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Chapter 1

Introduction

Hidden Markov Models (HMMs) and Hidden Semi-Markov Models (HSMMs)
provide flexible, general-purpose models for univariate and multivariate time
series, especially for discrete-valued series, categorical series, circular-valued
series and many other types of observations. They can be considered as a
special class of mixture models. The common properties of HMMs and HSMMs
are, first of all, that both are built from two stochastic processes: an observed
process and an underlying ‘hidden’ (unobserved) process. The basic structure
of HMMs and HSMMs is illustrated in Figures 1.1 and 1.2, respectively.

Figure 1.1: Basic structure of a Hidden Markov Model
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The models are a combination of the following two processes:

• a (semi-)Markov chain St which determines the state at time t, and

• a state-dependent process Xt which generates the observation depending
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on the current state of St.

Moreover, they fulfill the so-called conditional independence property: Given
the hidden state at time t, the distribution of the observation at this time is
fully determined. A very important consequence of these assumptions is the
correlation structure of the observed data. While the autocorrelation function
of HMMs is of a particular shape due to the Markov-property of the hidden
process, that of the HSMM is more flexible and offers a large variety of possible
temporal dependence structures.

Figure 1.2: Basic structure of a Hidden Semi-Markov Model
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HMMs and HSMMs have been used for more than two decades in signal-
processing applications, especially in the context of automatic speech recog-
nition (e.g. Ferguson 1980, Rabiner 1989). In this context, they allow one to
make inferences about the unobserved process. In economic time series mod-
eling, the regime-switching models based on the seminal works of Hamilton
(1989, 1990) are a very well-known application of HMMs. Another application
is described in the widely known article of Rydén et al. (1998) who analyzed
the variation of a daily return series from the S&P 500 index by a HMM.

Though the study of HMMs began in the mid-sixties with the paper of Baum &
Petrie (1966), the first application of HSMMs was analyzed in 1980 by Ferguson
(1980). Subsequently, various aspects of the models have been considered, e.g.,
the estimation of the order of HMMs (Rydén 1995b) or asymptotic properties of
maximum likelihood estimators for HMMs (Bickel et al. 1998, Douc & Matias
2001, Rydén 1995a) and HSMMs (Barbu & Limnios 2005). Although interest
in HMMs and HSMMs has continuously increased during the past years, and
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numerous articles on theoretical and practical aspects have been published,
several gaps remain. This thesis addresses some of them, divided into three
main topics:

1. Computational issues in parameter estimation of stationary hidden Markov
models.

2. A Markov switching approach to model time-varying Beta risk of pan-
European Industry portfolios.

3. Stylized facts of financial time series and HSMMs.

The decision to work on the first topic was motivated by the fact that the
parameters of a HMM can be estimated by direct numerical maximization
(DNM) of the log-likelihood function or, more popularly, using the expectation-
maximization (EM) algorithm. Although neither of the algorithms is superior
to the other in all respects, researchers and practitioners who work with HMMs
tend to use only one of the two, and to ignore the other. We compared the
two methods in terms of their speed of convergence, effect of different model
parameterizations, how the fitted-log likelihood depends on the true parameter
values and on the starting values of the algorithms. Further, it is desirable to
fit a stationary HMM in many applications. However, the standard form of
the EM algorithm is not designed to do this and therefore, in most cases, au-
thors who use it fit homogeneous but non-stationary models instead. We show
how the EM algorithm could be modified to fit stationary HMMs. We propose
a hybrid algorithm that is designed to combine the advantageous features of
the EM and DNM algorithms, and compare the performance of the three al-
gorithms (EM, DNM and the hybrid) using simulated data from a designed
experiment, and also a real data set. We then describe the results of an ex-
periment to assess the true coverage probability of bootstrap-based confidence
intervals for the parameters.
The results of the comparison of the EM algorithm and DNM clearly show
the trade-off between stability and performance. The hybrid algorithm seems
to provide an excellent compromise; it is as stable as the EM-algorithm but
it converges faster. Further, we show that the true coverage probability for
bootstrap-based confidence intervals, obtained by parametric bootstrap, may
be unreliable for models whose state-dependent parameters lie close to each
other.

The rationale to take up the second topic, a Markov switching approach to
model time-varying beta risk, was the development of a joint model for many
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financial time series. The modeling of daily return series with HMMs has been
investigated by several authors. After the seminal work of Rydén et al. (1998)
who showed that the temporal and distributional properties of daily returns
series are well reproduced by the two- and three-state HMMs with normal
components, several other authors followed their ideas (see, e.g., Cecchetti
et al. 1990, Linne 2002, Bialkowski 2003).
For many applications it is desirable to model a portfolio comprising multiple
assets, e.g., a portfolio of European shares selected from the Dow Jones EURO
STOXX 600. Fitting a multivariate HMM with normal component distribu-
tions would require the estimation of the covariance matrix for each of the
states. In the worst case, considering the portfolio of a professional investor
which is composed of all 600 shares, the procedure would involve a matrix of
dimension 600×600 yielding 180300 parameters to be estimated for each state.
It is obvious that such a model would be grossly over-parameterized, resulting
in unreliable estimates.
A possible solution to the quadratic increase of the number of parameters is
based on the Capital Asset Pricing Model (CAPM). In this model, the return
of each asset is linearly dependent to the market return (plus an error term):

Rit = αi + βiR0t + ǫit, ǫit ∼ N(0, σ2
i ),

where Rit, R0t are the returns of the ith asset and the market, respectively. The
error term is represented by ǫit; βi is the market or systematic risk. In this
setup, the number of parameters increases only linearly with the number of
assets considered. The joint behavior of all assets is modeled by the common
dependence on the market return.
We study the performance of two Markov switching models based on the ap-
proaches of Fridman (1994) and Huang (2000), and compare their forecast
performances to three models, namely a bivariate t-GARCH(1,1) model, two
Kalman filter based approaches and a bivariate stochastic volatility model.
The main results of the comparisons indicate that the random walk process
in connection with the Kalman filter is the preferred model to describe and
forecast the time-varying behavior of sector betas in a European context, while
the two proposed Markov switching models yielded unsatisfactory results.

The third and main topic addressed in this study is HSMMs, an extension of
the well known class of HMMs. For HSMMs, the runlength distributions can
be modeled explicitly instead of implicitly following the geometric distribution
of a HMM. Ferguson (1980) considered HSMMs as an alternative approach to
the classical HMMs for speech modeling because the latter were not flexible
enough to describe the time spent in a given state. After this pioneering work,
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several problems related to hidden semi-Markov chains were further investi-
gated by different authors, e.g., Levinson (1986), Guédon & Cocozza-Thivent
(1990), Guédon (2003), Sansom & Thomson (2001), Yu & Kobayashi (2003)
and different parametric hypotheses were considered for the state occupancy,
as well as for the distribution of the observations. We provide estimation pro-
cedures for a variety of HSMMs belonging to the recently introduced class of
right-censored HSMMs. In contrast to the original model of Ferguson (1980),
they do not require the assumption that the end of a sequence systematically
coincides with the exit from a state. Such an assumption is unrealistic for
many financial time series, daily return series in particular.
The ability of a HMM to reproduce several stylized facts of daily return se-
ries was illustrated by Rydén et al. (1998). However, they point out that one
stylized fact cannot be reproduced by a HMM, namely the slowly decaying
autocorrelation function of squared returns, which plays a key role in risk-
measurement and the pricing of derivatives. The lack of flexibility of a HMM
to model this temporal higher order dependence can be explained by the im-
plicit geometric distributed sojourn time in the hidden states.
We present two alternative HSMM-based approaches to model eighteen series
of daily sector returns with about 5000 observations. Our key result is that
the slowly decaying autocorrelation function is significantly better described
by a HSMM with negative binomial sojourn time and normal conditional dis-
tributions.

This thesis is structured as follows. An introduction to the basics of HMMs
is provided in Chapter 2. The computational issues in parameter estimation
of stationary HMMs are addressed in Chapter 3 and the Markov switching
approach to model time-varying beta risk are subject of Chapter 4. Chap-
ter 5 provides the theoretical framework for the estimation of HSMMs. The
application of HSMMs to daily return series is presented in Chapter 6. The dis-
cussion in Chapter 7 recapitulates the main results and offers some suggestions
for future research.



Chapter 2

Hidden Markov Models

Hidden Markov Models (HMMs) are a class of models in which the distribu-
tion that generates an observation depends on the state of an underlying but
unobserved Markov process. In this chapter we provide a brief introduction to
HMMs and explain the basics of the underlying theory.

HMMs have been applied in the field of signal-processing for more than two
decades, especially in the context of automatic speech recognition. However,
they also provide flexible, general-purpose models for univariate and multi-
variate time series, including discrete-valued series, categorical series, circular-
valued series and many other types of observations. Consequently, the interest
in the theory and applications of HMMs is rapidly expanding to other fields,
e.g.:

• Various kinds of recognition: faces, speech, gesture, handwriting/signature.

• Bioinformatics: biological sequence analysis.

• Environment: wind direction, rainfall, earthquakes.

• Finance: daily return series.

The bibliography lists several articles and monographs that deal with the ap-
plication of HMMs in these fields. Important references include Durbin et al.
(1998), Elliott et al. (1995), Ephraim & Merhav (2002), Koski (2001), Rabiner
(1989).

The application of HMMs in the above mentioned fields is mainly due to their
versatility and mathematical tractability. In detail, they are characterized by
the following properties (cf. MacDonald & Zucchini 1997):
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• Availability of all moments: mean, variance, autocorrelations.

• The likelihood is easy to compute; the computation is linear in the num-
ber of observations.

• The marginal distributions are easy to determine and missing observa-
tions can be handled with minor effort.

• The conditional distributions are available, outlier identification is pos-
sible and forecast distributions can be calculated.

In addition, HMMs are interpretable in many cases and can easily accommo-
date additional covariates. Furthermore, they are moderately parsimonious;
in many applications a simple two-state model provides a reasonable fit.

This chapter is organized as follows. In Section 2.1 we introduce indepen-
dent mixture models and discrete Markov chains, the two main components of
HMMs. Subsequently in Section 2.2, we present the construction of a HMM
and show how the likelihood can be calculated.

2.1 Fundamentals

This section provides a brief introduction to two fundamental concepts that
are necessary to understand the basic structure of Hidden Markov Models
(HMMs). As the marginal distribution of a HMM is a discrete mixture model,
we first provide a general outline of mixture distributions in Section 2.1.1.
Then, we introduce Markov chains in Section 2.1.2 since the selection process
of the parameters of a HMM is modeled by a Markov chain.

2.1.1 Independent Mixture Distributions

In general, an independent mixture distribution consists of a certain number of
component conditional distributions. In some applications it isi reason-
able to assume that the population heterogeneity is modeled by a continuous
mixture. More details on continuous mixtures can be found, e.g., in Böhning
(1999).
However, the focus of the subsequent work lies on discrete mixtures with a
finite number of component distributions. These component distributions can
be either discrete or continuous. In the case of two-component distributions,
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the mixture distribution is characterized by the two random variables X0 and
X1 along with their probability functions or probability density functions (pdf).

Random variable Probability function pdf

X0 p0(x) f0(x)

X1 p1(x) f1(x)

Moreover, for the parameter process a discrete random variable S is needed
to perform the mixture:

S :=

{
0 with probability π0

1 with probability π1 = 1 − π0
.

One may imagine S like tossing a coin: If S takes the value 0, then an obser-
vation is a realization of X0; if S takes the value 1, then an observation is a
realization of X1. The structure of that process for the case of two continuous
component distributions is shown in Figure 2.1.

Figure 2.1: Process structure of a two-component mixture distribution
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Note that, in practice, we do not know which way the coin landed. Only the
observations generated by either X0 or X1 can be observed and, in most cases,
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they cannot be assigned to a distinct random variable.

Given the probability of each component and the respective probability dis-
tributions, the probability density function of the mixture can be computed
easily. For ease of notation we only treat the continuous case. Let X denote
the outcome of the mixture. Then, its probability density function is given by

f(x) = π0f0(x) + π1f1(x).

The extension to the J-component case is straightforward. Let π0, . . . , πJ−1

denote the weights assigned to the different components and f0, . . . , fJ−1 de-
note their corresponding probability density functions. Then, the distribution
of the outcome, X, is a mixture and can be easily calculated as a linear com-
bination of the component distributions:

f(x) =
J−1∑

i=0

πifi(x).

Moreover, the calculation of the k-th moment E(Xk) is simply a linear com-
bination of the respective moments of its components:

E(Xk) =
J−1∑

i=0

πiE(Xk
i ), k ∈ {1, 2, ...}.

Note that this does not hold for the central moments, e.g., the variance of a
mixture:

V ar(X) 6=
J−1∑

i=1

πiV ar(Xi).

The estimation of the parameters of a mixture distribution is usually performed
by a maximum likelihood (ML) algorithm. The likelihood of a mixture model
with J components is given by

L(θ0, . . . , θJ−1, π0, . . . , πJ−1, x0, . . . , xτ−1) =

τ−1∏

j=0

J−1∑

i=0

πifi(xj , θi).

where θ0, . . . , θJ−1 are the parameter vectors of the component distributions,
π0, . . . , πJ−1 are the mixing parameters, and x0, ..., xτ−1 are the observations.
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It is not possible to maximize this likelihood function analytically. Therefore,
the parameter estimation has to be carried out by numerical maximization
of the likelihood using special software. A very useful software package for
the estimation of mixture models is C.A.MAN, developed by Böhning et al.
(1992).1

One example in which mixture distributions with continuous components can
be applied is the analysis of stock returns, as demonstrated in the following
example. Figure 2.2 shows the daily percentage returns of the DAX 30, DJ
STOXX, and FTSE 100 Index between 1st January 1994 and 31st December
2004.
It is visible that the variance of the returns is not constant over the whole
trading period. Instead, there are some periods with low absolute returns and
others with high absolute returns – there is “volatility clustering” observable
for many financial time series. For that reason, a simple normal distribution
does not provide an adequate description of the daily percentage return on the
indices, as can be seen in Figure 2.3, which shows a histogram of the daily
returns and a fitted normal distribution.

The fitted normal distribution underestimates the probability of extremely
low and high absolute returns. The return series also shows excess kurtosis
compared to the normal distribution. In contrast, a mixture of three normal
distributions as shown in Figure 2.4 provides a better fit. The mixing weights
correspond to those obtained by fitting a HMM.

1The software package can be downloaded from http://www.personal.rdg.ac.uk/
∼sns05dab/Software.html.
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Figure 2.2: Percentage return of the DAX 30, DJ STOXX, and FTSE 100
Index
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Figure 2.3: Histogram of daily returns of the DAX 30, DJ STOXX, and FTSE
100 Index with fitted normal distributions
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Figure 2.4: Histogram of daily returns of the DAX 30, DJ STOXX, and FTSE
100 Index with fitted mixtures of normal distributions
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2.1.2 Markov Chains

As the theory of Markov chains is well documented, we present only a short
introduction to the topic and some of their basic properties that are necessary
for the construction of HMMs. For a detailed description of Markov chains
see, e.g., Grimmett & Stirzaker (2001) or Parzen (1962).

Consider a stochastic process, i.e. a sequence of random variables {St : t ∈
0, 1, . . .} taking values in the state space {0, . . . , J − 1}. For more general
Markov processes, the time and state space may also be continuous. However,
for this work we deal only with discrete-time Markov processes with discrete
state space. Such processes are called Markov chains.
A stochastic process {St} is a Markov process if, roughly speaking, given the
current state of the process St, the future St+1 is independent of its past St−1,
St−2,..., S0. More precisely, let s0, . . . , st, st+1 denote a sequence of observations
of a stochastic process {St, t = 0, 1, . . .}. {St} is a Markov process if it has
the Markov property, namely

P (St+1 = st+1|St = st, St−1 = st−1, ..., S0 = s0︸ ︷︷ ︸
”entire history”

) = P (St+1 = st+1|St = st)

for all t ∈ {0, 1, . . .}.

A Markov chain is called homogeneous, or Markov chain with stationary
transition probabilities pij := P (St+1 = j |St = i), if the transition proba-
bilities are independent of t. The transition probabilities of a homogeneous
J-state Markov chain can be summarized in a J × J transition probability

matrix (TPM) and can be presented as

T :=




p0 0 · · · p0 J−1
...

. . .
...

pJ−1 0 · · · pJ−1 J−1


 ,

with pij = P (St+1 = j |St = i) and

J−1∑

j=0

pij = 1, i ∈ {0, . . . , J − 1}.

The TPM T contains the one-step transition probabilities and thus, describes
the short-term behavior of the Markov chain. For describing the long-term
behavior of a Markov chain, one can define the k-step transition probabilities
pij(k) := P (St+k = j |St = i). It can be shown that the matrix T (k), which
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contains the k-step transition probabilities can be calculated as the kth power
of the TPM T . That is,

T (k) :=




p0 0(k) · · · p0 J−1(k)
...

. . .
...

pJ−1 0(k) · · · pJ−1J−1(k)


 = T k .

For a proof, see Grimmett & Stirzaker (2001).

In this context one says that state j is accessible from state i, written i → j,
if the chain may ever reach state j with positive probability, starting from
state i. That is, i → j if there exists some k ∈ {1, 2, . . .} with pij(k) > 0.
Furthermore, states i and j communicate with each other, which is written as
i↔ j, if i→ j and j → i. We can then call a Markov chain to be irreducible

if i ↔ j for all i, j ∈ {0, . . . , J − 1}. In the following, as in most applications,
we assume the Markov chain to be irreducible.

The k-step transition probabilities provide the conditional probabilities to be
in state j at time t + k, given that the Markov chain is in state i at time t.
However, in general, the marginal probability of the Markov chain to be in
state i at a given time t is also of interest. Given the probability distribution
for the initial state2, π := (P (S1 = 1), . . . , P (S1 = m)) with

∑m
i=1 πi = 1, the

distribution of the state at time t can be computed as

(P (St = 0), . . . , P (St = J − 1)) = πT k−1.

If the Markov chain is homogeneous and irreducible, one can show that πT k−1

converges to a fixed vector, say πs, for large t. This unique vector is called the
stationary distribution and can be determined by solving

πs = πsT subject to πs1
′ = 1.

For a proof of this result, see Seneta (1981). A Markov chain is said to be sta-
tionary, if the stationary distribution πs exists and if it describes the marginal
distribution of the states for all t ∈ {0, 1, . . .}. In particular, for the distri-
bution of the initial state one has that π = πs. In practice, depending on
the application, one has to decide whether it is sensible to assume that the
underlying Markov chain of a HMM is stationary or not.

2We use the convention that vectors are row vectors
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2.2 Hidden Markov Models

In this section we give a brief introduction to HMMs and their basic properties.
For further reading, see, e.g., Ephraim & Merhav (2002) or MacDonald &
Zucchini (1997). If not indicated otherwise, we also refer to the latter as
standard reference for this section.

In an independent mixture model, the sequence of hidden states as well the
sequence of observations is independent by definition. If there is correlation
between the states, the independent mixture is not an appropriate model any-
more as it does not take account of all the information contained in the data.
One way of modeling data series with serial correlation is to let the parameter
selection process be driven by an unobserved (i.e. hidden) Markov chain. This
approach yields the HMM, which is a special case of a dependent mixture.
Different underlying processes can also be treated. For example, in Chapter 5
we generalize the parameter selection process to a semi-Markov chain, which
yields the HSMMs.

2.2.1 The basic Hidden Markov Model

Let {Xt} = {Xt, t = 0, 1, . . . } denote a sequence of observations and {St} =
{St, t = 0, 1, . . .} a Markov chain defined on the state space {0, . . . , J − 1}.
For better readability, we introduce the notation

X t1
t0 := {Xt0 , . . . , Xt1}

with t0 < t1; S
t1
t0 is defined similarly.

Consider a stochastic process consisting of two parts: Firstly the underlying
but unobserved parameter process {St}, which fulfills the Markov property
P (St = st |S

t−1
1 = st−1

1 ) = P (St = st |St−1 = st−1), and secondly the state-
dependent observation process {Xt}, for which the conditional indepen-

dence property

P (Xt = xt |X
t−1
0 = xt−1

0 , St
0 = st

0) = P (Xt = xt |St = st) (2.1)

holds. Then, the pair of stochastic processes {(St, Xt)} is called a J-state
Hidden Markov Model. Equation (2.1) means that, if St is known, Xt

depends only on St and not on any previous states or observations. The basic
structure of the HMM is illustrated in Figure 2.5.
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Figure 2.5: Basic structure of a Hidden Markov Model
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Thus a HMM is a combination of two processes, namely a Markov chain which
determines the state at time t, St = st, and a state-dependent process which
generates the observation Xt = xt depending on the current state st. In most
cases a different distribution is imposed for each possible state of the state
space. The Markov chain is assumed to be homogeneous and irreducible with
transition probability matrix T . By the irreducibility of {St}, there exists a
unique stationary distribution of the Markov chain, π = πs (cf. Section 2.1.2).

A HMM is rather a theoretical construction. In reality, only the state-dependent
process {Xt} is observed while the underlying state process {St} remains un-
known. However, in many applications there is a reasonable interpretation
for the underlying states. Suppose, for example, that the daily return series
introduced in Section 2.1.1 is modeled with a two-state HMM. Then the states
of the underlying Markov chain may be interpreted as condition of the finan-
cial market, namely a state with high volatility and a state with low volatility
representing nervous and calm periods, respectively.

The process generating the observations of a stationary two-state HMM is
demonstrated in Figure 2.6. Here the observed sequence equals (24.3, 16.8, 9,
12.1, 31.6, 14.5) and diag(T ) = (0.9, 0.7). In contrast to Figure 2.1, which
shows the process structure of a two-component independent mixture model,
the probabilities for the state St+1 depend on the state St.



18 2 Hidden Markov Models

Figure 2.6: Process structure of a two-state Hidden Markov Model
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For further details on the HMM, including a derivation of the moments and
marginal distributions, the treatment of outliers and missing data, forecasting,
decoding and smoothing procedures we refer to the manuscript of MacDonald
& Zucchini (1997).

2.2.2 The Likelihood of a Hidden Markov Model

The likelihood of a HMM can be expressed in a closed formula, even in a
relatively general framework. Let θ be set of all model parameters and let
P (xt) denote a diagonal matrix with the conditional probabilities bj(xt) :=
P (Xt = xt |St = j), j = 1, . . . , m on the main diagonal. Then, the likelihood
of a HMM can be written as
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L(θ) = P ({X0 = x0, . . . , Xτ−1 = xτ−1})

= πP (x0)TP (x1)T . . .TP (xτ−1)1
t, (2.2)

where 1 := (1, . . . , 1).

