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Abstract

Monotonicity of the equilibrium bidding strategy is a key property of structural auction models.

Traditional nonparametric estimators provide a flexible means of uncovering salient features of auction

data, but do not formally impose the monotonicity assumption that is inherent in the models during es-

timation. Here, we develop a nonparametric estimator which imposes the monotonicity assumption. We

accomplish this by employing the constraint weighted bootstrapping theory developed in the statistics

literature. The finite sample performance of our estimator is examined using simulated data, experi-

mental data, as well as a naturally occurring data set composed of thousands of bids from Canadian

timber auctions.
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1 Introduction

Nonparametric kernel methods are becoming increasingly popular tools for econometricians as re-

searchers have begun to gravitate toward such methods when there is little prior information concerning

the proper functional form and/or variable distributions (see, e.g., Li and Racine 2007). Frequently,

this results from the use of statistical tests that formally reject the parametric model, but provide no

evidence as to the direction in which to search for the correct parametric specification. Nonparametric

method allow one to relax functional form assumptions of an unknown model, and instead find the best

specification given the data.

These methods, while increasingly popular across all areas of econometrics, are commonly criticized

on two grounds: computational complexity and too much flexibility. With respect to flexibility, in

many contexts, researchers often have some – but incomplete – information about the proper specifi-

cation. However, it is difficult to incorporate such structure into traditional nonparametric methods.

For example, economic theory often places restrictions on the relationship between variables (such as

homogeneity) that are not guaranteed to be hold in nonparametric estimation. Thus, researchers are left

to choose between using a parametric approach, where the underlying specification may be mis-specified,

but the restrictions from economic theory are easy to impose, and a nonparametric approach, where the

functional form will not be mis-specified, but may not conform to economic theory. In this paper, we

develop a new estimator to give researchers a third choice: impose restrictions from economic theory in

a relatively straightforward manner within a nonparametric framework.

The motivation for our estimators stems from the analysis of a first-price auction. In a parametric

setting, a researcher typically specifies a priori the distribution of values, and then derives the corre-

sponding equilibrium bidding strategy (see, e.g., Paarsch 1992). This yields a specific bid density from

which to conduct likelihood analysis. Due to the a priori specification of the distribution of values,

the derivation of equilibrium bidding strategies has all of the important theoretical restrictions, such as

monotonicity, imposed prior to estimation. In such settings, monotonicity naturally carries over to the

likelihood function, but at the expense of having to specify the distribution of values.

If one decides to eschew a priori specifications of the value distribution, nonparametric methods to

recover equilibrium bidding strategies, such as the estimator proposed in Guerre, Perrigne, and Vuong

(2000; GPV hereafter), exist. However, existing methods, such as GPV, offer no guarantee that the

estimated equilibrium bidding strategy will be monotonic. Thus, in the absence of prior information

about the correct distribution for private values, researchers are forced to choose between a potentially

incorrect distribution, but imposing monotonicity, or being agnostic about the true distribution, but

ending up with a potentially non-monotonic equilibrium bidding strategy.

In this paper, we develop a nonparametric estimator that imposes the monotonicity assumption in-

herent in the theory of first-price auctions. Our approach provides a generalization of the estimator

derived in GPV for first-price auctions within the independent private value paradigm (IPVP). Impor-
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tantly, our estimator simplifies to the GPV estimator when the estimated inverse equilibrium bidding

strategy is monotonic. With respect to the computational complexity of the nonparametric methods

mentioned above, our estimator utilizes readily available quadratic programming routines and should

pose few difficulties in implementation relative to the unconstrained estimator of GPV.

There are a number of reasons why the need for a generalization of the GPV estimator could arise

in empirical applications. For example, optimization errors or irrationality in bidding would generate

observed bidding strategies that deviate from that assumed by theory. There is an extensive literature

in experimental auctions that document such deviations in the most simple of settings. Whether these

results generalize to the field remains an ongoing empirical debate (see Levitt and List, 2007), but

the pervasiveness of such deviations suggests the potential importance of our approach. Similarly the

existence of omitted auction heterogeneities or uncaptured asymmetries across bidders - such as those

generated by the operation of a cartel (e.g., see Bajari, 2001; Bajari and Ye, 2003) - may generate

departures from equilibrium bidding strategies that are unaccounted for in the standard GPV framework.

To preview the discussion to follow, we note that the standard kernel density estimator used in GPV

relies exclusively on the bandwidth. That is, the bandwidth represents the sole instrument by which the

shape of the density being estimated can be manipulated. This is important since it puts researchers

in a bind: we show that one can guarantee monotonicity by using a sufficiently large bandwidth, but

that such guarantee may come at the expense of deviating from the ‘optimal’ bandwidth (and thus

oversmoothing).1 Moreover, since GPV advocate trimming the data based on the chosen bandwidth,

using a larger bandwidth in order to guarantee monotonicity results in excessive trimming for a given

sample size.

In contrast to the GPV estimator, our proposed estimator introduces a second instrument to manip-

ulate the kernel density (distribution), thereby allowing constraints, such as monotonicity, to be imposed

without deviating from the ‘optimal’ bandwidth. Our estimator relies on the constraint weighted boot-

strapping theory developed in Hall, Huang, Gifford, and Gijbels (2001) and Hall and Huang (2001). To

our knowledge, this theory has not been formally applied in economics, let alone the structural auction

literature.

