cu also showed that twins were present, 

showing evidence that recrystallization was occurring much like what is theorized in the high 

deformation regions in CS [44].   

The grain growth process after recrystallization is driven by the reduction in grain 

boundary area throughout the material, by decreasing the number of grains, resulting in fewer 

grains of larger diameter. It is possible that grain growth can use excessive dislocation energy 

that has deformed a grain after recrystallization for boundary migration[39]. A study by Hosseini 

et al. on the structural evolution and grain growth kinetics for Al 6061 mechanically milled 

commercial chips were investigated. In the study a temperature of 200°C showed minimal grain 

growth (14 nm) over a 3-hour period. Factors affecting the grain growth include the activation 

energy needed for grain growth and the solute drag of Mg2Si [42].  

High deformation regions in CS materials indicate that those materials have undergone 

recrystallization stage prior to any post-spray heat treatment, while low and medium deformation 
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regions have yet to exhibit recovery prior to heat treatment [43]. Typically, post spray heat 

treatments produce the added benefit of improving the strength of the interfaces between the 

deposited powder particles tend to create greater interfacial adhesion through sintering and 

diffusion bonding [44].  

The mechanical properties of the heat-treated CS materials typically increase in bond 

strength, increase in conductivity, decrease in hardness, increase in elongation to failure, 

decrease in yield strength, and decrease in ultimate strength. All these phenomena are consistent 

with typical annealing behavior of heavily cold worked materials that undergo subsequent heat 

treatment.   Mechanical behavior of CS materials has been widely investigated, and the effects of 

subsequent heat treatment on those properties are reported in the literature.  While they are not 

the focus of this study, they offer valuable insight into the structure-processing-property-

relationships of these materials.  The reader is directed to the following papers for more 

information on these types of studies [13, 26, 31, 36, 43, 45-49].    

2.6 SEM and EBSD of CS Microstructures 

 Given the scale of features of concern in CS materials (ranging from tens of nanometers 

to microns), the Scanning electron Microscope is the gold standard for microstructural 

characterization. Figure 23 presents an SEM image of a coating produced by CS from as-

atomized 2618 Al powder [10]. This coating shows the different deformation regions created 

from the impact of the powder in the CS process. These regions can be seen as low deformation 

regions showing equiaxed grains, medium deformation regions showing elongate grains, and 

high deformation regions with ultra-fine grains. The use of a Scanning Electron Microscope 

equipped with a Field Emission Gun (FEG-SEM) is also required for the high deformation 
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regions of CS.  Tungsten thermionic emission sources produce large spot size compared to FEG 

sources and are not capable of nm scale resolution [50]. 

 

Figure 23.  SEM backscatter image of coating produced by CS from as-atomized 2618 Al powder with low (equiaxed 
grains), medium (elongated grains), and high deformation regions (ultra-fine grains) [10]. 

 

 Electron backscatter diffraction (EBSD) is a technique that produces an electron 

backscatter pattern (EBSP) in order to determine the crystallographic orientation of individual 

grains in a polycrystalline material. This characterization technique allows for understanding the 

grain orientation, local deformation structure, grain size, grain shape, and phase(s) present in the 

material. For an EBSD measurement a flat/polished crystalline specimen is placed in the SEM 

chamber at an angle of 70° with the sample facing the diffraction camera [51]. Finally, as the 

incident beam hits the sample surface the electron backscatter diffraction is produced and hits the 

phosphor screen and causes an EBSP or Kikuchi lines on the phosphor screen. The EBSP is then 

read by the detector and processed to recognize the individual patterns for indexing.  
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EBSD over the past decade has focused on finer grain sizes for severe plastic deformation 

(SPD) processes. These processes include CS [40, 52-55], equal channel angular pressing 

(ECAP) [56], Friction stir processing (FSP) [57], and more. The grain size from SPD processes 

can be on the order of 0.1-1 μm, which are referred to as ultra-fine grains and for grains with 

diameters less than or equal to 0.1 μm, the term nanostructured or nanocrystalline grains is 

standard convention [58].  

 The EBSP is produced by a backscatter diffraction of a stationary beam of high-

energy electrons within approximately a depth of 50 nm. Parameters of EBSD include working 

distance between column and sample, working distance between EBSD camera and sample 

Figure 24. voltage, beam intensity, EBSD CCD camera binning mode, gain, exposure time, band 

detection mode, Hough resolution, step size, scan area, tilt correction. Parameters that can 

change the spatial resolution include the sample working distance, voltage, and beam intensity 

[59]. Note that the higher beam intensity and longer acquisition time to collect the data will 

result in more contamination of hydrocarbons within the chamber which can result in image drift 

making it difficult to take high resolution EBSD images [60, 61]. Other common errors in EBSD 

include instrument calibration, specimen tilt axis, and sample alignment [62]. 
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Figure 24.  Schematic representing the sample and detector geometry used in EBSD analysis in the SEM. 

 

CS microstructure exhibits ultra-fine grains that have been observed to be as small as 

100-200 nm in diameter [40]. The CS microstructure is nonhomogeneous shown by the 

deformation shown in Figure 25. The formation of these ultra-fine grains is associated with 

dynamic recrystallization, resulting from enough deformation from the process to reduce the 

recrystallization temperature to that of the gas stream [40].  

Analytical methods enabled by EBSD include grain size determination, grain orientation 

analysis, relative phase distribution by area, and strain analysis. The grain boundary threshold for 

grain size analysis by EBSD is typically below 15° of mis-orientation for low-angle grain 

boundaries and above 15° of mis-orientation for high-angle grain boundaries [56, 63]. The grain 

orientation analysis can be plotted with respect to the material by comparing the grain orientation 
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to the pole figure or inverse pole figure [64]. The methods used for looking at grain boundaries 

and grain orientation have been used for CS and ECAP for ultra-fine grains shown in the 

following literature [40, 45, 63, 65]. 

 

Figure 25.  EBSD characterization of the cross-section of as-sprayed coating, Euler angle Map. The black box is to 
represent another figure within the literature [40]. 

. 

