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Abstract

This paper provides an introduction to the use of genetic algo-
rithms for financial optimisation. The aim is to give the reader a basic
understanding of the computational aspects of these algorithms and
how they can be applied to decision making in finance and investment.
Genetic algorithms are especially suitable for complex problems char-
actised by large solution spaces, multiple optima, nondifferentiability
of the objective function, and other irregular features. The mechan-
ics of constructing and using a genetic algorithm for optimisation are
illustrated through a simple example.

1 Introduction

Artificial intelligence, and in particular machine-based learning techniques,
have become very popular in the last decade due to significant advances
in information technology. Until recently, these techniques were considered
too intensive computationally and thus were neither popular nor practical.
Machine-based learning techniques, such as genetic algorithms and neural
networks, have been applied to numerous areas in finance and investment;
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see Trippi and Turbin (1996), Deboeck (1994), and Weigend, Abu-Mostafa
and Refenes (1997).

Computers are considered important in developing trading strategies, fi-
nancial analysis and portfolio optimisation because humans have limited cog-
nitive ability and can be inconsistent in decision making; see Kahneman and
Tversky (1982). By using computers, numerous alternative trading strate-
gies, financial scenarios or portfolios can be developed and quickly appraised.
However, Bauer and Liepens (1992) argue that given a seemingly limitless
number of different combinations, even computers are severely limited in
terms of an exhaustive search. Genetic algorithms provide one method for
the rapid evaluation of real-time financial and investment possibilities, which
is important in today’s fast paced and dynamic financial environment.

Genetic algorithms, developed by Holland (1975), are a class of adaptive
search and optimisation techniques.1 These algorithms are extremely efficient
at searching large solution spaces. Furthermore, Dorsey and Mayer (1995)
have shown that a genetic algorithm is a robust or effective method for opti-
misation of complex problems characterised by multiple optima, nondifferen-
tiability, and other irregular features. Unlike other optimisation techniques,
such as gradient-based methods which solve for the optimal value using an
analytical approach, genetic algorithms use an iterative numerical approach.

Genetic algorithms are a form of artificial intelligence, which is based
on the idea of simulating human-like decision making ability using a com-
puter. Artificial intelligence techniques can be grouped succinctly into the
three broad areas of advanced programming techniques, decision support and
expert systems, and machine-based learning techniques as shown in Figure
1. Genetic algorithms belong to the class of evolutionary algorithms, which
attempt to solve difficult problems by evolving an initial set of potential so-
lutions into better solutions through an iterative process. This is achieved
through a process referred to as natural selection or survival of the fittest,
which is based on Charles Darwin’s theory of evolution.

[Insert Figure 1.]

Both evolutionary algorithms and neural networks are machine-based
learning techniques, where the latter attempt to learn patterns or relation-
ships usually from large samples of data. These techniques can be employed
to develop and optimise trading rules, forecast financial asset returns, or con-
struct optimal portfolios. Since a large part of the literature consists of neural

1A good introduction to genetic algorithms is given by Mitchell (1996). For a more
detailed description of the mathematical operations, the programming and applications of
genetic algorithms, refer to Goldberg (1989).
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network applications, this paper will focus exclusively on genetic algorithms
and their role in financial optimisation.

This paper is organised as follows. Section 2 describes the mathematical
structure and operations involved in using a genetic algorithm. Section 3
considers a simple example to illustrate the procedure involved in deriving
a solution for a simple optimisation problem using a genetic algorithm. The
advantages and disadvantages of this technique in relation to other optimi-
sation methods are given in Section 4. Section 5 outlines previous studies
which have applied genetic algorithms to finance and investment. Finally,
Section 6 provides a summary of the paper.

2 Mathematical structure and operations

Typically, any genetic algorithm used for the purpose of optimisation consists
of the following features:

1. binary representation,

2. objective function,

3. genetic operations (selection, crossover and mutation).

2.1 Binary representation

In order to solve an optimisation problem using a genetic algorithm, poten-
tial solutions or candidates are usually represented by vectors consisting of
binary digits or bits.2 In general, the binary representation of an individual
candidate is given by

x = [x1, x2, x3, ..., xb] (1)

where the value of each of the b elements is either a zero or one. This repre-
sentation is based on the binary number system. Thus a particular candidate
with a binary representation xi has a corresponding decimal equivalent value
given by

2Although the common approach is to use binary digits, some genetic algorithms rep-
resent candidates using real numbers. Thus, vectors consist of elements given by real
numbers values instead of zeros and ones. This approach is employed in certain problems
where there are a large number of different parameters.
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yi =
b

∑

j=1

(2n−j)xj (2)

where the elements xj of vector xi are the different values of the binary
representation with a value of either zero or one.3 For example, a candidate
with a binary representation given by

xi = [0 1 0 0 1]

has a decimal equivalent value given by

yi = (24
× 0) + (23

× 1) + (22
× 0) + (21

× 0) + (20
× 1) = 8 + 1 = 9

which is equal to a corresponding decimal value of nine.