Our estimator should hold interest not only to researchers interested in auctions but also those who

employ structural approaches to recover the primitives of economic models in other areas. For example,

the ability to constrain nonparametric estimators should prove an indispensable tool for those who wish

to use monotone comparative statics (see, e.g., Athey 2001, 2002) to recover structural parameters in

stochastic optimization problems or games of incomplete information. More generally, economic theory

often imposes a particular structure on models being estimated - i.e., curvature conditions in applied

demand or production analysis. As conforming to such structural assumptions is a necessary condition

for utilizing nonparametric methods in any structural analysis, it is thus important to augment existing

1In this respect, our approach formalizes sentiments expressed in Athey and Haile (2005) that bandwidth selection, specif-
ically data-driven methods, are important to our understanding of structural auction models.
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nonparametric approaches to allow the researcher to impose such fundamental behavioral assumptions.

Second, policymakers ought to take note of the findings presented herein as several of our simula-

tions suggest that monotonicity hinges critically on the bandwidth selected. As a result, since bandwidth

selection is under the direct control of the researcher, one could fictitiously display a monotonic rela-

tionship using existing nonparametric methods through manipulation of the bandwidth. This can be

troubling, however, if such estimations are used to inform policymakers concerning the choice of auction

format/design.

Third, our estimator should be of interest to econometricians interested in constrained nonparametric

methods. Beginning with Gallant (1981) and Matzkin (1994), econometricians have developed methods

to impose economic constraints while still pursuing nonparametric avenues. Our estimator adds to recent

work that examines the imposition of curvature conditions in nonparametric settings (Beresteanu 2004;

Chak, Madras and Smith 2005; Chernozhukov, Fernandez-Val, and Galichon 2007). In addition, the

constraint weighted bootstrapping approach advocated here is similar in spirt to the empirical likelihood

methods developed in Owen (1988) and the information theoretic approaches to GMM presented in

Imbens, Spady, and Johnson (1998).2 The constraint weighted bootstrapping methods can be viewed

as imposing another level of constraints in the optimization of the empirical likelihood as both methods

invoke power-divergence statistics.

Finally, in addition to the papers discussed above, a substantial amount of attention has been paid to

the issue of monotonicity by statisticians. The longest standing method for imposing monotonicity has

been isotonic regression (Mukerjee 1988; Mammen 1991). Ramsay (1988) suggested using constrained

splines to smooth a monotonic function while Mammen, Marron, Turlach, and Wand (2001) suggested

using projection based techniques to perform constrained smoothing. Related to our work is the method

of Hall and Huang (2001), which uses constraint weighted bootstrapping to create a smooth, monotone

regression function. Recently, Dette, Neumeyer, and Pilz (2006) suggest using rearrangement (proposed

in economics by Chernozhukov et al. 2007) to construct a smooth, monotone regression function. In

a Bayesian context, McCausland (2008) has shown how to construct estimators that obey curvature

restrictions, such as monotonicity. Whether it be econometricians or statisticians, much attention has

been paid to the construction of regression functions that are monotone and nonparametric. However,

very little attention has been paid to the monotonic construction of survival functions, which underlies

the structural auction estimator detailed in this paper, outside of the statistics and biostatistics literature.

Thus, the method proposed here attempts to fill this void.

The rest of the paper is laid out as follows. In Section 2 we briefly review the economics behind

the first-price auction setup within the IPVP. Section 3 discusses the GPV nonparametric estimator for

this auction style-paradigm pair. In Section 4 we describe how to implement the constraint weighted

bootstrapping theory developed in the statistics literature to create a generalized estimator that imposes

monotonicity. We provide several applications of the estimation method in Section 5 using simulated

2We thank Han Hong for suggesting this interesting connection between our work and the empirical likelihood approach.
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data, experimental data, and a real world data set. In Section 6 we emphasize the usefulness of this

style of nonparametric estimation beyond structural auctions and indicate several lines of possible future

research.

2 Theoretical Background

Within the IPVP each player knows her value of the product to be auctioned, but no other player’s value.

Players values are assumed to be independent draws from F (v), which is taken as common knowledge.

Players select their bidding strategy to maximize their expected payout, given by πe(·). This leads to

the following maximization problem:

max
b

πe(b) = (v − b)F (σn)n−1, (1)

where σn = β−1
n (b) denotes the inverse of the bid function, βn(v), used by the player, v is her value and

b is her corresponding bid when there are n total participants in the auction. The first order condition

is given by:

−F (σn)n−1 + (n− 1)(v − βn)F (σn)n−2f(σn)σ′n = 0. (2)

The assumption that the bid function is monotonic allows one to use dσn/db = 1/β′n(v) to simplify the

above first order condition. We also note that by symmetry of the bidders, β(v) = b. These features

allow us to simplify our solution as

β′n +
(n− 1)f(v)

F (v)
βn =

(n− 1)vg(v)
F (v)

, (3)

which is a linear differential equation with solution, assuming the absence of a reserve price3,

βn(v) = v −

v∫
v

F (u)n−1du

F (v)n−1
, (4)

where v represents the left end of the support of the value distribution. If we allow for a reserve price,

then our differential equation would have solution

βn(v) = v −

v∫
r

F (u)n−1du

F (v)n−1
where r ≤ v. (5)

Note that the only difference between Equations (4) and (5) are the limits of integration, assuming that

all potential bidders place bids. In essence the reserve price acts as a boundary condition in exactly

the same way that v does in the no reserve setting. Paarsch and Hong (2006) provide a more detailed

3A reserve price is such that all submitted bids must be greater than this price.
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description of this derivation and the IPVP in general.