2.7 Microhardness data  

 Microhardness is often used to characterize the inhomogeneous mechanical properties of 

cold sprayed deposits and the substrates upon which they are sprayed. Microhardness of the 

deposit and substrate can be influenced by the surface roughness of the substrate before 

deposition. In a study the surface microhardness of a CS Cu material was the lowest when 

deposited on the ground surface (105.9 kgf/mm2), and highest when grit-blasted (179.1 kgf/mm2) 

[35]. Typically as the distance of the CS surface is closer to the substrate the values will become 

closer to that of the bulk 1100 Al (Figure 26) [66]. The different sized powder particles can also 

influence the microhardness [67]. The microhardness of the CS material is typically higher than 

that of the bulk material [14, 19, 31, 34, 46, 68-70]. The effect of the grain boundaries on the 
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microhardness properties can be seen using the Hall-Petch relationship where the smaller the 

grain size the greater the hardness. The microhardness may also vary with the crystal orientation 

[39].  

 

Figure 26.  Mechanical properties of 1100 Al coatings in terms of hardness VHN [66]. 

 In a study conducted by Eason et al. Vickers microhardness profiles were taken 

across the substrate through the interface of the CS bulk copper. These microhardness values 

were compared to post annealing and after annealing at 400C for 1 hr. These two different states 

of the copper showed that before annealing the hardness was higher the closer to the interface 

and decreased with increasing distance. When annealed the sample hardness decreased compared 

to the post annealed hardness. These microhardness results can be seen in Figure 27 [71]. 

Another study by Eason et al. showed that for Cu the CS microhardness was harder than cold 

rolled (90% reduction) after annealing, and the hardness was less before annealing than the cold 

rolled (90% reduction) Cu. Figure 28 shows a microhardness indent encompassing multiple CS  

regions [72].   
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Figure 27.  Vickers microhardness profiles taken across the substrate (left), interface (μm = 0), and spray (right) of bulk 
copper sprayed on powder metallurgy copper [71]. 
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Figure 28.  SEM image of a microhardness indent on a CS Cu as-sprayed sample encompassing multiple regions [72]. 
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Chapter 3: Experimental Procedure 
 

 The following chapter provides an overview of the Cold Spray methodology for sample 

production and experiments performed. The experiment was designed in order to further 

understand the microstructure of the 6061 Al CS, and its response to heat treatment. Five 

samples were analyzed. One cross sectioned powder and 4 different annealing state samples cut 

from the same CS bulk sample. In order to analyze these samples, they had to be polished for 

EBSD analysis with correlating SEM SE and BSE mode images. After EBSD, microhardness 

testing was completed to determine if there was a difference in microhardness between different 

regions.  

3.1 Cold Spray Parameters for Deposition 

 For this current project, a total of 5 specimen conditions were analyzed (CS-220 powder, 

AR, 1 hr, 10 hr, and 100 hr). With the exception of the unsprayed powder, all specimens were 

sectioned from a single deposit of sprayed material, and therefore all CS samples share the same 

CS process parameters. The spray parameters that were used for the CS sample are listed in 

Table 4, and constant operating parameters in Table 5. The substrate was prepared by grit 

blasting before CS deposition. The CS as-received sample and powder were provided by the 

Army Research Lab.  
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Table 4.  Aluminum Cold Spray Sample Parameters Variables. 

Sample 
Number 

Powder 
Composition 

Powder 
Source 

and 
Condition 

N2 
Pressu

re 
(bar) 

N2 Flow 
(m3/hr) 

Feeder 
RPM 

Traverse 
Intervals 

or 
(# of 

cycles) 

 
CS-220 

 
6061 

Brodmann 
HT100c to 

dry 
overnight 

 
25 

 
181 

 
2 

 
12 

 

Table 5.  Cold Spray Gun Parameters Constants. 

Carrier 
Gas 

Powder 
Feeder 

Gun 
Speed 
(mm/s) 

Step size 
(mm) 

Prechamber Nozzle Carrier 
Gas 

Standoff 
Distance 

(in) 

Gun 
Heater 

Setpoint 
(°C) 

 
 

N2 

 
 

CGT 
120 hole 

 
 

200 

2 mm 
during pass 

4 passes 
staggered 

.5mm each 
per cycle 

 
 

Long 

 
PBI 

Type 33, 
CS1104 

 
 

N2 

 
 
1 

 
 

400 

 

3.2 Sample preparation 

 To investigate the annealing response of the cold spray microstructure four sections were 

cut out of the CS-220 billet from the as-received state. These samples were cut from the same 

billet to remove any variation in samples. Three specimens were heat treated at 200 °C for an 

increasing time period (Table 6). 200 °C was chosen as the temperature to study whether there 

was recovery, recrystallization, and grain growth within each region, and to investigate the 

annealing response. The three samples were isothermally heat treated within a tube furnace in 

air.  The three samples were heat treated at 200 °C and removed at each interval 1 hour, 10 

hours, and 100 hours in order to investigate the interrupted annealing response of the sample.  
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Table 6.  Sample altered states after received from Army Research Lab. 

Sample Name Temperature Time Atmosphere 

220 Powder N/A N/A N/A 

220 AR N/A N/A N/A 

220 HT1 200 °C 1 hour Air 

220 HT10 200 °C 10 hours Air 

220 HT100 200 °C 100 hours Air 

  

For microstructural analysis, samples were epoxy mounted and set in a vacuum to 

remove air bubbles and left to cure overnight. Grinding and polishing were completed with the 

MetPrep3 with power head. The samples were prepared by traditional metallographic techniques 

down to 0.04 μm colloidal silica suspension polishing media.  

After polishing, the CS samples were extracted from sample mounts and any remaining 

epoxy mounting material was removed from all surfaces. The step of removing the mounting 

material was performed to eliminate the effects of excess hydrocarbon contamination in the SEM 

chamber, which can be detrimental to long duration EBSD scans. The powder mounted sample 

was carbon coated using the Ted Pella 108C Auto/SE Carbon Coater to create a conductive path 

for imaging. 

3.3 Scanning Electron Microscope and Electron Backscattering Diffraction 

 The SEM that was used for this study was the Tescan Mira3 field emission SEM 

equipped with Nordlys Nano EBSD with Aztec software. The field emission SEM was used for 

its higher resolution capabilities than a tungsten source SEM. The SE and BSE mode images 

were taken at an accelerating voltage of 15kv with a spot size of 5.8 nm, and a working distance 
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of 15 mm for high resolution images. The SE and BSE mode images were used to examine the 

microstructure and the contrast difference between the grains.  

