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Abstract

Estimation of the parameters of Garch models for financial data is typically based

on daily close-to-close returns. This paper shows that the efficiency of the parameter

estimators may be greatly improved by using volatility proxies based on intraday data.

The paper develops a Garch quasi maximum likelihood estimator (QMLE) based on

these proxies. Examples of such proxies are the realized volatility and the intraday high-

low range. Empirical analysis of the S&P 500 index tick data shows that the use of a

suitable proxy may reduce the variances of the estimators of the Garch autoregression

parameters by a factor 20.
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1 Introduction

Garch models based on close-to-close daily returns do quite well in describing financial volatil-

ity, but they seem incompatible with intraday high-frequency data at first sight. The standard

continuous time model for the log of asset prices is a semimartingale, and volatility is then

the square root of the quadratic variation process. High-frequency data are accordingly used

to estimate the daily increment in the quadratic variation. In the discrete time setting of

Garch models, the day volatility is the scale factor that transforms the iid innovation Zn into

the log-return rn.

Throughout this paper we assume that the sequence of daily log-returns rn is a sta-

tionary Garch(1,1) process. We use the Garch(1,1) representation given by Drost and

Klaassen (1997):

rn = vnτ Zn (1)

v2
n = 1 + γr2

n−1 + βv2
n−1, (2)

where the innovations Zn are iid, mean zero. For identification the second moment is stan-

dardized by EZ2
n = 1. This system is equivalent to the more familiar Garch equations

rn = σnZn and σ2
n = κ + αr2

n−1 + βσ2
n−1 by writing σn = vnτ, and κ = τ 2, α = γτ 2. The

system given by (1) and (2) has the advantage that the standardization of Zn affects only

the norming parameter τ. The focus on Garch(1,1) is for simplicity of exposition only. The

principle below allows one to improve estimation of the parameters of any scale process vn.

Let us say a few words on parameter estimation in this model. The returns rn, n =

1, . . . , N , are observable, the volatilities vn are not. One may estimate the parameter θ =

(τ, γ, β) in (1) and (2) by maximizing the log-likelihood of the observations rn. If the Zn are

standard Gaussian, one obtains the likelihood by using that the returns rn are conditionally

Gaussian distributed with mean zero and variance v2
nτ 2. If the distribution of the random

variables Zn is unknown, one may still proceed as if the Zn were standard Gaussian. The

estimator is then called a quasi-ML estimator (QMLE).

Our goal is to improve estimation of the autoregression parameters γ and β by making

use of high-frequency data. There have been attempts to make use of high-frequency data

for parameter estimation. One could derive the parameters of the daily Garch process by es-

timation of the Garch process with a five-minute time unit using the time aggregation results

of Drost and Nijman (1993). Such an approach runs into problems since it does not take into

account the daily volatility cycle observed in five-minute returns, see Andersen and Bollerslev
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(1997). One may also start from a continuous time diffusion. The discretized process is then

a stochastic volatility model and one may use the high-low range for parameter estimation,

see Alizadeh, Brandt and Diebold (2002). If the diffusion coefficient is an Ornstein-Uhlenbeck

process, or a CEV process, then the daily integrated volatility is an ARMA(1,1) process. The

ARMA parameters may then be estimated by state space methods, see Barndorff-Nielsen and

Shephard (2002).

The present paper takes a different approach. We start out from the Garch system (1) and

(2) for the daily close-to-close returns rn. For each day n we observe the entire intraday log-

return process Rn(·). To distill the day volatility from Rn one may use the empirical realized

quadratic variation RQVn based on five-minute intervals (also called realized variance). One

obtains RQVn by summing the squared five-minute increments over the n-th trading day.

The realized volatility Hn =
√

RQVn is generally seen as a good proxy for volatility. Now,

the parameters γ and β play a role in the likelihood for the Hn. If one could construct

this likelihood, one hopes to find an efficiency gain compared with estimation based on the

likelihood for the returns rn. To obtain the likelihood for the proxies Hn one needs to embed

the close-to-close return rn in a model for the intraday return process Rn. As a model we

shall propose a simple extension of the daily Garch process to a continuous time intraday

log-return process Rn. This intraday extension yields the following system for the volatility

proxy Hn:

Hn = vnτH ZH,n (3)

v2
n = 1 + γr2

n−1 + βv2
n−1, (4)

where the innovations ZH,n ≥ 0 are iid and have standardization EZ2
H,n = 1. The system

given by (3) and (4) has the property that the parameters γ, β in (4) have the same value

as in equation (2). So Hn and rn share the daily factor vn. We derive the likelihood for

the observations Hn and show how one may estimate the parameter θ = (τH , γ, β) by quasi

maximum likelihood. More generally, we shall show that one may replace Hn by other proxies

than the realized volatility; for example the intraday high-low range, or the absolute value

of the maximal decrease of Rn over a fifteen minute interval.

The theory developed in the paper gives exact relationships for the asymptotic relative

efficiency of QML estimators for γ and β using alternative proxies Hn. The quality of the

estimator is determined by the innovation ZH . If the variance of Z2
H is smaller than var(Z2),

then the QML estimator for γ, β based on the proxies Hn is sharper than the one based

on the returns rn. Theorem 3.1 gives conditions for the asymptotic normality of the QMLE
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based on Hn. Its proof is based on the likelihood theory in Straumann and Mikosch (2006).

A similar estimation theory may be developed using the log proxies, log(Hn).

The estimators are applied to the four years 1992–1995 of the S&P 500 index. We motivate

this choice of time period in Section 4. We emphasize that it is not our aim to identify an

optimal volatility model. For using volatility proxies as predictors of future volatility we refer

to Engle and Gallo (2006) and Ghysels, Santa-Clara, and Valkanov (2006). The purpose

of the present analysis is to judge the potential benefits of using volatility proxies based

on intraday data for parameter estimation. Figure 1 gives an impression of the empirical

efficiency gains. It shows four 95% confidence ellipses for estimates of (γ, β), based on |rn|
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Figure 1: Confidence regions for estimators of (γ, β), based on alternative volatility proxies H . The data
are the S&P 500 index futures over 1992–01–01 to 1995–12–31 (1001 days). In the figure |r| depicts the
Gaussian QMLE applied to the absolute returns |rn| (the usual Garch(1,1) QMLE). The other estimates are
based on the log-Gaussian QMLE applied to hl (high-low range), RV5 (five-minute realized volatility) and
H∗ (a proxy determined in de Vilder and Visser (2007)).

and on three other proxies. The confidence regions are computed using Bollerslev-Wooldridge

(1992) robust covariances. The main point of this paper is made in the figure: one may greatly

improve the parameter estimation for Garch processes by the use of suitable proxies based on

high-frequency data.

The remainder of the paper is organized as follows. Section 2 introduces the model and

discusses volatility proxies. Section 3 presents the theory on estimation by intraday volatility

measures. Building on the principle of quasi maximum likelihood it provides the theory for

parameter estimation by the multiplicative equation (3), which we shall refer to as Gaussian

QML. It also provides results for estimation based on the log proxies, log-Gaussian QML.
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Section 4 applies the QMLE’s to the S&P 500 index data. Section 5 compares simulations

for estimators of (γ, β) based on realized variance with the standard QMLE based on close-

to-close returns. Our conclusions are presented in Section 6. Appendices A, B, C, and D

give a description of the data, background on QML estimation, proofs, and background on

simulations.