3 Nonparametric Estimation in First Price Auctions

In a seminal paper on the identification and structural nonparametric estimation of a first-price auction,

GPV provide a natural setting in which to think about the distribution of valuations within the IPVP

in a nonparametric framework. Their analysis spurred (perhaps started) the growth of nonparametric

structural estimation of auctions across paradigms, including affiliated private values (Li, Perrigne, and

Vuong 2002) and conditionally independent private information (Krasnokutskaya 2004; Li, Perrigne, and

Vuong 2000). Here, we describe their method under the situation of no reserve price.

The structural equilibrium bidding strategy derived in GPV is given as

vi = bi +
G(bi)

(N − 1)g(bi)
= ξ(bi, N, G), (6)

where vi and bi are the value and bid for agent i, respectively. G(bi) is the cdf of the bid density and

g(bi) is the bid density. Only the bid vector is observed by the econometrician. The functional forms

of G (·) and g (·) must be assumed or estimated; then, the values, vi, can be estimated along with the

corresponding cdf and pdf, F (·) and f (·), respectively.

The nonparametric estimation approach given in GPV is as follows:

1. Estimate g(b) using kernel methods.

ĝ(b) =
1

nTh

n∑

i=1

T∑
t=1

K

(
b− bit

h

)
, (7)

where b is now indexed by both i and t. Here, t represents a particular auction, thus we are

pooling bids from multiple auctions with the same number of bidders to increase the sample size.

The bandwidth, h, depends on the sample size and converges to zero as T goes to ∞. The standard

bias-variance tradeoff exists when considering how large or small to set the bandwidth. K(·) is a

kernel function which is chosen to satisfy several unrestrictive conditions.

2. Estimate G(b) using the empirical cdf

Ĝ(b) =
1

nT

n∑

i=1

T∑
t=1

1{bit ≤ b}, (8)

where 1{A} is the indicator that the event A is true.

3. Construct v̂it = ξ̂(bit, n, G) using the above estimates to recover the values. Employ the truncation

strategy of GPV (page 531, equation 6).

4. Estimate the density and distribution of values, f(v̂it) and F (v̂it), using equations (7) and (8)

above, with bit and b replaced with v̂it and v, respectively.
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The above discussion omits two important details. First, the GPV estimator needs to trim the sample

near the boundaries of the pseudo-values. Kernel density estimators are well known to be inconsistent

near the edge of the support of the variable of interest. This contaminates the second stage recovery

of the distribution of values. GPV propose trimming observations that are within one bandwidth of b

and b̄, the upper and lower bounds of the support for bids. This yields a consistent estimator on the

interior of I = [b, b̄]. Second, GPV show that ξ(bi, N, G) is strictly increasing for all bit ∈ I.4 Their

nonparametric approach, however, does not formally impose this condition in the estimation. To fill this

void, the following section proposes a method to impose the monotonicity condition.

4 Monotonic Nonparametric Estimation in First-Price Auc-

tions

4.1 Motivation

Prior to presenting our new estimator, it is worthwhile to step back and ask how fragile is the monotonic

feature of the bid-value relationship?. If the GPV estimators yields a bid-value relationship that is

monotonic in most cases, there may be little to no value added from the development of a new estimator.

To address this question, we perform simulations to examine whether, and to what extent, mono-

tonicity is violated using the GPV estimator. We use the bandwidth and kernel employed in GPV,

namely the triweight kernel, K(u) = (35/32)(1 − u2)31(|u| ≤ 1), with bandwidth 1.06σ̂b(NT )−1/5. Of

first note is that this bandwidth actually leads to undersmoothing, as (4/3)1/5 is the aysmptotically

optimal scale factor for the Gaussian kernel, not the triweight kernel. The asymptotically optimal scale

factor for the triweight kernel is 2.978 ∗ (4/3)1/5 = 3.154. This scaling factor comes from the theory

on canonical kernels found in Marron and Nolan (1989). Essentially, to guarantee that the same degree

of smoothing is present when different kernels are used, the bandwidth must be adjusted by a specific

factor, in our case 2.978.5 For completeness, we perform our simulations using both bandwidths.

To judge the monotonicity of the equilibrium bidding strategy, we determine if the sign of ξ̂′(bi, N,G)

is negative on I. We allow G to come from the gamma, exponential, log-normal, normal, Weibull, and a

specific mixture of normals, all of which provide a theoretically monotonic equilibrium bidding strategy.

We also vary the truncation points of the draws from these densities to correspond to assumption A2

in GPV. We will see that this truncation point also plays an important role in whether we find a high

proportion of draws displaying monotonicity.

We take draws using five bidders and vary the number of auctions, T , so that our full sample sizes,

nT , are 50, 100, or 1000. We vary the truncation points so that they contain 80, 90, or 95% of the data.