The initial set up and physical parameters for the EBSD program and camera include 

phase aluminum, crystal structure FCC, lattice parameter 4.05Å, 84 reflectors (the number of 

reflectors tells the Oxford software how many theoretical kikuchi bands to use during the 

indexing process), and camera insert distance: 221.6 mm. The EBSD camera settings include 

binning mode of 4x4 and high gain. The SEM parameters for EBSD analysis and images were 

taken at an accelerating voltage of 12 kV, a spot size of 9.5 nm, and a working distance 20 mm 

for low and medium deformation regions and 5.1 nm and a working distance of 15 mm was used 

for high deformation regions to achieve a spot size of less than 10 nm. This data was collected to 

look at the grain size and orientation. Other parameters for EBSD for window size, step size, and 

time per sample can be found in Table 7. Step sizes were chosen based on the predicted grain 

size and time for acquisition. 
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Table 7.  EBSD parameters for window size, step size, and time per sample. 

Sample Window size (um) Step size (nm) Time (hr:min:sec) 

220 AR – low 10 μm x 10 μm 50 nm 2:01:53 

220 AR – medium 10 μm x 10 μm 50 nm 2:01:53 

220 AR – high 1 μm x 2 μm 10 nm 1:08:55 

220 HT1 – low 10 μm x 10 μm 50 nm 2:01:53 

220 HT1 – medium 10 μm x 10 μm 50 nm 2:01:53 

220 HT1 – high 1 μm x 2 μm 10 nm 51:10 

220 HT10– low 10 μm x 10 μm 50 nm 2:01:53 

220 HT10 – medium 10 μm x 10 μm 50 nm 2:01:53 

220 HT10 – high 1 μm x 1 μm 10 nm 57:21 

220 HT100 – low 10 μm x 10 μm 50 nm 2:01:53 

220 HT100 – medium 10 μm x 10 μm 50 nm 2:01:53 

220 HT100 – high 1 μm x 1 μm 10 nm 55:25 

 

3.4 Post Processing  

 Post processing is needed to have smooth data to work with and gather more meaningful 

conclusions. The post processing is completed to have a continuous pixelated image of results, 

and to distinguish between the different grains. Once the EBSD data was collected in Aztec, it is 

was exported into Channel 5 for cleaning and extrapolation of the data. First, cleaning out wild 

spikes (an isolated mis-indexed pixel) in the data was performed, and then extrapolation was 

performed. Extrapolation was completed while comparing the SE image mode to the EBSD 

image mode to ensure proper fit to the observed grain boundaries.  
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The extrapolation works by taking the nearest neighboring pixels and assigning the zero 

solution (blank) pixels with a cycle of 10 iterations of the nearest neighboring pixels. Note: that 

the extrapolation should be used with caution for large regions of zero solution that could consist 

of unknown contamination or phases. Figure 29 and Figure 30 demonstrate the extrapolation of 

data before (no cleaning or extrapolation, showing green dots zero solution pixels) and after 

(complete extrapolation). In the Channel 5 software the misorientation angle between pixels is 

used to determine grain boundaries. High angle grain boundaries were analyzed from greater 

than 15° and low angle grain boundaries were analyzed above 2.5° to below 15°. Grain boundary 

data was analyzed from 2.5° and up. Band Contrast is also used for the image quality of the 

captured EBSD image, showing the average intensity of the Kikuchi bands. 

 

Figure 29.  Image of EBSD map of powder used for CS to show an example of before cleaning and extrapolating data 
(grey pixels are indexed pixels and green pixels are zero solution or non-indexed pixels). 
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Figure 30.  Image of EBSD data of powder for CS to show an example after cleaning and extrapolating data (black lines 
are grain boundaries outlining the individual grains). 

 

 

3.5 Microhardness testing 

Microhardness testing was performed with a Shimadzu HMV-G21 series microhardness 

tester. Arrays of 25 indents shown in Figure 31 were performed on the as-received and heat-

treated specimens. Indents were taken using a 9.807 x 10-2 N force and 10 second dwell time. 

BSE mode images were then taken of indents from the low, medium, and high hardness values 

for correlation to microstructural features. Microhardness testing was performed to assess the 

dependence of microhardness on the microstructure under the indent, and to determine the 

change in properties within regions of differing degrees of deformation, due to the various 

exposure times at an elevated temperature. 
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Figure 31.  Schematic of microhardness indents. 
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Chapter 4: Results and Discussion 
 

This chapter presents the results from the experiments laid out in the previous chapter, 

and provides a discussion on microstructural response to prolonged exposure to elevated 

temperatures. Detailed SEM and EBSD images illustrate grain size and orientation before and 

after annealing of all samples. The presentation of data begins with the imaging and EBSD 

results from unsprayed powder specimens, to provide context on the undeformed microstructural 

features prior to spraying. Relatively low magnification images of microstructures are presented 

from each of the samples (AR, 1 hr, 10 hr, and 100 hr) to highlight the difference in appearance 

of the different characteristic deformation regions (low, medium, and high).  The sections that 

follow present a progressive evolution of the characteristic regions with respect to grain sizes and 

orientation, for successively longer exposure to elevated temperature.  Finally, hardness data is 

presented from each sample and then compared by region in the context of the overall 

microstructural effects of annealing. 

4.1 Characterization of Pre-Sprayed Powder 
 

Three randomly selected powders were analyzed for grain size and orientation. The 

microstructure and morphology of the pre-sprayed 6061 powder is presented in Figure 32. These 

SE mode images show that the powder is roughly spherical and has a Si rich secondary phase 

present in the as-solidified structure. The powders ranged from 20 μm to 50 μm in diameter.  

Three randomly selected powder sites were analyzed in order to have a better understanding of 

the grains and to show that each powder had randomly oriented grains. 