This form of the likelihood has several appealing properties. For example,
stationary as well as non-stationary models can be handled and a (local) max-
imum can be found by numerical procedures such as Newton-type algorithms
or via the so called EM-algorithm.
However, the evaluation of the likelihood is not completely straightforward, as
it involves a large number of multiplications of matrices with elements between
zero and one, numerical underflow occurs even on modern personal computers.
The easiest way to overcome this difficulty is by applying rescaling techniques
(see, e.g., Rabiner 1989). These rescaling techniques have to be applied for two
of the most commonly utilized methods to maximize the likelihood of a HMM,
namely direct numerical maximization and the EM-algorithm. Although other
estimation procedures exist (e.g., Particle filters), most researchers prefer ei-
ther the direct numerical maximization of the likelihood function or the EM-
algorithm. Both methods have their own advantages and disadvantages; a
comparison of the two approaches is presented in the following Chapter 3.



Chapter 3

Parameter Estimation for

Hidden Markov Models

Maximum-likelihood (ML) parameter estimation in Hidden Markov Models
(HMMs) can be carried out using either direct numerical maximization or
the expectation maximization (EM) algorithm (Baum et al. 1970, Dempster
et al. 1977). Although neither of the algorithms is superior to the other in
all respects, researchers and practitioners who work with HMMs prefer to use
only one of the two algorithms, and tend to ignore the other. The aim of
this section is to explore the advantages and disadvantages of both estimation
procedures for HMMs.

In many applications, it is desirable to fit a stationary HMM. The EM algo-
rithm is not designed to do this and therefore, in most cases, authors who use
the standard form of this algorithm fit homogeneous but non-stationary mod-
els instead. We show how the EM algorithm can be modified to fit stationary
HMMs.
Direct numerical maximization of the likelihood using Newton-type algorithms
generally converges faster than the EM algorithm, especially in the neighbor-
hood of a maximum. However, it requires more accurate initial values than
the EM to converge at all.
We implement both the new EM algorithm as well as direct numerical maxi-
mization using the software package R and assess their performances in terms of
flexibility and stability using both simulated and real data sets. In particular,
we analyze the speed of convergence, the effect of different model parameteri-
zations and how the fitted-log likelihood depends on the true parameter values
and on the initial values of the algorithms.
We suggest that it is possible to take advantage of the desirable properties
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of each of the two methods by using a hybrid algorithm, and compare the
performance of the three algorithms using simulated data from a designed ex-
periment, and then with a real data set. Such algorithms have been proposed
by some authors (e.g., Lange & Weeks 1989, Redner & Walker 1984), but the
efficiency of such an algorithm has not yet been reported in the context of
HMMs. We fill this gap and, as a by-product of the above simulation ex-
periments, we also investigate the coverage probability of bootstrap interval
estimates of the parameters.

This chapter is organized as follows. In Section 3.1 we give a brief description
of the two most common methods for estimating the parameters of a HMM.
Furthermore, we introduce the new EM algorithm for stationary time series
and the hybrid algorithm. Section 3.2 describes the design of the simulation
study, the results relating to the performance of direct maximization and the
EM algorithm and then of the hybrid algorithm. The coverage probability
of bootstrap-based confidence intervals is also addressed. In Section 3.3 we
demonstrate the advantages of the hybrid algorithm, by fitting a set of real
data. Section 3.4 summarizes the main findings of the chapter and offers some
concluding remarks. To keep this section short, only the main results are
presented. The entire analysis of this joint work with A. Berzel can be found
in Bulla & Berzel (2006).

3.1 Estimation Algorithms for

Stationary Hidden Markov Models

The parameters of HMMs are generally estimated using the method of maxi-
mum-likelihood (ML). Equation (2.2) shows that the likelihood equations have
a highly nonlinear structure and there is no analytical solution for the ML es-
timates. The two most common approaches to estimate the parameters of a
HMM are the EM algorithm and direct numerical maximization (DNM) of
likelihood. In this section we present their strengths and weaknesses and in-
troduce a hybrid algorithm, a combination of both. For alternative approaches
including variations on ML estimation see, e.g., Archer & Titterington (2002).

3.1.1 Direct Numerical Maximization

We give only a brief account of parameter estimation of HMMs by direct
numerical maximization (DNM) methods. For further details we refer to Mac-
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Donald & Zucchini (1997). Recalling Equation (2.2), there exists a convenient
explicit expression for the log-likelihood of a HMM that can be easily evalu-
ated even for very long sequences of observations. This makes it possible to
estimate the parameters by DNM of the log-likelihood function. DNM has
appealing properties, especially concerning the treatment of missing observa-
tions, flexibility in fitting complex models and the speed of convergence in the
neighborhood of a maximum. The main disadvantage of this method is its
relatively small circle of convergence.
We use the open source statistical software R (R Development Core Team
2005), version 1.9.1, which allows the integrated functions nlm() and optim()

to perform DNM of the negative log-likelihood. The function nlm() carries out
minimization of a function using a Newton-type algorithm (Dennis & Moré
1977, Schnabel et al. 1985). The function optim() offers the Nelder-Mead
simplex algorithm (Nelder & Mead 1965), a popular adaptive downhill sim-
plex method for multidimensional unconstrained minimization, which does not
require the computation of derivatives. In general, the Nelder-Mead algorithm
is more stable; however, it may also get stuck in local minima and is rather
slow when compared to the Newton-type minimization. In our study, we use
the values of the scaling parameters proposed by Nelder & Mead (1965) and
implemented those as default values in the optim() function.
Since both the functions nlm() and the Nelder-Mead algorithm can only per-
form unconstrained numerical minimization, the parameter constraints need
to be taken into account by different transformation procedures. For the tran-
sition probability matrix (TPM), we apply the TR-transformation described
in Zucchini & MacDonald (1998). In order to meet the non-negativity con-
straint of some of the parameters of the state-dependent distributions, we use
different transformations and compare their performance.

For simplicity we consider a Poisson HMM; the extension to other models is
straightforward. Let λi, i = 0, . . . , J − 1 denote the state-dependent parame-
ters to be transformed. The simplest transformation is the natural logarithm
log(λi). A second option is to make use of the fact that the ML estimates
of the parameters of the state-dependent distributions, λ̂i, can only have sup-
port points in the interval [xmin, xmax] where xmin := min{x0, . . . , xτ−1} and
xmax := max{x0, . . . , xτ−1} (Böhning 1999). We can restrict the possible range
of parameter estimates to that interval by applying a logit-type transforma-
tion, log ((λi − xmin)/(xmax − λi)).
Following the ideas of Robert & Titterington (1998) and Mengersen & Robert
(1996, 1999) introduced for the case of a normal mixture model with two com-
ponents, in some cases it might be convenient to “order” the states by modeling
the differences between the state-dependent parameters instead of the state-
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dependent parameters themselves: (τ0, τ1, . . . , τJ−1) := (λ0, λ1−λ0, . . . , λJ−1−
λJ−2).
Since the ordering of the states can be used for both the log- and the logit-
transformations, four different parameterizations have to be taken into ac-
count. In the case of the ordered logit parameterization, the range of the

logit-transformation has to be adopted, i.e., log
(
τi/(xmax −

∑i
j=0 τj)

)
.

In the simulation study outlined in Section 3.2.2 we study the performance of
these four parameterizations using both a Newton-type and the Nelder-Mead
algorithm.

3.1.2 The Stationary EM Algorithm

A popular and routinely used alternative to DNM is the Baum-Welch algo-
rithm, a special case of what subsequently became known as the EM algorithm.
An introduction to the EM algorithm can be found in Appendix A. There ex-
ists a large literature on the EM algorithm and its application to HMMs. We
do not provide any details on this well-established theory and refer to Baum
et al. (1970), Dempster et al. (1977), Rabiner (1989), Liporace (1982), Wu
(1983).

At this stage, we wish to note that the EM algorithm, in its original imple-
mentation in the context of HMMs, can be used to fit a homogeneous, but
not a stationary HMM. Thus authors who apply this method of estimation
are unable to maximize the likelihood under the assumption that the model is
stationary, despite the fact that such an assumption is both natural and desir-
able in many applications. We show that the EM algorithm can be modified,
at modest computational cost, so that it is able to fit a stationary HMM.

After assigning initial values to the parameters, the EM algorithm is imple-
mented by successively iterating the E-step and the M-step until convergence
is achieved.

E-step: Compute the Q-function

Q(θ, θ(k)) = E
[
logP (Xτ−1

0 = xτ−1
0 , Sτ−1

0 = sτ−1
0 | θ) |Xτ−1

0 = xτ−1
0 , θ(k)

]
,

where θ(k) is the current estimate of the parameter vector θ.

M-step: Compute θ(k+1), the parameter values that maximize the function Q
w.r.t. θ:

θ(k+1) = argmax
θ

Q(θ, θ(k)).
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The feasibility of the computation of the M-step depends strongly on the con-
ditional distributions of the observations. If the solution for this maximization
problem cannot be obtained analytically then the maximization has to be car-
ried out numerically (see, e.g., Wang & Puterman 2001). The maximization
has to be executed for each M-step at considerable computational cost. Fur-
thermore the rate of convergence of the EM can be very slow, namely linear
in the neighborhood of a maximum (Dempster et al. 1977).
An important advantage of the EM algorithm is that (under mild conditions)
the likelihood increases at each iteration, except at a stationary point (Wu
1983). Of course the increase may take one to only a local, rather than the
global, maximum and thus the results do depend on the initial values of the
parameters (Dunmur & Titterington 1998). Nevertheless the circle of conver-
gence is relatively large compared to competing algorithms, which leads to
high numerical stability in the form of robustness against poor initial values
(Hathaway 1986). A major disadvantage of the EM algorithm in the context
of HMMs is the lack of flexibility to fit complex models, as the E-step of the
algorithm needs to be derived for each new model (Lange & Weeks 1989).

The EM algorithm for HMMs given in the literature works as follows. The
three additive parts of the Q-function of a HMM given by

Q(θ, θ(k)) =

J−1∑

i=0




log πi ψ1(i) +

(
J−1∑

j=0

τ−2∑

t=0

log pijξt(i, j)

)

︸ ︷︷ ︸
(⋆)

+

τ−1∑

t=0

log bi(xt)ψt(i)




with ψt(i) := P ({St = i|Xτ−1
0 = xτ−1

0 , θ})

and ξt(i, j) := P ({St = i, St+1 = j|Xτ−1
0 = xτ−1

0 , θ} (3.1)

are split up in parts and maximized separately. Clearly, this procedure fits a
homogeneous, but non-stationary, HMM because the individual treatment of
the summands leads to an estimate π̂ which is not the stationary distribution
of T̂ . A popular way to impose stationarity is to simply neglect the first term,
calculate T̂ and then set π̂ equal to the stationary distribution of T̂ . However,
this approach does not lead to the exact ML estimates of the parameters,
except asymptotically.
In order to estimate a stationary Markov chain, the first two summands of
(3.1) marked by (⋆) have to be treated simultaneously with the stationarity
constraint

πT̃ = (0, 0, . . . , 0, 1), (3.2)
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at the M-Step of each iteration. T̃ denotes the matrix obtained by replacing
the last column of 1 − T by the vector (1, . . . , 1)T of length J .
The explicit calculation of a maximizing solution of the system of equations
defined by (⋆) in (3.1), and (3.2) is more difficult than it appears. Even for the
simplest non-trivial HMM with two states, the system becomes intractable.
To fit a stationary initial distribution, we carry out the modified M-step by
embedding a numerical maximization procedure at each iteration of the EM
algorithm. We note that this procedure is much more efficient than that of
carrying out the entire M-step numerically. By taking the values of T of
the preceding step as initial values for the maximization procedure, the EM
algorithm is not slowed down significantly.

3.1.3 The Hybrid Algorithm

The relative merits of the EM algorithm and DNM have also been discussed
by Campillo & Le Gland (1989) in the context of HMMs. They concluded that
the EM algorithm is an interesting approach despite slow convergence, slow
E-step and complicated M-step. Modifications of the EM algorithm, such as
the integration of Newton-type ‘accelerators’ have been suggested to improve
the rate of convergence, but these usually lead to a loss of stability and increase
in complexity (Jamshidian & Jennrich 1997, Lange 1995).
An alternative approach is to use hybrid algorithms, which are constructed by
combining the EM algorithm with a rapid algorithm with strong local con-
vergence, in our case the Newton-type algorithm, as follows: the estimation
procedure starts with the EM algorithm and switches to a Newton-type algo-
rithm when a certain stopping criterion is fulfilled (Redner & Walker 1984).
This leads to a new algorithm that yields the stability and large circle of con-
vergence from the EM algorithm along with superlinear convergence of the
Newton-type algorithm in the neighborhood of the maximum.

3.2 A simulation experiment

In this section, we consider three aspects of the estimation procedure for
HMMs: (i) the effect of different parameterizations in an unconstrained DNM,
(ii) the performance (relative to the EM algorithm and DNM) of the hybrid
algorithm introduced in the previous section and finally (iii) the reliability of
parametric bootstrap confidence intervals for the parameters.
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3.2.1 Study design

The influence of these methods on the estimation results, particularly on the
resulting value of the log-likelihood and the performance of the hybrid algo-
rithm are studied mainly with simulated two-state Poisson HMMs. In Section
3.3 we also analyze the effects on fitting a three-state Poisson HMM to a time
series of earthquake counts.

The simulated time series are of three lengths (50, 200 and 500). For each
length, four different transition probability matrices, namely,

T 1 =

(
0.9 0.1
0.1 0.9

)
,T 2 =

(
0.7 0.3
0.8 0.2

)
,T 3 =

(
0.2 0.8
0.8 0.2

)
,T 4 =

(
0.55 0.45
0.45 0.55

)
,

and two different state-dependent parameter vectors λ1 = (1, 2), λ2 = (2, 5)
served as parameters for the generation of the observations. This 3×4×2 exper-
imental design yields 24 different two-state Poisson HMMs. The realizations
of these series were generated using the default random number generator in
the base-library of R, an implementation of the Mersenne-Twister (Matsumoto
& Nishimura 1998).

3.2.2 Results for different parameterizations

To test the effect of the different parameterizations from Section 3.1.1, we
fit HMMs to each of the 24 generated time series where the initial values
are combinations of λs

0, λ
s
1 ∈ {0.5, 1, 1.5, . . . , xmax}, λ

s
0 < λs

1, and ps
00, p

s
11 ∈

{0.1, 0.2, . . . , 0.9}. Table 3.1 shows the percentage of failures, i.e. those cases
in which the algorithm did not converge to a solution, and the percentage of
successful convergence to the global maximum for the Newton-type and the
Nelder-Mead algorithm, summed over all series.

Table 3.1: Performance of the Newton-type and Nelder-Mead algorithms with
different parameterizations of the state-dependent parameters

failures (%) global maximum found (%)
Newton Nelder-Mead Newton Nelder-Mead

unordered log 0.17 0.00 84.3 93.0
ordered log 0.22 0.00 81.4 93.0

unordered logit 1.04 0.00 78.1 83.9
ordered logit 0.64 0.00 77.2 85.5
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Figure 3.1: Proportion of successful estimations for specific combinations of
the parameter starting values using the Nelder-Mead algorithm and different
parameterizations of the state-dependent parameters.
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We find that, over all series, the simplest parameterization, i.e. the use of
log-transformed state-dependent parameters, leads to the best results in terms
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of the number of failures and the convergence to the global maximum, and we
will therefore apply it to all further analysis. In general, this holds true for
both the Newton-type and the Nelder-Mead algorithms. However, the Nelder-
Mead algorithm provided better results than the Newton-type algorithm for
all parameterizations, if not for each individual series.

As a typical example, Figure 3.1 demonstrates the results obtained using the
Nelder-Mead algorithm and the four parameterizations for fitting a Poisson
HMM to a time series with 200 observations that were simulated using the
true parameters λ1 and T 1 as defined above. The ML estimates obtained for
this specific series are λ̂ = (0.55, 1.98)′ and T̂ with diagonal (0.89, 0.97)

′

lead-
ing to logLmax = −333.51. Each graph in Figure 3.1 represents the proportion
of successful estimations (i.e. estimations that led to the global maximum) for
specific combinations of the initial values for the state-dependent parameters,
λs

0, λ
s
1, or the diagonal elements of the initial TPM, ps

00, p
s
11, given a specific

parameterization of the state-dependent parameters. Light-colored areas in-
dicate a high proportion of successful trials, while darker colors represent low
proportions of success.
In this typical case the log-parameterization provides much more stable re-
sults than does the logit-parameterization. However, the performance of all
four parameterizations improves as the initial values approach the values of
the maximum likelihood estimates.
The general tendency that the unordered log-parameterization provides the
most stable results, was found to hold true for all simulated series. Neverthe-
less, the stability of the estimation results depended on the properties of the
true parameters used for the simulation. A detailed analysis of our experi-
mental study provides the following results for both the Newton-type and the
Nelder-Mead algorithms:

• The estimation results are clearly more stable for the true state-dependent
parameter vector λ2, i.e. the case in which the true λi-values differ sub-
stantially.

• The influence of the true TPM is not as straightforward as that of the
true state-dependent parameters. However, we observed the tendency
that one obtains the best results for T 2, i.e. the case in which one state
is dominant, and the worst results for T 3, i.e. the case in which the series
switches often between the states.
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• The results for τ = 50 are clearly less stable than those for τ = 200, 500,
while especially in those cases with true state-dependent parameter vec-
tor λ1 the results for τ = 500 were worse than those for τ = 200. This
may be due to the fact that for longer series the algorithms are more
likely to end up at local maxima.

3.2.3 Performance of the hybrid algorithm

The main parameter that influences the hybrid algorithm is the stopping crite-
rion ǫ. The algorithm switches from the EM to the Newton-type algorithm as
soon as the relative change in the log-likelihood of two subsequent steps falls
below a predefined value ǫ.
Different choices of the stopping criterion ǫ have mainly two effects. Firstly, on
the one hand, a small ǫ in general leads to a low failure rate of the algorithm
(i.e., cases in which no maximum of the log-likelihood is found) and a high
proportion of successful convergence to the global maximum. Secondly, on the
other hand, small values of ǫ increase the computational time required by the
algorithm. Figure 3.2 shows boxplots of the number of EM iterations of the
hybrid algorithm for different values of ǫ, relative to the numbers of iterations
obtained for the smallest value studied, i.e. ǫ = 10−5.

Figure 3.2: Effect of the stopping criterion ǫ in the hybrid algorithm on the
number of EM iterations, relative to ǫ = 10−5
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The relative number of EM iterations increases moderately when using ǫ =
10−3 instead of ǫ = 10−2, while it rises substantially when moving down to
ǫ = 10−4 or ǫ = 10−5. Since the proportion of successful estimations improves
only slightly for smaller values of ǫ, the choice of ǫ = 10−3 is a reasonable
compromise to deal with the trade-off between speed and stability and is used
in what follows.

Fitting HMMs to the 24 time series with the same combinations of initial values
mentioned above leads to the results displayed in Table 3.2, which clearly shows
the high stability of the hybrid algorithm. The EM algorithm as well as the
hybrid algorithm provide the most stable results (with their order changing
from series to series). Not surprisingly, the Nelder-Mead algorithm is more
stable than the Newton-type algorithm. However, there may be cases in which
both the EM and the hybrid algorithm provide just a slight improvement over
direct numerical maximization. It should also be mentioned that, as in the
study of the parameterizations for direct numerical maximization, the results
depend on the true parameters that were used to generate the observations.
The results concerning the dependence of the stability on the true parameter
settings described above also hold for the EM and the hybrid algorithm.

Table 3.2: Performance of the algorithms considered

failures (%) global maximum found (%)
Newton-type 0.17 84.3
Nelder-Mead 0.00 93.0
EM algorithm 0.00 95.6

Hybrid algorithm 0.00 95.4

The robustness of the EM and the hybrid algorithm is illustrated in Figure
3.3. The design of the figure corresponds to the design of Figure 3.1. It shows
the proportion of successful estimations for specific combinations of the initial
values for the state-dependent parameters, λs

0, λ
s
1, or the diagonal elements of

the initial TPM, ps
00, p

s
11. The algorithms for parameter estimation are applied

for the same series as above.
While the Newton-type and Nelder-Mead algorithms provide stable estimation
results for a few combinations of initial values, the EM and the hybrid algo-
rithms reach the global maximum in almost all cases, except for some relatively
extreme choices of the initial values for the TPM.
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Figure 3.3: Proportion of successful estimations for specific combinations of the
parameter starting values using different algorithms for parameter estimation
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3.2.4 Coverage probability of confidence intervals

In this section we consider the estimation of confidence intervals for the pa-
rameters of HMMs and their properties. These may also be calculated based
on the asymptotic properties of the estimators, but we will restrict our atten-
tion to those based on the parametric bootstrap as described, for example, in
MacDonald & Zucchini (1997).

Bootstrap confidence intervals for the parameters of a HMM have already been
studied by Visser et al. (2000), but we could find no detailed analysis of the
true coverage probability of bootstrap confidence intervals in the context of
HMMs.
We therefore apply a double parametric bootstrap method to analyze the cov-
erage probability of bootstrap percentile confidence intervals (Efron & Tibshi-
rani 1993, Chapter 13) using the hybrid algorithm introduced above, and at
different levels of confidence (90%, 95% and 99%).
In a first step, for each of the 24 true parameter combinations listed in Sec-
tion 3.2.1, we generated 1000 realizations of the respective Poisson HMM. In
a second step, we computed the maximum likelihood estimates for these 1000
realizations and, in each case, simulated 200 new bootstrap realizations using
the obtained parameter estimates. We then constructed confidence intervals
applying the bootstrap percentile method to the new bootstrap samples, us-
ing different levels of confidence. Thus we obtained 1000 confidence intervals
for each of the true parameters of the respective HMMs, and at each level of
confidence. The coverage probabilities were then estimated as the proportion
of those confidence intervals that cover the respective true parameter value.

The resulting coverage probabilities (and the respective confidence intervals)
for the parameters λ0 and p00, for three different levels of confidence, depending
on the length of the time series and the true TPM, are given in Figure 3.4 for
a true state-dependent parameter vector λ with a relatively large difference
between the state-dependent values λi, and in Figure 3.5 for a true λ vector
with entries that lie rather close to each other.
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Figure 3.4: Coverage probabilities of bootstrap confidence intervals with dif-
ferent levels of confidence for series simulated using λ2, i.e. a large difference
between the state-dependent parameters
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Figure 3.5: Coverage probabilities of bootstrap confidence intervals with dif-
ferent levels of confidence for series simulated using λ1, i.e. a small difference
between the state-dependent parameters
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It is observed that in most cases for τ = 50 the true coverage probability
deviates from the desired level of confidence. On the other hand, in the case
of a relatively large difference between the true λi-values, the true coverage
probabilities of the confidence intervals nearly correspond to the desired levels
of confidence for series of length τ = 200 or τ = 500. The influence of the
transition probability matrix on the coverage probability also becomes obvious.
Especially in the case of the true TPM T 3, which represents a HMM in which
the states switch frequently, the coverage probability of the confidence interval
for p00 deviates substantially from the nominal coverage probability even for
τ = 200.
In contrast, in the case where the λi-values differ less from each other, all
coverage probabilities, except those for the transition probability matrix T 1

(a case in which the states are highly persistent) are clearly smaller than the
nominal level. This holds true even for relatively long time series of τ = 500,
indicating that the estimated confidence intervals are too narrow. Similar
results hold for the other parameters, which are not shown in the figures.
These results coincide with the findings of Nityasuddhi & Böhning (2003), who
investigated normal mixtures and reported that the asymptotic properties of
the EM algorithm are inaccurate when the means lie close to each other.