Furthermore, as mentioned above, we use the bandwidth suggested in GPV, as well as the theoretically

4This is condition C2 of Theorem 1 in GPV.
5See equation 2.5 in Marron and Nolan (1989).
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consistent rule-of-thumb bandwidth. For each scenario, we take 1000 draws and determine the proportion

of those draws that display a monotonic bid-value relationship. For parsimony, we employ a fixed point

design using 100 equally spaced points, ranging from the left to the right truncation points. Figure 1

displays the six equilibrium bidding strategies, as well as the parameters used to generate the data.

Table 1 displays the likelihood of estimating a monotonic equilibrium strategy for the given distri-

butions mentioned above. The results show the sensitivity of monotonicity according to the size of the

bandwidth, the sample size, and the level of truncation. One immediately notices that the proportion

of estimated monotonic draws decreases as the truncation moves from 80 to 95%. This reflects the

importance, or impact, of tail observations on the appearance of the estimator. As expected, we notice

that the bandwidth is critical in uncovering a monotonic equilibrium strategy since switching from the

Gaussian kernel’s scale factor to the triweight’s scale factor results in a more than sizeable shift in the

proportion of samples that yield monotonic relationships. Indeed, below we will find that there exists a

bandwidth such that the equilibrium bidding strategy is always monotonic for a given sample size. The

sample size also has an intuitive effect on the probability of observing a monotonic equilibrium bidding

strategy; the probability of observing a monotonic relationship is an increasing function of the sample

size. This is to be expected since increasing the number of observations within a range fills in the spaces

between points that exist in smaller samples.

These spaces add to the likelihood of estimating a nonmonotonic equilibrium bidding strategy re-

gardless of the bandwidth used. Mathematically, we define the event that a sample contains a data

point that is at least one bandwidth away from its nearest point as C(ε). the probability of the event,

Pr(C(ε)), is nonzero for a given bandwidth, sample size and truncation point. From the simulations

above we see that as we increase the bandwidth or sample size, Pr(C(ε)) ↓ 0. As the truncation point

is increased, Pr(C(ε)) ↑ 0.

This exercise, while heuristic in nature, does provide some insight into the ability of the GPV estima-

tor to naturally provide an estimated monotonic equilibrium bidding strategy. The first striking feature

is the tight relationship between monotonicity and the selected bandwidth. This is actually discouraging

since bandwidth selection is arbitrary in this setting. While a researcher can select the asymptotically

optimal bandwidth given the sample size as well as the kernel, it is at best ‘asymptotically’ optimal.

Also, cross-validated bandwidth selection has remained largely unexplored in nonparametric auction es-

timation. This is interesting, as it is possible to select an automatically determined bandwidth to smooth

the bid density optimally, but it is unknown whether this is the appropriate amount of smoothing for the

equilibrium bidding strategy. Moreover, no selection criteria can be employed for bandwidth selection

in this setting since the values, v, are unobserved, making it difficult, if not impossible, to formulate

a criteria that leads to optimal smoothing of the equilibrium bidding strategy. This leads naturally

to an estimator that nonparametrically constrains the GPV estimator to be monotonic, regardless of

the bandwidth, thus removing the incentive to oversmooth in order to provide theoretically consistent

results.
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Formally, our claim above is that if I is a compact interval, then for all sufficiently large h, ξ̂′(·|h) > 0

on int(I), guaranteeing monotonicity of the equilibrium bidding strategy. To justify this argument, we

assume that K(·) has two continuous derivatives in a small neighborhood of the origin, with K(0) = 0

and K ′(0) = 0. We note that when h →∞, the following two relations hold:

K

(
b− bit

h

)
≈ K(0) +

(
b− bit

h

)
K ′(0) + op(h−2),

and

K ′
(

b− bit

h

)
≈ h−1K ′(0) +

(
b− bit

h2

)
K ′′(0) + op(h−3),

which together imply

ĝ(b|h) ≈ h−1K(0) + op(h−1),

and

ĝ′(b|h) ≈ h−3K ′′(0) · (nT )−1
n∑

i=1

T∑
t=1

(b− bit) + op(h−3),

uniformly over b ∈ I. From this it follows that for sufficiently large h, ĝ(b)2 > |ĝ′(b)| ∀ b ∈ I. This

shows that the numerator of the derivative of the GPV estimator (the denominator is always positive)

will be positive everywhere given a sufficiently large bandwidth.

4.2 Monotone Estimation of the Bid Function

Rather than resorting to an arbitrarily large bandwidth or to parametric methods when the GPV

estimator does not produce a monotonic result, we instead show how a modified version of the GPV

estimator can be constrained to be monotonically increasing. The method we employ is known as

constraint weighted bootstrapping in the statistics literature. It is becoming a common technique to

impose monotonicity when estimating survival functions. We note that ξ(·) is similar to a survival

function. Our approach is as follows:

1. Estimate g(b) as

ĝ(b|p) =
1
h

n∑

i=1

T∑
t=1

pitK

(
b− bit

h

)
, (9)

where the pit are observation-specific weights. Note, the GPV estimator is a special case of our

estimator where each weight is set equal to 1/nT .

2. Estimate G(b) as

Ĝ(b|p) =

b∫

−∞
ĝ(u|p)du. (10)

Notice that we are not constructing the cdf of the bids using the empirical distribution function.

To ensure that our cdf corresponds to the pdf estimated in equation (9), we need to integrate the

pdf as opposed to simply calculating the cdf with the empirical distribution function. This step is
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not done in GPV, nor is it a common approach in studies that use both a cdf and a pdf in their

estimation.6 One may think that the reason for this is twofold. First, the asymptotic arguments are

most likely easier to prove given widely known properties of the empirical distribution estimator.