2.2 Objective function

Ultimately the goal of a genetic algorithm is to find a solution to a complex
optimisation problem, which is optimal or near-optimal, quickly and at lowest
cost. This property is important for short-term trading, for example arbi-
trage or market making operations. In these cases, obtaining a near-optimal
solution relatively quickly is more important than obtaining the optimal so-
lution at the cost of a significantly greater amount of time. In order to do
this a genetic algorithm searches for better performing candidates, where
performance can be measured in terms of an objective function.

The objective function used in a genetic algorithm can be expressed as

z = F (y,W) (3)

where the vector y consists of decimal equivalent values, each with a cor-
responding binary representation given by x, and W is a set of other pa-
rameters or variables which are not directly of interest. In terms of finan-
cial market problems, the objective function could be represented by profit.

3These vectors or binary representations can be thought of as analogous to the chro-
mosomes in living organisms, where the zeros and ones correspond to the genes in the
chromosomes. Just as chromosomes determine the characteristics of living organisms, the
binary representations can be decoded to reveal particular solution candidates.
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Specifically, the objective could be to maximise trading profits by choosing
the appropriate parameter values for a particular trading rule given a sample
of financial market data. Another financial problem, could involve optimal
portfolio selection, where the objective is to choose the proportion of financial
assets to hold in a portfolio such that risk is minimised given the constraint
of achieving a specified level of return.

Each candidate’s performance can be assessed using the objective func-
tion given by Equation 3. For example the decimal equivalent value of a
particular candidate given by yi has a performance value of F (yi). The ob-
jective function is extremely important in guiding the genetic algorithm in
its search for the optimal solution; this is discussed further in Section 4.

2.3 Genetic operations

The search process employed by a genetic algorithm is driven by three im-
portant operations:

1. selection,

2. crossover,

3. mutation.

It is through these genetic or biological operations that an initial pop-
ulation of randomly generated candidates to a problem is evolved through
successive iterations, referred to as generations, into a final population con-
sisting of the optimal or a near-optimal solution.4 These operations can be
thought of as an effective procedure for updating the candidates’ solution
values from one iteration to the next. The search procedure which ensues is
highly effective because of these operations.

2.3.1 Selection

Selection determines which solution candidates are allowed to participate in
crossover and undergo possible mutation; these terms are defined below in
this section. There are a number of different types of selection methods; see
either Goldberg (1989) or Mitchell (1996). The original method developed by
Holland (1975) involves selecting candidates according to a probability distri-
bution. The probability of a particular candidate being chosen is determined

4The term population actually refers to a sample of the entire population of possible
solutions. However the term population is adopted because it is the commonly used term
in the literature.
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by its performance relative to the entire population. Thus the distribution
is skewed towards the better performing candidates, giving them a greater
chance of being selected. This method known as roulette wheel selection, is
not ideal in relatively small populations, since there could be a disproportion-
ately large number of poorly performing candidates chosen for selection due
to the random nature by which candidates are selected; see Mitchell (1996).
Alternative methods can be employed to overcome this problem.

One of these alternatives is the tournament selection method. This in-
volves selecting two or more candidates at a time and then choosing the
better performing candidate from the pair or group. For example, in a two-
party tournament selection, two candidates will be chosen at random from
the population. These two candidates are compared and the candidate with
the greater performance is selected. This method captures the reasoning be-
hind the theory of survival of the fittest, since two candidates participate in
a live-or-die tournament, where only the fitter candidate lives while the other
dies.

Another approach is the genitor selection method, which is a ranking-
based procedure developed by Whitley (1989). This approach involves rank-
ing all individuals according to performance and then replacing the poorly
performing individuals by copies of the better performing individuals.

2.3.2 Crossover

Promising candidates, as represented by relatively better performing solu-
tions, are combined through a process of binary recombination referred to
as crossover. This ensures that the search process is not random but rather
that it is consciously directed into promising regions of the solution space.
As with selection there are a number of variations, however single point
crossover is the most commonly used version. Other versions of crossover
include multiple crossover points.

Single point crossover involves a number of steps. First, candidates from
the restricted population, consisting of the candidates that have managed to
survive the selection process, are randomly paired. Whether or not crossover
occurs is determined stochastically according to a pre-specified probability
of crossover. Next a partitioning or break point is randomly selected at a
particular position in the binary representation of each candidate. This break
point is used to partition the two vectors, separating each vector into two sub-
vectors. The two sub-vectors to the right of the break point are exchanged
between the two vectors. The vectors are then unpartitioned, yielding two
new candidates.