3.3 An application

In this section we report on the performance of the hybrid algorithm when this
is applied to a set of real data. The time series consists of yearly counts of
major world earthquakes, i.e. earthquakes of magnitude 7.0 or greater on the
Richter scale, between the years 1900 to 20033.

This series has already been studied by Zucchini & MacDonald (1998), however
with restriction to the period 1900-1997. Since these authors select the three-
state HMM as the best model we restrict our attention here to the case of a
three-state Poisson HMM.
We use an estimation grid similar to the one used in the previous section.
The initial values λs

0, λ
s
1, λ

s
2 for the grid search are chosen from 10 equidistant

points in [xmin, xmax], where λs
0 < λs

1 < λs
2, and the starting values of the TPM

are given by ps
ii ∈ {0.2, 0.4, 0.6, 0.8} for i = 0, 1, 2 and ps

ij = (1 − ps
ii)/2 for

i = 0, 1, 2, j 6= i, yielding a total of 7680 grid points.

3The series can be downloaded from http://wwwneic.cr.usgs.gov/neis/eqlists/7up.html.
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The ML estimates obtained for the earthquakes series are λ̂ = (11.4, 19.1, 29.4)
and

T̂ =




0.855 0.121 0.024
0.055 0.895 0.050
0.000 0.194 0.806




leading to logLmax = −324.79. These results are close to the ones given by
Zucchini & MacDonald (1998).
Figure 3.3 provides boxplots of the computational time needed when using a
Newton-type algorithm, the EM algorithm and the hybrid algorithm. Since
computational time depends on both the hardware and software used, the
computational times in Figure 3.3 are normalized by the average computational
time needed by the fastest method, the Newton-type algorithm as implemented
in the R function nlm(). Thus the mean computational time is 1.00 for the
Newton-type algorithm, 1.84 for the EM and 1.44 for the hybrid algorithm.
All three algorithms considered never failed to provide a result, though the
Newton-type algorithm succeeded only in 66.7% to attain the global maximum
of the likelihood, while the EM and the hybrid algorithm led to the global
maximum in 100% and 98.7% of all grid search trials, respectively. Hence, it is
observed that the hybrid algorithm provides a reasonably efficient method to
increase the stability when compared to the Newton-type algorithm and the
speed when compared to the EM algorithm.

Figure 3.6: Scaled computational time and percentage of trials with conver-
gence to the global maximum using different algorithms for parameter estima-
tion of the quakes series
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In this application, the reduction of computational time when using the hybrid
algorithm instead of the EM algorithm seems to be relatively small. However,
in the simulation experiment described above we found series of length τ = 200
or τ = 500 for which the mean computational time of hybrid algorithm could
be reduced substantially compared to that of the EM algorithm.

3.4 Conclusion

We presented different methods of parameter estimation for HMMs, among
others an EM algorithm for stationary time series. In the cases investigated
here, it turned out that the simplest parameterization for the direct numerical
maximization provides the best results. Comparison of the EM algorithm and
direct numerical maximization clearly showed the trade-off between stability
and performance. The hybrid algorithm would seem to provide an excellent
compromise, because it is not only as stable as the EM-algorithm, but also
clearly faster. If a choice has to be made between the EM algorithm and
DNM, the latter is preferable if one can provide accurate initial values, or if
the estimation is time-critical. Clearly, if the formulae required for the EM
algorithm are too difficult to derive, or if one wishes to avoid deriving these,
then one has to use DNM. In all other situations, the EM algorithm is the
preferred method due to its greater stability.
We also found that the true coverage probability for bootstrap-based confi-
dence intervals, obtained by parametric bootstrap, can be unreliable for models
whose state-dependent parameters lie close to each other.

Our analysis can easily be extended to cover other component distributions.
A smaller investigation of Normal HMMs revealed tendencies similar to those
obtained for the Poisson HMMs, although the results were not as clear-cut.
A complicating factor in the important special case of Normal HMMs is that
each state-dependent distribution depends on two parameters and, further-
more, the likelihood function is – as for independent normal mixtures – in fact
unbounded (Nityasuddhi & Böhning 2003).
Unfortunately, the extension of our analysis to Hidden Semi-Markov Models
failed due to computational complexity. However, smaller tests revealed sim-
ilar tendencies and indicated a high robustness of the EM algorithm against
poor initial guesses for the semi-Markovian case as well.



Chapter 4

Markov Switching Approaches

to Model Time-Varying Betas

Modeling daily return series with HMMs has been investigated by several au-
thors. After the seminal work of Rydén et al. (1998) who showed that two-
and three-state HMMs with normal components reproduce well the temporal
and distributional properties of daily returns from the S&P 500 index, several
other authors followed their ideas (see, e.g., Cecchetti et al. 1990, Linne 2002,
Bialkowski 2003).

The focus of this chapter lies on the development of a joint model for return
series. Consider a portfolio consisting of multiple assets, e.g., a portfolio of
European shares selected from the Dow Jones (DJ) EURO STOXX 600. Fit-
ting a multivariate HMM with normal component distributions would require
the estimation of the variance-covariance matrix for each of the states. In
the worst case, the portfolio of a professional investor is composed of all 600
shares and thus the procedure would involve a matrix of dimension 600× 600
yielding 180300 parameters to be estimated per state. It is obvious that such
a model would be grossly over-parameterized resulting in very unstable esti-
mates. Moreover, as shown in Chapter 3, the common estimation algorithms
for HMMs depend on the choice of the initial values. Hence, choosing even a
small number of different initial values for each parameter may yield an infea-
sible amount of estimations to be carried out.
A possible solution to the quadratic increase of the number of parameters is
based on the Capital Asset Pricing Model (CAPM). In the CAPM, the return
of every single asset is linearly dependent to the market return (plus an error
term):

Rit = αi + βiR0t + ǫit, ǫit ∼ N(0, σ2
i ),
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where Rit, R0t are the returns of the ith asset and the market, respectively.
The error term is represented by ǫit and βi is the market or systematic risk.
Beta represents one of the most widely used concepts in finance. It is used by
financial economists and practitioners

• to estimate a stock’s sensitivity to the overall market,

• to identify mispricings of a stock,

• to calculate the cost of capital, and

• to evaluate the performance of asset managers.

In the context of the CAPM, beta is assumed to be constant over time and is
estimated using the method of ordinary least squares (OLS). However, inspired
by theoretical arguments, various studies have revealed that the systematic risk
of an asset depends on microeconomic and macroeconomic factors and rejected
the assumption of beta stability (e.g., Fabozzi & Francis 1978, Sunder 1980,
Bos & Newbold 1984, Collins et al. 1987).

In our study we investigate the utility of two Markov switching models for
the coefficients in the CAPM. As a consequence, the number of parameters
increases only linearly with the number of assets; however, a joint behavior of
all assets is modeled by the common dependence on the market return.
We investigate the time-varying behavior of systematic risk for eighteen pan-
European sectors. Using weekly data over the period of 1987-2005, four differ-
ent modeling techniques in addition to the standard constant coefficient model
are employed:

• a bivariate t-GARCH(1,1) model,

• two Kalman filter based approaches,

• a bivariate stochastic volatility model estimated via the efficient Monte
Carlo likelihood technique, and

• two Markov switching models.

In this thesis we will focus mainly on the two Markov switching models. This
approach uses a Markov switching framework which belongs to the large class
of Markov switching models introduced by Hamilton (1989, 1990). Although
Markov switching regression models have been applied in many different set-
tings, the literature dealing with time-varying betas is relatively scarce. Frid-
man (1994) considered monthly data from the years 1980 to 1991 to analyze



40 4 Markov Switching Approaches to Model Time-Varying Betas

the excess returns of three oil corporation securities by fitting a two-state re-
gression model. This resulted in an improved assessment of systematic risk
associated with each security. He also noted two effects: beta increases when-
ever the process is in the more volatile state, and the state associated with
higher volatility tends to be less persistent than the state associated with
lower volatility. Huang (2000) also considered a Markov switching model with
one high-risk and one low-risk state. Using monthly return data from April
1986 to December 1993, he performed several tests to check the consistency
of different states with the CAPM and rejected the hypothesis that the data
were from the same state.
The results presented in this chapter are aggregated from our joint work with
S. Mergner. For a detailed analysis, we refer to the paper of Mergner & Bulla
(2005), which is available on request.

This chapter is organized as follows. In Section 4.1 we present OLS, the most
common method to estimate unconditional betas. Section 4.2 presents two
Markov switching approaches to model time-varying betas. A description of
the data series to be analyzed is given in Section 4.3 and Section 4.4 contains
our empirical results. A short conclusion is drawn in Section 4.5 and Section
4.6 summarizes the estimation results.

4.1 The Unconditional Beta in the CAPM

As a starting point, market risk is treated as a constant. The benchmark for
time-varying betas is the excess-return market model with constant coefficients
where an asset’s unconditional beta can be estimated via OLS:

Rit = αi + βiR0t + ǫit, ǫit ∼ N(0, σ2
i ),

with

β̂i =
Cov(R0, Ri)

V ar(R0)
,

where R0t denotes the excess return of the market portfolio and Rit denotes the
excess return to sector i for i = 1, . . . , I, each for period t = 0, . . . , τ − 1. The
error terms ǫit are assumed to be i.i.d. Normal with mean zero and constant
variance σ2

i . Following the version of the CAPM of Sharpe (1964) and Lintner
(1965), investors can borrow and lend at a risk-free rate; all returns are in
excess over a risk-free interest rate and αi is expected to be zero. Table 4.2, at
the end of this chapter, summarizes the OLS estimates of the excess market
model. As expected the intercept is not different from zero at the 5% level of
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significance for any sector. For further details on the CAPM, see Chapter 5 of
Campbell et al. (1997).

4.2 The Markov Switching Approach

The Markov switching approach also belongs to the class of state space mod-
els. The implicit assumption of models switching between different regimes is
that the data results from a process that undergoes abrupt changes which are
induced, e.g., by political or environmental events.

In the Markov switching framework, the systematic risk of an asset is deter-
mined by the different regimes of beta, driven by an unobserved Markov chain.
The switching behavior of beta is governed by the TPM. Under the assumption
of a model with two states, the TPM is of the form

T =

(
p00 p01

p10 p11

)
,

where the entries of each row describe the interaction of the two regimes from
which beta is drawn: p00 is the probability of staying in state zero from period
t to period t + 1 and p01 is the probability of switching to state one. The
second row of the T can be interpreted analogously.

In this study, two Markov switching models are employed. The first one is a
simple Markov Switching (MS) model, i.e., a Markov switching regression.
Let {s0, . . . , sτ−1} denote the state sequence representing the different regimes;
driven by the TPM of a stationary Markov chain, the states take values in
{0, . . . , J−1}. Following Huang (2000) the regime-switching CAPM is specified
by

Rit = αist
+ βist

R0t + ηit, ηit ∼ N(0, σ2
ist

), (4.1)

which implies that the regression coefficients (αist
, βist

) are selected according
to the value of state st. Note that the model is designed to accommodate both
the correlations across return series and the serial correlation of the individual
series.

The second approach entails additional assumptions on the market returns to
synchronize the switching times of beta with different market conditions and
will be denoted as Markov Switching Market (MSM) model. Rydén et al.
(1998) showed that the temporal and distributional properties of daily return
series can be modeled by a HMM with normal or double-exponential state-
dependent distributions. Following their approach, the dynamics of the assets’
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returns follow the same regime-switching regression of Equation (4.1) with the
distribution of the market returns being given by:

R0t = µst
+ ǫst

, ǫst
∼ N(0, σ2

0st
).

This means that in the MSM model the regime of the market changes along
with the regime of the regression setup because they depend on the same state
sequence. This synchronous behavior offers an advantage of allowing for direct
conclusions from the market conditions on the asset’s risk represented by beta.

The estimation procedures for our Markov switching models are based on the
maximum likelihood method for HMMs.4 The likelihood of both models is
available in an explicit form and hence the parameters of the models can be
estimated directly by numerical maximization of the log-likelihood function.
The EM algorithm was not our first choice for an estimation procedure. As
we have knowledge on the range of the values that beta usually takes, and
the fact that the states of financial models tend to be very persistent, the
selection of reasonable initial values was a feasible task. This allowed us to take
advantage of the greater speed of the direct numerical maximization procedures
(cf. Chapter 3).
The estimates for the model parameters include, inter alia, the state-dependent
betas for each asset i and state j denoted by β̂MS

ij or β̂MSM
ij .

As mentioned above, the state sequence cannot be observed. Therefore infor-
mation about the state-distribution at time t has to be derived in order to
obtain the in-sample estimates as well as the out-of-sample forecasts of condi-
tional betas. The desired probabilities of a sojourn in state j at time t can be
computed by the so-called smoothing, filtering and state prediction algorithms
(see e.g. Ephraim & Merhav 2002). Given the state-distribution at time t,
estimates for the time-varying betas can be calculated by weighting the state-
dependent β̂

MS/MSM
ij with the probability of a sojourn in the corresponding

state:

β̂
MS/MSM
it =

J−1∑

j=0

[
βij · P (st = j|R01, . . . , R0T , Ri1, . . . , RiT )

]
,

4All estimations procedures were carried out using the statistical software package R 2.1.1
(R Development Core Team 2005) which can be downloaded from www.r-project.org. The
code for the estimation, decoding and forecasting algorithms are provided upon request.
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with

P (St = j|R01, . . . , R0T , R11, . . . , R1T ) =
{
αt(j)βt(j)/L for 0 ≤ t ≤ τ − 1

αt(j)(T
t−(τ−1))•j/L for τ − 1 < t

,

where αt(j), βt(j) are the forward/backward probabilities from the forward-
backward algorithm (Rabiner 1989) and (T t−(τ−1))•j denotes the jth column
of the matrix T t−(τ−1).

4.3 Data and Preliminary Analysis

4.3.1 Data Series

The data used in this study are the weekly excess returns calculated from the
total return indices for eighteen pan-European industry portfolios, covering the
period from 2 December 1987 to 2 February 2005. All sector indices are from
STO (2004), a joint venture of Deutsche Boerse AG, Dow Jones & Company
and the SWX Group that develops a global free-float weighted index family,
the DJ STOXX indices.
The DJ STOXX 600 return index, which includes the 600 largest stocks in
Europe, serves as a proxy for the overall market. All indices are expressed in
Euros as the common currency. Weekly excess returns between period t − 1
and t for index i are computed continuously as

Rit = ln(Pit) − ln(Pi,t−1) − rf
t ,

where Pit is Wednesday’s index closing price in week t, ln is the natural log-
arithm and rf

t is the risk-free rate of return, calculated from the 3-month
Frankfurt Interbank Offered Rate (FIBOR).5 The FIBOR yields, fibt, are
represented as percentage per annum. They were converted to weekly rates rf

t

by the transformation

rf
t = (1 + fibt/100)1/52 − 1.

5All data were obtained from Thomson Financial Datastream.
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4.3.2 Univariate Statistics

Descriptive statistics for the data are provided in Table 4.1. Over the entire
sample, the Healthcare sector offered the highest mean excess return per week
(0.17%), while the lowest was seen in Automobiles & Parts (0.02%). The risk,
as measured by the standard deviation, ranges from 0.0203 for the defensive
Utilities to 0.0422 for the high risk sector Technology. The market and all
its segments are leptokurtic. Except for Healthcare and Travel & Leisure, all
sectors and the market are negatively skewed. The Jarque-Bera statistic JB
was used to test for normality. In the selected sample the null hypothesis of
normality can be rejected at the 1% significance level for every sector, as well
as for the overall market.

Table 4.1: Descriptive statistics of weekly excess returns

Weekly excess returns data of the eighteen DJ STOXX sector indices and the DJ STOXX
Broad as European market portfolio, covering the period from 2 December 1987 to 2 Febru-
ary 2005.

Sector N Mean Std. Dev. Skew. Kurt. JB

Broad 897 0.0010 0.0231 −0.30 6.83 560.81

Automobiles 897 0.0002 0.0330 −0.56 6.30 452.55

Banks 897 0.0014 0.0270 −0.28 7.49 765.94

Basics 897 0.0012 0.0284 −0.24 5.13 177.41

Chemicals 897 0.0009 0.0257 −0.19 7.87 890.35

Construction 897 0.0008 0.0245 −0.32 4.97 159.58

Financials 897 0.0007 0.0259 −0.63 8.73 1286.90

Food 897 0.0010 0.0212 −0.27 5.86 317.60

Healthcare 897 0.0017 0.0253 0.18 5.52 242.96

Industrials 897 0.0007 0.0248 −0.47 5.69 303.08

Insurance 897 0.0004 0.0334 −0.85 13.97 4606.70

Media 897 0.0007 0.0342 −0.62 9.89 1832.40

Oil & Gas 897 0.0015 0.0267 −0.02 5.56 245.73

Personal 683 0.0009 0.0257 −0.22 4.95 113.83

Retail 683 0.0006 0.0298 −0.78 10.32 1594.50

Technology 897 0.0007 0.0422 −0.55 6.68 553.00

Telecom 897 0.0013 0.0344 −0.18 5.36 212.89

Travel 683 0.0007 0.0234 0.10 6.36 321.69

Utilities 897 0.0015 0.0203 −0.45 5.15 203.02
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Remark: In September 2004, STOXX Ltd. switched its sector definitions from
the DJ Global Classification Standard to the Industry Classification Bench-
mark and replaced the sectors Cyclical Goods & Services, Non-Cyclical Goods
& Services and Retail (old) by the new sectors Travel & Leisure, Personal &
Household Goods and Retail (new), respectively. As the history for the newly
formed sectors is available only since 31 December 1991, for these three sectors
only 683 weekly observations are available instead of 897.

4.4 Empirical Results

In the following we present the estimation results for the OLS model, the two
KF, and the two Markov switching models. The KF models represent the
best models while the OLS model is the most common model. To consider all
the models described by Mergner & Bulla (2005) would go beyond the scope
of this chapter. However, for the sake of completeness different approaches,
namely a GARCH model, a stochastic volatility (SV) model, and two Kalman
filter (KF) models (one mean reverting (MR) and another random walk (RW)
model) were analyzed in the complete study.

4.4.1 Unconditional Beta Estimates

The estimated parameters of the OLS model are reported in Table 4.2 at the
end of this chapter. According to the efficient market hypothesis and the
implications of the Sharpe-Lintner version of the CAPM, all alphas should be
zero. It can be seen from the first column that none of the estimated alphas
is different from zero at an acceptable level of significance. In comparison, the
estimated betas are all significant at the 1% level of significance. The lowest
beta was estimated for Food & Beverages (0.65); the beta for Technology
(1.49) was the highest, confirming the sector’s high-risk profile. From the
reported coefficients of determination (R2), it can be seen that depending on
the respective sector, between 43% (Oil & Gas) and 83% (Industrial Goods &
Services) of the total return variation can be explained by movements of the
overall market.

The last two columns of Table 4.2 provide the results of the classical La-
grange multiplier (LM) ARCH test for heteroskedasticity, as proposed by En-
gle (1982). ARCH(p) is the LM statistic of Engle’s ARCH test for lag order
p. With the exception of Retail, the null hypothesis of homoskedastic distur-
bances can be rejected at the 5% level of significance for all sectors and for
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both lag orders tested.

4.4.2 Modeling Conditional Betas

The fit of the regime switching MS and MSM models to the data was tested
with a different number of regimes. According to the AIC, two states turned
out to be sufficient and therefore the results that are summarized in the Tables
4.3 and 4.4 concern the two-state models. As expected, all alphas are very close
to zero and, for almost all sectors, the high- and the low-risk states could be
well identified. While in the case of the MS model, the two state-dependent
betas lie close together for the sectors Industrials and Retail, for the MSM
model this occurs only for the Industrials sector. Generally it can be observed
that the MSM model is characterized by a less clear separation of the two
regimes; the state-dependent betas lie closer to each other than the betas of
the corresponding MS model. This phenomenon can be explained by the lack
of flexibility of the former model due to the enforced synchronous switching
with the market regimes.

It should be also mentioned that the estimates for the expected market returns
µ0 and µ1 of the MSM model are very close to zero, which supports Rydén
et al. (1998) who proposed means equal to zero for daily return series. The
estimates for p00 and p11, mostly taking values between 95% and 99%, show
a high persistence for both the high- and the low-risk states. Our results
do not confirm the observations made by Fridman (1994) who reported lower
persistence of the high-risk state.

4.4.3 Comparison of Conditional Beta Estimates

The conditional beta series of the MS, the MSM model, and the two Kalman
filter models are summarized by their respective means and ranges in Tables
4.5 and 4.6 at the end of the chapter. While the widest range of beta across the
sectors is observed for the Kalman MR model, the minimum and maximum
of the conditional betas estimated by the two regime switching approaches do
not deviate far from their respective means.

Figure 4.1 illustrates general similarities and differences between the alterna-
tive conditional beta series for the Media (left hand side) and the Technology
sector (right hand side). The KF-based techniques display the greatest varia-
tion. The evolution of the betas during the TMT bubble and its aftermath is
described in a convenient way by the KF models, while the Markov switching
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framework displays a lack of flexibility. The latter models are not able to re-
flect the developments and dramatic shifts in terms of market risk in the course
of the TMT bubble. In particular, the MSM model switches back and forth
between the different states without giving a clear direction of the sectors’
sensitivity to the overall market.

Figure 4.1: Various conditional betas for the Media and the Technology sector

The conditional betas for the Media sector are displayed in the three figures on the

left hand side. The figures on the right hand side correspond to the Technology

sector.
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4.4.4 In-Sample and Out-Of-Sample Forecasting Accu-

racy

To determine the performance of the Markov switching models in generating
a relatively best measure of time-varying systematic risk, the different tech-
niques are formally ranked based on their in-sample performance. The first
two criteria used to evaluate and compare the respective in-sample forecasts
are the mean absolute error (MAE) and the mean squared error (MSE):

MAEi =
1

τ

τ−1∑

t=0

|R̂it − Rit|

τ
,

MSEi =
1

τ

τ−1∑

t=0

(R̂it −Rit)
2

τ
,

where τ is the number of forecast observations and R̂it = β̂itR0t denotes the se-
ries of return forecasts for sector i, calculated as the product of the conditional
beta series estimated over the entire sample and the series of market returns
which is assumed to be known in advance. The forecast quality is inversely
related to the size of these two error measures.
While the mean error criteria can be used to evaluate the average forecast
performance over a specified period of time for each model, and each sector
individually, they do not allow for an analysis of forecast performances across
sectors. From a practical perspective, it is interesting to observe how closely
the rank order of forecasted sector returns corresponds to the order of realized
sector returns at any time. Spearman’s rank correlation coefficient (ρS

t ), a
non-parametric measure of correlation that can be used for ordinal variables
in a cross-sectional context, is applied as the third evaluation criteria. After
ranking the forecasted and observed sector returns separately for each point of
time, where the sector with the highest return ranks first, ρS

t can be computed
as

ρS
t = 1 −

6
∑It

i=1D
2
it

It(I2
t − 1)

,

with Dit being the difference between the corresponding ranks for each sector
and It being the number of pairs of sector ranks, each at time t.