2 Preliminaries

Section 2.1 introduces the model for the intraday return process Rn(·). Section 2.2 char-

acterizes the volatility proxies that may be used for QML estimation. For a more detailed

account of the model for Rn, and of proxies, see de Vilder and Visser (2007).

2.1 Intraday Return Process

To deal with high-frequency data in the daily Garch system given by (1) and (2) one needs to

embed the sequence of daily close-to-close returns (rn) in a continuous time process. Each day

we observe the continuous time, intraday log-return process Rn(·): observable information

is the filtration (Fn), given by σ(Rk, k ≤ n). The process Rn represents within day n the

log-return with respect to the previous day’s close. Describe Rn(·) as the product of the scale

factor vnτ and a cadlag1 process Ψn(·) on the time interval [0, 1], the trading day:

Rn(u) = vnτ Ψn(u), 0 ≤ u ≤ 1,

where the processes Ψn(·) are iid over different days, have standardization EΨ2
n(1) = 1, and

intraday time u advances from zero to one. So Rn(0) gives the overnight return and Rn(1)

equals the close-to-close return rn. The scale factor vnτ is the same as in the discrete time

model (1), and is constant within the day. The process Ψn may be any process representing

the intraday price pattern. This continuous time model is simple enough to allow for analysis,

and it takes into account the diversity in the behaviour of the market on successive trading

days. One may recover the close-to-close returns rn by setting Zn = Ψn(1) :

rn = Rn(1) = vnτ Zn.

1The sample paths are right-continuous and have left limits.
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2.2 Volatility Proxies

Let us introduce proxies for the volatility vnτ . In general we call the random variable Hn =

H(Rn) (or the functional H) a proxy whenever H is positive and is positively homogeneous

in Rn. Positive homogeneity means:

H(sRn) = sH(Rn), s ≥ 0. (5)

The absolute return |rn| is a proxy. Other examples are the intraday high-low range and the

realized volatility.

We assume that the random variable H(Ψ) is not identically zero,

µH
2 =

√
EH2(Ψ) > 0.

Let us introduce the normalized innovation ZH by setting

ZH = H(Ψ)/µH
2 ,

so EZ2
H = 1. By homogeneity Hn = H(Rn) = vnτH(Ψn), which gives (cf. (3))

Hn = vnτH ZH,n,

where the positive, iid innovations ZH,n ≥ 0 have EZ2
H = 1, and τH = τ µH

2 . Replacing H by

3H only adds a factor 3 to the norming parameter τH . A good proxy H distills the factor

vnτH from Rn without much error.

3 QML Estimators Based on a General Volatility Mea-

sure

This section develops the theory for estimation of the parameters γ and β using the proxy Hn,

as sketched in the introduction. We first treat the Gaussian QML estimator, which is based on

the multiplicative equation Hn = vnτHZH,n. We then discuss the log-Gaussian QMLE, which

is a Gaussian QMLE applied to the additive equation log(Hn) = log(vn)+log(τH)+log(ZH,n).

Let us address one important issue first. Why should one bother with likelihood methods

if one can simply obtain v2
nτ 2 from the intraday return process Rn(·)? Consider for example

the quadratic variation. The quadratic variation (QV) is the limit of the sum of squared
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intraday returns, as the length of the sampling intervals approach zero. If the process Ψ(·)
of Section 2.1 is a Brownian motion, then QV (Ψ) = 1, so QV (Rn) = v2

nτ
2. In general we do

not have this exact relationship. Under fairly mild conditions the quadratic variation of Rn

is an unbiased estimator of the conditional variance of the daily return,

E(QVn|Fn−1) = var(rn|Fn−1) = v2
nτ

2,

see for instance Andersen, Bollerslev, Diebold, and Labys (2003). Generally QVn 6= var(rn|Fn−1)

so the conditional variance v2
nτ 2 remains unobservable. If one happens to be in the fortunate

circumstance of having a perfect proxy, Hn = vnτH , then the QML estimation below yields

perfect estimates. A second reason for considering likelihood methods is that one may want

to study the dynamics of a sequence of proxies (Hn). These dynamics are determined by the

volatilities (vn). So the (vn) are central to understanding the time series behaviour of, for

example, the realized volatilities RVn.

3.1 Gaussian QMLE

This section extends the usual Garch QMLE based on close-to-close returns to a QMLE

based on the proxies Hn. For a brief review of the Garch(1,1) QMLE based on close-to-close

returns, see Appendix B.3.

Recall that the intraday return process Rn(·) = vnτ Ψn(·) yields close-to-close returns

rn = vnτZn. From Section 2.2 we know that the volatility proxy Hn satisfies

Hn = vnτH ZH,n. (6)

Similarly to the case of squared returns one has the relation E(H2
n|Fn−1) = v2

nτ
2
H . The volatil-

ity dynamics (vn) and the autoregression parameters (γ, β) are the same as those for rn. The

norming parameter τ 0
H is related to τ 0 for the returns rn by

τ 0
H = τ 0µH

2 , (7)

reflecting that the overall scale of Hn may differ from the overall scale of the absolute returns

|rn|. The principle of quasi maximum likelihood may be applied to the multiplicative equa-

tion (6). First consider the absolute returns |rn|. Treating these as absolute values of mean

zero Gaussian random variables gives the same likelihood as simply treating the returns rn as

mean zero Gaussian random variables. Using the QML-notation of Appendix B.1 one may
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set the observation yn = |rn|, the conditional mean µn = 0, and the conditional variance

hn = v2
nτ 2, since the Gaussian log-likelihood needs the value for y2

n = r2
n only, and not the

value of rn:

LN (θ; y1, . . . , yN) = −1

2

N∑

n=1

(
log(v2

n(γ, β) τ 2) +
y2

n

v2
n(γ, β) τ 2

)
, (8)

modulo an unimportant constant.

Similarly, treating Hn as if it were the absolute value of a mean zero Gaussian ran-

dom variable yields a QML estimator for (τH , γ, β). So one may set yn = Hn, µn = 0, and

hn = v2
nτ 2

H , to obtain the QMLE θ̂N . We refer to this QMLE as the Gaussian QMLE (based

on Hn).

For notational convenience we write

σH,n = vnτH . (9)

Equation (9) suppresses the parameter θ in σH,n = σH,n(θ) for θ = (τH , γ, β). Define the

matrix GH by

GH(θ)i,j = E
[ 1

σ4
H,0(θ)

(∂ σ2
H,0(θ)

∂θi

)(∂ σ2
H,0(θ)

∂θj

)]
. (10)

The QML covariance matrix V0, Appendix B.1 equation (28), now simplifies to the matrix

given in (12). One obtains the regularity conditions for the Gaussian QMLE by adjusting

the six conditions of Appendix B.3 for the QMLE based on close-to-close returns. One has

to adjust the condition EZ4 < ∞ to EZ4
H < ∞, and replace τ by τH in condition (2). One

has to keep τ 0 in condition (3). This yields the following assumptions:

A1. (Zn) is an iid sequence with EZ2 = 1,

A2. τH > 0, γ > 0, β ∈ [0, 1),

A3. E log (γ0(τ 0)2Z2 + β0) < 0,

A4. Z2 is non-degenerate,

A5. EZ4
H < ∞,
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A6. P(|Z| ≤ z) = o(zµ) as z ↓ 0, for some µ > 0.

The only condition that concerns ZH is (A5). Most conditions concern the innovation Z of

the close-to-close returns rn. This is because Zn appears in the volatility process vn, which

is driven by the close-to-close returns. For more background on the conditions (A1) to (A6),

see Appendix B.3.