To demonstrate this procedure, assume that two candidates, represented
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by the vectors

x1 = [1 0 1 0 0]

x2 = [0 1 0 1 0]

are randomly paired from the restricted population and have been selected
for crossover. Assume that the break point is randomly chosen to be between
the second and third elements of each vector. The two partitioned vectors
can be represented in terms of their sub-vectors

[x11x12] =

[

1 0
... 1 0 0

]

[x21x22] =

[

0 1
... 0 1 0

]

respectively. Given that crossover occurs, sub-vector x12 from vector x1 is
switched with sub-vector x22 from vector x2 resulting in the vectors

[x11x22] =

[

1 0
... 0 1 0

]

[x21x12] =

[

0 1
... 1 0 0

]

Finally both vectors are unpartitioned yielding two new binary represen-
tations

x′

1 = [1 0 0 1 0]

x′

2 = [0 1 1 0 0]

2.3.3 Mutation

New genetic material can be introduced into the population through mu-
tation. This increases the diversity in the population and unlike crossover,
randomly redirects the search procedure into new areas of the solution space
which may or may not be beneficial. This action underpins the genetic algo-
rithm’s ability to find novel or inconspicuous solutions and to avoid getting
anchored at local sub-optimal solutions.

Mutation occurs by randomly selecting a particular element in a par-
ticular vector. If the element is a one it is mutated or switched to zero.
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Table 1: The steps involved in one trial of a genetic algorithm

Step Action
1. Determine the appropriate binary representations.
2. Create an initial population of candidates randomly.
3. Calculate the performance of each candidate in the initial population.
4. Perform selection to determine the restricted population.
5. Apply crossover to the restricted population.
6. Apply mutation to the restricted population.
7. Calculate the performance of the candidates in the new generation.
8. Return to Step 3 unless a termination criterion is satisfied.

Otherwise, if it is a zero it is mutated to a one. This occurs with a very low
probability in order not to unduly disturb the search process.

To illustrate mutation, assume that no other elements are selected for
mutation except for the third element in vector

x3 = [1 0 0 1 0]

then mutation would alter the binary representation of this vector

x′

3 = [1 0 1 1 0] .

2.4 Procedure

The steps involved in implementing one run or trial of a genetic algorithm
are outlined in Table 1. The first step, referred to as problem representation,
involves representing potential solutions to the problem as vectors consisting
of binary digits, as discussed above in Section 2.1. Once this is determined,
an initial population of candidates is randomly created by using a random
number generator. A p × b matrix of random numbers are generated repre-
senting p candidates, each consisting of b elements. The resulting value of
each element is rounded to the nearest integer. Since the values of each ele-
ment are random numbers, a real number from the interval 0 to 1 inclusive,
each element becomes either a zero or a one. Then in the following step,
the performance of each candidate is evaluated using the objective function
given by Equation 3.

The next few steps involve the application of the operations which were
discussed above in Section 2.3. First, the operation of selection determines
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which of the candidates from the initial population should be chosen to par-
ticipate in the operations of crossover and mutation. These two operations
are then applied to the candidates in this current restricted population, re-
combining and randomly changing the elements of the vectors, leading to
the creation of a generation of new candidates. Next, the performance of the
candidates from this new generation is assessed using the objective function.

The final step in the genetic algorithm involves the verification of a well-
defined termination criterion. This termination criterion is usually satisfied if
either the population converges to a unique solution or a maximum number of
predefined generations is reached. A maximum number of generations may be
specified in order to prevent the algorithm from continuing indefinitely, which
can occur with certain types of problems. If this criterion is not satisfied, the
genetic algorithm returns to the selection, crossover and mutation operations
to develop further generations until this criterion is met, at which time the
process of creating new generations is terminated.

3 A simple example

To highlight the salient features of a genetic algorithm, a simple optimisation
problem of determining the optimal value (y∗) for the profit function

Π (y) = 24y − y2 + 70 (4)

is illustrated. The optimal solution is given by y∗ = 12, with a correspond-
ing optimal profit of Π (y∗) = 214. Obviously such a simple problem would
in practice be solved using basic calculus methods instead of using a com-
putationally burdensome genetic algorithm. However, in a certain class of
problems which are difficult to solve, a genetic algorithm might be the most
effective and efficient technique. Discussion of these types of problems is
postponed until Sections 4 and 5. Thus the example demonstrated in this
section does not represent a realistic application of a genetic algorithm and
is therefore only expository.