The first step is the analysis of the in-sample forecasts using the first two cri-
teria MAE and MSE. Compared to the Markov switching approaches, the
degree of inferiority of OLS is remarkably low while the two KF techniques
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clearly outperform their competitors. Within the Markov switching frame-
work, the MS betas led to lower average errors than the MSM technique.
Considering the third criterion, while the highest in-sample rank correlations
are observed for the MR (ρS = 0.46) and the RW model (0.26), the MSM
model (0.16) and the the MS (0.17) do only slightly better than OLS (0.15).
Figure 4.2 illustrates how the average in-sample rank correlations develop over
time for the various modeling techniques.

Figure 4.2: In-sample rank correlation coefficients
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To sum up, the in-sample comparison suggests that the two Markov switching
models are outperformed by their competitors.

While the in-sample analysis is useful to assess the various techniques’ ability
to fit the data, their out-of-sample forecast performance is more relevant from
a practical point of view. For that purpose, 100 beta and return forecasts based
on 100 samples of 520 weekly observations are estimated for each technique.
Within this rolling window forecast procedure, the sample is rolled forward
by one week while the sample size is kept constant at 520. The first sample,
starting on 24 March 1993 and ending on 5 March 2003, is used to calculate
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the out-of-sample conditional beta forecasts on 12 March 2003 based on the
chosen modeling technique. The 100th beta forecast is then generated based
on the last sample starting on 15 February 1995 and ending on 26 January
2005.

Without going into all the details, it can be observed that the KF approaches
again offer the best forecast performance, while the two Markov switching
approaches yield the worst results. These findings are broadly confirmed in
a cross-sectional setting as shown in Figure 4.3, where the Markov switching
techniques (each 0.21) produce the worst forecasts.

Figure 4.3: Out-of-sample rank correlation coefficients
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4.5 Conclusion

The results of this study indicate that the out-of-sample forecast performances
of the two proposed Markov switching models is inferior to that of any time-
varying alternative and also to OLS. One reasonable explanation is that the
Markov switching models were limited to two-state models, a very common
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assumption in the switching CAPM framework. The undesirable consequence
of this limitation, which leads to reduced flexibility compared to other ap-
proaches, results in an insufficient fit to the evolution of beta during the TMT
bubble and the subsequent crash at the stock markets.

One possible solution is to significantly increase the number of states. However,
as the number of parameters of the TPM increases quadratically with the num-
ber of states, this approach complicates the estimation procedure significantly.
One possibility to reduce the number of variables could be a structuring of the
TPM. For many models, the main contribution to the likelihood is obtained by
the elements on the TPM’s main diagonal. The off-diagonal elements could, for
instance, be expressed in polynomial dependence on the main-diagonal element
of the respective row. However, this approach is subject to future research.
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4.6 Estimation Results

Table 4.2: OLS estimates of excess market model

Figures in parentheses denote p-values.

Sector α β R2 ARCH(1) ARCH(6)

Automobiles −0.001 1.148 0.64 26.14 53.38

(0.150) (0.000) (0.000) (0.000)

Banks 0.000 1.062 0.82 14.95 44.81

(0.409) (0.000) (0.000) (0.000)

Basics 0.000 0.902 0.54 61.08 171.64

(0.610) (0.000) (0.000) (0.000)

Chemicals 0.000 0.907 0.66 39.15 86.82

(0.989) (0.000) (0.000) (0.000)

Construction 0.000 0.886 0.69 25.91 47.81

(0.776) (0.000) (0.000) (0.000)

Financials 0.000 0.997 0.79 8.45 79.92

(0.470) (0.000) (0.004) (0.000)

Food 0.000 0.648 0.50 17.74 184.76

(0.443) (0.000) (0.000) (0.000)

Healthcare 0.001 0.777 0.50 5.00 58.89

(0.121) (0.000) (0.025) (0.000)

Industrials 0.000 0.977 0.83 12.44 58.00

(0.391) (0.000) (0.000) (0.000)

Insurance −0.001 1.268 0.77 16.03 74.91

(0.106) (0.000) (0.000) (0.000)

Media −0.001 1.215 0.67 21.26 74.82

(0.423) (0.000) (0.000) (0.000)

Oil & Gas 0.001 0.758 0.43 28.53 114.59

(0.268) (0.000) (0.000) (0.000)

Personal 0.000 0.907 0.74 84.39 95.63

(0.924) (0.000) (0.000) (0.000)

Retail 0.000 0.949 0.61 1.61 7.26

(0.519) (0.000) (0.204) (0.297)

Technology −0.001 1.489 0.66 15.38 98.73

(0.337) (0.000) (0.000) (0.000)

Telecom 0.000 1.194 0.64 31.76 65.18

(0.910) (0.000) (0.000) (0.000)

Travel 0.000 0.770 0.65 7.15 38.80

(0.863) (0.000) (0.008) (0.000)

Utilities 0.001 0.694 0.62 11.44 36.20

(0.068) (0.000) (0.001) (0.000)
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Table 4.3: Parameter estimates for MS models

Estimated parameters for the MS/MSM model for the first nine of eighteen DJ STOXX sectors.

Sector Model α0, α1 × 104 β0, β1 σ2

i0
, σ2

i1
× 102 p00 p11 µ0, µ1 × 103 σ2

00
, σ2

01
× 102

Automobiles MS -13.4; -4.87 1.26; 1.03 1.51; 2.89 0.993 0.980 – –

MSM -3.05; -35.5 1.22; 1.07 1.47; 2.92 0.976 0.926 2.40; -2.97 1.56; 3.70

Banks MS 1.57; 8.70 1.01; 1.11 0.70; 1.77 0.988 0.970 – –

MSM 2.02; 1.07 0.97; 1.10 0.67; 1.75 0.962 0.904 2.30; -2.02 1.58; 3.36

Basics MS -3.26; 8.62 1.05; 0.84 1.04; 2.64 0.998 0.998 – –

MSM -3.90; 9.56 1.02; 0.82 1.08; 2.95 0.972 0.917 -2.58; -2.28 1.61; 3.31

Chemicals MS 1.70; -4.37 1.00; 0.87 0.93; 2.05 0.998 0.996 – –

MSM 1.04; -12.6 0.98; 0.85 1.05; 2.38 0.978 0.901 2.65; -4.16 1.63; 3.70

Construction MS -7.04; 0.22 1.14; 0.77 0.92; 1.75 0.997 0.993 – –

MSM -4.38; -4.11 1.07; 0.79 0.94; 1.89 0.982 0.959 2.55; -3.26 1.55; 3.42

Financials MS -0.61; -3.31 0.91; 1.08 0.84; 1.82 0.997 0.990 – –

MSM -0.05; 3.33 0.91; 1.05 0.81; 1.89 0.969 0.883 2.52; -3.25 1.60; 3.62

Food MS -0.95; 1.96 0.91; 0.49 0.76; 2.23 0.993 0.984 – –

MSM -1.48; -1.47 0.89; 0.52 0.78; 2.34 0.985 0.928 2.59; -2.51 1.60; 3.33

Healthcare MS 14.5; -0.88 0.91; 0.68 1.13; 2.39 0.981 0.971 – –

MSM 10.0; 2.72 0.90; 0.73 1.16; 2.40 0.969 0.952 2.62; -1.31 1.51; 3.11

Industrials MS -0.59; -7.62 1.02; 0.96 0.62; 1.45 0.998 0.996 – –

MSM 1.52; -1.41 1.00; 0.97 0.64; 1.57 0.975 0.951 2.24; -1.45 1.59; 3.38
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Table 4.4: Parameter estimates for MS models

Estimated parameters for the MS/MSM model for the last nine of eighteen DJ STOXX sectors.

Sector Model α0, α1 × 104 β0, β1 σ2

i0
, σ2

i1
× 102 p00 p11 µ0, µ1 × 103 σ2

00
, σ2

01
× 102

Insurance MS -5.81; -8.25 1.12; 1.37 1.01; 2.48 0.996 0.989 – –

MSM -6.14; 1.58 1.11; 1.39 1.05; 2.64 0.971 0.901 2.44; -2.93 1.64; 3.72

Media MS -0.81; -12.4 1.05; 1.41 1.20; 3.40 0.989 0.960 – –

MSM -2.57; -1.51 1.04; 1.32 1.21; 3.34 0.991 0.935 2.37; -4.21 1.65; 3.60

Oil & Gas MS 6.02; 3.57 0.96; 0.58 1.37; 2.86 0.992 0.983 – –

MSM 6.12; 1.92 0.91; 0.71 1.38; 2.94 0.987 0.926 2.20; -1.68 1.62; 3.45

Personal MS -2.33; 6.06 0.95; 0.80 1.03; 1.87 0.995 0.980 – –

MSM -1.76; -5.45 0.99; 0.85 1.72; 1.84 0.986 0.962 2.79; -4.19 1.72; 3.88

Retail MS 2.29; -11.9 0.90; 0.97 1.12; 2.48 0.909 0.891 – –

MSM 2.50; -19.6 0.87; 0.99 1.45; 2.83 0.967 0.872 1.68; -5.45 1.68; 4.04

Technology MS 2.45; -1.61 1.18; 1.71 1.25; 3.85 0.996 0.990 – –

MSM 3.67; -7.46 1.17; 1.60 1.25; 3.80 0.993 0.947 2.48; -2.35 1.62; 3.38

Telecom MS 6.73; -8.51 1.09; 1.31 1.49; 3.24 0.997 0.989 – –

MSM 3.29; -3.24 1.12; 1.21 1.49; 3.22 0.992 0.974 2.76; -4.10 1.69; 3.60

Travel MS 0.05; -0.20 0.82; 0.50 1.09; 2.71 0.967 0.733 – –

MSM -1.36; -8.04 0.84; 0.73 1.05; 2.13 0.976 0.922 3.04; -5.01 1.67; 3.94

Utilities MS 6.97; -8.05 0.82; 0.56 1.03; 1.63 0.994 0.977 – –

MSM 7.07; -3.89 0.81; 0.63 1.03; 1.67 0.989 0.960 2.90; -5.67 1.59; 3.69
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Table 4.5: Comparison of OLS betas and various conditional beta series

Summary of various conditional beta series reporting the mean betas

and their ranges (in brackets) for the first nine sectors.

Sector βOLS βKFRW βKFMR βMSM βMS

Automobiles 1.148 1.145 1.145 1.182 1.203

(0.123; 1.609) (0.025; 2.370) (1.065; 1.225) (1.029; 1.262)

Banks 1.062 1.019 1.034 1.014 1.041

(0.367; 1.337) (−0.156; 1.978) (0.971; 1.103) (1.011; 1.109)

Basics 0.902 0.956 0.945 0.955 0.950

(−0.018; 1.489) (−0.364; 1.616) (0.815; 1.025) (0.839; 1.047)

Chemicals 0.907 0.913 0.900 0.947 0.941

(0.122; 1.299) (0.031; 1.395) (0.849; 0.980) (0.865; 0.996)

Construction 0.886 0.964 0.933 0.980 0.992

(0.617; 1.358) (−0.036; 1.581) (0.794; 1.070) (0.766; 1.142)

Financials 0.997 0.937 0.947 0.948 0.956

(0.552; 1.267) (0.139; 2.081) (0.911; 1.049) (0.906; 1.083)

Food 0.648 0.710 0.708 0.773 0.763

(−0.345; 1.115) (−0.362; 1.116) (0.519; 0.894) (0.486; 0.910)

Healthcare 0.777 0.809 0.806 0.830 0.811

(0.055; 1.142) (0.010; 1.173) (0.731; 0.903) (0.678; 0.913)

Industrials 0.977 0.994 0.996 0.990 0.992

(0.816; 1.233) (−0.198; 1.836) (0.974; 0.997) (0.957; 1.017)
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Table 4.6: Comparison of OLS betas and various conditional beta series

Summary of various conditional beta series reporting the mean betas

and their ranges (in brackets) for the last nine sectors.

Sector βOLS βKFRW βKFMR βMSM βMS

Insurance 1.268 1.144 1.155 1.177 1.197

(0.456; 1.929) (0.032; 3.055) (1.105; 1.392) (1.117; 1.372)

Media 1.215 1.184 1.181 1.110 1.132

(0.667; 2.586) (−0.538; 3.820) (1.039; 1.322) (1.049; 1.406)

Oil & Gas 0.758 0.781 0.753 0.850 0.834

(0.318; 1.056) (−0.217; 1.372) (0.713; 0.912) (0.584; 0.958)

Personal 0.907 0.956 0.952 0.955 0.913

(0.619; 1.186) (0.576; 1.186) (0.853; 0.992) (0.802; 0.949)

Retail 0.949 0.907 0.898 0.903 0.934

(0.264; 1.599) (−0.470; 2.110) (0.876; 0.994) (0.903; 0.972)

Technology 1.489 1.460 1.488 1.313 1.356

(0.853; 3.134) (0.761; 3.438) (1.174; 1.597) (1.181; 1.709)

Telecom 1.194 1.246 1.266 1.146 1.145

(0.738; 2.256) (0.679; 2.290) (1.122; 1.213) (1.088; 1.314)

Travel 0.770 0.791 0.752 0.810 0.781

(0.500; 0.981) (−0.342; 1.453) (0.728; 0.837) (0.501; 0.814)

Utilities 0.694 0.753 0.742 0.762 0.744

(0.239; 1.024) (0.175; 1.018) (0.626; 0.812) (0.561; 0.819)



Chapter 5

Hidden Semi-Markov Models

Hidden semi-Markov models (HSMMs) are an extension of the well-known class
of HMMs. While the runlength distribution of the HMM implicitly follows a
geometric distribution, HSMMs allow for more general runlength distributions.
In this chapter we study the estimation techniques for HSMMs from discrete
– possibly multivariate – sequences which consider several runlength and con-
ditional distributions.

Hidden semi-Markov chains with nonparametric state occupancy (or sojourn
time, dwell time, runlength) distributions were first proposed in the field of
speech recognition by Ferguson (1980). They were considered to be an alterna-
tive approach to classical HMMs for speech modeling because the latter are not
flexible enough to describe the time spent in a given state, which follows a geo-
metric distribution as a consequence of the Markov property of the underlying
Markov chain. After this pioneering work, several problems related to hidden
semi-Markov chains were further investigated by different authors, e.g., Levin-
son (1986), Guédon & Cocozza-Thivent (1990), Guédon (1999, 2003), Sansom
& Thomson (2001, 2000), Yu & Kobayashi (2003) and different parametric hy-
potheses were considered for the state occupancy as well as for the observation
distributions.

In the following, the state process of the HSMMs is assumed to be a semi-
Markov chain with finite number of states. The conditional independence
assumption for the observation process is similar to a simple hidden Markov
chain. A semi-Markov chain can be constructed as follows: An embedded
first-order Markov chain models the transitions between distinct states, while
explicitly given discrete state occupancy distributions model the sojourn time
for each of the states.
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The first estimation procedure of Ferguson (1980), which has been applied by
several authors, is based on the assumption that the end of a sequence sys-
tematically coincides with the exit from a state. This very specific assumption
eases the notation of the likelihood functions but also has some disadvantages.
One of the disadvantages is that the enforced exit from a state at the last ob-
served data point may not be a realistic assumption in every case. The other
is that the resulting models do not allow absorbing states and can therefore
not be considered to be a true generalization of hidden Markov chains.
We focus on the theory for right-censored models introduced by Guédon (2003).
His approach allows us to overcome the limitations of the classical HSMMs by
defining HSMMs with an extended state sequence of the underlying semi-
Markov chain. The last observation does not necessarily coincide with an exit
from the last visited state. However, the estimation procedures become more
complicated due to the inclusion of a right-censoring of the time spent in the
last visited state.

This chapter is structured as follows. In Section 5.1 we introduce the concept
of HSMMs. The derivation of the likelihood function of a HSMM is presented
in Section 5.2. The maximization of the likelihood by the EM algorithm is the
main subject of Section 5.3 which includes the derivation of the Q-function,
the forward-backward algorithm and re-estimation formulae for various condi-
tional and runlength distributions. Finally, the asymptotic properties and the
implementation of stationary HSMMs are treated briefly in the Sections 5.4
and 5.5.

5.1 The Basic Definitions

A HSMM consists of a pair of discrete-time stochastic processes {St} and
{Xt}, t ∈ {0, . . . , τ − 1}. The observed process {Xt} is linked to the hidden,
i.e., unobserved state process {St} by the conditional distribution depending on
the state process. This construction is comparable to the HMM from Chapter
2. However, for a HSMM the state process is a finite-state semi-Markov chain.
As for the HMMs, the support of the conditional distributions usually overlaps
and so, in general, a specific observation can arise from more than one state.
Thus the state process {St} is not observable directly through the observation
process {Xt} but can only be estimated. The observation process {Xt} itself
may either be discrete or continuous, univariate or multivariate.
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5.1.1 Semi-Markov Chains

We introduce semi-Markov chains briefly here; for a general reference about
various semi-Markov models, see Kulkarni (1995). Since HSMMs with ab-
sorbing states are not appropriate for our applications in economics and also
require a more difficult notation, we restrict ourselves to semi-Markov chains
without absorbing states. The sojourn time in each of the states is a discrete
non-negative random variable with an arbitrary distribution.

To construct a J-state semi-Markov chain we require an embedded first-order
Markov chain. This J-state first-order Markov chain is defined by the following
parameters:

• the initial probabilities πj := P (S0 = j) with
∑

j πj = 1, and

• the transition probabilities for the state i. For each j 6= i

pij := P (St+1 = j|St+1 6= i, St = i) with
∑

j 6=i pij = 1 and pii = 0.

Note that the diagonal elements of the transition probability matrix have to
be zero in contrast to ordinary HMMs (certainly, this is not true anymore if
the assumption that all states are non-absorbing is relaxed). This embedded
first-order Markov chain represents transitions between distinct states. To
build a semi-Markov chain the occupancy (or sojourn time, dwell time)
distributions dj(u) have to be assigned to each of the states by

dj (u) := P (St+u+1 6= j, St+u−v = j, v = 0, . . . , u− 2 |St+1 = j, St 6= j) ,

for u ∈ {1, . . . ,Mj}. The sojourn of the unobserved process of length u from
t + 1 until t + u in the state j is denoted by dj(u). Before and after this
sojourn in state j, the process has to be in some different state. The upper
bound of the time spent in state j is denoted by Mj . We will assume that the
state occupancy distribution is concentrated on the finite set of time points
{1 . . . ,Mj}, where Mj may also increase up to the entire length of the observed
sequence (in particular for parametric dwell time distributions).
For the particular case of the last visited state, we introduce the so-called
survivor function of the sojourn time in state j,

Dj (u) :=
∑

v≥u

dj (v) .

The survivor function sums up the individual probability masses of all possible
sojourns of length v ≥ u. It plays an important role in the Sections 5.2.1 and
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5.2.2 for the extension from the classical HSMMs to right-censored models in
which the last observation is no longer assumed to coincide with the exit from
a state. The first-order Markov chain and the state occupancy distributions
together constitute a semi-Markov chain.
If the process starts in state j at time t = 0, the following relation can be
verified

P (St 6= j, St−v = j, v = 1, . . . , t) = dj (t) πj . (5.1)

Recall that conditional independence holds at each time step for a Markov
chain, i.e., the current state at time t depends only on the last state at time
t−1. Considering the definitions above, the difference between a Markov chain
and a semi-Markov chain becomes clear. The Markov-property does not need
to hold at each time t, but is transferred to the level of the embedded first-order
Markov chain. To illustrate the transfer of the Markov property, we assume the
classical assumption of an exit from the last visited state at the last observation
to hold true for the rest of this section. This simplifies the notation, however
the extension to the right-censored case would be straightforward. Let the
number of different states visited consecutively by the semi-Markov chain be
R + 1. Then the number of sojourn times, denoted by u0, . . . , uR, fulfills

u0 + · · ·+ uR = τ.

The relationship between the sojourn times u0, . . . , uR and the state sequence
can be written in a simplified way by reducing the entire sequence of states
s0, . . . , sτ−1 to the sequence of states s̃0, . . . , s̃R which have been visited:

s̃0 := {s0, s1, . . . , su0−1}

s̃1 := {su0, su0+1, . . . , su0+u1−1}

s̃2 := {su0+u1, su0+u1+1, . . . , su0+u1+u2−1}
... :=

...

s̃R := {su0+...+uR−1
, su0+...+uR−1+1, . . . , sτ−1}.

The Markov property is transferred to the sequence of visited states s̃r, r =
0, . . . , R which constitute a hidden Markov chain. Focusing on hidden semi-
Markov chains, the conditional independence between the past and the future
holds true only when the process changes the state.

Remark: Relation (5.1) implies that the process enters a “new” state at time
0. This assumption makes the process non-stationary (in general), but we will
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show how it may be relaxed in the context of stationary HSMMs in Section
5.5. To start with, we consider homogeneous but non-stationary HSMMs.

5.1.2 Hidden Semi-Markov Models

As in the case with discrete HMMs, a discrete HSMM can be seen as a pair
of stochastic processes {St, Xt}. The discrete output process {Xt} at t ∈
{0, . . . , τ −1} is associated with the state process {St} by the J conditional or
rather component distributions in the context of mixture distributions. The
component distributions can be either discrete or continuous, but the state
process is a finite-state semi-Markov chain.
In the discrete case the output process {Xt} is related to the semi-Markov
chain {St} by the observation (or emission) probabilities

bj (xt) = P (Xt = xt |St = j) with
∑

xt

bj (xt) = 1.

Of course, in the case of continuous component distributions
∑

xt
has to be

replaced by
∫

xt
. The observation process is characterized by the conditional

independence property,

P (Xt = xt |X
τ−1
0 = xτ−1

0 , Sτ−1
0 = sτ−1

0 ) = P (Xt = xt |St = st),

which implies the fact that the output process at time t depends only on the
state of the underlying semi-Markov chain at time t similar to HMMs. The
basic structure of the HSMM is illustrated in Figure 5.1, which is analogous
to Figure 2.5 in Section 2.2.1.
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Figure 5.1: Basic structure of a Hidden Semi-Markov Model

X
1

S
1

X.  .  . X

S
2

X.  .  .

.  .  . .  .  .