Theorem 3.1. Let θ0 = (τ 0
H , γ0, β0) and τ 0

H = τ 0µH
2 , see equation (7). Assume conditions

(A1) to (A6). Then the Gaussian QMLE θ̂N is asymptotically normal:

√
N(θ̂N − θ0)

d→ N (0, V0), N → ∞, (11)

with

V0 = var(Z2
H) G−1

H (θ0). (12)

The proof of Theorem 3.1 consists of an adjustment of the proof of Straumann and Mikosch

(2006) for the QMLE based on the returns yn = rn to the case that yn = Hn. One may find

it in Appendix C.

Let us recall the notion of asymptotic relative efficiency. If two competing estimators

φ̂
(1)
N and φ̂

(2)
N are consistent and asymptotically normal estimators of a parameter φ with

asymptotic variances (σ
(1)
φ )2 and (σ

(2)
φ )2, then the asymptotic relative efficiency (ARE) is

given by

ARE = (σ
(1)
φ )2/(σ

(2)
φ )2.

The following lemma enables the comparison of the QML covariance matrices V0 for estima-

tors of γ and β based on alternative proxies H. The proof may be found in Appendix C.

Lemma 3.2. The (γ, β)-block of G−1
H (θ0) in Theorem 3.1 does not depend on the particular

proxy H.

Corollary 3.3 below follows from Theorem 3.1 and Lemma 3.2.

Corollary 3.3. Consider two Gaussian QMLE’s for γ and β from Theorem 3.1, the first

based on proxies H ′
n and the other based on Hn. These estimators have asymptotic relative
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efficiency

AREGaussian(H
′, H) =

var(Z2
H′)

var(Z2
H)

. (13)

As a final remark, suppose that the volatilities vn are a scale process other than Garch(1,1).

One may then still extend the daily returns rn to Rn(·) = vnτ Ψn(·), and obtain results

analogous to the results in the present section.

3.2 Log-Gaussian QMLE

One may also estimate the parameters (γ, β) of the Garch system given by (1) and (2) by a

log-Gaussian QMLE. This section develops the log-Gaussian QMLE, similarly to the Gaus-

sian QMLE. Readers may prefer to skip Sections 3.2 to 3.4 upon first reading, and proceed

directly to the empirical results of Section 4.

The log-Gaussian QMLE consists of applying Gaussian quasi maximum likelihood to the

log proxies log(Hn). Applying logarithms to Hn yields the equation log(Hn) = log(vn) +

log(τH) + log(ZH,n). Define τ̃H = τH exp(Elog(ZH,n)), and

UH,n =
log(ZH,n) − Elog(ZH,n)√

var(log(ZH,n))
.

We may now write the additive equation

log(Hn) = log(vn) + log(τ̃H) + λUH,n, (14)

where the errors UH,n are iid(0,1). The system (14) yields E(log(Hn)|Fn−1) = log(vn) +

log(τ̃H), and var(log(Hn)|Fn−1) = λ2. The parameter λ2 represents the measurement variance

of log(Hn), a proxy for log volatility, with

(λ0)2 = var(log(ZH)).

Define θ̃ = (τ̃H , γ, β) and define the extended parameter

η = (θ̃, λ).

The parameters γ, β in θ̃ are the same as the γ, β in the parameter θ for the Gaussian
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QMLE of Section 3.1. The additive equation (14) fits into the framework of quasi maximum

likelihood estimation (see Appendix B.1), setting yn = log(Hn), µn(η) = log(σH,n(θ̃)) and

hn(η) = λ2. We refer to the maximizer η̂N as the log-Gaussian QMLE. Let us determine the

QML covariance matrix V0 of Appendix B.1. The matrix A0 is block diagonal since the mean

and variance functions do not share parameters. Applying

∂µn(η)

∂ηi
=

1

2σ2
H,n(θ̃)

∂σ2
H,n(θ̃)

∂ηi
,

one finds that the θ̃-block and the diagonal element for λ of A0 satisfy

(A0)θ̃ =
1

4(λ0)2
GH(θ̃0), (A0)λ =

2

(λ0)2
,

with GH given by equation (10). The θ̃-block of B0 equals the θ̃-block of A0, the diagonal

element for λ equals (B0)λ = 1
(λ0)2

var(U2
H). The off-diagonal (θ̃, λ)-column of B0 equals

(B0)θ̃,λ =
1

(λ0)2
EU3

H E
∂µn

∂θ̃
(θ̃0)′,

making use of µn(η) = µn(θ̃). The covariance matrix V0 = A−1
0 B0A

−1
0 divided into (θ̃, λ)-

blocks now reads

V0 = 4(λ0)2

(
G−1

H (θ̃0) 1
2
EU3

H E
∂µn

∂θ̃
(θ̃0)′

1
2
EU3

H E
∂µn

∂θ̃
(θ̃0) 1

16
var(U2

H)

)
. (15)

Assume conditions (A1) to (A6) and replace condition (A5) by

A5’. E(log(ZH))4 < ∞.

The QML theory of Appendix B.1 suggests that the log-Gaussian QMLE η̂N is asymptotically

normal,

√
N(η̂N − η0)

d→ N (0, V0), N → ∞, (16)

with V0 the covariance matrix given by (15), though we do not produce a formal proof

like the proof of Theorem 3.1. The covariance matrix (15) makes clear that the smaller

(λ0)2 = var(log(ZH)) the more efficient the QMLE for γ and for β. Similarly to Corollary

3.3 the asymptotic relative efficiency of two log-Gaussian QMLE’s for γ and β based on two
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different proxies H ′
n and Hn is given by

ARElog-Gaussian(H
′, H) =

var(log(ZH′))

var(log(ZH))
. (17)

De Vilder and Visser (2007) define an optimal proxy H∗ as a proxy with minimal variance

of the logarithm,

var(log(H∗(Ψ))) = inf
H

var(log(H(Ψ))).

Such an optimal proxy also yields the most efficient log-Gaussian QMLE for γ and β.

We end this section with a remark that is relevant to practical implementation of the

log-Gaussian QMLE. The numerical value of λ̂ does not influence the numerical values of the

parameters in θ̃. This is due to the usual effect that the value of the variance parameter does

not influence the value of the mean parameter for Gaussian QML (this is true if the variance

function and the mean function do not share parameters). Moreover, the usual ‘sandwich’

QML covariance matrix V̂ estimated by plugging in Â and B̂ in equation (28), also does not

depend on the numerical value of λ̂ as far as the θ̃-parameters are concerned. So the value

of λ̂ is irrelevant to inference on θ̃.

3.3 Efficiency of log-Gaussian QMLE versus Gaussian QMLE

Let us briefly compare the asymptotic efficiency of γ̂, β̂ for the log-Gaussian and Gaussian

QMLE. Comparing the (γ, β)-blocks of V0 in equations (12) and (15), one finds that the

asymptotic relative efficiency of the log-Gaussian and Gaussian QMLE’s for γ and β, based

on the same proxy Hn is given by

ARE(log-Gaussian, Gaussian) =
4var(log(ZH))

var(Z2
H)

. (18)

So, the log-Gaussian QMLE is more efficient if 4(λ0)2 = var(log(Z2
H)) ≤ var(Z2

H), where

EZ2
H = 1. This inequality does not always hold: var(log(ZH)) may be large if ZH has values

close to zero, while var(Z2
H) may be large if ZH has heavy tails. The following example

considers the case that ZH has a lognormal distribution.

Example 3.3.1. Let ZH have a lognormal(−σ2, σ2) distribution. Then log(ZH) ∼ N (−σ2, σ2).