3.1 Binary representation

As discussed above in Section 2.1, it is necessary to develop a binary rep-
resentation for each solution candidate to this optimisation problem. The
length of the vectors used for binary representation must be capable of rep-
resenting a specified range of values. For this particular problem, vectors are
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restricted to five elements. In practice this involves careful consideration of
the appropriate range of values.

3.2 Creation of the initial population

An initial population of solution candidates is created randomly. This is
achieved by using a random number generator to determine whether each
element in each binary representation, given by Equation 1, is either a zero
or a one; as described above in Section 2.4. Suppose that the following
vectors are realizations from the randomly created initial population:

x1 = [1 0 1 0 0]

x2 = [0 1 0 1 0]

x3 = [1 0 0 1 1]

x4 = [0 0 0 0 1]

x5 = [1 1 1 0 1]

The initial population or generation G0 can be expressed using matrix nota-
tion as

G0 =













x1

x2

x3

x4

x5













=













1 0 1 0 0
0 1 0 1 0
1 0 0 1 1
0 0 0 0 1
1 1 1 0 1













Using Equation 2, the equivalent decimal values for each binary represen-
tation are: y1 = 20, y2 = 10, y3 = 19, y4 = 1, and y5 = 29.

3.3 Calculation of performance for each candidate

The performance of each candidate can be calculated by evaluating the objec-
tive function, which in this problem is the profit function given by Equation 4,
where y represents a candidate’s decimal equivalent value. The performance
for each of the candidates is given in Table 2.

3.4 Selection

Next, candidates are selected to participate in crossover and mutation. For
the purpose of simplicity a basic ranking based selection procedure is il-
lustrated. All the candidates are ranked and then the worst performing
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Table 2: Performance of the initial generation based on Equation 2.1

Binary representation Decimal value Performance measure
x1 = [1 0 1 0 0] y1 = 20 150
x2 = [0 1 0 1 0] y2 = 10 210
x3 = [1 0 0 1 1] y3 = 19 165
x4 = [0 0 0 0 1] y4 = 1 93
x5 = [1 1 1 0 1] y5 = 29 −75

candidate is replaced by a copy of the best performing candidate. Given
that vector x5 is the worst in terms of performance, it is replaced by a copy
of vector x2, which represents the best performing candidate. The current
restricted population G′

0 becomes

G
′

0 =













1 0 1 0 0
0 1 0 1 0
1 0 0 1 1
0 0 0 0 1
0 1 0 1 0













A second generation of candidates is created from this initial generation
through crossover and mutation.

3.5 Crossover

Crossover involves the construction of new candidates, which are formed
from the recombination of the binary representations of two paired candi-
dates chosen for crossover. Mathematically, this involves recombining the
elements between two vectors. Assume that only vectors x1 and x2 are cho-
sen for crossover and that the crossover point is between the second and third
elements. The crossover operator produces two new vectors

x′

1 = [1 0 0 1 0]

x′

2 = [0 1 1 0 0] .

Details of this operation are illustrated above in Section 2.3.

3.6 Mutation

Mutation is a process which randomly alters a candidate’s binary represen-
tation resulting in a different binary structure. Assuming that no other
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Table 3: Performance of the new generation based on Equation 2.1

Binary representation Decimal value Performance measure
x1 = [1 0 0 1 0] y1 = 18 178
x2 = [0 1 1 0 0] y2 = 12 214
x3 = [1 0 0 1 1] y3 = 19 165
x4 = [0 0 1 0 1] y4 = 5 165
x5 = [0 1 0 1 0] y5 = 10 210

elements are selected for mutation except for the third element in vector x4,
then mutation would change this vector into a new vector, illustrated as

x4 = [0 0 0 0 1] −→ x′

4 = [0 0 1 0 1]

The outcome of both crossover and mutation is the formation of a new gen-
eration given by

G1 =













1 0 0 1 0
0 1 1 0 0
1 0 0 1 1
0 0 1 0 1
0 1 0 1 0













3.7 Calculation of performance for each new candidate

The performance of the candidates from the new generation is again calcu-
lated using Equation 4. The resulting performance values are given in Table
3. As it turns out, the optimum value has been achieved, as represented by
the second vector, since its performance measure is at the maximum value
of 214. However in an optimisation problem with a much greater number
of possible solutions represented by a larger solution space, realistically it
would normally take many more generations to find the optimum, or at least
a good solution.