Markov chain

(unobserved)

Observations, number 

of observations: sojourn 

time distribution

n+1n n+m

~ ~

Without loss of generality the observation process {Xt} is initially assumed to
be one-dimensional for convenience of the reader and notational reasons. The
extension to the multivariate case is straightforward and will be treated in
Section 5.3.4, where both univariate and multivariate component distributions
are considered for the observation distributions.

5.2 The Likelihood Function of a Hidden

Semi-Markov Model

The crucial step for parameter estimation of HSMMs is the derivation of a
tractable expression for the likelihood function in order to perform maximum
likelihood estimation. The difficulty in deriving the likelihood lies in the fact
that we are faced with a missing data problem because the state sequence
remains unobserved. A very convenient approach to deal with this type of
problem is the derivation of the likelihood of the complete data, which allows
one to apply the expectation maximization (EM) algorithm in Section 5.3.
In the following, we consider the case of a single observed sequence which is
relevant for later applications. The generalization to the case of a sample of
sequences is straightforward, cf. Guédon & Cocozza-Thivent (1990), Guédon
(1992). We use the notation introduced in Chapter 2. Recall that the observed
as well as the state sequences of length t1 − t0 + 1 with 0 ≤ t0 < t1 ≤ τ − 1
are denoted by
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{
X t1

t0 = xt1
t0

}
:= {Xt0 = xt0 , . . . , Xt1 = xt1} , and{

St1
t0 = st1

t0

}
:= {St0 = st0 , . . . , St1 = st1} , respectively.

As a first step we consider the classical form of the complete-data likelihood
L̃c introduced by Ferguson (1980) which allows only for sequences in which
the last observation coincides with an exit from the hidden state. For the
complete-data formulation, both the outputs xτ−1

0 and the states sτ−1
0 of the

underlying semi-Markov chain are known, and thus

L̃c

(
sτ−1
0 , xτ−1

0 | θ
)

= P
(
Sτ−1

0 = sτ−1
0 , Xτ−1

0 = xτ−1
0 | θ

)
,

where θ denotes the vector of all parameters. In this framework it can be fur-
ther assumed that the number of states visited, R+1, is a fixed, but unknown
number. This allows us to write the complete-data likelihood as

L̃c

(
sτ−1
0 , xτ−1

0 | θ
)

= P
(
Sτ−1

0 = sτ−1
0 , Xτ−1

0 = xτ−1
0 | θ

)

= P (Xτ−1
0 = xτ−1

0 |Sτ−1
0 = sτ−1

0 , θ)P (Sτ−1
0 = sτ−1

0 | θ)

=

τ−1∏

t=0

bst
(xt) πs̃0ds̃0(u0)

R∏

r=1

ps̃r−1s̃r
ds̃r

(ur) (5.2)

where s̃r is the (r + 1)th visited state and ur denotes the time spent in state
s̃r. Equation (5.2) is the most popular form of the complete-data likelihood
for HSMM. See, e.g., Ferguson (1980), Levinson (1986), and Rabiner (1989).

In reality the underlying state sequence cannot be observed and the number
of states visited is not available. Nevertheless the state sequence contributes
to the likelihood by regarding all admissible paths from length one to length
τ . That is, we consider state sequences of the form

πs̃0ds̃0 (u0)
∏

r≥1

ps̃r−1s̃r
ds̃r

(ur)1{
P

rur=τ}(ur)r≥1. (5.3)

The indicator function 1{
P

rur=τ}(ur)r≥1 guarantees that the lengths of the
paths equals the length of the observations.
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The likelihood of a HSMM with exit from the last visited state at τ − 1 is
obtained by enumeration of the complete-data likelihood (5.2) over all possible
state sequences, which yields

L̃(θ) =
∑

s0,...,sτ−1

L̃c(s
τ−1
0 , xτ−1

0 | θ). (5.4)

In this representation, the difficulty of solving equation (5.4) explicitly is ob-
vious:

∑
s0,...,sτ−1

includes all admissible paths of the form given by Equation
(5.3), which effectively eliminates any chance of obtaining an analytic solution.

In the subsequent section we relax the assumption that the last observation
coincides with an exit from the last visited state and introduce the partial and
the complete likelihood estimator to generalize the classical approach.

5.2.1 The Partial Likelihood Estimator

The standard formulation (5.3) from the classical HSMM assumes that the
end of the sequence of observations always coincides with the exit from a state
because the sojourn times ur sum up to τ . This very specific assumption
has two main consequences. While on the one hand, only semi-Markov chains
without absorbing states can be considered, on the other hand, the assumption
does not seem to be realistic in most applications. For example, in the context
of financial time series the states often represent different economic situations
(e.g., bull and bear markets, or periods of low and high volatility). Obviously
the economic situation cannot be assumed to end with the last observation.

As first step to generalize the classical approach, Guédon (2003) proposes to
write the contribution of the state sequence to the complete-data likelihood
Lc(s

τ−1
0 , xτ−1

0 | θ) as

πs̃0ds̃0 (u0)

{
R−1∏

r=1

psr−1s̃r
ds̃r

(ur)

}
ps̃R−1s̃R

Ds̃R
(uR)1{

PR
r=0 ur=τ}(u0, . . . , uR).

(5.5)

The main difference to the classical approach presented in equation (5.3) lies
in the substitution of the ordinary sojourn time probability by the survivor
function Ds̃R

(uR) for the last visited state. Recall that the survivor function
is defined by
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Dj (u) :=
∑

v≥u

dj (v)

and represents the marginal sojourn time of u by summing over all admitted
sojourn times v ≥ u, i.e., limited by the upper bound Mj . The survivor func-
tion performs a right-censoring of the sojourn time in the last visited state.
The complete-data likelihood Lc(s

τ−1
0 , xτ−1

0 | θ) based upon (5.5) considers only
the state sequence sτ−1

0 , and ignores the states after sτ−1.
Guédon (2003) explains the introduction of the modified probability distribu-
tion of the state sequences in Equation (5.5) and the resulting estimator by:
“This assumption corresponds to a more general statement of the problem
but also generates some difficulties regarding the final right-censored sojourn
time interval which cannot be used in the estimation procedure. The rationale
behind the corresponding estimator is related to Cox’s partial likelihood idea
Cox (1975) in the sense that it is derived by maximizing parts of the likeli-
hood function [. . . ]. Nevertheless, the aim underlying the factorization of the
likelihood is clearly different from that emphasized by Cox.”
In the following, this estimator is denoted by partial likelihood estimator

because the information given by the state sequence is only considered in parts.
The consequences on the estimation procedures is analyzed more precisely in
Section 5.3.4.3 in conjunction with the M-step for the state occupancy distri-
butions.

A remarkable consequence of the application of the partial likelihood estimator
is a downward bias of the estimated state occupancy distribution. This bias
results from the fact that the long sojourn times are more likely to include the
final right-censored sojourn time. Consequently they are more often excluded
from the estimation procedure than short sojourn times.
The theoretical justification for the bias lies in the fact that censoring at a
time which is not a stopping time may introduce bias (cf. Aalen & Husebye
1991). The end of the last, complete sojourn time is not a stopping time
because, roughly speaking, for a stopping time it has to be possible to decide
whether or not the stopping event has occurred until time t on the basis of the
information contained in the corresponding σ-algebra at time t. In our case
the family of increasing σ-algebras are the filtration of the hidden semi-Markov
process. The information whether the state sequence dwells in the last visited
state until time t, or whether the last visited state is left at time t, is only
available with the knowledge of the state sequence at time t + 1. Therefore
the end of the last complete sojourn time is not a stopping time.
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The full likelihood estimator introduced in the next section includes a correc-
tion for the downward bias of the estimated state occupancy distribution.

5.2.2 The Complete Likelihood Estimator

Guédon (2003) provides an extension of the partial likelihood estimator which
requires a modified complete-data likelihood. In this setting the complete-data
likelihood incorporates both the outputs xτ−1

0 and the state sequence sτ−1+u
0

of the underlying semi-Markov chain. The difference to the partial likelihood
estimator is that, in this situation the final right-censored sojourn time interval
contributes to the estimation procedure.
In detail, the state sequence remains in the last visited state sτ−1 from time
τ −1 to τ −1+u, u = 0, 1, . . . . The exit from the last visited state takes place
at time τ − 1 + u, which yields the complete-date likelihood

Lc

(
sτ−1+u
0 , xτ−1

0 | θ
)

= P
(
Sτ−1

0 = sτ−1
0 , Sτ−1+v = sτ−1, v = 1, . . . , u− 1,

Sτ−1+u 6= sτ−1, X
τ−1
0 = xτ−1

0 | θ
)
.

The estimator based on this specification of the complete-data problem is called
complete likelihood estimator.
Compared to formula (5.5), the contribution of the state sequence to the
complete-data likelihood has to be modified to

πs̃0ds̃0 (u0)
R∏

r=1

ps̃r−1s̃r
ds̃r

(ur) 1{
PR−1

r=0 ur<τ≤
PR

r=0 ur}
(u0, . . . , ur). (5.6)

The characteristic of the state sequences involved in (5.6) is that the sum of
the first R sojourn times has to be smaller than the length of the observations
τ , but the overall sojourn time, summed over u0, . . . , uτ−1, may exceed τ .

Compared to the original likelihood given by Equation (5.4), the completed
state sequence complicates the likelihood function by an additional sum over
all possible prolongations of the state sequence s0, . . . , sτ−1. It is given by

L (θ) =
∑

s0,...,sτ−1

∑

uτ+

Lc

(
sτ−1+u
0 , xτ−1

0 | θ
)
, (5.7)
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where
∑

s0,...,sτ−1
denotes the summation over every possible state sequence

of length τ and and
∑

uτ+
denotes the sum on every supplementary duration

from time τ spent in the state occupied at time τ − 1.

Remark: Note that the results of an estimation based on either the com-
plete or the partial likelihood estimator both depend on the contribution of
the right-censored last visited state, which is taken into account or not, respec-
tively. Hence none of the estimators yields the results of the original algorithms
of Ferguson (1980) which consider the time spent in the last visited state as
a typical (uncensored) sojourn time. For our applications in Chapter 6, we
focus on the complete likelihood estimator because it makes use of the maxi-
mum amount of information available from the data.

The objective of the following Section 5.3 is the derivation of a suitable esti-
mation procedure to maximize the likelihood of the observed sequence xτ−1

0 .
The exact time spent in the last visited state remains unknown and cannot be
determined; only the minimum time is known. Therefore the survivor function
plays a key role.

5.3 The EM Algorithm for Hidden

Semi-Markov Models

In this section we present the derivation of the EM algorithm for right-censored
HSMMs. Readers who are not familiar with the EM theory are referred to the
brief introduction to the EM procedure in Appendix A.

The estimation of HSMMs is an incomplete-data problem because the observa-
tions are the only data which are accessible, the underlying path of the hidden
semi-Markov chain remains inaccessible. Therefore the EM algorithm is the
suitable way for maximum-likelihood estimation of HSMMs. However, the
Q-function has to be derived in this specific framework. The EM algorithm
maximizes L (θ) from Equation (5.7) by iteratively maximizing Q(θ|θ(k)) over
θ. The next value θ(k+1) is chosen as

θ(k+1) = arg max
θ

Q(θ | θ(k)).

Each iteration of the EM algorithm increases L (θ) and, generally, the sequence
of re-estimated parameters θ(k) converges to a local maximum of L (θ).
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Our estimation procedure is based on the application of the EM algorithm
introduced by Guédon (2003) which has the following two appealing properties.

• Compared to earlier algorithms, the complexity of the forward-backward
algorithm is significantly reduced, which allows the treatment of longer
time series. In particular, the E-step of the EM algorithm has a complex-
ity that is similar to the complexity of the forward algorithm alone, or of
the Viterbi algorithm. That is, the EM algorithm requiresO (Jτ (J + τ))-
time in the worst case and O (Jτ)-space.

• The calculation of the forward/backward probabilities requires the mul-
tiplication of many probabilities which leads to the problem of numerical
underflow (see e.g. MacDonald & Zucchini (1997) where this point is
discussed for HMMs, or Ferguson (1980) for the semi-Markovian case).
The proposed forward-backward algorithm is auto-scaling, i.e., additional
scaling procedures are not necessary because of its immunity to numerical
underflow.

The observations are given by {Xτ−1
0 }. The hidden variable of the semi-Markov

chain is {Sτ−1+u
0 }. Two estimation procedures are considered, building on the

partial and the complete likelihood estimator, respectively. We begin with the
latter case. The estimation procedure for the partial likelihood estimator can
easily be obtained by a slight modification, which is presented in Section 5.3.3.

5.3.1 The Q-Function

Let θ(k) denote the current value of θ at iteration k. The Q-function is defined
by the conditional expectation of the complete-data log-likelihood which yields

Q(θ | θ(k)) = E
{
logLc

(
Sτ−1+u

0 , Xτ−1
0 | θ

)
|Xτ−1

0 = xτ−1
0 , θ(k)

}
.

To obtain a mathematically tractable formulation of the Q-function, the con-
ditional expectation has to be rewritten path-wise. The conditional distri-
bution of the missing observations is given by P (Sτ−1+u

0 = sτ−1+u
0 |Xτ−1

0 =
xτ−1

0 , θ) and the distribution of the complete-data is given by P (Sτ−1+u
0 =

sτ−1+u
0 , Xτ−1

0 = xτ−1
0 | θ).
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Hence the Q-function becomes

Q(θ | θ(k)) =
∑

s1,...,sτ−1

∑

uτ+

[
logLc(s

τ−1+u
0 , xτ−1

0 | θ)

P (Sτ−1+u
0 = sτ−1+u

0 |Xτ−1
0 = xτ−1

0 , θ(k))

]
. (5.8)

The contribution of a specific path to the likelihood of a HSMM for given
parameter θ is presented in formula (5.6). Considering also the contribution
of the observed sequence yields the complete-data likelihood

Lc(s
τ−1+u
0 , xτ−1

0 | θ) = πs̃0ds̃0 (u0)

R∏

r=1

ps̃r−1s̃r
ds̃r

(ur)

τ−1∏

t=0

bst
(xt).

Substituting this representation into equation (5.8) yields the Q-function as a
sum of four terms, each of which depends on an independent subset of set of
parameters θ:

Q(θ | θ(k)) =∑

s1,...,sτ−1

∑

uτ+

log πs̃0P (Sτ−1+u
0 = sτ−1+u

0 |Xτ−1
0 = xτ−1

0 , θ(k))

+
∑

s1,...,sτ−1

∑

uτ+

(
R∑

r=1

log ps̃r−1s̃r

)
P (Sτ−1+u

0 = sτ−1+u
0 |Xτ−1

0 = xτ−1
0 , θ(k))

+
∑

s1,...,sτ−1

∑

uτ+

(
R∑

r=0

log ds̃r
(ur)

)
P (Sτ−1+u

0 = sτ−1+u
0 |Xτ−1

0 = xτ−1
0 , θ(k))

+
∑

s1,...,sτ−1

∑

uτ+

(
τ−1∑

t=0

log bst
(xt)

)
P (Sτ−1+u

0 = sτ−1+u
0 |Xτ−1

0 = xτ−1
0 , θ(k)).

(5.9)

This form of the Q-function is advantageous for the maximization procedure
because each of the terms can be treated individually.
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The first term of Equation (5.9) can be written as
∑

s1,...,sτ−1

∑

uτ+

log πs̃0P (Sτ−1+u
0 = sτ−1+u

0 |Xτ−1
0 = xτ−1

0 , θ(k))

=

J−1∑

j=0

P (S0 = j |Xτ−1
0 = xτ−1

0 , θ(k)) log πj ,

(5.10)

because summing over all possible paths is equivalent to repeatedly selecting
the different πj (j = 0, . . . , J − 1) and can therefore be marginalized to t = 0.

The second term in Equation (5.9) is transformed similarly by marginalizing
the full paths to the transitions from i to j at time t for all t ∈ {0, . . . , τ − 2}:

∑

s1,...,sτ−1

∑

uτ+

(
R∑

r=1

log ps̃r−1s̃r

)
P (Sτ−1+u

0 = sτ−1+u
0 |Xτ−1

0 = xτ−1
0 , θ(k)) =

J−1∑

i=0

∑

j 6=i

τ−2∑

t=0

P (St+1 = j, St = i |Xτ−1
0 = xτ−1

0 , θ(k)) log pij .

(5.11)

The third term containing the sojourn time distribution is also marginalized
to the different runlengths dj(u) of length u arising in state j and can be split
up into the two summands

∑

s1,...,sτ−1

∑

uτ+

(
R∑

r=0

log ds̃r
(ur)

)
P (Sτ−1+u

0 = sτ−1+u
0 |Xτ−1

0 = xτ−1
0 , θ(k)) =

∑

u

{
τ−2∑

t=0

P (St+u+1 6= j, St+u−v = j, v = 0, . . . , u− 1,

St 6= j|Xτ−1
0 = xτ−1

0 , θ(k)
)

+ P (Su 6= j, Su−v = j, v = 1, . . . , u |

Xτ−1
0 = xτ−1

0 , θ(k)
)
}

log dj (u) .

(5.12)

The second term within the parentheses deals with the sojourn times of length
u which start at the first state of the semi-Markov chain, the first term treats
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all other sojourn times of length u occurring in [1, . . . , τ − 1]. In Section 5.3.3
we will give a more tractable expression obtained from the forward-backward
algorithm.

The last term of equation (5.9) including the conditional distributions is also
transformed to the sum of the marginal distributions of the observations at
time t in state j by

∑

s1,...,sτ−1

∑

uτ+

(
τ−1∑

t=0

log bst
(xt)

)
P (Sτ−1+u

0 = sτ−1+u
0 |Xτ−1

0 = xτ−1
0 , θ(k))

=

J−1∑

j=0

τ−1∑

t=0

P
(
St = j |Xτ−1

0 = xτ−1
0 , θ(k)

)
log bj (xt) . (5.13)

The representation of the conditional expectation Q(θ | θ(k)) given in (5.10),
(5.11), (5.12), and (5.13) of the different terms allows one to rewrite Equation
(5.9) as

Q(θ | θ(k)) = Qπ

(
{πj}

J−1
j=0 | θ(k)

)
+

J−1∑

i=0

Qp

(
{pij}

J−1
j=0 | θ(k)

)

+

J−1∑

j=0

Qd

(
{dj (u)} | θ(k)

)
I (pjj = 0)

+
J−1∑

j=0

Qb

({
bj
(
xτ−1

0

)}
| θ(k)

)
, (5.14)

where the first term

Qπ

(
{πj}

J−1
j=0 | θ(k)

)
:=
∑

j

P
(
S0 = j |Xτ−1

0 = xτ−1
0 , θ(k)

)
log πj (5.15)

corresponds to the initial probabilities. The second term

Qp

(
{pij}

J−1
j=0 | θ(k)

)

:=
∑

j 6=i

τ−2∑

t=0

P
(
St+1 = j, St = i |Xτ−1

0 = xτ−1
0 , θ(k)

)
log pij (5.16)

corresponds to the transition probabilities.
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The term for the sojourn times is given by

Qd

(
{dj (u)} | θ(k)

)

:=
∑

u

{
τ−2∑

t=0

P (St+u+1 6= j, St+u−v = j, v = 0, . . . , u− 1,

St 6= j |Xτ−1
0 = xτ−1

0 , θ(k)
)

+ P (Su 6= j, Su−v = j, v = 1, . . . , u |

Xτ−1
0 = xτ−1

0 , θ(k)
)
}

log dj (u) (5.17)

and the last term models the observation component

Qb

({
bj
(
xτ−1

0

)}
|θ(k)

)
:=

τ−1∑

t=0

P
(
St = j |Xτ−1

0 = xτ−1
0 , θ(k)

)
log bj (xt) . (5.18)

The re-estimation formulae for the quantities involved in (5.15), (5.16), (5.17)
and (5.18) can be obtained by independently maximizing each of these terms.
In the following, we refer to them as re-estimation quantities.

The implementation of the E-step of the EM algorithm is performed by the
forward-backward algorithm. It computes all the re-estimation quantities for
all times t and for all states j. The implementation of the forward-backward
algorithm is presented in the subsequent Section 5.3.2.

Subsequently, the M-step maximizes each of the terms w.r.t. θ to obtain the
next set of initial values for the E-step of the following iteration. The difficulty
of the maximization varies with the component distributions chosen and may
also involve numerical maximization methods when an explicit solution is not
available, e.g. for the t distribution in Section 5.3.4.

5.3.2 The Forward-Backward Algorithm

The key algorithm for the estimation of HSMMs, as well as for ordinary HMMs,
is the forward-backward algorithm. The basic idea of the algorithm is the
decomposition of the probability

Lj(t) := P (St = j |Xτ−1
0 = xτ−1

0 )
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into two components each of which can be calculated by a forward and a
backward pass, respectively, through the observations. The two iterative pro-
cedures yield the so-called forward and backward probabilities, which are
denoted by Bhmcj (t) and Fhmcj (t) for HMMs, and by Bj(t) and Fj(t) for
HSMMs.
In case of an ordinary HMM, the forward-backward algorithm is based on the
decomposition

Lj (t) = P
(
St = j |Xτ−1

0 = xτ−1
0

)

=
P
(
Xτ−1

t+1 = xτ−1
t+1 |St = j

)

P
(
Xτ−1

t+1 = xτ−1
t+1 |X t

0 = xt
0

)P
(
St = j |X t

0 = xt
0

)

= Bhmcj (t)Fhmcj (t) , (5.19)

which expresses the conditional independence between the past and the future
of the process at time t. Devijver (1985) showed that

• the quantities Fhmcj (t) can be computed by a forward pass through
the observed sequence xτ−1

0 , i.e., from 0 to τ − 1 and

• the quantities Bhmcj (t) and Lj (t) can be computed by a backward pass
through xτ−1

0 , i.e., from τ − 1 to 0.

The resulting algorithm is of complexity O(J2τ)-time and immune to problems
caused by numerical underflow.

In addition to the Lj(t) decomposed in Equation (5.19), the forward-backward
algorithm for HSMMs requires the calculation of

L1j (t) := P
(
St+1 6= j, St = j |Xτ−1

0 = xτ−1
0

)

with the decomposition

L1j (t) = P
(
St+1 6= j, St = j |Xτ−1

0 = xτ−1
0

)

=
P
(
Xτ−1

t+1 = xτ−1
t+1 |St+1 6= j, St = j

)

P
(
Xτ−1

t+1 = xτ−1
t+1 |X t

0 = xt
0

) P
(
St+1 6= j, St = j |X t

0 = xt
0

)

= Bj (t)Fj (t) . (5.20)

The decomposition provided by Equation (5.20) expresses the conditional in-
dependence between the past and the future of the process at the times of
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a state change of the hidden semi-Markov chain. It forms the basis of the
forward-backward algorithm for HSMMs.

While the decomposition (5.19) is convenient for the implementation of the EM
algorithm for HMMs, this is not the case for the semi-Markovian case with the
decomposition (5.20). In the next paragraph we provide a short overview over
the development of the EM-algorithm and motivate our focus on the latest
procedures derived by Guédon (2003) who succeeded to develop a powerful
estimation algorithm based on the decomposition (5.20).