The j-th moment of a lognormal(µ, σ2) equals ejµ+j2σ2/2, so EZ2
H = 1 and var(Z2

H) = e4σ2 −1.
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Apply relation (18) to find

ARE(log-Gaussian,Gaussian) =
4σ2

e4σ2 − 1
.

Since 4σ4 ≤ e4σ2 − 1 the log-Gaussian QMLE is more efficient for all values of σ2. In this

example the log-Gaussian QMLE is the exact maximum likelihood estimator.

3.4 Relative Error of Volatility Extraction

One may also be interested in the quality of the estimator of the scale factor σH,n = vnτH , for

some fixed n. The volatility extraction θ → σ̂H,n(θ), with initialization v̂0 is a function of θ.

To simplify the notation we omit the hat on σH,n in this section. If we plug in the estimator

θ̂N , we obtain the estimated volatility extraction σH,n(θ̂N ). The asymptotic distribution of

σH,n(θ̂N) for N → ∞ may be found by the Delta method. Let the row vector σ̇H,n denote

the derivative of σH,n with respect to θ. Let V0 denote the asymptotic covariance matrix of

θ. The Delta method gives

√
N(σH,n(θ̂N ) − σH,n(θ0)) → N ( 0 , σ̇H,n(θ0)V0 σ̇H,n(θ0)′), N → ∞, (19)

for fixed n. It is natural to look at the relative error of σH,n,

re(σH,n) =
σH,n(θ̂N )

σH,n(θ0)
− 1.

The relative error itself is not observed. One may estimate its variance by

1

σ2
H,n

v̂ar(σH,n), (20)

where v̂ar(σH,n) is the empirical counterpart of the variance in equation (19). The estimate

(20) does not depend on τ̂H , see formula (33) in Appendix C. So the asymptotic variance of

the relative error is proportional to var(Z2
H) and var(log(ZH)), for Gaussian and log-Gaussian

estimation.

For practical implementation one needs the derivatives σ̇H,n(θ̂N ). Let hn(θ) = σ2
H,n(θ).

The analytical derivatives ḣn in θ = θ̂N are available from the optimization procedure, so

one may estimate the variance v̂ar(σH,n) in equation (20) by a straightforward application of
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the Delta method, making use of the chain rule:

σ̇H,n(θ̂N ) =
1

2σH,n(θ̂N )
ḣn(θ̂N). (21)

Of course, if one wishes to construct a confidence interval for vnτ , instead of vnτH , one has

to carry out estimation based on the returns rn.

4 Empirical Efficiency Gain for the S&P 500 Index

This section examines empirically the differences in efficiency of using alternative volatility

proxies for the estimation of the Garch(1,1) parameters γ and β. The analysis is carried out

for both the Gaussian and the log-Gaussian QMLE. The estimates in this section are based

on 1001 days of S&P 500 index tick data over the period 1992–1995. For a description of

the data, see Appendix A. We use this time period, since it is a fairly stable period without

clear structural breaks in the level of volatility, see Figure 3 in Appendix A. We take care in

avoiding structural breaks, since it is well known that Garch parameter estimation may break

down in the presence of such breaks. Parameter estimators are no longer consistent, and the

persistence of volatility tends to be overestimated if the level of volatility has a change-point,

see Mikosch and Starica (2004), and Hillebrand (2005).

The efficiency of the QMLE’s based on alternative proxies H is determined by the variance

of Z2
H or the variance of its logarithm. For each proxy H we estimate the parameters by both

the Gaussian and the log-Gaussian QMLE. We then use the standardized residuals, ẐH,n, to

compare the quality of the estimators. Table 1 provides an efficiency factor that expresses

the efficiency gain with respect to the standard Garch(1,1) QMLE (as 1/ARE). The proxy

H∗ is constructed in de Vilder and Visser (2007). Moving down from absolute returns to H∗

reveals an efficiency gain by a factor 15 for the Gaussian QMLE. The log-Gaussian QMLE

yields an efficiency gain by a factor 20. This means that estimation of (γ, β) based on log(H∗)

needs roughly 20 times fewer days of observations than the usual QMLE based on squared

close-to-close returns to obtain the same precision for the parameter estimates. There are

no entries for H = |r| for the log-Gaussian QMLE since these would involve taking the log

of zeros. The table reflects the differences in the confidence regions in Figure 1. Notice

that in this figure the estimate based on |rn| is situated below and to the left of the other

estimates. In the simulations below we observe a similar effect. This effect seems to be due

to finite-sample bias.
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The log-Gaussian QMLE outperforms the Gaussian QMLE for the proxies hl, RV (81), and

H∗. One possible interpretation is that these proxies are closer to having the distribution of

a lognormal random variable than to the absolute value of a Gaussian random variable. In

empirical research it has been found that log realized volatility and the log high-low range

may have a distribution that is nearly symmetrical and nearly Gaussian, see for instance

Andersen, Bollerslev, Diebold and Ebens (2001), and Alizadeh, Brandt, and Diebold (2002).

We apply the Delta method of Section 3.4 to obtain the standard errors of the relative

error in the volatility extraction. Table 2 lists these standard errors for the final scale factors

σH,n, n = N = 1001. The first entry, 3.8%, suggests that the interval σ̂H,1001 ± 7.6% encloses

the true σH,1001 with probability 95%. The log-Gaussian QMLE based on H∗ gives a more

than 4 times tighter interval. One should not interpret these percentages as typical for this

Garch(1,1) process: they depend on the path of the process before n = 1001.

We also checked what Tables 1 and 2 would look like if they are based on the full sample

over the years 1988–2006, n = 1, . . . , 4575, (ignoring possible structural breaks). We briefly

mention these results without providing the tables. For the full sample the patterns in both

tables are similar to the patterns in Tables 1 and 2, though the efficiency gains in Table 1

become more pronounced: instead of a factor 20 for the log-Gaussian QMLE based on H∗,

we find a gain by a factor more than 40.

Gaussian log-Gaussian
H v̂ar(Z2

H) eff. factor v̂ar(log(Z2
H)) eff. factor

|r| 3.34 1 — —
hl 1.41 2.4 0.68 4.9
RV (81) 0.48 7.0 0.25 13.2
H∗ 0.23 14.8 0.17 20.1

Table 1: Empirical QMLE efficiency for the volatility proxies: absolute return, high-low, realized volatility
based on 81 five-minute intervals, and H∗. The table reports v̂ar(Z2

H) and v̂ar(log(Z2
H)), see Sections 3.1

and 3.2. The numbers are based on residuals of Garch(1,1) estimation of the S&P 500 over 1992–01–01 to
1995–12–31, or 1001 observations. The efficiency factor is the gain with respect to the usual Garch(1,1)
QMLE, expressed as 1/ARE, so 2.4=3.34/1.41.

5 Finite-Sample Properties

The estimates for the S&P 500 in Section 4 are based on one sample path only. To explore

the finite-sample properties of the QML estimators we perform simulations. Other places

that provide simulations of the QMLE’s for the Garch(1,1) parameters include Bollerslev
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Gaussian log-Gaussian
H ŝ.e.(reN ) % ŝ.e.(reN ) %
|r| 3.8 —
hl 2.2 1.7
RV (81) 1.2 1.0
H∗ 0.9 0.8

Table 2: Estimates of the standard error of the relative error in σ̂H,1001. The quantities reported are
100 × ŝ.e.(σ̂H,N )/σ̂H,N , see also equation (20). Numbers are based on the same volatility proxies and data
as in Table 1.

and Wooldridge (1992), Lumsdaine (1995), Fiorentini, Calzolari, and Panattoni (1996), and

Straumann (2005). The simulations in the present paper focus on the difference between the

inference based on the close-to-close returns Hn = |rn| and inference by the square root of

realized variance

Hn = RV (m)
n =

√
RQV

(m)
n .