3.8 Verification of the termination criterion

In general, the iterative procedure will continue until the termination crite-
rion is satisfied. Assuming that for this simple problem the criterion requires
convergence of the population, it is necessary to continue this iterative pro-
cedure according to steps 4 to 7, until this condition is met.
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4 Advantages and limitations

Traditionally, mathematical optimisation problems have been solved using
analytical or indirect methods, which use analytical derivatives in order to
find the optimum. Some of these methods include: Lagrange multipliers,
Newtons methods, and quadratic programming. In contrast, direct methods
use a numerical rather than an analytical approach to solve an optimisation
problem. This involves calculating the value of the objective function F (y),
given by Equation 3, for a number of different solution values y1, y2, y3,...,
yn. By starting at some initial value(s), direct methods calculate successive
values of the objective function for different values of y. The search proceeds
in an iterative fashion employing a specific strategy to update the values of
y. Direct methods include: exhaustive or sequential search, random search,
simplex method, adaptive random search, simulated annealing and genetic
algorithms.

The difference between the direct and indirect approaches can be bet-
ter appreciated by reconsidering the profit maximisation problem given in
Section 3. This problem can be expressed as

Max
y

Π = 24y − y2 + 70

which involves finding the value of y that maximises profit Π. The indirect
approach solves this problem by finding the first order condition

dΠ

dy
= 24 − 2y = 0

and then solving for y

y∗ = 12

The direct approach employs an iterative procedure, which involves trying
different values of y until there is no more improvement in the value of the
objective function. Obviously this occurs at the value of y = 12 in this prob-
lem. In general, the iterative procedure continues until some pre-specified
level of precision ε is achieved; i.e. F (yk+1) − F (yk) < ε, where k is the
iteration number.

In straight forward problems with no irregular features, indirect methods
tend to be superior to direct methods, since they use the most efficient or
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quickest method to obtain a solution. However, in complex problems char-
acterised by irregular features, such as multiple optima, nonlinearity, and
discontinuities and nondifferentiability of the objective function, analytical
methods are less effective or robust compared to direct methods. This is
because indirect methods rely on the existence of derivatives, continuity and
unimodality. Many problems in finance can be regarded as being complex.
For example, in certain options pricing and constrained portfolio optimisa-
tion problems, there may be no closed-form solutions available and hence
analytical methods cannot be used. Another example is the optimisation
of trading rules and strategies employing measures of the objective function
such as trading rule returns or risk which are typical characterised by multiple
optima and nonlinearity.

Direct methods offer increased robustness relative to indirect methods in
complex problems, but depending upon the method used can be extremely
slow at finding a solution, especially when the solution space is very large.
Although this is not as relevant as it was in the past, since computers are
much more powerful today, it is still important to improve the efficiency
of these direct methods. This is because a greater number of problems in
finance are becoming increasingly complex. Furthermore, in certain activities
in financial markets, such as short-term trading, the issue of how quickly a
solution can be obtained is of great importance.

The least sophisticated direct methods are the exhaustive and random
search methods. With exhaustive search the value of the objective function
F (y) is calculated for a given range of different values y1, y2, y3, ..., yn. In
the case of a maximisation problem, the search is then concentrated around
the value which yields the highest value for the objective function. In the
case of more than one variable or parameter being optimised a grid search
procedure can be employed. The random search method extends the search
by updating a single value using a random approach. At each iteration the
value of the objective function F (yk) is calculated for a single value of yk

which is compared to the previous value yk−1. In a maximisation problem,
if F (yk) ¿ F (yk−1), then the new value yk becomes the current value and the
previous value yk−1 is discarded, otherwise the yk−1 is retained and the yk

discarded.
Both exhaustive and random search, while robust, are extremely inef-

ficient. Therefore, other techniques have been developed to improve the
efficiency of the search process. In order to improve the efficiency, it is nec-
essary to direct the search into more promising regions of the solution space
which are more likely to contain the global optimum. A number of methods
have been proposed to address this issue, these include the simplex method
(Nelder and Meade 1965), adaptive random search (Pronzato, Walter, Venot
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and Lebruchec 1984), simulated annealing (Kirkpatrick, Gelatt and Vecchi
1983), and genetic algorithms.

Simulated annealing uses a stochastic process to concentrate the search
in areas with a higher probability of containing the global optimum. Even
though this method improves the efficiency relative to the unsophisticated
direct methods outlined above, it is considered inefficient compared to a ge-
netic algorithm; see Michalewicz (1994). This is especially true in very large
and explosive combinatorial type optimisation problems. The reason for this
efficiency is because, unlike simulated annealing which uses a single point or
unidirectional search, genetic algorithms maintain a population of candidates
which means that the search is multidirectional. This approach to problem
solving is known as parallel processing. Unlike serial or sequential processing,
this involves performing a large number of operations simultaneously rather
than one at a time. Parallel processing is commonly employed in the area
of information technology where computers can be linked a parallel fashion
in order to solve extremely complex problems very quickly. This same idea
is embodied in the structure of machine-based learning techniques, such as
artificial neural networks and evolutionary algorithms.