Since the beginning of the Eighties there has been a rapid progress in the field
of the estimation procedures for HMMs and HSMMs. The main disadvantage
of Ferguson’s (1980) initially proposed forward-backward algorithm is the fact
that it only allows the computation of P (St+1 6= j, St = j | Xτ−1

0 = xτ−1
0

)
for

each time t and each state j instead of the much more convenient smooth-
ing probabilities P

(
St = j |Xτ−1

0 = xτ−1
0

)
. Thus, the resulting procedures are

comparably complex.

The next significant advancement was developed by Guédon & Cocozza-Thivent
(1990) who showed that while the forward probabilities Fj (t) can be com-
puted by a forward pass through the observed sequence xτ−1

0 , a backward pass
computes either the backward probabilities Bj(t) or the probabilities L1j (t)
(or both). The major improvement was the modification of the recursion,
which allowed for the computation of the smoothing probabilities Lj(t) =
P
(
St = j |Xτ−1

0 = xτ−1
0

)
for each time t and each state j. One drawback of

the estimation procedure of Guédon & Cocozza-Thivent (1990) is the high
computational demands resulting from a backward recursion with cubic com-
plexity in time (in the worst case) and a forward recursion with quadratic
complexity. However, Guédon & Cocozza-Thivent (1990) indirectly fitted the
conditional independence properties of a HSMM with the EM estimate re-
quirements, which was a major development in the estimation of HSMMs.

The most recent significant advancement is presented by Guédon (2003) who
succeeded in developing a new backward recursion. The recursion’s complexity
both in time and in space is similar to that of the forward recursion, which
is O (Jτ (J + τ))-time (in the worst case) and O (Jτ)-space. This means that
the computation of Lj(t) = P (St = j |Xτ−1

0 = xτ−1
0 ) as well as L1j (t) =

P (St+1 6= j, St = j | Xτ−1
0 = xτ−1

0

)
require the same complexity. This allows

one to fit even long sequences of observations in a reasonable amount of time.
Moreover he relaxes the assumption that the last visited state terminates at
the time of the last observation.
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Remark: It can be noted that the forward-backward algorithm of Guédon
(2003) basically computes the smoothed probabilities Lj(t) = P (St = j |
Xτ−1

0 = xτ−1
0 ) for all t ∈ {0, . . . , τ − 1}. Hence this forward-backward al-

gorithm can be recognized as smoothing algorithm. It is based on quantities
comparable to Bhmcj (t) and Fhmcj (t) from the HMM decomposition (5.19).

We use the algorithm of Guédon (2003) with some extensions to various dis-
tributions for the component distributions and also for the runlength distri-
butions. The key estimation procedures of the algorithm will be presented in
the following sections.

5.3.2.1 The Forward Iteration

The forward iteration involves the computation of the forward-probabilities
Fj (t) = P (St+1 6= j, St = j |X t

0 = xt
0) for each state j forward from time 0 to

time τ − 1 and can be presented as follows.

Start: The start of the loop at t = 0 can be simplified to

Fj(0) = P (S1 6= j, S0 = j |X0 = x0)

= πjdj(1).

Iteration:

Fj (t) = P
(
St+1 6= j, St = j |X t

0 = xt
0

)

=
bj (xt)

Nt

[
t∑

u=1

{
u−1∏

v=1

bj (xt−v)

Nt−v

}
dj (u)

∑

i6=j

pijFi (t− u)

+

{
t∏

v=1

bj (xt−v)

Nt−v

}
dj (t+ 1) πj

]
(5.21)

for all t ∈ {0, . . . , τ −2} and j ∈ {0, . . . , J−1}. (For details of the derivations,
see Appendix B). The quantity

Nt := P
(
Xt = xt |X

t−1
0 = xt−1

0

)

is the so-called normalizing factor.
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The key difference of the algorithm presented by Guédon (2003) and earlier
algorithms lies in the treatment of the sojourn time in the last visited state at
t = τ − 1 which is subject to a censoring with the survivor function. Using
arguments similar to those for the derivation of (5.21), the last step of the
iteration can be written as

Fj (τ − 1) = P
(
Sτ−1 = j |Xτ−1

0 = xτ−1
0

)

=
bj (xτ−1)

Nτ−1

[
τ−1∑

u=1

{
u−1∏

v=1

bj (xτ−1−v)

Nτ−1−v

}
Dj (u)

∑

i6=j

pijFi (τ − 1 − u)

+

{
τ−1∏

v=1

bj (xτ−1−v)

Nτ−1−v

}
Dj (τ) πj

]
(5.22)

for t = τ − 1, j ∈ {0, . . . , J − 1}.
The exact time spent in this last state is unknown; however, the minimum
time is known. Thus the probability mass functions dj(u) of the sojourn times
in state j of the general forward iteration formula (5.21) is replaced by the
corresponding survivor functions Dj(u) in (5.22).

Remark: The normalizing factor Nt is directly obtained during the forward
recursion. It can be derived as

Nt = P
(
Xt = xt|X

t−1
0 = xt−1

0

)

=
∑

j

P
(
St = j,Xt = xt|X

t−1
0 = xt−1

0

)

=
∑

j

bj (xt)

[
t∑

u=1

{
u−1∏

v=1

bj (xt−v)

Nt−v

}
Dj (u)

∑

i6=j

pijFi (t− u)

+

{
t∏

v=1

bj (xt−v)

Nt−v

}
Dj (t+ 1) πj

]
(5.23)

for t ∈ {0, . . . , τ − 1}. Note that Nt may also serve for forecasting procedures.
Setting t = τ , the forecast distribution of Xτ = x, conditioned on the entire
sequence of observations, follows directly from the definition of Nt.
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5.3.2.2 The Backward Iteration

The backward iteration performs the computation of the smoothing probabil-
ities Lj (t) = P

(
St = j |Xτ−1

0 = xτ−1
0

)
for each state j, backward from time

τ − 1 to time 0.

Start: The backward iteration starts at t = τ − 1 with

Lj (τ − 1) = P
(
Sτ−1 = j |Xτ−1

0 = xτ−1
0

)
= Fj (τ − 1)

for j ∈ {0, . . . , J − 1}.

Iteration: The key point in this step lies in rewriting the quantity Lj (t) as a
sum of three terms.

Lj (t) = P
(
St = j |Xτ−1

0 = xτ−1
0

)

= P
(
St+1 6= j, St = j |Xτ−1

0 = xτ−1
0

)
+ P

(
St+1 = j |Xτ−1

0 = xτ−1
0

)

− P
(
St+1 = j, St 6= j |Xτ−1

0 = xτ−1
0

)

= L1j (t) + Lj (t+ 1) − P
(
St+1 = j, St 6= j |Xτ−1

0 = xτ−1
0

)
. (5.24)

The second term Lj (t+ 1) is obtained directly from the previous iteration step.
The first term L1j(t) and the third term, P

(
St+1 = j, St 6= j |Xτ−1

0 = xτ−1
0

)
,

which represents the entrance into state j, require a bit more attention.

The backward iteration is based on L1j (t). (For details of the derivation,
see Appendix B). For t ∈ {0, . . . , τ − 2} and j ∈ {0, . . . , J − 1} it can be
transformed to

L1j (t) =

[
∑

k 6=j

[
τ−2−t∑

u=1

L1k (t+ u)

Fk (t+ u)

{
u−1∏

v=0

bk (xt+u−v)

Nt+u−v

}
dk (u)

+

{
τ−2−t∏

v=0

bk (xτ−1−v)

Nτ−1−v

}
Dk (τ − 1 − t)

]
pjk

]
Fj (t) . (5.25)
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The third term in (5.24) can also be transformed. (The details of the derivation
are also given in Appendix B.) For t ∈ {0, . . . , τ − 2} and j ∈ {0, . . . , J − 1},

P
(
St+1 = j, St 6= j |Xτ−1

0 = xτ−1
0

)

=

[
τ−2−t∑

u=1

L1j (t+ u)

Fj (t+ u)

{
u−1∏

v=0

bj (xt+u−v)

Nt+u−v

}
dj (u)

+

{
τ−2−t∏

v=0

bj (xτ−1−v)

Nτ−1−v

}
Dj (τ − 1 − t)

]
∑

i6=j

pijFi (t) . (5.26)

At first glance, the backward iteration for the Lj (t) appears complicated.
However, the calculation of L1j (t) = P (St+1 6= j, St = j |Xτ−1

0 = xτ−1
0 ) in

(5.25) as well as P (St+1 = j, St 6= j |Xτ−1
0 = xτ−1

0 ) in (5.26) may easily be
performed by introducing the auxiliary quantities

Gj (t+ 1, u) :=
L1j (t+ u)

Fj (t+ u)

{
u−1∏

v=0

bj (xt+u−v)

Nt+u−v

}
dj (u) , u ∈ {1, . . . , τ − 2 − t},

Gj (t+ 1, τ − 1 − t) :=

{
τ−2−t∏

v=0

bj (xτ−1−v)

Nτ−1−v

}
Dj (τ − 1 − t)

and

Gj (t+ 1) :=
P
(
Xτ−1

t+1 = xτ−1
t+1 |St+1 = j, St 6= j

)

P
(
Xτ−1

t+1 = xτ−1
t+1 |X t

0 = xt
0

)

=

τ−1−t∑

u=1

Gj (t+ 1, u) .

These auxiliary quantities allow for a simplification of the backward iteration
which is performed in two steps:

1. At each time t, Gj (t+ 1, u), Gj (t+ 1, τ − 1 − t) and Gj (t+ 1) are pre-
computed.

2. L1j (t) and P
(
St+1 = j, St 6= j |Xτ−1

0 = xτ−1
0

)
can be transformed to
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L1j (t) =

{
∑

k 6=j

Gk (t+ 1) pjk

}
Fj (t) , (5.27)

and

P
(
St+1 = j, St 6= j |Xτ−1

0 = xτ−1
0

)

=
P
(
Xτ−1

t+1 = xτ−1
t+1 |St+1 = j, St 6= j

)

P
(
Xτ−1

t+1 = xτ−1
t+1 |X t

0 = xt
0

) P
(
St+1 = j, St 6= j |X t

0 = xt
0

)

= Gj (t+ 1)
∑

i6=j

pijFi (t) .

Thus the quantities involved in the backward iteration can be calculated as
sums and products of the auxiliary variables and the forward probabilities.

Remark: Guédon (2003) also presented a variant of the backward iteration
presented above and which is built on Bj (t). It works as follows. For each
t < τ − 1

L1j (t) = Bj (t)Fj (t)

holds true. Hence the backward recursion, based on Bj (t), is directly deduced
from (5.25) as

Bj (t) =
∑

k 6=j

[
τ−2−t∑

u=1

Bk (t+ u)

{
u−1∏

v=0

bk (xt+u−v)

Nt+u−v

}
dk (u)

+

{
τ−2−t∏

v=0

bk (xτ−1−v)

Nτ−1−v

}
Dk (τ − 1 − t)

]
pjk.
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The third term in (5.24) can be transformed to

P
(
St+1 = j, St 6= j |Xτ−1

0 = xτ−1
0

)

=

[
τ−2−t∑

u=1

Bj (t+ u)

{
u−1∏

v=0

bj (xt+u−v)

Nt+u−v

}
dj (u)

+

{
τ−2−t∏

v=0

bj (xτ−1−v)

Nτ−1−v

}
Dj (τ − 1 − t)

]
∑

i6=j

pijFi (t) .

This alternative way is presented only for the sake of completeness, but has
not been used for our implementation of the estimation procedures.

The implementation of this forward-backward algorithm is proposed by Guédon
(2003) in pseudo-code form which served as basis for this thesis.

5.3.3 The Sojourn Time Distribution

The aim of this section is to show how Q({dj(u)}) – the part of the Q-function
dealing with the sojourn time given in equation (5.17) – can be calculated
using the quantities derived in Section 5.3.2.
As long as we deal with non-stationary HSMMs, this is the only one part
of the estimation procedure which is affected by the use of either the partial
likelihood estimator or the complete likelihood estimator from the Sections
5.2.1 and 5.2.2.
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5.3.3.1 The Q-Function based on the Full Likelihood Estimator

Recall from equation (5.17) that the the state occupancy distribution for each
state j is given by

Qd

(
{dj (u)} | θ(k)

)

=
∑

u

log dj (u)

{
τ−2∑

t=0

P (St+u+1 6= j, St+u−v = j, v = 0, . . . , u− 1,

St 6= j |Xτ−1
0 = xτ−1

0 , θ(k)
)

+P
(
Su 6= j, Su−v = j, v = 1, . . . , u |Xτ−1

0 = xτ−1
0 , θ(k)

)
}

(5.28)

=
∑

u

η
(k)
ju log dj (u) (5.29)

with

η
(k)
ju :=

τ−2∑

t=0

P (St+u+1 6= j, St+u−v = j, v = 0, . . . , u− 1,

St 6= j|Xτ−1
0 = xτ−1

0 , θ(k)
)

+P
(
Su 6= j, Su−v = j, v = 1, . . . , u |Xτ−1

0 = xτ−1
0 , θ(k)

)
.

The computation of the two terms involved in (5.28) can be performed utilizing
the quantities derived for the forward-backward algorithm. We start with the
first term, and consider the following two possible cases.

u ≤ τ − 2 − t:

P
(
St+u+1 6= j, St+u−v = j, v = 0, . . . , u− 1, St 6= j |Xτ−1

0 = xτ−1
0 , θ(k)

)

= Gj (t+ 1, u)
∑

i6=j

pijFi (t) ,

which can directly be extracted from the computation of Lj (t).
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u > τ − 2 − t:

P
(
St+u+1 6= j, St+u−v = j, v = 0, . . . , u− 1, St 6= j |Xτ−1

0 = xτ−1
0 , θ(k)

)

=

{
τ−2−t∏

v=0

bj (xτ−1−v)

Nτ−1−v

}
dj (u)

∑

i6=j

pijFi (t) .

The computation of the terms arising for the latter case u > τ − 2 − t can be
combined with the computation of

P
(
Sτ−1−v = j, v = 0, . . . , τ − 2 − t, St 6= j |Xτ−1

0 = xτ−1
0 , θ(k)

)

=

{
τ−2−t∏

v=0

bj (xτ−1−v)

Nτ−1−v

}
Dj (τ − 1 − t)

∑

i6=j

pijFi (t) ,

which is shown in Appendix B.

The second term in (5.28) corresponding to the time spent in the initial state
from t = 0, one requires some supplementary computation and involves the
already known quantities from the forward-backward algorithm. Again, we
consider two separate cases.

u ≤ τ − 1 :

P
(
Su 6= j, Su−v = j, v = 1, . . . , u |Xτ−1

0 = xτ−1
0 , θ(k)

)

=
L1j (u− 1)

Fj (u− 1)

{
u∏

v=1

bj (xu−v)

Nu−v

}
dj (u)πj .

u > τ − 1 :

P
(
Su 6= j, Su−v = j, v = 1, . . . , u |Xτ−1

0 = xτ−1
0 , θ(k)

)

=

{
τ∏

v=1

bj (xτ−v)

Nτ−v

}
dj (u)πj .

The last point of this section shows how Equation (5.28) can be reformulated in
such a way that the difference between the partial likelihood estimator and the
full likelihood estimator can be directly deduced from the quantities involved
in the calculation of the η

(k)
ju .
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Equation (5.28) yields

∑

u

{
τ−2∑

t=0

P (St+u+1 6= j, St+u−v = j, v = 0, . . . , u− 1,

St 6= j |Xτ−1
0 = xτ−1

0 , θ(k)
)

+P
(
Su 6= j, Su−v = j, v = 1, . . . , u |Xτ−1

0 = xτ−1
0 , θ(k)

)
}

=
τ−2∑

t=0

P
(
St+1 6= j, St = j |Xτ−1

0 = xτ−1
0 , θ(k)

)

+P
(
Sτ−1 = j |Xτ−1

0 = xτ−1
0 , θ(k)

)

=
τ−2∑

t=0

L1j (t) + Lj (τ − 1) .

Considering the above equation along with Equation (5.29), we obtain:

Qd

(
{dj (u)} |θ(k)

)
=

∑

u

η
(k)
ju log dj (u) ,

where
∑

u

η
(k)
ju =

τ−2∑

t=0

L1j(t) + Lj(τ − 1). (5.30)

5.3.3.2 The Q-Function based on the Partial Likelihood Estimator

As shown in the Sections 5.2.1 and 5.2.2, the difference between the com-
plete likelihood estimator and the partial likelihood estimator lies in the re-
estimation of the state occupancy distributions, where the latter ignores the
contribution of the last visited state. That is, the information associated with
the time spent in the last visited state is not used in the estimation procedure.
This yields a new version of the Q-function given in Equation (5.17) which
is similar to Equation (5.30). We denote the Q-function calculated from the

partial likelihood estimator by Q̃d({dj(u)} | θ
(k)).
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The new term of the occupancy distribution for the state j involves a censoring
term 1{u≤τ−1}(u). It is given by

Q̃d

(
{dj (u)} | θ(k)

)

=
∑

u

log dj(u)

{
τ−2−u∑

t=0

P (St+u+1 6= j, St+u−v = j, v = 0, . . . , u− 1,

St 6= j |Xτ−1
0 = xτ−1

0 , θ(k)
)

+P
(
Su 6= j, Su−v = j, v = 1, . . . , u |Xτ−1

0 = xτ−1
0 , θ(k)

)
1{u≤τ−1}(u)

}

=
∑

u

η̃
(k)
j,u log dj (u) ,

where
∑

u

η̃
(k)
j,u =

τ−2∑

t=0

L1j (t) .

Note that the last visited state represented by Lj(τ−1) does not contribute to

Q̃d

(
{dj (u)} | θ(k)

)
. The computation of the η̃

(k)
j,u is similar to the computation

of the η
(k)
j,u except for the indicator which has to be inserted additionally.

5.3.4 Parameter Re-estimation

The second part of the EM algorithm consists of a re-estimation procedure, the
M-step. This step determines the likelihood-increasing next set of parameters
θ(k+1) by

θ(k+1) = arg max
θ
Q(θ | θ(k)).

In Equation (5.14) we showed that the Q-function Q(θ | θ(k)) of a HSMM can
be decomposed into four different terms, each depending on a given subset of
θ. Hence, the re-estimation formulae for the parameters can be derived by
maximizing each of the different terms separately.

In this section we derive the re-estimation formula for each parameter subset
by maximizing the terms (5.15), (5.16), (5.17) and (5.18). We impose various
distributional assumptions on the dwell time distributions (5.17) as well as the
conditional observation distributions (5.18) to cover a wide area of applications.
Some of the re-estimation formulae can be found in the literature; however,
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our intention is to provide the reader with an overview of the existing material
and introduce some extensions.

5.3.4.1 The Initial Parameters

We start with the parameters involved in the underlying hidden semi-Markov
chain. In Equation (5.15), the term of Q(θ|θ(k)) corresponding to the initial
parameters is given by

Qπ

(
{πj}

J−1
j=0 | θ(k)

)
=
∑

j

P
(
S0 = j |Xτ−1

0 = xτ−1
0 , θ(k)

)
log πj .

Adding a Lagrange multiplier with the constraint
∑J−1

m=0 πm = 1, differentiating
w.r.t. πj , and summing over all states j ∈ {0, . . . , J − 1}, we get

∂

∂πj

[
J−1∑

l=1

P (S0 = l |Xτ−1
0 = xτ−1

0 , θ(k)) log πl −K(
J−1∑

m=0

πm − 1)

]
= 0

⇒
1

πj

P (S0 = j |Xτ−1
0 = xτ−1

0 , θ(k)) −K = 0

⇒

J−1∑

j=0

P (S0 = j |Xτ−1
0 = xτ−1

0 , θ(k)) = K

J−1∑

j=0

πj

⇒ K = 1

⇒ πj = P (S0 = j |Xτ−1
0 = xτ−1

0 , θ(k)).

The re-estimation formula for the initial parameters is given by

π
(k+1)
j = P

(
S0 = j |Xτ−1

0 = xτ−1
0 , θ(k)

)
= Lj (0) . (5.31)

5.3.4.2 The Transition Probabilities

The second component of the semi-Markov chain comprises the transition prob-
abilities of the embedded Markov chain. The corresponding term of Q(θ | θ(k))
from Equation (5.15) is

Qp

(
{pij}

J−1
j=0 | θ(k)

)
=
∑

j 6=i

τ−2∑

t=0

P
(
St+1 = j, St = i |Xτ−1

0 = xτ−1
0 , θ(k)

)
log pij .
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Adding a Lagrange multiplier with the the constraint
∑J−1

m=0 plm = 1, differen-
tiating w.r.t. pij and summing over all states j ∈ {0, . . . , J − 1}, we get

∂

∂pij

[ J−1∑

l=0

∑

m6=l

τ−2∑

t=0

P (St+1 = m,St = l |Xτ−1
0 = xτ−1

0 , θ(k)) log plm

−K(

J−1∑

m=0

plm − 1)

]
= 0

⇒

τ−2∑

t=0

1

pij
P (St+1 = j, St = i |Xτ−1

0 = xτ−1
0 , θ(k)) −K = 0

⇒

τ−2∑

t=0

J−1∑

j=0,j 6=i

P (St+1 = j, St = i |Xτ−1
0 = xτ−1

0 , θ(k))

︸ ︷︷ ︸
=P (St+1 6=i,St=i |Xτ−1

0 =xτ−1
0 ,θ(k))

= K

J−1∑

j=0,j 6=i

pij

︸ ︷︷ ︸
=1

⇒ K =

τ−2∑

t=0

P (St+1 6= i, St = i |Xτ−1
0 = xτ−1

0 , θ(k))

⇒ pij =

∑τ−2
t=0 P (St+1 = j, St = i |Xτ−1

0 = xτ−1
0 , θ(k))

∑τ−2
t=0 P (St+1 6= i, St = i |Xτ−1

0 = xτ−1
0 , θ(k))

.

The re-estimation formula can be written as

p
(k+1)
ij =

∑τ−2
t=0 P

(
St+1 = j, St = i |Xτ−1

0 = xτ−1
0 , θ(k)

)
∑τ−2

t=0 P
(
St+1 6= i, St = i |Xτ−1

0 = xτ−1
0 , θ(k)

)

=

∑τ−2
t=0 Gj (t+ 1) pijFi (t)∑τ−2

t=0 L1i (t)
. (5.32)

Note that the quantity in the numerator of above Equation (5.32) does not
require additional calculations because it can be extracted directly from the
computation of L1i (t), cf. Equation (5.27).

5.3.4.3 The State Occupancy Distribution

The third term of Q(θ | θ(k)) corresponds to the sojourn time distributions of
the semi-Markov chain. Explicit solutions can be calculated for some distri-
butions. However, this part of the maximization may also involve numerical
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maximization methods if a closed solution cannot be derived.