The orientation can be seen within the inverse pole figure maps and pole figure maps 

from the three different powder particles, showing that the grains are randomly oriented with 
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respect to one another. This data shows that there is no texture to the original powder. The 

average grain diameter range of the powder is approximately 2 to 5 μm in diameter. The grain 

orientation was expected to be randomly distributed showing that the powder had heterogeneous 

nucleation sites. The grain size data from the powders will be used to correlate between grains 

observed in the low, medium, and high deformation regions of the cold sprayed microstructures. 

The orientation data of the powder can be used to compare the orientations of the low, medium, 

and high deformation regions and the orientation that is present in each region. Additional EBSD 

maps can be found in appendix A.  
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 (a) 

 (b) 

Figure 32.  SEM micrographs taken in SE mode of powder particle(s) mounted in epoxy and polished in cross section. 
Samples were coated with carbon to achieve conductivity for imaging. 
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Figure 33.  SEM micrograph taken in SE mode of powder site 1. Note a 5 um scale bar is presented in the image. 
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(a) 

                                        
         (b)             (c) 

 
(d) 

Figure 34.  EBSD band contrast image (a) showing grain boundaries from powder cross section site 1 LAGB (<2.5°) white 
lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for a randomly selected powder cross section site 1. IPF 

legend (c). Note: 5 μm scale bar is presented in each image. Pole figure map (d) of {100}, {110}, and {111} for site 1. 
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4.2 CS Microstructure and Characteristic Deformation Regions 
 

The overall microstructural images, taken at low magnification, are presented for AR 

(Figure 35), 1 hr (Figure 36), 10 hr (Figure 37), and 100 hr (Figure 38). In these figures three 

characteristic regions can be observed; 1) low deformation, 2) medium deformation, 3) high 

deformation. These regions were chosen as low, medium, and high deformation because of the 

resulting degree of deformation to the grains from the impact of the particle. The center of the 

powder results in the lowest amount of deformation and would keep a similar structure as the 

original powder. The middle of the powder being between the edge and center of the particle, 

results in higher deformation than low deformation region. The high deformation is on the edge 

of the particle resulting in the largest deformation force from the particle impact. These regions 

are observed in all the samples, and persist without obvious change, despite long exposure to 

elevated temperature. This suggests that annealing does not drastically alter microstructural 

features at this scale. However, characterization at higher magnification suggests otherwise. 
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Figure 35.  SEM micrograph taken in SE mode of AR sample showing the overall microstructure of a Cold Spray surface 
1) low deformation region, 2) medium deformation region, and 3) high deformation region. 

 

Figure 36.  SEM micrograph taken in SE mode of 1 hr sample showing the overall microstructure of a Cold Spray surface 
1) low deformation region, 2) medium deformation region, and 3) high deformation region. 
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Figure 37.  SEM micrograph taken in SE mode of 10 hr sample showing the overall microstructure of a Cold Spray 
surface 1) low deformation region, 2) medium deformation region, and 3) high deformation region. 

 

Figure 38.  SEM micrograph taken in SE mode of 100 hr sample showing the overall microstructure of a Cold Spray 
surface 1) low deformation region, 2) medium deformation region, and 3) high deformation region. 
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4.3 Low Deformation Regions 
 

The grain size of the low deformation regions has a grain diameter on the order of 2 to 3 

μm.  This grain diameter range for the low deformation regions compares to grain diameter range 

observed in the powder. SEM micrographs in SE and BSE mode show that the electron beam 

channeling contrast compared to the inverse pole figure map correlates the difference in grain 

deformation/misorientation and the “tie-dye” contrast within grains. The SE and BSE images 

also correlate well to the results of the extrapolated EBSD data to the SE and BSE images on the 

different contrast. Deformation within the microstructure is shown in the AR sample Figure 36.  

The microstructural effects of recovery and recrystallization were observed by interrupted 

heat treatment from the AR samples through 100 hr. The LAGBs within the material show that 

there are regions of deformation with excess dislocations from the impact of the powder. No 

grain growth was observed in the as-received to 100 hr samples. The lack of grain growth could 

also be due to impurities (i.e. Mg2Si white outline of grains in SE and BSE micrographs.) which 

would inhibit grain growth.   

The inverse pole figure maps from the low deformation region in as-received to 100 hr 

sample shows there is no texture, as expected when compared to the original powder sample. 

The random grain orientation observed is comparable to the random orientation of the original 

powder. This information shows that the deformation process does not cause the same amount of 

deformation around the medium deformation region and that the removal of “tie-dye” shows 

grain recrystallization within grains. For instance, samples AR to 10 hr show “tie-dye”, while 

sample 100 hr show very few grains with “tie-dye” contrast in grains. Figure 51 shows the 

overall EBSD maps for low deformation regions. 
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Figure 39.  SEM micrograph taken in SE mode of AR low deformation. 

 

Figure 40.  SEM micrograph taken in BSE mode of AR low deformation.  
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(a) 

                                   
   (b)                      (c) 

 
(d) 

Figure 41.  EBSD band contrast image (a) showing grain boundaries for AR low deformation region LAGB (<2.5°) white 
lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for AR low deformation region. IPF legend (c). Note: 2 

μm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111} for IPF. 
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Figure 42.  SEM micrograph taken in SE mode of 1 hr low deformation region.  

 

Figure 43.  SEM micrograph taken in BSE mode of 1 hr low deformation region.  
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(a) 

                                        
                     (b)            (c) 

 
(d) 

Figure 44.  EBSD band contrast image (a) showing grain boundaries for 1 hr low deformation region LAGB (<2.5°) white 
lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for 1 hr low deformation region. IPF legend (c). Note: 2 

μm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111} for IPF. 
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Figure 45.  SEM micrograph taken in SE mode of 10 hr low deformation region. 

 

Figure 46.  SEM micrograph taken in BSE mode of 10 hr low deformation region. 
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(a) 

                                
   (b)                                               (c) 

 
(d) 

Figure 47.  EBSD band contrast image (a) showing grain boundaries for 10 hr low deformation region LAGB (<2.5°) 
white lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for 10 hr low deformation region. IPF legend (c). 

Note: 2 μm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111} for IPF. 
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Figure 48.  SEM micrograph taken in SE mode of 100 hr low deformation region. 