Second, the empirical distribution estimator is easier to construct than an integral of an estimated

probability density.

3. Construct v̂it = ξ̂(bit, n,G|p) using the above estimates to recover the values. Employ the trunca-

tion strategy of GPV (page 531, equation 6).

4. Estimate the density and distribution of values, f(v̂it) and F (v̂it) using equations (7) and (8)

above, with bit and b replaced with v̂it and v, respectively. Note here that because we have a

two-step estimator, the recovery of the density and distribution of the values does not need to have

any constraint weights incorporated into their estimation. this is because monotonicity has been

imposed on the estimator of the bid function, which is used to create the pseudo-values, and the

resulting pseud-values can then be treated as they were by GPV.

The crucial feature of our estimator is that the weights, pit are selected to ensure that the values are

monotonically increasing in the bids. To select the vector of weights, we choose p = {p11, p12, . . . , p1T , . . . , pnT }
to minimize a distance metric subject to the constraint that ξ̂′(bit, n, G|p) ≥ 0 on I. If one desired to

impose strict monotonicity, ξ̂′(bit, n,G|p) > 0 on I, the user needs to pick some small number δ such that

ξ̂′(bit, n,G|p) > δ on I so that this becomes computationally feasible.7 We also impose the regularity

conditions pit ≥ 0 ∀i, t and
n∑

i=1

T∑
t=1

pit = 1. These conditions make the weights act as though they are

drawn from a density and will prove useful when making comparisons to the uniform weights, 1/nT ,

used in GPV. For simplicity, we choose to impose our nonnegativity constraint on

ξ̂1 = nĝ(b|p)2 − Ĝ(b|p)ĝ′(b|p). (11)

Given that ξ̂′/ξ̂1 is always nonnegative, this implies that both have the same sign.

Our distance metric is the power divergence measure introduced in Cressie and Read (1984) and

proposed in Hall, Huang, Gifford, and Gijbels (2001) for monotone estimation of a hazard rate.8 The

power divergence measure is

Dρ(p) =
1

ρ(1− ρ)
[nT −

n∑

i=1

T∑
t=1

(nTpit)ρ], −∞ < ρ < ∞. (12)

where ρ 6= 0, 1. One needs to take limits for ρ = 0 or 1. They are given as

D0(p) = −
n∑

i=1

T∑
t=1

log(nTpit); D1(p) =
n∑

i=1

T∑
t=1

pit log(nTpit), (13)

6See Martins-Filho and Yao (2008) for a recent example that does.
7This is also suggested in Hall and Huang (2001).
8It is also used in Hall and Huang (2001) for nonparametric monotone estimation of a regression function.
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If one uses ρ = 0.5, this corresponds to Hellinger distance. Note, for all ρ we have Dρ(p) ≥ 0 ∀p and

Dρ(p) = 0 if and only if pit = 1/nT ∀i, t. This suggests that departures from uniformity of the weights

will correspond to a positive divergence measure, indicating the presence of regions of non-monotonicity.

Regardless of the sampling distribution for the values of the players across auctions and the choice

of I, it is entirely plausible that ξ̂1 will have a zero crossing on I. An example can easily be constructed

where a point lies both a bandwidth away from the boundary and from its nearest point. Label this

event as E . The probability of this event is strictly positive given minimal assumptions about the bid

density. Fortunately, data sets that produce event E or a similar event, are pathological in nature. Even

if one could not find a set of weights that guarantees a monotonic estimator, this should pose no problem.

In fact, one can view this event as providing information about the true equilibrium bidding strategy or

as evidence that other features of the auction are being ignored by the econometrician (Athey and Haile

2005).

While it may be argued that this procedure is entirely heuristic given the fact that many papers

have confirmed monotonicity between bids and values 9, the ability to easily impose this condition

when estimating models using auction data is important from an economic standpoint. Indeed, even

if the weights are uniform, the researcher can be more confident that the equilibrium bidding strategy

is monotonic than simply through visual inspection of the estimated surface. Additionally, while it

may appear that monotonicity holds unconditionally between bids and values, the presence of covariates

renders visual inspection useless in higher dimensions.

Theoretically, this estimator (ignoring truncation) is consistent following only minor modifications

in the proof in Hall, Huang, Gifford, and Gijbels (2001). Given that the pseudo-value estimates are

constructed identically to GPV, the theoretical properties of the value density estimator should follow

directly. We do not consider asymptotic normality of this estimator and leave that for future research.

4.3 Extensions to Heterogeneous Auctions and Reserve Prices

Many auctions are characterized by differing numbers of bidders and/or use of reserve prices. We discuss

a scenario encapsulating both to highlight the ease by which the constraint weighted bootstrapping

estimation discussed above may be generalized. The GPV estimator of this auction setting relies on the

following first order condition (written in terms of the actual bids):

vi = bi +
1

N − 1

{
G(bi)
g(bi)

+
F (r)

(1− F (r))g(bi)

}
, (14)

whereN is the number of potential bidders and r is the reserve price of the auction. Within the IPVP, nt,

the number of actual bidders in auction t, has a binomial distribution with parameters N and 1−F (r).