To generate the realized variance one has to simulate the process Ψ(·) at (m+1) equidistant

points in [0, 1]. A Brownian motion will not do, since the realized volatility based on 81

intervals then has var(log(Z2
H)) ≈ 0.025, which would yield unrealistically precise parameter

estimates, cf. RV (81) in Table 1, which has var(log(Z2
H)) ≈ 0.25 where ZH = RV (81)(Ψ).

We consider an intraday diffusion, with an Ornstein-Uhlenbeck process for the log of the

diffusion coefficient:

dΨ(u) = exp(Y (u)) dB(1)(u), u ∈ [0, 1], (22)

where Y (u) is Ornstein-Uhlenbeck:

dY (u) = −δ(Y (u) − µ)du + σY dB(2)(u). (23)

The Brownian motions B(1) and B(2) are uncorrelated, Ψ(0) = 0, Y (0) = Y0. We sample Y0

from its stationary distribution. For µ = −σ2
Y /(2δ), the realized variance RQV (m)(Ψ) for all

m, as well as the quadratic variation over the unit interval have expectation 1, see Appendix

D. Choose

δ =
1

2
, σY =

1

4
, µ = −1

8
.
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Then the return innovations Zn satisfy

EZ2 = 1, var(Z2) ≈ 2.77.

For the realized volatility we take m = 81 intervals, yielding innovations ZH that satisfy

EZ2
H = 1, var(Z2

H) ≈ 0.27, var(log(Z2
H)) ≈ 0.24. (24)

The simulations below consist of 10000 replications. First generate 10000 sets of 2500 days

of realizations of Ψ. For each sequence (Ψn), n = 1, . . . , 2500, we generate the paths (vnτ)

for five different configurations (γ, β), fixing τ = 1. One may now examine the finite-sample

properties of the Garch(1,1) QMLE’s (γ̂, β̂) for sample lengths N = 250, 500, 1000, 2500.

Figure 2 shows the estimates for 1000 of such paths for (γ, β) = (0.05, 0.9) and sample length

N = 1000 days. The left figures are based on absolute returns as a volatility proxy, the right

figures are based on the realized volatility RV
(81)
n . The estimates based on RV

(81)
n are more

concentrated around the true parameter value, and have no outliers.

Table 3 provides a more complete overview of the finite-sample properties than Figure 2.

The first two rows list 100 × the bias and 100 × the root mean square error (RMSE) of γ̂

for (τ, γ, β) = (1, 0.05, 0.9). The first four columns in the first row contain the biases for

the return based Garch(1,1) QMLE for increasing sample sizes. The next eight columns give

this bias using the volatility proxy RV
(81)
n , for the Gaussian and the log-Gaussian QMLE.

While the small-sample biases of γ̂, β̂ tend to be substantial for the return based QMLE,

they are moderate to negligible for the realized volatility based QMLE. The asymptotic

relative efficiencies with respect to the usual Garch(1,1) QMLE may be deduced from equation

(24) and equations (13) and (17). For the square root of realized variance this yields an

efficiency factor 2.77/0.27 ≈ 10 for the Gaussian QMLE and efficiency factor 11 for the

log-Gaussian QMLE. So the RMSE for Hn = RVn is more than a factor three smaller for

large samples. This factor reflects the difference in RMSE between using returns or realized

volatility, for N = 2500. For smaller sample sizes the efficiency gain is larger, suggesting

that return based estimation suffers more from small-sample effects. The quality of the

parameter estimates using 250 observations of realized volatility resembles using somewhere

between 1000–2500 close-to-close returns. As predicted by the asymptotic efficiency factors

for RVn computed above (11 versus 10), the log-Gaussian QMLE does slightly better than

the Gaussian QMLE.
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(b) Hn = RVn
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(c) Hn = |rn|, zoomed in

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

(d) Hn = RVn, zoomed in

Figure 2: Scatters for (γ̂, β̂) plane, 1000 sample paths (τ = 1, γ = 0.05, β = 0.9). The intraday process
Ψn(·) is given by equations (22) and (23) with (δ = 0.5, σY = 0.25, µ = −0.125). Upper and lower left:
estimates based on absolute returns (Gaussian QMLE). Upper and lower right: realized volatility (Gaussian
QMLE). Figure (a) leaves out four points where γ̂ > 0.2. Figures (b) and (d) contain all points.
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γ̂, β̂ Sampling Distributions

100 × bias, 100 × RMSE

param true Hn = |rn|; Gaussian QMLE Hn = RV
(m=81)
n ; Gaussian QMLE Hn = RV

(m=81)
n ; log-Gaussian QMLE

N=250 N=500 N=1000 N=2500 N=250 N=500 N=1000 N=2500 N=250 N=500 N=1000 N=2500
γ 0.05 bias -4.8 -1.4 -0.2 -0.1 0.3 0.0 -0.0 -0.0 0.2 0.0 -0.0 -0.0

RMSE 13.6 8.3 3.8 1.7 3.0 1.4 0.9 0.5 2.7 1.3 0.9 0.5
β 0.9 bias -4.0 -4.7 -2.7 -0.9 -1.1 -0.4 -0.2 -0.1 -1.0 -0.4 -0.2 -0.1

RMSE 22.5 17.3 10.3 4.0 5.2 2.5 1.6 0.9 4.8 2.3 1.5 0.9

γ 0.15 bias -1.7 -0.7 -0.3 -0.2 0.0 -0.1 -0.1 -0.0 -0.0 -0.1 -0.0 -0.0
RMSE 13.6 8.1 5.3 3.3 4.1 2.5 1.7 1.0 3.9 2.3 1.6 1.0

β 0.8 bias -5.1 -2.2 -1.0 -0.4 -0.4 -0.2 -0.1 -0.0 -0.3 -0.1 -0.1 -0.0
RMSE 17.4 8.4 4.7 2.7 3.1 2.0 1.3 0.8 2.9 1.9 1.3 0.8

γ 0.35 bias -0.2 -0.2 -0.1 -0.1 -0.0 -0.1 -0.0 -0.0 -0.1 -0.1 -0.0 -0.0
RMSE 21.3 13.3 9.2 5.7 6.4 4.2 2.8 1.8 6.0 3.9 2.7 1.7

β 0.6 bias -3.4 -1.3 -0.7 -0.3 -0.2 -0.1 -0.1 -0.0 -0.2 -0.1 -0.1 -0.0
RMSE 13.5 8.0 5.2 3.2 3.5 2.3 1.6 1.0 3.3 2.2 1.5 0.9

γ 0.25 bias 0.3 0.1 0.0 0.0 0.0 -0.0 -0.0 -0.0 0.0 -0.0 -0.0 -0.0
RMSE 18.3 10.4 7.0 4.3 4.8 3.2 2.2 1.3 4.5 3.0 2.0 1.3

β 0.6 bias -5.9 -2.5 -1.2 -0.5 -0.4 -0.2 -0.1 -0.0 -0.4 -0.2 -0.1 -0.0
RMSE 20.8 12.3 7.7 4.7 5.1 3.3 2.3 1.4 4.8 3.2 2.2 1.3