 

Figure 49.  SEM micrograph taken in BSE mode of 100 hr low deformation region. 
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(a) 

                                   
             (b)                                              (c) 

 
(d) 

Figure 50.  EBSD band contrast image (a) showing grain boundaries for 100 hr low deformation region LAGB (<2.5°) 
white lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for 100 hr low deformation region. IPF legend (c). 

Note: 2 μm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111} for IPF. 
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Figure 51.  Overall EBSD images of low deformation regions AR, 1 hr, 10 hr, and 100 hr. 
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4.4 220 AR Medium Deformation Regions 
 

The average grain size for Medium deformation region was determined to be 

approximately 1 μm to 2 μm for the AR, 1 hr, 10hr, and 100 hr sample. In the medium 

deformation regions, grains do not appear equiaxed compared to the powder and low 

deformation regions. This shows that there is approximately a 50 percent reduction in the width 

of the grains as compared to the powder and low deformation regions, associated with plastic 

deformation from the impact process. The reduction in width shows that the medium 

deformation regions undergo higher deformation than the low deformation regions. SEM 

micrographs in SE and BSE mode show that the electron beam channeling contrast correlates to 

the inverse pole figure map and shows the difference in grain deformation and the “tie-dye” 

contrast within grains. The SE and BSE images also correlate the results of the extrapolated 

EBSD data to the SE and BSE images on the different contrast. Note: no micrograph of SE or 

BSE for medium deformation region 1 hr was imaged because it was not relocated after EBSD.    

The microstructural effects of recovery and recrystallization were observed through the 

AR to 100 hr samples. The observation of the medium deformation region for the annealing 

response was similar to the low deformation region.  

The inverse pole figure maps from the medium deformation region as-received to 100 hr 

sample shows that there is no texture that developed during annealing. This information shows 

that the deformation process does not cause the same amount of deformation around the medium 

deformation region and that the removal of “tie-dye” shows grain recrystallization within grains. 

Thus, because the grains did not fully recrystallize and nucleate into a different grain the grains 

could not change orientation. For instance samples AR to 1 hr show “tie-dye”, while samples 10 

and 100 hr show very few grains with “tie-dye” contrast in grains. Figure 62 shows the overall 



79 
 

EBSD maps for medium deformation regions. Additional EBSD maps can be found in appendix 

A. 

 

Figure 52.  SEM micrograph taken in SE mode of AR medium deformation region. 

 

Figure 53.  SEM micrograph taken in BSE mode of AR medium deformation region. 
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(a) 

                                
                                                                            (b)                                              (c) 

 

 
(d) 

Figure 54.  EBSD band contrast image (a) showing grain boundaries for AR medium deformation region site LAGB 
(<2.5°) white lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for AR medium deformation region. IPF 

legend (c). Note: 2 μm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111}. 
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(a) 

                                      
      (b)                          (c) 

 
(d) 

Figure 55.  EBSD band contrast image (a) showing grain boundaries for 1 hr medium deformation region LAGB (<2.5°) 
white lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for 1 hr medium deformation region. IPF legend (c). 

Note: 2 μm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111}. 
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Figure 56. SEM micrograph taken in SE mode of 10 hr medium deformation region. 

 

Figure 57. SEM micrograph taken in BSE mode of 10 hr medium deformation region. 
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(a) 

                                   
                                                                          (b)                                                  (c) 

 
(d) 

Figure 58.  EBSD band contrast image (a) showing grain boundaries for 10 hr medium deformation region LAGB (<2.5°) 
white lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for 10 hr medium deformation region. IPF legend 

(c). Note: 2 μm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111}. 
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Figure 59.  SEM micrograph taken in SE mode of 100 hour medium deformation region. 

 

Figure 60.  SEM micrograph taken in BSE mode of 100 hour medium deformation region. 
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(a) 

                                      
                                                                                          (b)                                                           (c) 

 
(d) 

Figure 61.  EBSD band contrast image (a) showing grain boundaries for 100 hr medium deformation region LAGB 
(<2.5°) white lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for 100 hr medium deformation region. IPF 

legend (d). Note: 2 μm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111}. 
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Figure 62.  Overall EBSD images of medium deformation regions AR, 1 hr, 10 hr, and 100 hr. 
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4.5 220 High Deformation Regions 
 

The average grain size for high deformation region was determined to be on the order of   

241 nm for the AR deposit, with the smallest measured grain being roughly 30 to 40 nm (99% 

grain reduction in diameter). This reduction in diameter shows that the high deformation region 

has undergone recrystallization, most likely due to dynamic recrystallization. After 1 hr of 

heating, the average grain size was observed to be approximately 496 nm. For 10 hr, the average 

grain size is approximately 540 nm. Finally, for the 100 hr sample, the average grain size is 

approximately 589 nm. The reduction in grain size shows that the high deformation regions 

undergo higher deformation than the medium and low deformation regions. SEM micrographs in 

SE and BSE mode show that the electron beam channeling contrast compared to the inverse pole 

figure map shows the difference in grain deformation and that the “tie-dye” contrast within 

grains is no longer present. The SE and BSE images also compare the results of the extrapolated 

EBSD data to the SE and BSE images on the different contrast. Note: no micrograph of SE or 

BSE for high deformation region 10 hr was imaged because it was not relocated after EBSD. 

Figure 75 shows the high deformation region after ion milling to correlate with  the as-received 

samples prepared from polishing.    

The micrographs and EBSD provide data to show that the AR high deformation regions 

have undergone recrystallization as evidence by the grain size and non-existent “tie-dye” 

contrast. The recrystallization in the AR could be due to dynamic recrystallization or static 

recrystallization. The dynamic recrystallization could be caused by the induced strain from the 

powder impact. The static recrystallization could be caused by the strain increasing as another or 

multiple other powders impact the original powder inducing enough strain to cause 

recrystallization with a sufficient gas stream temperature. While the static recrystallization is 
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probable the dynamic recrystallization is far more likely, due to the insufficient gas stream 

temperature.  