4.1 Advantages

Genetic algorithms are efficient and robust optimisation techniques that use
a direct method to search for the optimal or near-optimal solution to complex
problems which typically include one or more of the following features:

1. very large search space,

2. presence of multiple optima,

3. nondifferentiability of the objective function,

4. discontinuities in the objective function,

5. nonlinearity of the data,

6. large amount of noise in the data,

7. nonstationarity of the data.

The search process of a genetic algorithm is extremely efficient compared
to simulated annealing, due to what Holland (1975) describes as explicit and
implicit parallelism.5 Explicit parallelism refers to maintaining a population

5Holland (1975) provides formal mathematical proofs of implicit parallelism.

15



of potential solutions which ensures that the search process remains paral-
lel or multidirectional allowing an efficient exploration of the solution space.
Implicit parallelism refers to the evaluation of the performance of candi-
dates’ binary structures, determined by the objective function, which yields
information concerning a large number of schemata.6 This simultaneously
extends the search in multiple directions of the solution space in a highly
efficient manner. As a result, better performing candidates pass on their bi-
nary structure or better performing schemata to successive generations. This
property of efficiency ensures a relatively faster convergence to the optimum
compared to other techniques. This is important when solutions to problems
need to be obtained quickly.

However, it is important to appreciate the existence of the trade-off be-
tween speed and accuracy. Speed is measured by the rate of convergence,
which refers to an increasing uniformity in a population. Accuracy refers to
the proximity of solutions to the optimum. As stated in Section 2.3, there
are a number of different selection methods and variations of crossover. The
occurrence of crossover and mutation is determined randomly according to
predetermined probabilities. The choice of selection method, crossover vari-
ation and probabilities have an effect on the trade-off between speed and
accuracy. Another important trade-off is described by Holland (1975) as the
trade-off between exploitation and exploration. This trade-off also has an
effect on the speed and accuracy trade-off. The use of information already
obtained in the search, through the measurement of the performance of can-
didates in previous generation, to guide the search into potentially beneficial
directions of the solution space is appropriately referred to as exploitation.

Unlike optimisation techniques using an indirect search, genetic algo-
rithms are less likely to get anchored at local sub-optimal solutions.7 This is
due to the stochastic nature of the selection, crossover and mutation opera-
tors. Selection is determined by a process where relatively better performing
candidates are given a high probability of being involved in the recombina-
tion process. However, all candidates still retain the chance of being selected.
This has the possibility of extending, if only seldom, the search into areas
which might not appear to be promising initially, but could turn out to yield
very good solutions after a more thorough search. Furthermore, whether or
not crossover occurs is also determined randomly but biased towards better
performing candidates. But probably the most important operator in terms
of serendipity is the mutation operator.

6A schema, or schemata (pl.), refers to a certain pattern or sequence of binary digits
in a vector representation.

7Some gradient algorithms employ a random search mechanism when the algorithm
encounters difficulties such as a flat section of the objective function.
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Mutation introduces diversity into the population by extending the search
in different directions which may or may not be beneficial. This property is
also referred to as exploration. However this occurs with a low probability
so as not to disrupt the general path of the search procedure too much. Oc-
casionally mutations can lead to large or distant jumps, directing the search
process into potentially unexplored or less explored areas of the solution
space. This feature of the genetic algorithm underpins its ability to find
novel, even unsuspecting solutions, see Chorafas (1994).

The existence of nonlinearity in financial prices and returns has a pro-
found effect on the success of the particular forecasting method used. Evi-
dence of nonlinearity in financial return series is provided by Hsieh (1989) for
currency markets and by Hinich and Patterson (1985) for U.S. share mar-
kets. Traditional methods of time series, particularly ARIMA models, do
not provide optimal forecasts of nonlinear time series. By considering nearby
solutions during the search procedure, genetic algorithms are unaffected by
nonlinear or noisy data; see Chorafas (1994).

Finally, genetic algorithms are flexible. Once a genetic algorithm has been
coded as a computer program, different problems can be solved requiring only
slight modifications to the original program. This is because the structure of
a genetic algorithm remains essentially the same. Usually, only the problem
representation and objective function need to change in order to suit the
particular problem.

4.2 Limitations

Some of the potential difficulties and limitations of genetic algorithms as a
mathematical optimisation technique are:

1. choosing a suitable representation technique,

2. selecting the selection and crossover methods,

3. determining the probability settings for crossover and mutation,

4. specifying the termination condition,

5. premature convergence,

6. failure to converge.