9See Figure 2 of Li, Perrigne, and Vuong (2000) for an example where ξ̂(·) is locally but not globally monotonic in OCS
wildcat auctions.
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A natural candidate estimator for N is

N̂ = max
t=1,...,T

nt. (15)

Following Paarsch and Hong (2006, pg. 132), we estimate 1− F (r) as n̄/N̂ , where

n̄ = T−1
T∑

t=1

nt. (16)

Before proceeding to estimation, we mention that the observed bids, bi, must be transformed as si =
√

bi − r due to the proportionality between the actual bid density, g(b), and 1/
√

b− r as b approaches

r. This transformation prevents the density of bids to become unbounded near the reserve price. Using

this transformation, we can write the first order condition in equation (14) as

vi = s2
i + r +

2si

N − 1

{
G∗(si)
g∗(si)

+
F (r)

(1− F (r))g∗(si)

}
= ξ(si,N , G∗, r), (17)

where G∗(·) and g∗(·) are the cdf and pdf, respectively, of the transformed bids. The GPV estimator

follows by pooling bids across auctions and estimating the unobserved valuations as:

1. Estimate N and 1− F (r) using the suggestions above.

2. Estimate g∗(s) as

ĝ∗(s|p) =
1
h

T∑
t=1

nt∑

i=1

pitK

(
s− sit

h

)
. (18)

3. Estimate G∗(b) as

Ĝ∗(s|p) =

s∫

−∞
ĝ(u|p)du. (19)

4. Construct v̂it = ξ̂(sit,N , G∗, r|p) using the above estimates to recover the values, following the

truncation strategy of GPV on page 550.

5. Estimate the density and distribution of values, f(v̂it) and F (v̂it), using equations (7) and (8)

above, with bit and b replaced with v̂it and v, respectively.

To minimize the computational burden in selecting the weights, we choose to impose our nonnega-

tivity constraint on

ξ̂1 = 2sN̂ ĝ∗(s|p)2 + sĜ∗(s|p) (1− 2ĝ∗′(s|p)) + F̂ (r)s(ĝ∗(s|p)− 2)/(1− F̂ (r)). (20)

We also maintain the regularity conditions pit ≥ 0 ∀i, t and
n∑

i=1

T∑
t=1

pit = 1.
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5 Applications

We use three sets of data to determine the performance of our estimator. We begin by examining

simulated data where we know the exact form of the value distribution and create the corresponding

equilibrium bids. We then move on to the assessment of experimental data to see if monotonicity arises

in a laboratory setting where we are using bids submitted by participants, not the bids corresponding to

the equilibrium bidding strategy. This is also useful because we know not only the value distribution, but

the actual values, and therefore can more adequately address the criticisms of detecting monotonicity

raised in Athey and Haile (2007) discussed above. Finally, we use data from timber auctions conducted

in British Columbia to show the empirical relevance of our method.

5.1 Simulated Data

Our simulation experiments examine monotonic distributions that are theoretically consistent with an

equilibrium bidding strategy. We consider T = 100 auctions, each having n = 5 bidders, which yields

500 observed bids. Our setup will involve 100 replications under each scenario. We choose the true

distribution of private values to be either log-normal with parameters 0 and 1 or gamma with parameters

1 and 3. For the log-normal case, we follow the truncation strategy in GPV, discarding those value

draws that are below 0.055 and above 2.5. Similarly, for the gamma distribution, we discard values that

are below 0.0455 and above 4.982. For every replication we first draw nT values from the truncated

distribution. We then compute the bids, bit, using

bit = vit − 1
F (vit)n−1

vit∫

v

F (u)n−1du, (21)

where v is the smallest value drawn from the truncated distribution for the given replication.

Using these generated data, we then employ our estimation procedure for each replication. We

use (9) and (10) to estimate the density and distribution of the bids for a given set of weights. We

employ the tri-weight kernel with the bandwidth used in GPV (Silverman’s rule-of-thumb for a normal

kernel). The weights are determined using ρ = 0, 0.5, and 1 and are found using the sequential quadratic

programming routine SQPSolve in the programming language GAUSS 8.0. While our problem is not a

quadratic programming problem, this type of solver uses a modified quadratic program to find the step

length for moving in the direction of a minimum. Each iteration takes somewhat longer to run than

those reported in GPV since, for any given replication, it is not guaranteed to generate a monotonic

equilibrium bidding strategy. One problem that we encountered several times was that the program

would not return feasible results. This was easily remedied, however, by changing the starting values.10

The simulation results are given in Figures 2 and 3. Panel (a) of each figure plots the true equilibrium

10Our starting values were selected at random from a uniform distribution and divided by the sum of the starting values to
preserve the summation constraint.
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bidding strategy along with the estimates from the GPV estimator and our estimator. The curves

correspond to the 95th percentile of the distance metric. Panel (b) of each figure depicts the envelope-

curves of the weights after the constraints have been achieved. It is clear from our earlier simulations

that the true data generating process provides a monotonic equilibrium bidding strategy. However, the

finite sample results of the GPV estimator show regions where the derivative is negative. Our estimator

corrects for these regions of non-monotonicity by changing the weights. In Panel (b) of each figure we

see that the corresponding weights deviate from 1/nT in the bid region where the GPV estimator is

non-monotonic.

5.2 Experimental Data

Our experimental data were originally collected by Dyer, Kagel and Levin (1989). Since the data have

been used in Bajari and Hortaçsu (2005) and are discussed there as well, we provide only limited details.