The inverse pole figures of the high deformation regions from the AR sample shows 

deformation within a grain after the grain has already been recrystallized. This extra strain within 

the grain could cause strain induced boundary migration from AR to 1 hr. The grain orientation 

from the AR to 1 hr, 10 hr and 100 hr samples are more randomized and start to become less 

scattered as the annealing time increases, which indicates a reduction in the number of grains 

with a simultaneous increase in the size of the grains. Figure 74 shows the overall EBSD maps 

for high deformation regions. Additional EBSD maps can be found in appendix A. 

The high deformation regions have undergone grain growth from the annealing process. 

The grain growth from the AR state to 1 hr could undergo strain induced boundary migration and 

grain growth from the free surface energy effects. The grain data follows a logarithmic trend 

shown in Figure 73.  Appendix B refers to the grain data that was used for this analysis.  
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Figure 63.  SEM micrograph taken in SE mode of AR high deformation region. 

 

Figure 64.  SEM micrograph taken in BSE mode of AR high deformation region. 
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                                   (a)                                                  (b)                                        (c) 

 
(d) 

Figure 65.  EBSD band contrast image (a) showing grain boundaries for AR high deformation region LAGB (<2.5°) white 
lines and HAGBs (<15°) black lines.Orthogonal IPF map Z (b) for AR high deformation region. IPF legend (c). Note: 200 

nm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111}. 
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Figure 66.  SEM micrograph taken in SE mode of 1 hr high deformation region. 

 

Figure 67.  SEM micrograph taken in BSE mode of 1 hr high deformation region. 
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                                    (a)                                               (b)                                         (c) 

 
(d) 

Figure 68.  EBSD band contrast image (a) showing grain boundaries for 1 hr high deformation region LAGB (<2.5°) 
white lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for 1 hr high deformation region. IPF legend (c). 

Note: 200 nm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111}. 
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(a) 

                                  
                                                                           (b)                                                (c) 

 
(d) 

Figure 69.  EBSD band contrast image (a) showing grain boundaries for 10 hr high deformation region LAGB (<2.5°) 
white lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for 10 hr high deformation region. IPF legend (c). 

Note: 200 nm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111}. 
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Figure 70.  SEM micrograph taken in SE mode of 100 hour high deformation region. 

 

Figure 71.  SEM micrograph taken in BSE mode of 100 hour high deformation region. 
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(a) 

                                                     
                                                                            (b)                                              (c) 

 

(d) 

Figure 72.  EBSD band contrast image (a) showing grain boundaries for 100 hr high deformation region LAGB (<2.5°) 
white lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for 100 hr high deformation region. IPF legend (c). 

Note: 200 or 500 nm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111}. 
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Figure 73.  The grain growth for high deformation region from AR to 100 hr at 200°C, the large error bars are addressed 
in the text. 

 

 
Figure 74.  Overall EBSD images of high deformation regions AR, 1 hr, 10 hr, and 100 hr. 
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Figure 75.  SEM Micrograph taken in BSE mode of a high deformation AR region after ion milling. 

4.6 Microhardness Data 
 

The following results are a qualitative microhardness comparison of the CS samples for 

AR, 1 hr, 10 hr, and 100 hr.  These results include a 5x5 array of evenly spaced indents. The 

location of the array was randomly chosen to obtain a random sample of hardness values across 

various microstructural regions in the CS deposit. The results include BSE and Vickers Hardness 

results showing low, medium, and high deformation regions. BSE mode images were taken of 

the overalls shown in Figures 208 to 211. Results of Vickers microhardness data can be seen in 

Figure 77 for samples AR, 1hr, 10 hr, and 100 hr. The results of correlative images by BSE mode 

for the different deformation regions low, medium, and high can be seen in Figure 78 to Figure 

89.  
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Figure 77 shows the array of 25 indents taken from the AR 1 hr, 10 hr, and 100 hr 

samples, respectively. A linear profile of hardness values from each array was created and placed 

on the same graph to compare the hardness values across different sample conditions. An indent 

from the lowest, middle, and highest hardness values were imaged in BSE mode to assess the 

microstructural dependence of the hardness value to the different deformation regions for each 

sample.  

The lower hardness value correlated with indents in the predominantly low deformation 

regions. The middle hardness value correlated with predominantly medium deformation regions. 

The higher hardness values correlated with regions of high deformation. It is important to note 

that these hardness indents each encompass various areal fractions of low, medium, and high 

deformation regions, but there is obvious and strong correlation to the hardness value and the 

dominance of one particular type of deformation. More importantly, it was observed as the 

annealing time increased the hardness values across the entire array of hardness values decreased 

in each region show in Figure 68.  
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                                    (a)                                                                          (b) 

 
                                    (c)                                                                         (d) 

Figure 76.  SEM micrograph taken in BSE Mode of CS samples for Overall 25 Microhardness Indents for AR (a), 1 hr 
(b), 10 hr (c), and 100 hr (d). 
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Figure 77.  HV values: sorted by increasing values for AR, 1 hr, 10 hr, and 100 hr CS samples. The dashed lines are to 
show the difference in microhardness between each sample. 
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Figure 78.  SEM micrograph taken in BSE mode of AR low deformation region indent. The measured microhardness 
value was 99.2. 

 

Figure 79.  SEM micrograph taken in BSE mode of 1 hr low deformation region indent. The measured microhardness 
value was 93.7. 
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Figure 80.  SEM micrograph taken in BSE mode of 10 hr low deformation region indent. The measured microhardness 
value was 80.8. 

 

Figure 81.  SEM micrograph taken in BSE mode of 100 hr low deformation region indent. The measured microhardness 
value was 67.9. 
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Figure 82.  SEM micrograph taken in BSE mode of AR medium deformation region indent. The measured microhardness 
value was 107. 

 

Figure 83.  SEM micrograph taken in BSE mode of 1 hr medium deformation region indent. The measured 
microhardness value was 101. 
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Figure 84.  SEM micrograph taken in BSE mode of 10 hr medium deformation region indent. The measured 
microhardness value was 88.7. 

 

Figure 85.  SEM micrograph taken in BSE mode of 100 hr medium deformation region indent. The measured 
microhardness value was 74.9. 
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Figure 86.  SEM micrograph taken in BSE mode of AR high deformation region indent. The measured microhardness 
value was 119. 