Non-Parametric State Occupancy Distribution with the Complete

Likelihood Estimator

The term of the Q-function given in Equation (5.17) and (5.30) treating the
non-parametric state occupancy distribution is given by

Qd

(
{dj(u)} | θ

(k)
)

=
∑

u

η
(k)
ju log dj(u).

It has to be maximized under the constraint
∑

u dj(u) = 1, which leads to

∂

∂dj(u)


Qd

(
{dj(u)} | θ

(k)
)
−K




Mj∑

v=1

dj(v)




 = 0

⇒
η

(k)
ju

dj(u)
−K = 0 ⇒ K =

Mj∑

v=1

η
(k)
jv

⇒ dj(u) =
η

(k)
ju∑Mj

v=1 η
(k)
jv

.

Hence, the re-estimation formula for the state occupancy probabilities can be
written as

d
(k+1)
j (u) =

η
(k)
ju∑Mj

v=1 η
(k)
jv

=
η

(k)
ju∑τ−2

t=0 L1j (t) + Lj (τ − 1)
. (5.33)

Non-Parametric State Occupancy Distribution with the Partial Like-

lihood Estimator

According to the Sections 5.3.3.1 and 5.3.3.2 the difference to the complete
likelihood estimator lies in a modified Q-function given by
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Q̃d

(
{dj (u)} |θ(k)

)
=
∑

u

η̃
(k)
ju log dj (u)

with
∑

u

η̃
(k)
ju =

τ−2∑

t=0

L1j (t) .

Hence the maximization is performed analogously to the previous case and
yields

d
(k+1)
j (u) =

η̃
(k)
ju∑

v η̃
(k)
jv

=
η̃

(k)
ju∑τ−2

t=0 L1j (t)
. (5.34)

Remark: The partial likelihood estimator leads to a downward bias of the
sojourn times. This can be explained by the fact that longer state sequences
are more likely to include the last visited state. Hence, they are more often
ignored in the re-estimation procedure.

Geometric State Occupancy Distribution

The geometric state occupancy distribution reduces the HSMM to an ordinary
HMM. However, in this case the distribution function of the sojourn times is
given by

dj(u) = (1 − pj)
u−1pj

with j ∈ {0, . . . , J − 1} and u ∈ {1, . . . ,Mj = τ − 1}. Then, for each j, the
corresponding part of the Q-function becomes:

Qd

(
{dj(u)} | θ

(k)
)

=

τ−1∑

u=1

η
(k)
ju

[
(u− 1) log(1 − pj) + log pj

]
.
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For the maximization w.r.t. pj follows

∂

∂pj
Qd

(
{dj(u)} | θ

(k)
)

= 0 ⇒

τ−1∑

u=1

η
(k)
ju

(
−

(u− 1)

(1 − pj)
+

1

pj

)
= 0

⇒

τ−1∑

u=1

η
(k)
ju

(
− upj + 1

)
= 0 ⇒ pj =

∑τ−1
u=1 η

(k)
ju∑τ−1

u=1 uη
(k)
ju

.

The re-estimation formula for the parameter pj is thus given by

p
(k+1)
j =

∑τ−1
u=1 η

(k)
ju∑τ−1

u=1 uη
(k)
ju

. (5.35)

Note that the re-estimation formula (5.35) has been derived for the case of
the full likelihood estimator. If the partial likelihood estimator is required,
the quantities η

(k)
ju have to be replaced by η̃

(k)
ju and the re-estimation formula

remains the same. This argument applies to other runlength distributions in
the sections to follow.

Remark: Depending on the parameters of the geometric distribution, the re-
sults of the estimation may not change, or change only a little, when reducing
the upper bound of the dwell time Mj from τ − 1 to a smaller value. This can
be explained by the fact that dj(u) → 0 for u → ∞. Depending on the rate
of convergence, the dj(u) may become practically zero for all u greater than
some u0 and may therefore be ignored.
A smaller Mj reduces the computational time but it may also affect the es-
timates for other re-estimation quantities. In particular, the state-dependent
observation probabilities for the t distribution turn out to react very sensi-
tively to this acceleration method. Thus the procedure has to be applied with
care. On the other hand, the Normal and Poisson distributions showed a high
robustness and provided reasonable estimation results.

Negative Binomial State Occupancy Distribution

The negative binomial distribution is an extension of the geometric distribu-
tion. A minor problem that should be mentioned is that there are several
different parameterizations for the negative binomial distribution and none of
them can be considered as a standard. We choose the distribution function of
the sojourn times be given by
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dj(u) =

(
u− 2 + r
u− 1

)
πr(1 − π)u−1

=
Γ(u− 1 + r)

Γ(r)Γ(u)
πr(1 − π)u−1,

where Γ() denotes the Gamma-function; r > 0 and π ∈ (0, 1) are the param-
eters of the distribution. Note that it is convenient to rewrite the ratio of the
Gamma-functions as

exp
[
log Γ(u− 1 + r) − log Γ(r) − log Γ(u)

]

to increase numerical stability. Then, for each j the corresponding part of the
Q-function becomes

Qd

(
{dj(u)} | θ

(k)
)

=

τ−1∑

u=1

η
(k)
ju

[
log Γ(u− 1 + r) − log Γ(r) − log Γ(u)

+r log π + (u− 1) log(1 − π)
]
.

The maximization w.r.t. to the parameters r and π is not straightforward;
numerical methods have to be applied. Differentiating w.r.t. π yields

∂

∂π
Qd

(
{dj(u)} | θ

(k)
)

= 0 ⇒
τ−1∑

u=1

η
(k)
ju

(
r

π
−
u− 1

1 − π

)
= 0

⇒
τ−1∑

u=1

η
(k)
ju

(
r − π(r + u− 1)

)
= 0

⇒ π =
r
∑τ−1

u=1 η
(k)
ju∑τ−1

u=1 η
(k)
ju (r + u− 1)

. (5.36)

The differentiation w.r.t. r involves terms of the form log Γ(s). Recall that the

Digamma function is defined as ψ(s) := ∂ log Γ(s)
∂s

. Thus,

∂

∂r
Qd

(
{dj(u)} | θ

(k)
)

= 0 ⇒
τ−1∑

u=1

η
(k)
ju

(
ψ(u− 1 + r) − ψ(r) + log π

)
= 0.

(5.37)
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Substituting π from Equation (5.36) in Equation (5.37) yields the expression

τ−1∑

u=1

η
(k)
ju

(
ψ(u− 1 + r) − ψ(r) + log

[
r
∑τ−1

v=1 η
(k)
jv∑τ−1

v=1 η
(k)
jv (r + v − 1)

])
= 0,

which has to be solved numerically, e.g. by a bisectioning algorithm. The es-
timation of π follows directly from Equation (5.36).

Remark: In some cases the implementation of root-finding algorithms may
not be desirable. As an alternative the M-step can be modified in terms of
the One-Step-Late algorithm of Green (1990). Instead of solving a system of
equations, simply insert r(k) and π(k) into Equation (5.36) and (5.37), respec-
tively. This technique may slow down the rate of convergence but, in general,
the absence of root-finding algorithms compensates (somewhat) for the loss of
speed. Moreover the calculation of analytic solutions for possibly large systems
of equations can be avoided.

Mixtures of Distributions

It is sometimes advantageous to use mixtures of distributions as state occu-
pancy distributions. A fully non-parametric sojourn time distribution may
involve too many degrees of freedom, while the parametric alternative does
not lead to the desired fit of the distribution. In such a situation a possible
alternative is the combination of a non-parametric “head” with a parametric
“tail” distribution.

Formally, the state occupancy distribution is defined piecewise on a set of
disjoint intervals by

dj(u) = φkdjk(u, θk),

for u ∈ {D1, . . . , Dm}, and

Dk := {dk−1, dk−1 + 1, dk−1 + 2, . . . , dk − 1}

with 0 = d0 < d1 < . . . < dm−1 < τ − 1, dm = ∞, 0 ≤ φk ≤ 1 and
∑

k φk = 1.
The quantities djk(u, θk) themselves are sojourn time distributions and, for
each state j, the overall distribution is given by their weighted sum.



92 5 Hidden Semi-Markov Models

The case of an arbitrary number of mixture components is treated by Sansom
& Thomson (2000). We present the case that the mixture consists of only two
components because this setup suffices for many applications. However, the
generalization is straightforward.

The basic idea of a two component dwell time distribution is that the first D−1
state occupancies follow the head distribution, given by dj1(u, θ1); the state
occupancies from D to at most τ−1 follow the tail distribution dj2(u, θ2). The
re-estimation formulae cannot be solved in a general framework, e.g., a mixture
of two geometrical distributions already yields a system of equations that can
only be solved numerically (see Sansom & Thomson 2000). We analyze a
distribution with non-parametric head and a geometric tail. This mixture of
distributions is relatively flexible but still has a comparatively small number
of parameters. It can be written as

dj1(u, θ1) = dj1(u) for u ∈ {1, . . . , D − 1}

dj2(u, θ2) = (1 − pj)
u−Dpj for u ∈ {D,D + 1, . . .}

,

where, for the ease of notation, dj1(u) denotes the non-parametric state occu-
pancy component. The entire state occupancy distribution can then be written
as

dj(u) =

{
φdj1(u), u ∈ {1, . . . , D − 1}

(1 − φ)(1 − pj)
u−Dpj , u ∈ {D,D + 1, . . .}

,

which can also be expressed by

dj(u) = φdj1(u)1{u<D}(u) + (1 − φ)(1 − pj)
u−Dpj1{D≤u}(u), (5.38)

with 1{·}(·) denoting the indicator function.
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The re-estimation formulae can be deduced by maximizing the corresponding
part of the Q-function given in equation (5.17) which becomes

Qd

(
{dj(u)} | θ

(k)
)

=
∑

u

η
(k)
ju log dj(u)

=

2∑

k=1

∑

u∈Dk

η
(k)
ju log(φkdjk(u))

=
D−1∑

u=1

η
(k)
ju

[
logφ+ log(dj1(u))

]

+
τ−1∑

u=D

η
(k)
ju

[
log(1 − φ) + (u−D) log(1 − pj) + log pj),

for each j ∈ {0, . . . , J − 1}. To obtain the re-estimation formulae, we have to
maximize the function above w.r.t. each of the parameters involved in Equation
(5.38):

∂

∂φ
Qd

(
{dj(u)} | θ

(k)
)

= 0 ⇒
1

φ

D−1∑

u=1

η
(k)
ju =

1

1 − φ

τ−1∑

u=D

η
(k)
ju

⇒ φ

[
D−1∑

u=1

η
(k)
ju +

τ−1∑

u=D

η
(k)
ju

]
=

D−1∑

u=1

η
(k)
ju

⇒ φ =

∑D−1
u=1 η

(k)
ju∑τ−1

u=1 η
(k)
ju

.

Analogous to the case of a fully non-parametric state occupancy distribution,
the maximization w.r.t. dj1(u) is performed under the constraint

∑D−1
v=1 dj1(v) =

1. That is,

∂

∂dj1(u)

[
Qd

(
{dj(u)} | θ

(k)
)
−K

(
D−1∑

v=1

dj1(v)

)]
= 0

⇒
η

(k)
ju

dj1(u)
−K = 0 ⇒ K =

D−1∑

v=1

η
(k)
jv

⇒ dj1(u) =
η

(k)
ju∑D−1

v=1 η
(k)
jv

.
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The maximization w.r.t. the parameter of the geometric tail is also similar to
the full geometric case:

∂

∂pj
Qd

(
{dj(u)} | θ

(k)
)

= 0 ⇒

τ−1∑

u=D

η
(k)
ju

[
−
u−D

1 − pj
+

1

pj

]
= 0

⇒

τ−1∑

u=D

η
(k)
ju [−(u−D)pj + 1 − pj ] = 0 ⇒

τ−1∑

u=D

η
(k)
ju [pj(u−D + 1)] =

τ−1∑

u=D

η
(k)
ju

⇒ pj =

∑τ−1
u=D η

(k)
ju∑τ−1

u=D(u−D + 1)η
(k)
ju

.

Thus, the re-estimation formulae are given by

d
(k+1)
j1 (u) =

η
(k)
ju∑D−1

v=1 η
(k)
jv

(5.39)

p
(k+1)
j =

∑τ−1
u=D η

(k)
ju∑τ−1

u=D(u−D + 1)η
(k)
ju

(5.40)

φ(k+1) =

∑D−1
u=1 η

(k)
ju∑τ−1

u=1 η
(k)
ju

. (5.41)

5.3.4.4 The Observation Component

The conditional observations can be modeled by a large variety of distributions.
In the context of financial time series, mixtures of Normal distributions and t
distributions are of particular interest for the modeling of phenomena following
skewed or leptokurtic distributions. For each state j, the corresponding part
of the Q-function in equation (5.18) is given by

Qb

({
bj
(
xτ−1

0

)}
| θ(k)

)
=

τ−1∑

t=0

P
(
St = j |Xτ−1

0 = xτ−1
0 , θ(k)

)
log bj (xt)

=

τ−1∑

t=0

Lj(t) log bj (xt) . (5.42)

Depending on the distributional assumptions imposed on bj(xt), the maxi-
mization of the corresponding term of Q(θ | θ(k)) may also involve numerical
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methods. In the following we deal with some common distributions, e.g., Pois-
son, Bernoulli, Normal, and t distribution.

Bernoulli Distribution

The conditional distributions follow a Bernoulli distribution, i.e., for each j ∈
0, . . . , τ − 1

bj(xt) = pxt

j (1 − pj)
1−xt

holds. In this section, pj denotes the parameter of the Bernoulli conditional
distribution. Equation (5.42) becomes

Qb({bj(x
τ−1
0 )} | θ(k)) =

τ−1∑

t=0

Lj(t)
[
xt log pj + (1 − xt) log(1 − pj)

]
,

which has to be maximized w.r.t. pj to perform the M-step:

∂

∂pj
Qb({bj(x

τ−1
0 )} | θ(k)) = 0 ⇒

τ−1∑

t=0

Lj(t)
[
xt(1 − pj) + (xt − 1)pj

]
= 0

⇒

τ−1∑

t=0

Lj(t)(xt − pj) = 0 ⇒ pj =

∑τ−1
t=0 Lj(t)xt∑τ−1
t=0 Lj(t)

.

Thus the re-estimation quantity is given by

p
(k+1)
j =

∑τ−1
t=0 Lj(t)xt∑τ−1
t=0 Lj(t)

. (5.43)

Poisson Distribution

The component distributions are assumed to be univariate Poisson distribu-
tions with parameter λj :

bj(xt) =
λxt

j e
−λj

xt!
.
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Equation (5.42) becomes

Qb({bj(x
τ−1
0 )} | θ(k)) =

τ−1∑

t=0

Lj(t)
[
xt log λj − λj − log xt!

]
.

The maximization w.r.t. λj yields

∂

∂λj

Qb({bj(x
τ−1
0 )} | θ(k)) = 0 ⇒

τ−1∑

t=0

Lj(t)

[
xt

λj

− 1

]
= 0

⇒ λj =

∑τ−1
t=0 Lj(t)xt∑τ−1
t=0 Lj(t)

,

and the re-estimation quantity is

λ
(k+1)
j =

∑τ−1
t=0 Lj(t)xt∑τ−1
t=0 Lj(t)

. (5.44)

Multivariate Normal Distribution

For the case of multivariate Normal component distributions we follow the
derivations given by Bilmes (1998) for HMMs. The density functions are given
by

bj(xt) =
1

2πp/2|Σj|1/2
exp

(
−

1

2
(xt − µj)

TΣ−1
j (xt − µj)

)

with mean µj and positive definite covariance matrix Σj. The dimension of the
observations is denoted by p and all vectors are column vectors. Representing
the constant terms by C, Equation (5.42) becomes

Qb

({
bj(x

τ−1
0 )

}
|θ(k)

)
=

τ−1∑

t=0

Lj(t)
[
C−

1

2
log(|Σj|)−

1

2
(xt−µj)

TΣ−1
j (xt −µj)

]
.

(5.45)

The maximization of the Q-function requires some matrix calculus, which is
described in detail by Bilmes (1998). We first treat the maximization w.r.t. µ.
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Taking the derivative of Equation (5.45) w.r.t. µ and setting it equal to zero
yields

τ−1∑

t=0

Lj(t)Σ
−1
j (xt − µj) = 0 ⇒ µj =

∑τ−1
t=0 Lj(t)xt∑τ−1

t=0 Lj(t)
.

The first step of the maximization w.r.t. Σ consists in transforming equation
(5.45) to

1

2
log(|Σ−1

j |)

τ−1∑

t=0

Lj(t) −
1

2

τ−1∑

t=0

Lj(t)tr(Σ
−1
j (xt − µj)(xt − µj)

T )

=
1

2
log(|Σ−1

j |)

τ−1∑

t=0

Lj(t) −
1

2

τ−1∑

t=0

Lj(t)tr(Σ
−1
j Njt)

with Njt := (xt − µj)(xt − µj)
T . Differentiating w.r.t. Σ yields

1

2

τ−1∑

t=0

Lj(t) (2Σj − diag(Σj)) −
1

2

τ−1∑

t=0

Lj(t) (2Njt − diag(Njt))

=
1

2

τ−1∑

t=0

Lj(t) (2Mjt − diagMjt)

= 2S − diag(S),

where Mjt := Σj −Njt and S :=
∑τ−1

t=0 Lj(t)Mjt. Setting the last line equal to
zero yields

2S − diag(S) = 0 ⇒ S = 0.

This is equivalent to
∑τ−1

t=0 Lj(t) (Σj −Njt) = 0 and it follows

Σj =

∑τ−1
t=0 Lj(t)Njt∑τ−1

t=0 Lj(t)
=

∑τ−1
t=0 Lj(t)(xt − µj)(xt − µj)

T

∑τ−1
t=0 Lj(t)

.

Hence the re-estimation quantities for the Normal component distributions are
given by

µ
(k+1)
j =

∑τ−1
t=0 Lj(t)xt∑τ−1

t=0 Lj(t)
(5.46)

Σ
(k+1)
j =

∑τ−1
t=0 Lj(t)(xt − µ

(k+1)
j )(xt − µ

(k+1)
j )T

∑τ−1
t=0 Lj(t)

. (5.47)
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Mixtures of Normal Distributions

For the case of mixtures of Normal distributions as component distributions,
we do not provide the entire calculus but give a short overview and the resulting
re-estimation formulae. We refer to Sansom & Thomson (2000) for details.
Let the density of the Normal distribution with mean µ and positive definite
covariance matrix Σ be given by

f(xt,µ,Σ) =
1

(2π)p/2|Σ|−1/2
exp

(
−

1

2
(xt − µ)TΣ−1(xt − µ)

)
,

where p is the dimension of the observations. Let m ∈ {0, . . . ,M − 1} denote
the M mixture components which occur for each of the j state dependent
component distributions. Thus for each state j, there are M means, denoted
by µjm, and M covariance matrices, denoted by Σjm. Then Equation (5.42)
becomes

bj(xt) =
M−1∑

m=0

φjmf(xt,µjm,Σjm)

with
∑M−1

m=0 φjm = 1. To simplify the notation of the re-estimation formulae,
it is helpful to introduce the auxiliary variable

Ljm(t) :=
Lj(t)∑M−1

m=0 φjmf(xt,µjm,Σjm)
φjmf(xt,µjm,Σjm),

which can be interpreted as weighted probability of observing xt in the mixing
component m of state j. Then the re-estimation formulae for µ, Σ and φ can
be written as

φ
(k+1)
jm =

∑τ−1
t=0 Ljm(t)

∑M−1
m=0

∑τ−1
t=0 Ljm(t)

=

∑τ−1
t=0 Ljm(t)
∑τ−1

t=0 Lj(t)
, (5.48)

µ
(k+1)
jm =

∑τ−1
t=0 Ljm(t)xt∑τ−1

t=0 Ljm(t)
, (5.49)

Σ
(k+1)
jm =

∑τ−1
t=0 Ljm(t)(xt − µ

(k+1)
jm )(xt − µ

(k+1)
jm )T

∑τ−1
t=0 Ljm(t)

. (5.50)
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The derivations for (5.48), (5.49) and (5.50) are similar to that of Normal com-
ponent distributions.

t Distribution

The t distribution falls into the class of the elliptically symmetric distributions.
In contrast to the Normal distribution it has an additional parameter (the
degrees of freedom), which allows one to fit longer tails to deal with more
extreme observations.
The derivation and maximization of the Q-function for this distribution is
not entirely straightforward. However, the techniques presented by Peel &
McLachlan (2000) for the estimation of mixtures of t distributions can be
adopted to the case of a HSMM and we follow their approach.

Recall that the t distribution is derived from a Normal mixture model of the
form

∫
g(x,µ,Σ/u) dU(u), (5.51)

where g() denotes the density of the Normal distribution. The random variable
U follows a gamma distribution, i.e.,

U ∼ gamma

(
1

2
ν,

1

2
ν

)
,

where the density function of the gamma distribution is parameterized as fol-
lows:

f(u, α, β) =
βαuα−1

Γ(α)
exp(−βu)1{u>0}(u),

where Γ() denotes the gamma function.

Evaluating the integral given in (5.51) yields the density of the t distribution
with location parameter µ, ν degrees of freedom and positive definite inner
product matrix Σ. The density is given by

f(x,µ,Σ, ν) =
Γ(ν+p

2
)|Σ|−

1
2

(πν)
1
2
pΓ(ν

2
) {1 + δ(x,µ,Σ)/ν}

1
2
(ν+p)

,
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where δ(x,µ,Σ) denotes the Mahalanobis distance

δ(x,µ,Σ) = (x − µ)Σ−1(x − µ),

and p the dimension of the observations.

Note that f converges to the density function of a Normal distribution with
mean µ and covariance Σ as ν tends to infinity. The mean µ of the t distri-
bution exists for all ν > 1, and the covariance matrix is given by ν/(ν − 2)Σ
for ν > 2.

In the case of conditional t distribution, the observation distribution from
Equation (5.42) is

bj(xt) =
Γ(

νj+p

2
)|Σj|

− 1
2

(πν)
1
2
pΓ(

νj

2
)
{
1 + δ(xt,µj,Σj)/νj

} 1
2
(νj+p)

. (5.52)

Unfortunately, the re-estimation formulae of the parameters involved in (5.52)
cannot be derived directly, as was the case for observations following the Nor-
mal or the Poisson distribution. We adopt the derivation of the re-estimation
formulae from Peel & McLachlan (2000), details of which can be found in their
article.

In addition to the observations and the states of the semi-Markov chain, the
complete-data log-likelihood has to be enriched by two more variables. Firstly,
by the indicator function zjt = (zt)j which takes the value one if the observation
xt belongs to component j and zero otherwise. Secondly, the missing data from
the gamma distributed random variable U , denoted by u0, . . . , uτ−1, has to be
added to the complete-data with

Xt | ut, zjt = 1 ∼ N(µj ,Σj/ut)

for t ∈ {0, . . . , τ − 1}, and

Ut | zjt = 1 ∼ gamma

(
1

2
νj ,

1

2
νj

)
.