γ 0.05 bias -6.8 -1.9 0.4 0.4 0.8 0.2 0.0 0.0 0.7 0.2 0.1 0.0
RMSE 26.5 18.8 9.1 2.2 3.5 1.7 1.1 0.6 3.4 1.5 1.0 0.6

β 0.8 bias -10.0 -10.3 -6.7 -3.0 -3.0 -1.3 -0.6 -0.2 -2.8 -1.1 -0.5 -0.2
RMSE 37.9 33.5 24.1 13.2 15.0 7.9 4.8 2.8 14.2 7.3 4.5 2.6

γ 0.05 bias -5.4 -2.2 -0.9 -0.4 -0.6 -0.1 -0.1 -0.1 -0.6 -0.2 -0.1 -0.1
RMSE 7.7 4.7 3.1 1.9 2.9 2.0 1.2 0.6 2.7 1.9 1.1 0.6

β 0.94 bias -0.6 -1.8 -0.9 -0.2 -0.6 -0.2 -0.1 -0.0 -0.6 -0.2 -0.1 -0.0
RMSE 14.5 8.5 3.5 1.2 2.1 1.0 0.6 0.4 2.0 0.9 0.6 0.3

Table 3: Sampling distributions of Garch(1,1) QMLE, based on 10000 replications. The intraday process Ψn(·) is given by equations (22)
and (23) with (δ = 0.5, σY = 0.25, µ = −0.125). All simulations use τ = 1. From top to bottom there are six panels of different parameters

(γ, β). For each parameter setting the table gives 100 × the bias and 100 × the root mean squared error of γ̂ and β̂, for different lengths of the
time series: 250, 500, 1000, 2500. The case Hn = |rn|, based on the Gaussian QML is the usual Garch(1,1) QMLE. The cases Hn = RVn give
the results for the realized volatility based on 81 intraday returns as a volatility proxy, using the Gaussian and the log-Gaussian QMLE, see
Sections 3.1 and 3.2.
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6 Conclusions

This paper develops Garch quasi maximum likelihood estimation based on intraday volatility

proxies. One may achieve a substantial efficiency gain by using a suitable volatility proxy

other than the absolute or squared close-to-close return. The paper starts out from the

Garch(1,1) system

rn = vnτ Zn

v2
n = 1 + γr2

n−1 + βv2
n−1,

and makes use of the extension of the returns rn to the intraday return process Rn(u) =

vnτΨn(u), u ∈ [0, 1], where the processes Ψn(·) are iid over different days. The setup

does not make particular assumptions for the process Ψn. One obtains sharp estimators

γ̂, β̂ by making use of a suitable volatility proxy H(Rn). Here, H is positive and positively

homogeneous. For the S&P 500 index data the estimated variances of the estimators decrease

by a factor 20. The QMLE has the additional advantage that it does not require the usual

condition that the conditional fourth moment of the close-to-close returns is finite. The

QMLE works provided that the proxy H has a finite conditional fourth moment.

A good parameter estimation for financial processes is important for several reasons. It

gives better predictions for future market behaviour. A sharp estimation procedure may also

clear up fundamental questions around the stationarity of certain financial processes. Do

parameters change over time? Is this change slow or abrupt? We hope that the results in

this paper help to find answers to such questions in the future.

The intraday extension employed in this paper and the resulting QML theory apply

equally well to other volatility models. It would be interesting to apply the methods of this

paper to asymmetric Garch models, or to models where the volatility vn is driven by statistics

different from the squared return r2
n−1. For instance, from Andersen et al. (2003) we know

that a log-ARFIMA model for realized volatilities fits well. One may expect that realized

volatilities could also enhance the latent volatilities vn. We leave this to future research.
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Appendices

A Data

Our data set is the U.S. Standard & Poor’s 500 stock index future, traded on the Chicago

Mercantile Exchange (CME), for the period 1st of January, 1988 until May 31st, 2006. The

data were obtained from Nexa Technologies Inc. (www.tickdata.com). The futures trade

from 8:30 A.M. until 15:15 P.M. Central Standard Time. Each record in the set contains a

timestamp (with one second precision) and a transaction price. The tick size is $0.05 for the

first part of the data and $0.10 from 1997–11–01. The data set consists of 4655 trading days.

We removed sixty four days for which the closing hour was 12:15 P.M. (early closing hours

occur on days before a holiday). Sixteen more days were removed, either because of too late

first ticks, too early last ticks, or a suspiciously long intraday no-tick period. These removals

leave us with a data set of 4575 days with nearly 14 million price ticks, on average more than

3 thousand price ticks per day, or 7.5 price ticks per minute.

There are four expiration months: March, June, September, and December. We use the

most actively-traded contract: we roll to a next expiration as soon as the tick volume for the

next expiration is larger than for the current expiration.

Figure 3 gives an impression of the course of volatility over the years 1988–2006. It

depicts the cumulative of volatility. The left figure is based on squared daily close-to-close

returns, the right one on the daily realized variance based on five-minute returns. The slope

in the figure based on realized variance is smaller, since it does not take into account the

overnight return. The growth of cumulative volatility is low in certain periods and high in

other periods. The years 1992–1995 form a period without clear qualitative changes in the

level of volatility. The empirical analysis in Section 4 is based on these four years.

B Quasi Maximum Likelihood

This section contains background for the QML theory presented in Section 3. Sections B.1

and B.2 discuss QML estimation and the regularity conditions. Section B.3 briefly discusses

the standard Garch(1,1) QMLE.
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(b) Cumulative of RQVn

Figure 3: S&P 500 cumulative volatility over the years 1988–2006. Figure (a) estimates cumulative volatility
by the sum of squared daily close-to-close returns. Figure (b) shows the cumulative of the daily realized
variance, RQVn, based on 81 five-minute returns.

B.1 Principle of QML

The estimation method used in this paper is quasi maximum likelihood (QML). Let us

briefly describe the principle of Gaussian quasi maximum likelihood estimation, as discussed

in Bollerslev and Wooldridge (1992). Let (yn) be a stationary sequence adapted to the

filtration (Fn). The conditional mean and variance functions µn(θ), hn(θ) are parameterized

by a finite dimensional parameter θ and there is a true value θ0 ∈ Θ in the sense that

µn(θ0) = E(yn|Fn−1), hn(θ0) = var(yn|Fn−1), (25)

for all n. The likelihood of the sample (y1, . . . , yN) is a function of θ. The parameter θ may

be estimated by maximizing the Gaussian likelihood, even if the true conditional probability

distribution of yn is not Gaussian. The likelihood is constructed then as if yn is N (µn, hn), and

is called quasi-likelihood. Let the residual function εn(θ) = εn(yn, θ) denote the standardized

yn,

εn(θ) =
yn − µn(θ)√

hn(θ)
.
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This leads to a log-likelihood

LN (θ) =
N∑

n=1

ln(θ), (26)

where, by the Gaussian likelihood,

ln(θ) = −1

2
[log(2π) + log(hn(θ)) + εn(θ)2].

Let the QMLE θ̂N denote the maximizer of the log-likelihood. Under regularity (see Appendix

B.2) the QMLE is asymptotically normal,

√
N(θ̂N − θ0)

d→ N (0, V0), N → ∞, (27)

where

V0 = A−1
0 B0A

−1
0 . (28)

The matrices A0 and B0 are given by the expected Hessian and the expectation of the outer

product of the scores (which is the covariance matrix of the scores):

(A0)i,j = −E
∂2l0(θ

0)

∂θi∂θj

, (B0)i,j = E s0,i(θ
0)s0,j(θ

0),

where, using stationarity, the expectation is taken at time n = 0. The scores sn,i(θ) are given

by

sn,i(θ) =
∂ln(θ)

∂θi
=

εn(θ)√
hn(θ)

(∂µn(θ)

∂θi

)
+

ε2
n(θ) − 1

2hn(θ)

(∂hn(θ)

∂θi

)
.