MBA students at the University of Houston participated in a series of first-price sealed bid auctions over

the course of two hours. Subjects submitted contingent bids, based on the number of other bidders in

the auction (either 2 or 5). However, we are treating the submitted bids (with either 3 or 6 bidders) as

the actual bids for our purposes. Values were drawn from a U [0, 30] density. As in Bajari and Hortaçsu

(2005), we drop the submitted bids for the first five auctions of a given run of the experiment. This

leaves us with 23 auctions over three experimental runs. We have a total of 414 bids, regardless of the

number of bidders, since we are ignoring the contingent bidding aspect of the experiment.

We use the same kernel (Gaussian) and bandwidth (1.06σ̂b(NT )−1/5) as in Bajari and Hortaçsu

(2005). For the three bidder case, Figure 4 displays a slight non-monotonic portion of the observed

bidding strategy, which in the uniform value case should be exactly linear.11 This result is interesting

since we learn that random samples from known value distributions could generate non-monotonic

bidding strategies for a given bandwidth. We find here that with a known value distribution, but with

humans deciding how to bid, we still have non-monotonic portions of the estimated equilibrium bidding

strategy. This lends further credibility to our ability to constrain the estimator to be monotonic.

Figure 5 shows that the GPV estimator is monotonic by itself in the six bidder case. This also relates

to Bajari and Hortaçsu’s (2005) argument that the bids from the six bidder case provide more realistic

estimates of the values than those bids from the three bidder case. Thus, there is weak evidence that

as the number of bidders increases, the theoretical properties of the GPV estimator are being adhered

to by the human subjects. Again, these results are contingent on the bandwidth that we selected; the

conclusions drawn from these figures may change given a change in the bandwidth.

11We use ρ = 0.5 to determine the constraint weights.
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5.3 Naturally Occurring Data

To further display the empirical merit of our techniques, we use a sub-sample of the data investigated

in List, Millimet, and Price (2007). They collected data from sealed bid timber auctions in British

Columbia, Canada. We use the three largest sub-samples of bids that correspond to homogenous samples.

This provides us with 257 auctions with three bidders, 282 auctions with four bidders, and 165 auctions

with five bidders, giving us 771, 968, and 825 total observations, respectively. For more details on the

collection and description of the data, refer to List, Millimet, and Price (2007).

We construct the monotonically increasing equilibrium bidding strategies for each of the three sub-

samples, and provide the corresponding value densities, using the truncation recommended in GPV. We

use the same kernel and bandwidth as GPV to estimate both the equilibrium bidding strategy as well

as the density of pseudo-values. The estimated equilibrium bidding strategies and the corresponding

pseudo-value densities are presented in Figures 6 through 8.

For the three bidder auctions, we see that the equilibrium bidding strategy is non-monotonic using

the GPV estimator. In particular, we note that there are two places of the estimated equilibrium

bidding strategy that are non-monotonic. While visually hard to detect, they are easily tracked in the

lower left panel which plots the constraint weights versus the uniform weights. With ρ = 0.5 we have

Dρ = 0.709. We are cautious to not imply that the agents in these auctions are irrational, however, as

omitted covariates could be causing the observed non-monotonic portions of the equilibrium strategy

(see Section 5.2 in Athey and Haile 2005 for more on this argument).

For the four bidder auctions displayed in Figure 7, we find that the equilibrium bidding strategy

is again non-monotonic using the GPV estimator. This region of non-monotonicity is very slight and

almost impossible to detect without resorting to Panel (c) of the figure, however. With ρ = 0.5, we have

Dρ = 0.206, which is also suggestive of the four bidder auction being closer to uniformity than the three

bidder auction, consistent with the experimental findings above.

Finally, the five bidder auctions are analogous to those discussed in the four bidder case. Again, the

region of non-monotonicity is virtually indistinguishable from the unconstrained GPV estimator. We do

notice a slight region of non-monotonicity very near the upper boundary of our bids, which is conveyed

through the plot of the constraint weights. As before, with ρ = 0.5 we have Dρ = 0.016, implying that

with more players, bidders are behaving closer to what theory predicts.

6 Conclusion

Nonparametric methods have become increasingly popular tools in econometrics given their flexibil-

ity. However, a shortcoming often pointed out is that they may be too flexible. Specifically, while the

fully parametric model is unknown, some information is known and should be imposed in the nonpara-

metric estimation. For example, in structural settings, often the researcher has some information a

priori. Indeed, this is the case of structural estimation of first-price auctions, where monotonicity of the
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equilibrium bidding strategy is assumed to hold.

The result has been leaving researchers with an unappealing choice: impose too much structure by

using potentially mis-specified parametric methods, but guarantee monotonicity, or impose too little

structure by using nonparametric methods that fail to guarantee monotonicity. However, in this paper,

we offer a third option: constrained nonparametric methods.

Specifically, we have extended a nonparametric method originally proposed for estimating a survival

function that can accommodate theoretical restrictions, such as monotonicity, in structural auction

models. We believe that this technique has value far beyond that of structural auctions. In fact,

given the importance of monotone comparative statics in economics, (see, e.g., Athey 2001, 2002), these

techniques should prove indispensable for the use of nonparametric estimation as a structural tool.