 

Figure 87.  SEM micrograph taken in BSE mode of 1 hr high deformation region indent. The measured microhardness 
value was 112. 
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Figure 88.  SEM micrograph taken in BSE mode of 10 hr high deformation region indent. The measured microhardness 
value was 101. 

 

Figure 89.  SEM micrograph taken in BSE mode of 100 hr high deformation region indent. The measured microhardness 
value was 91.1. 
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Chapter 5: Conclusions and Future Work 
 

The purpose of this project was to characterize the annealing response of the 6061 CS 

sample. The cross section of CS Al 6061 microstructural images and EBSD provided 

quantitative and qualitative information on the grain size and orientation of the CS 

microstructure. The three different deformation regions (low, medium, and high) were 

characterized with respect to grain size, deformation, crystallographic orientation, and 

microhardness.  

5.1 Conclusions 
  

The EBSD detector was able to recognize approximately 80 to 90 percent of the low, 

medium and high deformation region in the AR CS conditions. Despite the difficulties in 

obtaining EBSD data from extremely fine grains, highly deformed aluminum, the different 

regions of typical cold sprayed microstructures were almost fully characterized by the Oxford 

Nordlys Nano EBSD system. Eliminations of the effects of hydrocarbons was achieved by 

cleaning the chamber with a plasma cleaner. Drifting was minimized, improving the ability to 

maintain consistency in mapping. Through careful sample preparation, elimination of 

hydrocarbons and optimization of the SEM parameters, EBSD revealed that the high 

deformation regions in the AR state were comprised of recrystallized grains with 30 to 40 nm 

diameter, which represents an astounding, 99% reduction diameter.  

The low deformation regions showed that the average grain diameter was approximately 2 

μm to 3 μm across all sample conditions, which was comparable to the original starting grain 

size of the powder. Low deformation regions did not exhibit any change in grain size through the 

annealing process, although evidence of recovery and recrystallization were observed. The 



108 
 

orientation of the grains also showed random distribution similar to the powder that was used for 

the CS samples and maintained random orientation throughout the duration of the heat treatment. 

The Mg2Si particles in the low deformation regions appear to pin grain boundary and prevent 

grain boundary migration. 

The medium deformation regions showed that the average grain diameter was approximately 

half that of the grains in the low deformation regions and have a typical diameter of 1 to 2 μm. 

These grains also typically exhibit random orientation. The annealing response for the medium 

deformation region showed that there was no significant change in grain size between AR to 100 

hrs. When annealed, the medium deformation region showed evidence of recovery and partial 

recrystallization of the grains. No grain growth occurred within the medium deformation region. 

The Mg2Si particles in the medium deformation regions appear to pin grain boundary and 

prevent grain boundary migration. 

The low and medium deformation regions would undergo recrystallization, although a small 

fraction showed signs of complete recrystallization. The recrystallization is shown within the low 

and medium deformation regions from going from an extreme “tie-dye” deformation within 

grains to a singular orientation. The grain orientation of the low and medium regions was similar 

to the powder having random mainly random orientations. There was not a large enough 

sampling of grains within the regions per annealing state to make a conclusive statement about if 

there is texture. The results tend to lead that there is no texture within the regions.   

 The high deformation regions exhibited increasing average grain diameter from the as-

received state to the 100 hrs, with typical grain diameter increasing by 244 percent. The AR and 

1 hr sample have a random orientation, while the 100 hr sample started to exhibit common 
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orientations. It was concluded that high deformation region has already undergone 

recrystallization, likely dynamically, and experience significant grain growth occurred from the 

100 hour heat treatment.   

The high deformation regions showed to have undergone dynamic recrystallization, because 

there is deformation within grains. This agrees with the study done by Zou et al. that the ultrafine 

grains were created by dynamic recrystallization was produced by subgrain rotation and lattice 

distortion. The rapid grain growth observed from as-received to 1 hr showed that both the surface 

energy and excess strain as driving force for grain growth. The Mg2Si particles are scattered 

randomly within the high deformation regions, and not along clear boundary lines, and therefore, 

do not appear to inhibit grain growth as it does in the low and medium deformation regions.  

The microhardness study provided direct correlation between the degree of deformation and 

grain size with measured hardness. While this result may seem simple, it provides sound 

correlation with the observed changes in microstructure for all three deformation regions. This 

study provides a concise overview of the annealing response of the cold spray deposits.  
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5.2 Future Work 
 

The following is a list of future works that could be completed to understand the 

microstructure and its response to the thermal treatments more thoroughly. Further EBSD 

investigation should be conducted to collect a larger sample size for the different deformation 

regions. With the larger data set, conclusive results of grain size and grain orientation can be 

collected. This grain orientation data will help to inform the understanding of a conclusive result 

on texture in the deformed and recrystallized regions of the deposit.  

Further investigation of Al using a Focused Ion Beam (FIB) and EBSD detector should be 

performed. Serial sectioning CS regions with the FIB to create 3D models could help enhance 

understanding of the deformation mechanisms at play in these materials.  
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Appendix A – Additional EBSD sites for powder, (low, medium, 
and high) deformation regions 
  

 

Figure 90.  SEM micrograph taken in SE mode of powder site 2. Note a 10 um scale bar is presented in the image. 



118 
 

  
(a) 

                                 
           (b)                (c) 

 
(d) 

Figure 91.  EBSD band contrast image (a) showing grain boundaries from powder cross section site 2 LAGB (<2.5°) white 
lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for a randomly selected powder cross section site 1. IPF 

legend (c). Note: 5 μm scale bar is presented in each image. Pole figure map (d) of {100}, {110}, and {111} for site 2. 
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Figure 92.  SEM micrograph taken in SE mode of powder site 3. Note a 10 um scale bar is presented in the image. 
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(a) 

                             
                 (b)                                                             (c) 

 
(d) 

Figure 93. EBSD band contrast image (a) showing grain boundaries from powder cross section site 3 LAGB (<2.5°) white 
lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for a randomly selected powder cross section site 1. IPF 

legend (c). Note: 5 and 10 μm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111} for site 3. 
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Figure 94.  SEM micrograph taken in SE mode of AR Mid deformation site 1. 