The expected Hessian A0 may be expressed as

(A0)i,j = E
[ 1

h0(θ0)

(∂µ0(θ
0)

∂θi

)(∂µ0(θ
0)

∂θj

)
+

1

2h2
0(θ

0)

(∂h0(θ
0)

∂θi

)(∂h0(θ
0)

∂θj

)]
.

If the true conditional probability distribution is Gaussian, the QMLE reduces to the Gaus-

sian maximum likelihood estimator and the information matrix equality A0 = B0 holds, so

V0 reduces to A−1
0 , and the QMLE is efficient.
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B.2 QML Regularity Conditions

Bollerslev and Wooldridge (1992) provide abstract regularity conditions allowing for addi-

tional regressors (xn), and without assuming stationarity for (yn). We restate these conditions

below, assuming stationarity, and leaving out xn. The scores sn are row vectors. Let l̈n de-

note the Hessian of ln(θ), so l̈n = ṡn. We first state the definition of the Uniform Weak Law

of Large Numbers, as given by Wooldridge (1990, Definition A.1). A sequence of random

functions qn(yn, θ) satisfies the UWLLN if

sup
θ∈Θ

|N−1

N∑

n=1

qn(yn, θ) − Eqn(yn, θ)| P→ 0, N → ∞.

The QML regularity conditions are:

1. Θ is compact, has nonempty interior and θ0 ∈ int Θ.

2. The mean and variance functions µn, hn are measurable functions of the data for all

θ ∈ Θ, are twice continuously differentiable with respect to θ on int Θ, and the variance

is nonsingular (with probability one), for all θ ∈ Θ.

3. (a) (ln(θ)) satisfies the UWLLN.

(b) θ0 is the identifiably unique maximizer of Eln(θ).

4. (a) The Hessians (l̈n(θ)) satisfy the UWLLN.

(b) The expected Hessian A0 = El̈n(θ0) is positive definite.

5. (a) The expected outer product B0 = Es′nsn(θ
0) is positive definite.

(b) 1√
N

B
−1/2
0

∑
s′n(θ0)

d→ N (0, Ip), N → ∞.

6. The outer product of the scores (s′nsn(θ)) satisfies the UWLLN.

B.3 QML Regularity Conditions for Garch(1,1)

The verification of the conditions for asymptotic normality of quasi maximum likelihood given

in Appendix B.2, has to be carried out on a case-by-case basis. The Garch(1,1) system (1)

and (2) corresponds to yn = rn, µn(θ) = 0, hn(θ) = v2
n(γ, β)τ 2, with θ = (τ, γ, β). In the case

of a Garch type process a problem is that one cannot evaluate the exact likelihood for a given

parameter θ, since the unobservable volatilities vn(θ) have to be replaced by approximations
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v̂n(θ). The unobserved volatility is approximated by the volatility recursion, with initialization

v̂2
0 > 0. There are several papers on the Gaussian QMLE for Garch(1,1) including Lee and

Hansen (1994), Lumsdaine (1996), Berkes, Horvath, and Kokoszka (2003), and Francq and

Zaköıan (2004). The QMLE θ̂N satisfies the asymptotic normality of equation (27) and one

may consistently estimate the covariance matrix V0 by using the empirical counterparts of A0

and B0; we refer to Straumann and Mikosch (2006) for the following regularity conditions,

see also the monograph of Straumann (2005). The observations y1, . . . , yN are part of a

stationary sequence (yn) that satisfies (cf. (1) and (2))

yn = vnτZn (29)

v2
n = 1 + γτ 2v2

n−1Z
2
n−1 + βv2

n−1, (30)

where

1. (Zn) is an iid sequence with EZ2 = 1,

2. τ > 0, γ > 0, β ∈ [0, 1),

3. E log (γ0(τ 0)2Z2 + β0) < 0,

4. Z2 is non-degenerate,

5. EZ4 < ∞,

6. P(|Z| ≤ z) = o(zµ) as z ↓ 0, for some µ > 0.

Condition (6) is fulfilled if Z has a density that is bounded in a neighbourhood of zero.

Straumann and Mikosch (2006) also require EZ = 0 in condition (1) to ensure that yn has

mean zero. As we observe in Section 3.1, the requirement EZ = 0 is not needed, see also

Francq and Zaköıan (2004). To be precise, one should read condition (2) as: Θ is a compact

subset of the space given by condition (2), and θ0 ∈ int Θ. Condition (3) is the usual

condition for strict stationarity and ergodicity of the Garch process. If γ0(τ 0)2 + β0 < 1

then condition (3) is fulfilled by Jensen’s inequality, and in addition the process is weakly

stationary. Condition (4) is needed for the identifiability of θ. For consistency it suffices that

EZ2 < ∞, but condition (5) is necessary for asymptotic normality of the Gaussian QMLE.

Instead of (Zn) iid in condition (1), Lee and Hansen (1994) use the weaker constraint that

(Zn) is strictly stationary, ergodic. They require that E(Z4
n|Fn−1) is uniformly bounded, and

that supn E(log(γ0(τ 0)2Z2
n + β0)|Fn−1) < 0.
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C Proofs

Proof of Theorem 3.1. The proof of Theorem 3.1 in the present paper applies the likelihood

theory of Straumann and Mikosch (2006). The asymptotic normality of the usual Garch(1,1)

QMLE follows from Theorem 8.1 of Straumann and Mikosch (2006). The proof of that

theorem relies on their more general Theorem 7.1. We extend the assumptions needed to

invoke Theorem 8.1 in Straumann and Mikosch, check that this set of assumptions estab-

lishes asymptotic normality of the Gaussian QMLE in the present paper, and then remove

the redundant assumptions. We collected the conditions for the usual Gaussian QMLE based

on close-to-close returns as conditions (1) to (6) in our Appendix B.3. Let us extend these

assumptions by duplication: copy the conditions for τ and Z to τH and ZH : assume τH > 0

and add to each condition for Z the same condition for ZH . We now have a set of (temporary)

conditions (D1) to (D6), concerning both Z and ZH .

Under conditions (D1) to (D4) the usual Garch model satisfies the consistency conditions

(C1) to (C4) of Straumann and Mikosch, pp. 2473 (for a verification, see their Section 5.2).

Let us first verify that the Gaussian QMLE in the present paper is consistent. Let LH,N (θ) =∑N
n=1 lH,n(θ) denote the log-likelihood (modulo a constant), where

lH,n(θ) = −1

2

(
log(hn(θ)) + H2

n/hn(θ)
)

= −1

2

(
log(hn(θ)) +

v2
n(γ0, β0)(τ 0

H)2Z2
H,n

hn(θ)

)
,

and hn(θ) = v2
n(γ, β)τ 2

H . It is important to note that the innovation ZH,n is independent of

hn(θ) and vn and satisfies EZ2
H,n = 1. The function L(θ) = ElH,0(θ) equals

L(θ) = −1

2
E

(
log(h0(θ)) +

v2
0(γ

0, β0)(τ 0
H)2

h0(θ)

)
.

One may now follow the proof of Theorem 4.1 of Straumann and Mikosch, pp. 2473 part 1.i,

to obtain that LH,N/N converges to L uniformly. The rest of the proof of Theorem 4.1 needs

no adjustment and shows that the QMLE converges almost surely to (τ 0
H , γ0, β0).