Our work has also discovered that errors in bidding within an experiment can lead to non-theoretical

conclusions. The data collected in Dyer, Kagel and Levin (1989) revealed that bidding errors produced

a small, non-monotonic portion of the equilibrium strategy when there were three bidders. We also

showed that monotonicity, in an empirical setting, is directly linked to the bandwidth used. This

lends merit to the argument that is well known throughout the statistics and econometrics literature

that bandwidth selection is critical, regardless of the setting. Given that monotonicity is a theoretical

restriction, bandwidth selection becomes even more important when holding steadfast to assumptions

stemming from theory.

While we have laid out the framework for constrained nonparametric analysis of auctions, much

remains to be done. Future research is needed to extend these methods both within the IPVP, as well as

beyond. Within the IPVP, the methods need to be augmented to allow for auction heterogeneity in terms

of risk aversion, covariates, and learning. Outside of the IPVP, these methods can be tailored to the

Affiliate Private Value, Common Value, and Conditionally Independent Private Information paradigms

that have been developed.
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Table 1: Likelihood of an Estimated Monotonic Equilibrium Bidding Strategy

Truncation/Sample Size
80% 90% 95%

50 100 1000 50 100 1000 50 100 1000
Gamma
h = 1.06 10.9 13.0 33.3 6.3 8.3 18.0 5.0 4.8 9.7
h = 3.154 98.1 99.0 100.0 95.8 97.3 100.0 92.3 95.1 99.6
Exponential
h = 1.06 11.5 14.1 32.8 7.0 8.0 19.3 4.5 5.0 8.0
h = 3.154 97.8 99.0 99.9 95.2 97.1 99.9 91.9 93.7 99.6
Log-Normal
h = 1.06 11.7 12.6 27.1 4.0 4.4 8.4 1.7 1.8 2.1
h = 3.154 97.6 98.9 100.0 90.4 93.6 99.5 81.2 85.0 96.4
Normal
h = 1.06 35.4 49.9 98.5 36.1 55.0 98.2 35.3 53.6 97.5
h = 3.154 99.1 99.7 100.0 99.2 99.7 100.0 99.4 99.9 100.0
Weibull
h = 1.06 43.3 62.2 98.1 41.7 60.5 97.1 40.4 59.2 96.4
h = 3.154 100.0 100.0 100.0 100.0 100.0 100.0 99.8 100.0 100.0
Mixture Normal
h = 1.06 9.2 9.3 12.2 9.8 10.6 20.1 14.2 12.2 27.0
h = 3.154 92.4 93.9 99.1 94.2 95.6 99.8 95.6 96.5 100.0
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Figure 1: Panel a shows the true equilibrium strategy when G ∼ Gamma(3,1). Panel b is for Exponential(1)
and panel c is Log-Normal(1,0). Panel d is the true equilibrium strategy for a Normal (6,1) and panel e
represents a Weibull(3,1). Panel f represents an equal mixture of Normal(7.2,1) and Normal(3,1).
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Figure 2: Monotonization for data simulated from a truncated log-normal distribution. Panel (a) represents
the 95th percentile of D0(p̂) = 1.811407, the long-dashed line, the GPV estimator, the solid line, as well
as the constrained GPV estimator for the same dataset with ρ = 0.5, D0.5(p̂) = 1.846482 represented by
the short-dashed line, and with ρ = 1, D1(p̂) = 0.003746 represented by the dotted line. Panel (b) depicts
the envelope curves of the values of p̂ after the monotonicity constraint had been achieved with ρ = 0, 0.5,
and 1, again with the respective line types.
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Figure 3: Monotonization for data simulated from a truncated gamma distribution. Panel (a) represents
the 95th percentile of D0(p̂) = 0.615096, the long-dashed line, the GPV estimator, the solid line, as well
as the constrained GPV estimator for the same dataset with ρ = 0.5, D0.5(p̂) = 0.622522 represented by
the short-dashed line, and with ρ = 1, D1(p̂) = 0.001259 represented by the dotted line. Panel (b) depicts
the envelope curves of the values of p̂ after the monotonicity constraint had been achieved with ρ = 0, 0.5,
and 1, again with the respective line types.
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Figure 4: Equilibrium Bidding Strategy for 3 bidder experiment. The solid line represents the unconstrained
GPV estimator while the dashed line is the monotonically constrained GPV estimator.
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Figure 5: Equilibrium Bidding Strategy for 6 bidder experiment. The solid line represents the unconstrained
GPV estimator while the dashed line is the monotonically constrained GPV estimator.
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Figure 6: Monotonized Equilibrium Bidding Strategy for Timber Auctions with 3 bidders. In Panel (a)
the solid line represents the unconstrained GPV estimator while the dashed line is the monotonically
constrained GPV estimator. Panel (b) represents the corresponding value density while Panel (c) shows
the bootstrap weights.
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Figure 7: Monotonized Equilibrium Bidding Strategy for Timber Auctions with 4 bidders. In Panel (a)
the solid line represents the unconstrained GPV estimator while the dashed line is the monotonically
constrained GPV estimator. Panel (b) represents the corresponding value density while Panel (c) shows
the bootstrap weights.
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Figure 8: Monotonized Equilibrium Bidding Strategy for Timber Auctions with 5 bidders. In Panel (a)
the solid line represents the unconstrained GPV estimator while the dashed line is the monotonically
constrained GPV estimator. Panel (b) represents the corresponding value density while Panel (c) shows
the bootstrap weights.
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