Determining the appropriate representation technique depends upon the
nature of the problem. This consists of determining how many parameters
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or variables to optimise and what range of values to consider for each pa-
rameters. Relative to the other difficulties and limitations, this issue can
usually be resolved fairly easily. The second, third and fourth points listed
above are important, since they can determine the efficacy of the search pro-
cess. Once again, the appropriate choice of methods, probability settings
and termination criteria depend upon the specific problem. Some experience
with previous problems is advantageous and nearly always experimentation
is necessary to make the appropriate choices.

The main limitations of genetic algorithms are the last two points - prema-
ture convergence, usually to local optima, and failure to converge in heavily
constrained or highly nonlinear problems. Genetic algorithms can be classi-
fied as a weak optimisation technique, in the sense that convergence is not
guaranteed. This limitation can eliminate the most important advantage of
genetic algorithms which is their robustness.

However, this might not be of crucial importance when the objective is to
find profitable trading rules quickly rather than the most profitable rule which
may come at the cost of a greater amount of time necessary to obtain the
global optimum. According to Dorsey and Mayer (1995), genetic algorithms
might find only near-optimal solutions rather than the true global optimum.
But typically, these solutions are closer to the global optimum compared to
other approaches such as indirect methods, if these methods are applicable.
This is because even though convergence is guaranteed for indirect methods,
in complex problems indirect methods have a higher probability of converging
to local optima compared to genetic algorithms or other direct methods.

Although not much can be done about failure to converge, especially when
the nature of the problem is the cause, premature convergence can be some
what avoided by slight modifications to the standard genetic algorithm. One
of the more common modifications is the introduction of a form of elitism.
This ensures that the candidates with a high measure of performance are not
replaced by relatively poorer candidates during the operations of crossover
and mutation. In the worst case the best candidate may be lost during either
of these operations. Elitism guarantees that the best solution represented by
the highest performing candidate can never be lost. Thus the performance
of the best candidate is strictly non-decreasing over successive iterations.
However, if the number of elite candidates is set too high, then this could
lead to a deterioration in the exploration of the search space.
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5 Applications to financial markets

Genetic algorithms are a valid approach to many practical problems in fi-
nance which can be complex and thus require the use of an efficient and
robust optimisation technique. Some applications of genetic algorithms to
complex problems in financial markets include: forecasting returns, portfolio
optimisation, trading rule discovery, and optimisation of trading rules.

5.1 Forecasting returns

Genetic algorithms can be used for the purpose of forecasting complex data;
see Packard (1990). An example, is an application by Levitt (1995), who
develops a new machine learning technique called genetic based local learning,
which is a synergistic combination of genetic algorithms and local prediction
techniques. It is shown that this method produces statistically significant
returns when applied to the foreign currency market.

Genetic algorithms are also used in investment management to forecast
returns on different asset classes for the purpose of Tactical Asset Allocation
(TAA). Leinweber and Arnott (1995) show that by applying a genetic algo-
rithm to their TAA models they can substantially improve the performance
of their domestic funds. Furthermore, Mahfoud, Mani and Reigel (1997)
show how genetic algorithms, can be used to predict the relative returns for
individual shares which is useful in strategic asset allocation. They find that
the genetic algorithm demonstrates significant forecasting skill, compared to
linear methods, in identifying which shares will outperform or underperform
the market.

5.2 Portfolio optimisation

Another important function in investment management is to determine the
appropriate weights to give individual securities in a portfolio. This process
is known as portfolio optimisation or construction. Loraschi and Tettamanzi
(1996) use a genetic algorithm to find the optimal weights for a portfolio
of securities by minimising downside risk.8 They find that this approach
is useful when dealing with a large solution space characterised by multiple
optima.

Given the recent popularity of index funds, the importance of index repli-
cation based on a sampling approach has become an important issue for many

8Downside risk is measured by calculating the variance or standard deviation of returns
that fail to meet a specified level of return.
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passive fund managers. This problem is especially relevant for managers at-
tempting to match the performance of a broad-based index consisting of
thousands of securities; for example the Russell 3000, Wilshire 5000 and the
various Morgan Stanley Capital International indices. Eddelbüttel (1996)
finds that a genetic algorithm provides a computationally efficient approach
to the problem of tracking a market index using only a subset of the stocks
that comprise of the index. This empirical application considers the German
stock market DAX index, but can be easily extended to larger and more
broad market indices.

5.3 Trading rule discovery

Genetic algorithms have also been used to discover profitable trading rules.
Bauer (1994) uses a genetic algorithm to develop market timing trading
rules for the U.S. share and bond markets. These rules are formulated us-
ing monthly macroeconomic data to uncover relationships between financial
markets and the economy. The results obtained are consistent with market
timing ability and small profits. However the statistical significance of these
profits is not investigated. In a later study Bauer (1995) applies this method-
ology to the foreign exchange market, where once again promising results are
found.