 

Figure 95.  SEM micrograph taken in BSE mode of AR medium deformation region site 1. 
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(a) 

                                       
                                                                          (b)                                                (c) 

 

(d) 

Figure 96.  EBSD band contrast image (a) showing grain boundaries for AR medium deformation region site 1 LAGB 
(<2.5°) white lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for AR mid deformation site 1. IPF legend 

(c). Note: 2 μm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111}. 
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Figure 97. SEM micrograph taken in SE mode of 10 hr medium deformation region site 2 

 

Figure 98.  SEM micrograph taken in BSE mode of 10 hr medium deformation region site 2. 
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(a) 

                                  
                                                                           (b)                                                (c) 

 
(d) 

Figure 99.  EBSD band contrast image (a) showing grain boundaries for 10 hr medium deformation region site 2 LAGB 
(<2.5°) white lines and HAGBs (<15°) black lines. Orthogonal IPF map Z, X, and Y (a, b, and c) for 10 hr Mid 

deformation site 2. IPF legend (d). Note: 2 μm scale bar is presented in the image. Pole figure map (d) of { 100 }, { 110 }, 
and { 111 }. 
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Figure 100.  SEM micrograph taken in SE mode of AR High deformation site 1. 

 

Figure 101.  SEM micrograph taken in BSE mode of AR High deformation site 1. 
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                               (a)                                                      (b)                                          (c) 

 
(d) 

Figure 102.  EBSD band contrast image (a) showing grain boundaries for AR high deformation region site 1 LAGB 
(<2.5°) white lines and HAGBs (<15°) black lines. Orthogonal IPF map Z (b) for AR high deformation site 1. IPF legend 

(c). Note: 200 nm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111}. 
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Figure 103.  SEM micrograph taken in SE mode of AR high deformation region site 3. 

 

Figure 104.  SEM micrograph taken in BSE mode of AR high deformation region site 3. 
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(a) 

                               
   (b)                                              (c) 

 
(d) 

Figure 105.  EBSD band contrast image (a) showing grain boundaries for AR high deformation region site 3 LAGB 
(<2.5°) white lines and HAGBs (<15°) black lines.Orthogonal IPF map Z (b) for AR high deformation site 3. IPF legend 

(c). Note: 200 nm scale bar is presented in the image. Pole figure map (d) of {100}, {110}, and {111}. 
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Appendix B – Grain Size data for high deformation regions 
 

As-received High deformation regions   

Nr. Area [µm²] d [µm] 
Aspect 
ratio 

Border 
grain Grain ID 

1 0.0997 0.35629 2.5309 corner 0 

2 0.0851 0.32917 4.3922 edge 1 

3 0.0183 0.15264 1.4553 edge 2 

4 0.0173 0.14842 1.2436 edge 3 

5 0.0219 0.16698 1.7145 edge 4 

6 0.0803 0.31975 1.3161 corner 5 

7 0.0261 0.1823 1.952 no 6 

8 0.0871 0.33302 3.4152 no 7 

9 0.1894 0.49107 1.1732 edge 8 

10 0.0739 0.30674 3.4324 no 9 

11 0.0128 0.12766 1.683 edge 10 

12 0.0505 0.25357 1.6194 edge 11 

13 0.0134 0.13062 2.1415 edge 12 

14 0.5925 0.86856 3.0184 edge 13 

15 0.0033 0.06482 2.2681 no 14 

16 0.0602 0.27686 2.1143 no 15 

17 0.006 0.0874 3.2787 no 16 

18 0.0029 0.06077 1.2955 no 17 

19 0.0923 0.34281 2.7661 edge 18 

20 0.0367 0.21617 3.4864 edge 19 

21 0.0749 0.30881 4.3944 no 20 

22 0.0011 0.03742 1.7876 no 21 

23 0.1315 0.40918 4.1952 edge 22 

24 0.0021 0.05171 1.7801 no 23 

25 0.0901 0.3387 1.8213 edge 24 

26 0.0037 0.06864 1.9037 no 25 

27 0.0036 0.0677 1.4108 no 26 

      
1 hr High deformation regions    

Nr. Phase Area [µm²] d [µm] 
Aspect 
ratio 

Border 
grain 

1 Aluminium 3.0936 1.9847 4.1093 corner 
2 Aluminium 0.7708 0.99066 2.5063 edge 
3 Aluminium 0.0896 0.33776 1.4974 corner 
4 Aluminium 0.0024 0.05528 2.2328 no 
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5 Aluminium 0.7678 0.98873 4.6789 edge 
6 Aluminium 0.0007 0.02985 1.0801 no 
7 Aluminium 0.3434 0.66123 3.4431 edge 
8 Aluminium 0.0334 0.20622 2.9316 edge 
9 Aluminium 0.0009 0.03385 1.39 no 

10 Aluminium 0.003 0.0618 4.8537 no 
11 Aluminium 0.2804 0.59751 2.1723 edge 
12 Aluminium 0.3016 0.61968 1.2588 corner 
13 Aluminium 0.0792 0.31755 2.0412 corner 
14 Aluminium 0.0033 0.06482 1.7766 no 

      
      
10 hr High deformation 
regions    

Nr. Area [µm²] d [µm] 
Aspect 
ratio 

Border 
grain Grain ID 

1 0.8384 1.0332 3.426 corner 0 
2 0.2506 0.56487 8.1007 edge 1 
3 0.2866 0.60408 3.6282 edge 2 
4 1.672 1.4591 2.4509 corner 3 
5 0.1452 0.42997 7.2683 corner 4 
6 0.0214 0.16507 2.8884 no 5 
7 0.0275 0.18712 3.8146 no 6 
8 0.047 0.24463 1.9172 edge 7 
9 0.0236 0.17334 1.7945 corner 8 

      
100 hr High deformation regions   

Nr. Area [µm²] d [µm] 
Aspect 
ratio 

Border 
grain Grain ID 

1 0.0582 0.27222 1.2411 edge 0 
2 1.8772 1.546 2.0142 corner 1 
3 0.424 0.73475 2.3956 edge 2 
4 0.0937 0.3454 2.8872 no 3 
5 0.1102 0.37458 2.5901 edge 4 
6 0.1564 0.44625 2.908 corner 5 
7 0.1262 0.40085 2.0666 edge 6 
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