Straumann and Mikosch, Section 7, treat the asymptotic normality of their general QMLE

under their assumptions (N1) to (N4), see Theorem 7.1. One may follow their exposition,
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replacing X by H, until the second display on pp. 2488, for which we may write

L̇H,n(θ0) =
N∑

n=1

l̇H,n(θ
0) =

1

2

N∑

n=1

ḣn(θ0)

hn(θ0)
(Z2

H,n − 1),

where l̇H,n(θ0) is a martingale difference sequence since ZH,n is independent of Fn−1 and

EZ2
H,n = 1. Accordingly one may apply the central limit theorem for martingale differences,

assuming EZ4
H < ∞. So, an application of Theorem 7.1 to the Gaussian QMLE in the present

paper needs EZ4
H < ∞, which is satisfied by (D5).

Under conditions (1) to (6) of Appendix B.3, the standard Garch model satisfies condition

(N1) to (N4) of Straumann and Mikosch, see also their Theorem 8.1. For the Gaussian QMLE

of the present paper we have to establish (N1) to (N4) under our duplicated conditions (D1)

to (D6). The only conditions that are left for reexamination are conditions N3.iii and N3.iv:

E||l̇0||Θ < ∞, and E||l̈0||Θ < ∞. Let us follow the lines of Section 8 of Straumann and

Mikosch. We may write

E||H2
0/h0||νΘ = E||h0(θ

0)/h0(θ)||νΘ EZ2ν
H,0.

By (D1), EZ2 < ∞, and by (D6): P(|Z| ≤ z) = o(zµ) as z ↓ 0. So by Lemma 5.1 of Berkes

et al. (2003) one has E||h0(θ
0)/h0(θ)||νΘ < ∞, for 0 ≤ ν < 1. Therefore

E||H2
0/h0||νΘ < ∞, 0 ≤ ν < 1.

One may now follow the arguments of Straumann and Mikosch to establish their conditions

N.3.iii and N.3.iv. This establishes the asymptotic normality of the Gaussian QMLE of

Theorem 3.1 in the present paper.

Let us finally remove the redundant conditions from (D1) to (D6), and establish conditions

(A1) to (A6) of Section 3.1. The assumption EZ4
H < ∞ and equation (6) already imply that

(ZH,n) is an iid sequence with EZ2
H = 1, yielding (A1). One should read condition (2) of

Appendix B.3 as a description of the parameter space. This does not need τ > 0, since we

optimize LH over τH , not τ. Furthermore τ 0 > 0 is equivalent to τ 0
H > 0 by equation (7), hence

(A2). Condition (D3) is used for establishing stationarity, ergodicity, and invertibility of (vn).

These properties do not rely on the innovations ZH,n, yielding (A3). Condition (D4) helps to

establish that vn is uniquely determined by θ, again a property that does not depend on ZH ,

hence (A4). Conditions (D5) and (D6) are used to establish asymptotic normality. Condition

(D5) is needed to obtain a finite variance in the application of the martingale difference central
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limit theorem to the derivative of LH,N , which only requires EZ4
H < ∞, and not EZ4 < ∞,

see the arguments above. Consider assumption (D6): P(|Z| ≤ z) = o(zµ) as z ↓ 0, for some

µ > 0. This assumption helps to establish ||h0(θ
0)/h0(θ)||νΘ < ∞, for all 0 ≤ ν < 1, see above.

This does not depend on ZH , hence (A6).

Proof of Lemma 3.2. Differentiation yields
∂σ2

H,0
(θ)

∂τH
= 2τHv2

0(θ),
∂σ2

H,0
(θ)

∂γ
= τ 2

H
∂v2

0
(θ)

∂γ
, and

∂σ2

H,0
(θ)

∂β
=

τ 2
H

∂v2

0
(θ)

∂β
, so

GH(θ) = E




4
τ2

H

2
τHv2

0

∂v2

0

∂γ
2

τHv2

0

∂v2

0

∂β

2
τHv2

0

∂v2

0

∂γ
1
v4

0

(
∂v2

0

∂γ
)2 1

v4

0

∂v2

0

∂γ

∂v2

0

∂β

2
τHv2

0

∂v2

0

∂β
1
v4

0

∂v2

0

∂γ

∂v2

0

∂β
1
v4

0

(
∂v2

0

∂β
)2




θ

. (31)

The lower right block of the inverse of a matrix

A =

(
A11 A12

A21 A22

)
,

equals C−1 = (A22 − A21A
−1
11 A12)

−1. So the ν = (γ, β) block of G−1 equals the inverse of the

2 × 2 matrix given by

(C)i,j = cov(
1

v2
0

∂v2
0

∂νi
,

1

v2
0

∂v2
0

∂νj
). (32)

Formula (32) does not depend on H.

On the relative error re(σH,n) in Section 3.4. Let hn(θ) = σ2
H,n(θ) = v2

nτ
2
H . The derivative of

hn is given by

ḣn =
(

2τH v2
n τ 2

H(r2
n−1 + β

∂v2

n−1

∂γ
) τ 2

H(v2
n−1 + β

∂v2

n−1

∂β
)
)

.

The Gaussian QMLE θ̂N has asymptotic variance V0 = var(Z2
H)G−1

H (θ0). The asymptotic

variance (N → ∞) of hn(θ̂N) is given by Vhn
= ḣn(θ0)V0ḣn(θ0)′. Partition the matrix G

in (31) into τH and (γ, β) blocks. Using partitioned inverses one finds that the asymptotic

variance of hn (for fixed n) equals

Vhn
= c var(Z2

H)τ 4
H ,

where c is a constant that does not depend on H. The asymptotic variance of σH,n =
√

hn
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may be obtained by the Delta method using formula (21):

VσH,n
=

1

4σ4
H,n(θ0)

Vhn
. (33)

One sees that the parameter τH drops out.

D Realized Variance of Ornstein-Uhlenbeck Log-Volatility

Consider the intraday process Ψ(·) of Section 5. The accompanying volatility process Y (·)
satisfies

Y (u) = exp(−δu)Y (0) + µ(1 − exp(−δu)) + σY

∫ u

s=0

exp(−δ(u − s)) dB(2)(s).

Simulation of the process Y is straightforward since Y (u+∆)|Y (u) has a normal distribution

with mean

exp(−δ∆)Y (u) + (1 − exp(−δ∆))µ,

and variance

σ2
Y

1

2δ
(1 − exp(−2δ∆)),

see for instance Glasserman (2003). The process Y has a stationary version which is normally

distributed with mean µ and variance
σ2

Y

2δ
. We sample Y0 from this stationary distribution:

this yields a simple expression for the expectation of the realized quadratic variation using

step size ∆. We shall use that the expectation of the squared increment in Ψ equals the

expectation of the increment in the quadratic variation. The expected increment in QV

equals

EQV [u, u + ∆] =

∫ t+∆

s=u

E exp(2Y (s))ds

=

∫ u+∆

s=u

E exp(2Y0)ds

= exp(2µ + 2
σ2

Y

2δ
) ∆.
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So, for µ = −σ2
Y /(2δ), the quadratic variation over the unit interval has expectation 1. This

implies that the realized variance RQV (m) has expectation 1 for all m. We simulate a realized

variance based on m = 81 intervals. Each of those intervals is divided into 10 subintervals

using equally spaced grid points. The simulation of the process Y on all grid points is exact.

The value of Ψ on each grid point is obtained by Euler discretization.
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