Allen and Karjalainen (1994) use a genetic programming technique to
discover profitable technical trading rules using data on the S&P 500 share
index. Genetic programming, developed by Koza (1992), is similar to a
genetic algorithm but is less restrictive since it does not fix the length of
the binary representation of the solutions. It is found that the profitability
of these rules generalise to an out-of-sample test period and are statistically
significant. However more recently, Allen and Karjalainen (1999) using a
much longer historical share price series and a modified experimental design
discover that there is little, if any, evidence of excess returns attributable to
the trading rules.

Due to relatively lower transaction costs in the foreign exchange market,
there are possibly greater opportunities for the discovery of profitable trad-
ing rules using advanced computer technology. Profitable currency trading
simulation results are found by Colin (1996) and Neely, Weller and Dittmar
(1997) by applying a genetic programming approach to numerous foreign
exchange rates. Neely et al (1997) find that the trading rules they discover
generate statistically significant excess returns. However, Colin (1996) does
not take into account any trading costs and does not consider the statistical
significance of his results.

20



5.4 Optimisation of trading rules

The application of trading rules based on either technical or fundamental
indicators to financial market trading requires the selection of appropriate
parameter values. In practice traders usually choose these parameters in a
subjective manner largely based on intuition and experience. Also, numerous
studies examining financial market trading rule profitability have ignored the
issue of parameter optimisation or have used parameter values determined
ex post. This practice can lead to a data-snooping bias and also possibly
introduce a subtle form of survivorship bias into the performance study; see
Lo and MacKinley (1990) and Brown, Goetzmann, Ibbotson and Ross (1992)
respectively.

A more objective and valid approach to the problem of parameter selec-
tion involves the use of historical data. In order to conduct a valid evaluation
of trading rule performance free from data-snooping bias, it is necessary to
choose parameter values ex ante. This can be achieved by using an in-sample
period to determine the optimal ex ante parameter values. The performance
of these optimal rules can then be evaluated out-of-sample. A genetic algo-
rithm is an appropriate method to select the parameter values for trading
rules because of its property of robustness in the presence of multiple equi-
libria and non-linearity of the profit surface, and the property of efficiency
in searching across very large parameter spaces.

This issue of robustness is important in the problem of searching for the
optimal trading rule parameters since the profit surface, as represented by
the level of profit for different parameter values, is typically characterised
by multiple optima and nonlinearity. This is illustrated in Figure 2, which
displays the profit surface for a filtered moving average rule using Australian
share market data. The filtered moving average rule has two parameters; the
number of observations used to calculate the Moving Average (MA) and the
price filter (filter). This rule is representative of the types of rules commonly
employed by financial market traders who use technical analysis to determine
their trading decisions. Technical analysis attempts to predict future prices
or price movements by using only historical price and volume data; see Brock,
Lakonishok and LeBaron (1992).

[Insert Figure 2]

There are a couple of studies that have applied genetic algorithms to
the problem of technical trading rule parameter optimisation. Klimasauskas
(1994) develops a multiple-indicator market timing system and uses a genetic
algorithm to optimise the model’s parameters. Pictet, Dacorogna, Davë,
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Chopard, Schirru and Tomassini (1996) introduce the idea of robust optimi-
sation of technical trading rules by using genetic algorithms with collective
sharing. Robust optimisation is concerned with finding parameters values
which are not necessarily consistent with the global optimum but are found
in high and flat regions of the profit surface in the parameter space. Pictet et
al (1996) show that such robust optimisation generalises more effectively to
an out-of-sample period relative to standard optimisation by providing evi-
dence on the difference of profitability between these two different methods.

There are also other robust optimisation techniques which can be con-
sidered for trading rule parameter optimisation. One of the more popular
alternatives is simulated annealing; commonly employed in the field of en-
gineering. Ingber and Rosen (1992) develop a special type of simulated an-
nealing process which they claim is significantly more efficient than a genetic
algorithm. An application of this adaptive simulated annealing to financial
market trading is given by Ingber (1996).

6 Summary

This paper has provided an explication of genetic algorithms and focused
on their application to finance and investment. The mathematical structure
and operations were described, and the advantages and possible limitations
considered.

In certain complex optimisation and search problems in finance there is
a need for an efficient and robust algorithm. This is especially important in
areas where decisions must be made quickly, such as intra-day trading. This
paper has explained why genetic algorithms are more efficient and robust
compared to other search and optimisation methods and how they can be
applied to numerous complex problems in financial markets. Some of these
applications include: forecasting financial asset returns, portfolio construc-
tion, trading rule discovery, and optimisation of trading rules.
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Figure 1:  Artificial Intelligence (AI) Techniques
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Figure 2. Profit surface for the filtered moving average trading rule
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