This “enriched” complete-data allows for a modified formulation of the complete-
data likelihood. Given z0, . . . , zτ−1, the quantities U0, . . . , Uτ−1 are condition-
ally independent, and thus the complete data likelihood can be factored into
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the product of the marginal densities of Zt, the conditional densities of Ut

given zt, and the conditional densities of Xt given ut and zt.
The complete-data log-likelihood of the observations of component j then be-
comes

logLc(µj,Σj, νj) = logLc1(νj) + logLc2(µj ,Σj)

with

logLc1(νj) =

τ−1∑

t=0

zjt

{
− log Γ

(
1

2
νj

)
+

1

2
νj log

(
1

2
νj

)

+
1

2
νj(log ut − ut) − log ut

}
(5.53)

logLc2(µj,Σj) =

τ−1∑

t=0

zjt

{
1

2
p log(2π) −

1

2
log |Σj |

−
1

2
uj(xt − µj)

TΣ−1
j (xt − µj)

}
. (5.54)

The calculation ofQ(θ | θ(k)) is also affected by the modified complete-data like-
lihood of the observation part. The conditional expectation of the complete-
data log-likelihood is performed in parts. First, the expectation conditioned
on the observations xτ−1

0 and z0, . . . , zτ−1 is taken. Then, the conditional ex-
pectation of zt given xτ−1

0 is evaluated; hereby P (Zt = 1 | xτ−1
0 ) = Lj(t) holds

true. From Equation (5.53) and (5.54), it is clear that

E(Ut |xt, zt, θ
(k))

and

E(logUt |xt, zt, θ
(k))

have to be calculated.

The calculation of E(Ut |xt, zt, θ
(k)) is based on the fact that the conjugate

prior distribution of Ut is the gamma distribution. It can be shown that the
distribution of Ut given Xt = xt and Zjt = 1 is

Ut |xt, zjt = 1 ∼ gamma(m1j , m2j),
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where

m1j :=
1

2
(νj + p)

and

m2j :=
1

2
{νj + δ(xt,µt,Σt)}.

From the definition of the gamma distribution, it follows that

E(Ut |xt, zjt = 1) =
νj

(k) + p

νj + δ(xt,µ,Σ)
,

which yields the desired result:

E(Ut |xt, zjt = 1, θ(k)) =
νj

(k) + p

νj
(k) + δ(x

(k)
t ,µ(k),Σ(k))

.

To calculate the term E(logUt |xt, zt, θ
(k)) we have to use the result that if a

random variable R is distributed by gamma(α, β), then

E(logR) = ψ(α) − log β,

where ψ(s) is again the digamma function given by

ψ(s) =
∂Γ(s)

∂s

Γ(s)
.

As shown for the derivation of E(Ut |xt, zt, θ
(k)), the conditional density of Ut

given xt and zjt = 1 is given by gamma(m1j , m2j). Applying the above result
to the conditional density of Ut yields
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E(logUt |xt, zt, θ
(k))

= ψ

(
ν

(k)
j + p

2

)
− log

(
1

2

{
ν

(k)
j + δ(xt,µ

(k)
j ,Σ

(k)
j )
})

= log u
(k)
jt +

{
ψ

(
ν

(k)
j + p

2

)
− log

(
ν

(k)
j + p

2

)}

with

u
(k)
jt :=

νj
(k) + p

νj
(k) + δ(x

(k)
t ,µ(k),Σ(k))

.

Applying the results for E(logUt |xt, zt, θ
(k)) and E(Ut |xt, zt, θ

(k)), the ob-
servation part of the Q-function in Equation (5.42) can be split up into two
parts:

Qb({bj(x
τ−1
0 )} | θ(k)) =

τ−1∑

t=0

Lj(t)Q1t(νj | θ
(k)) +

τ−1∑

t=0

Lj(t)Q2t(µj ,Σj | θ
(k)),

(5.55)

where, ignoring all terms not involving νj , yields

Q1t(νj | θ
(k)) = − log Γ

(
1

2
νj

)
+

1

2
νj log

(
1

2
νj

)

+
1

2
νj

[
τ−1∑

t=0

(
log u

(k)
jt − u

(k)
jt

)]

+ψ

(
ν

(k)
j + p

2

)
− log

(
ν

(k)
j + p

2

)

and

Q2t(µj,Σj | θ
(k)) = −

1

2
p log(2π) −

1

2
log Σj +

1

2
p log u

(k)
jt

−
1

2
u

(k)
jt (xt − µj)

TΣ
−1

j (xt − µj).
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The re-estimation procedure consists of a maximization of the two terms of
equation (5.55) w.r.t. the parameters µj ,Σj and νj .

The re-estimation formulae for µj and Σj can be derived explicitly, yielding

µ
(k+1)
j =

∑τ−1
t=0 Lj(t)u

(k)
jt xt

∑τ−1
t=0 Lj(t)u

(k)
jt

(5.56)

and

Σ
(k+1)
j =

∑τ−1
t=0 Lj(t)u

(k)
jt (xt − µ

(k+1)
j )(xt − µ

(k+1)
j )T

∑τ−1
t=0 Lj(t)

. (5.57)

Note that, according to Kent et al. (1994), for the case of a single component t

distribution, the denominator of (5.57) can also be replaced by
∑τ−1

t=0 Lj(t)u
(k)
jt

to increase the speed of convergence.

The re-estimation of the degrees of freedom νj is a bit more complicated. The

estimator ν
(k+1)
j is the (unique) solution of the equation

−ψ

(
1

2
ν

(k)
j

)
+ log

(
1

2
ν

(k)
j

)
+ 1

+
1

∑τ−1
t=0 Lj(t)

[
τ−1∑

t=0

Lj(t)
(
log u

(k)
jt − u

(k)
jt

)]

+ψ

(
ν

(k)
j + p

2

)
− log

(
ν

(k)
j + p

2

)
= 0, (5.58)

which can be found, e.g., by a bisection algorithm or by quasi-Newton methods
as the left hand side expression is monotonically increasing.

Remark: Most of the quantities involved in the re-estimation formulae for the
initial values in Equation (5.31), for the transition probabilities in Equation
(5.32), for the dwell time distributions in the Equations (5.33), (5.34), (5.35),
(5.39), (5.40), (5.41) and for the state-dependent distributions in the Equations
(5.43), (5.44), (5.46), (5.47), (5.48), (5.49), (5.50), (5.56), (5.57), (5.58) can be
calculated more or less directly from the quantities involved in the backward
recursion with only a few additional computations. One exception is the t dis-
tribution which requires a numerical root finding procedure. However, in this
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case the EM algorithm is not significantly slowed down because the function
to be approximated is monotonically increasing.
Moreover, minor computations concern the contributions at time t = 0 and
the contributions of the time spent in the last visited state to the re-estimation
quantities of the state occupancy distributions (see Sections 5.3.3.1 and 5.3.3.2).

5.4 Asymptotic properties of the maximum

likelihood estimators

The asymptotic properties of the maximum likelihood estimators for HMMs
are well established. Asymptotic normality of the (consistent) maximum like-
lihood estimator of a HMM was proved for the first time by Baum & Petrie
(1966). They treated a HMM with finite state space under certain assumptions
made on some technical conditions, e.g., stationarity and ergodicity. More than
thirty years later, Bickel et al. (1998) succeeded in relaxing the restriction to
a finite state space; in 1998 they proved asymptotic normality for a general
HMM. Stationarity and ergodicity were also assumed and some regularity con-
ditions were imposed on the conditional distributions. However, most of the
common distributions fulfill these conditions.

On the other hand, the literature on the asymptotic properties of the maximum
likelihood estimators for extensions of the HMM is relatively thin. Bickel et al.
(1998), Douc & Matias (2001) and Douc et al. (2004) treat some generalized
HMMs. Currently, the only reference which treats the asymptotic properties
of HSMMs, namely consistency and asymptotic normality of non-parametric
estimators, is Barbu & Limnios (2005).

5.5 Stationary Hidden Semi-Markov Models

The fitting of stationary HSMMs can be achieved by different approaches. If it
can be assumed that the beginning of the observations coincides with the entry
in a new state, it is possible to arrive at an extension of the M-step similar to
the fitting procedure for stationary HMMs, presented in Section 3.1.2.

However, the start of the state sequence can also be independent of the gen-
eration of the data series. In that case it is appropriate to introduce a left-
censoring to the observed data. The EM algorithm for this process, namely the
Hidden Equilibrium Semi-Markov Model described by Guédon (2005), relies
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on a complete-data likelihood of the form

LC

(
sτ−1+u
−v , xτ−1

0 | θ
)

= P
(
S−v 6= s0, S−w = s0, w = 1 . . . , v − 1, Sτ−1

0 = sτ−1
0 ,

Sτ−1+w = sτ−1, w = 1, . . . , u− 1, Sτ−1+u 6= sτ−1, X
τ−1
0 = xτ−1

0 | θ
)
.

Compared to estimation procedures introduced in the preceding sections, the
M-step is more demanding in both its theoretical and the computational as-
pects.

The easiest and only asymptotically correct method to implement a stationary
model is the following. For many long-running processes it is reasonable to
simply assume that the estimate for the initial distribution π is given by the
steady state distribution of the semi-Markov chain:

π̂ =
πs ×c

(
E(d0(u)), . . . , E(dJ−1(u))

)
∑J−1

j=0

[
πs

j · E(dj(u))
] ,

where πs denotes the stationary distribution of the TPM of the embedded
Markov chain satisfying πsT = T and ×c indicates the component-wise mul-
tiplication.



Chapter 6

Stylized Facts of Daily Return

Series and Hidden Semi-Markov

Models

Applications related to Financial Econometrics like risk measurement, pricing
of derivatives, margin setting and many other financial indicators rely on a
suitable modeling of the distributional and temporal properties of the daily
return series of stocks, indices or other assets.
The normal distribution with stationary parameters has often been chosen
to model daily return series in financial theory. After the classical paper of
Fama (1965), which observed more kurtosis and higher peaks contradicting
the assumption of normality, many authors proposed solutions to overcome
this drawback. For example, Praetz (1972) and Blattberg & Gonedes (1974)
preferred the t distribution while Mittnik & Rachev (1993) examined various
stable distributions. The recent articles of Gettinby et al. (2004) and Harris &
Küçüközmen (2001) provide a good overview of the several approaches avail-
able in the literature.
As with the distributional properties, the temporal properties of daily return
series have also been examined by many authors. The most popular models
of the last decade fall into the class of ARCH-type models; for a review see
Bollerslev et al. (1992) or Franses & van Dijk (2000). Other suitable alterna-
tive approaches include the Stochastic Volatility models introduced by Taylor
(1986) and have been applied in many contexts, e.g., by Koopman et al. (2005),
and Yu (2002). State-space models based on the Kalman filter were investi-
gated inter alia by Faff et al. (2000) or Yao & Gao (2004). The large class of
Markov-switching models was introduced by Hamilton (1989, 1990). Turner
et al. (1989) first considered a Markov mixture of normal distributions, and
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many other studies followed, e.g., Cecchetti et al. (1990), Linne (2002), and
Bialkowski (2003).

In this chapter, we focus on modeling the distributional and temporal proper-
ties of daily return series by HSMMs. Rydén et al. (1998) show that a HMM
– mixing normal variables according to the states of an unobserved Markov
chain – reproduces most of the stylized facts for daily return series established
by Granger & Ding (1995a,b). However, the analysis of Rydén et al. (1998),
henceforth abbreviated RY, also illustrates that the stylized fact of the very
slowly decaying autocorrelation for absolute (or squared) returns cannot be
described by a HMM. The lack of flexibility of a HMM to model the temporal
higher order dependence can be explained by the implicit geometric distributed
sojourn time in the hidden states.
The two hidden HSMMs explored in this chapter are generalization of the
model presented by RY. After fitting them to daily return series from 18 sec-
tors of the EUROSTOXX, we show a significantly improved fit of the auto-
correlation function. For more detailed results we refer to Bulla & Bulla (2006).

The remainder of this chapter is organized as follows. In Section 6.1 we present
the estimation procedures for our specific models for financial time series. Sec-
tion 6.2 contains a short description of the data. Section 6.3 outlines the results
of our analysis while Section 6.4 summarizes the findings. Section 6.5 presents
some tables with detailed results.

6.1 Modeling Daily Return Series

RY fitted HMMs with normal component distributions to subseries of the well-
known S&P 500 index. They noticed that the autocorrelation function of the
estimated model does not satisfactorily capture the behavior of the empirical
autocorrelation function, mainly due to the much slower decay of the latter.
The temporal dependence properties of a HMM rely on the values of the TPM
(MacDonald & Zucchini 1997, Chapter 2.4). However, the geometric sojourn
time distribution is a fixed feature of these models. In contrast to many other
applications like speech recognition, there exists no test data for financial time
series where the “real” sojourn time distribution is known. The approach of
Sansom & Thomson (2001), who fitted HSMMs with non-parametric state
occupation in a first step to deduce the shape of a parametric distribution
in the context of rainfall data, does not yield satisfactory results for daily
return series. The nonparametric estimates are too unstable to select a suitable
parametric alternative. We therefore generalize the model of RY by fitting a
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HSMM with negative binomial sojourn time distributions of the form

dj(u) =

(
u− 2 + rj

u− 1

)
π

rj

j (1 − πj)
u−1, u ∈ {1, 2, . . .},

where j denotes the state. The number of parameters only increases by one
per state and, for r = 1, our model reduces to a HMM.

While Granger & Ding (1995a,b) suggested a double exponential distribution
to characterize daily returns, RY proposed mixtures of normal variables. We fit
HSMMs with variables following normal and t distributions. For the remainder
of this chapter, the HMM of RY will be denoted by MRY , the HSMM with
conditional normal distributions by SMN and the HSMM with conditional t
distributions by SM t. RY investigated HMMs with two and three states. They
noticed that the three-state models were less similar to each other because the
estimation results show a strong dependence on outliers. For this reason, and
for better comparability, all models estimated in this chapter have two states.

6.2 The Data Series

The data used here are the daily returns calculated for 18 Pan-European in-

dustry portfolios, covering the period from 1st January 1987 to 5th September
2005. All sector indices are from STO (2004), and the common currency used
is the Euro. The daily returns of the period from t − 1 to t are computed
continuously by

Rt = ln(Pt) − ln(Pt−1),

where Pt represents the index closing price on day t and ln is the natural
logarithm. All data are obtained from Thomson Financial Datastream.6

Descriptive statistics for the data are provided in Table 6.1. It was found
that all sector indices are leptokurtic and negatively skewed. The Jarque-Bera
statistic confirms the departure from normality for all return series at the 1%
level of significance.

6For further information see http://www.thomson.com/
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Table 6.1: Descriptive statistics of daily sector returns

Summary of the daily returns data of the 18 DJ STOXX sector indices, covering the period

from 1st January 1987 to 5th September 2005.

Sector Na Mean·104 S.D. · 102 Skew. Ex. Kurt. JBb

Automobiles 4824 0.534 1.48 −0.36 5.99 7315

Banks 4824 2.284 1.20 −0.29 6.98 9863

Basics 4824 2.087 1.25 −0.40 6.82 9474

Chemicals 4824 2.536 1.29 −0.12 5.60 6314

Construction 4824 2.881 1.09 −0.56 6.39 8478

Financials 4824 1.993 1.16 −0.51 8.04 13217

Food 4824 2.838 1.10 −0.25 14.25 40877

Healthcare 4824 3.537 1.31 −0.39 6.30 8096

Industrials 4824 2.740 1.16 −0.42 6.42 8423

Insurance 4824 1.247 1.45 −0.26 7.39 11041

Media 4824 2.419 1.49 −0.44 7.34 10990

Oil & Gas 4824 3.895 1.24 −0.25 4.48 4098

Personal 4824 3.317 1.05 −0.16 4.78 4627

Retail 4824 1.676 1.87 −0.26 5.26 5614

Technology 4824 3.330 1.63 −0.13 4.27 3683

Telecom 3521 2.246 1.48 −0.36 5.38 4339

Travel 3521 2.380 1.48 −0.19 2.47 916

Utilities 3521 2.070 1.19 −0.43 7.21 7740

aIn September 2004, STOXX Ltd. replaced the sectors Cyclical Goods & Services, Non-
Cyclical Goods & Services, and Retail (old) by the new sectors Travel & Leisure, Personal &
Household Goods, and Retail (new), respectively. The history of the newly formed sectors

(with 3521 observations) dates back to 31st December 1991.
bJB is the Jarque-Bera statistic for testing normality.

6.3 Empirical Results

All estimation results for the HMM are reported in Table 6.5 of Section 6.5.
The corresponding results for the HSMMs with conditional normal and t dis-
tributions are reported in Tables 6.6 and 6.7, respectively.

All three models considered fit the marginal distributions of the returns rea-
sonably well. As expected for daily return series, the empirical mean and the
mean of the fitted models lie very close to zero for all 18 sectors. As shown
in Table 6.2, the empirical standard deviation is also reproduced very well by
the three models.
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Table 6.2: Standard deviation of the data and the fitted models

The empirical standard deviation of the 18 DJ STOOXX sectors in comparison to the
standard deviation of the fitted HMM and the standard deviation of the two fitted HSMMs.
All results are multiplied by 100.

Sector Obs. MRY SMN SMt

Automobiles 1.48 1.47 1.47 1.46

Banks 1.20 1.19 1.19 1.18

Basics 1.25 1.24 1.24 1.24

Chemicals 1.29 1.29 1.28 1.27

Construction 1.09 1.09 1.09 1.08

Financials 1.16 1.16 1.15 1.15

Food 1.10 1.10 1.09 1.08

Healthcare 1.31 1.31 1.31 1.30

Industrials 1.16 1.16 1.16 1.15

Insurance 1.45 1.45 1.44 1.44

Media 1.49 1.49 1.48 1.48

Oil & Gas 1.24 1.24 1.24 1.23

Personal 1.05 1.05 1.04 1.04

Retail 1.87 1.87 1.86 1.85

Technology 1.63 1.63 1.63 1.60

Telecom 1.48 1.48 1.48 1.47

Travel 1.48 1.48 1.47 1.44

Utilities 1.19 1.19 1.17 1.16

The three models exhibit a clear tendency towards the kurtosis. Even though
all models are subject to excess kurtosis, SM t provides the best results. The
average empirical excess kurtosis of the 18 sectors is 6.41 and the average ex-
cess kurtosis of SM t is 7.00. However, the two models MRY and SMN based
on normal conditional distributions, only achieve an average excess kurtosis of
2.95 and 3.45, respectively. The results for all sectors are shown in Table 6.3.
The ability of SM t to capture excess kurtosis is displayed for the three sec-
tors Food, Industrials, and Travel & Leisure (henceforth mentioned only as
’Travel’) in the Figures 6.1, 6.2, and 6.3, respectively. These three sectors
were selected because they are subject to high, medium and low excess kur-
tosis (Food: 14.25, Industrials: 6.42, Travel & Leisure: 2.47). The results are
similar for the remaining return series. The density ofMRY has the lowest peak
of the three models, followed by SMN and SM t, whereby the latter reproduces
the concentration of returns close to zero far better than the competitors.
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Figure 6.1: Observed and fitted distributions for the Food sector

Histogram of the returns for the Food sector and the marginal distribution of the
three models MRY , SMN , and SM t.
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Figure 6.2: Observed and fitted distributions for the Industrials sector

Histogram of the returns for the Industrials sector and the marginal distribution of
the three models MRY , SMN , and SM t.
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Figure 6.3: Observed and fitted distributions for the Travel & Leisure sector

Histogram of the returns for the Travel & Leisure sector and the marginal distribu-
tion of the three models MRY , SMN , and SM t.
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The average log-likelihood ofMRY is 14200 and it increases to 14236 and 14271
for SMN and SM t, respectively. Comparing MRY and SMN , the Technology
(Personal) sector is subject to the maximum (minimum) increase of the log-
likelihood of 56.5 (13.8). For the Food (Personal) sector the extension from
SMN to SMt leads to an increase of 89.5 (12.5).

A standard procedure for comparing two nested models is the Likelihood Ra-
tio Test (LRT). It compares a relatively more complex model to a simpler
model to assess whether it fits the data significantly better. As the three
models are hierarchically nested, the LRT may be applied with the null hy-
pothesis of r1, r2 = 1 for the comparison MRY /SMN , and ν1, ν2 = ∞ for
SMN/SM t. For each of the 18 sectors, SMN is significantly better than MRY

at 0.1% level of significance. The same statement holds true for the comparison
SMN/SM t, indicating that SM t provides the best fit to the data. In addition,
this statement is supported by the Akaike information criterion which, on an
average, decreases from −28388 for the HMM to −28456 and −28522 for the
two HSMMs.
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Table 6.3: Kurtosis of the data and the fitted models

The empirical excess kurtosis of the 18 DJ STOOXX sectors in comparison to the excess
kurtosis of the fitted HMM and of the two fitted HSMMs.

Sector Obs. MRY SMN SMt

Automobiles 5.99 3.15 3.70 6.53

Banks 6.98 4.10 4.66 8.42

Basics 6.82 3.00 3.39 8.78

Chemicals 5.60 2.50 2.95 5.70

Construction 6.39 2.60 3.19 7.25

Financials 8.04 4.16 5.00 9.87

Food 14.25 3.48 4.26 17.56

Healthcare 6.30 2.26 2.58 5.17

Industrials 6.42 2.70 2.96 7.07

Insurance 7.39 4.31 5.29 9.02

Media 7.34 3.79 4.11 9.30

Oil & Gas 4.48 2.13 2.49 4.41

Personal 4.78 2.86 3.44 4.96

Retail 5.26 3.07 3.40 5.51

Technology 4.27 1.99 2.32 3.67

Telecom 5.38 2.66 3.17 5.26

Travel 2.47 1.80 2.04 2.53

Utilities 7.21 2.57 3.20 5.04

For the HMM, the mean and variance of the sojourn times (in each state) are
controlled by the parameters of the geometric distributions. The additional
parameter of the HSMM allows more flexibility of mean and variance. The
results are displayed in Figure 6.4.

For every model, the expected sojourn time is higher in the low-risk state,
where risk is measured in terms of variance of the respective conditional dis-
tribution. This seems reasonable because periods of high volatility reflect a
nervous market and are historically less persistent than periods of low volatil-
ity.
It is remarkable that the average sojourn times for the HSMMs are significantly
lower than for MRY , i.e. the persistence of both the high- and the low-risk state
is much lower. The higher sojourn times of SM t w.r.t. SMN are a consequence
of the heavier tails of the component distributions – in most cases the degrees
of freedom take values between 5 and 10. On the other hand, the standard
deviations of the sojourn time distributions show a smaller difference between
the models.
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Figure 6.4: Mean and standard deviation of the sojourn time distributions of
the sectors, grouped by model and high-risk (HR)/low-risk (LR) state
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Figure 6.5: Mean and standard deviation of the sojourn times

5 10 20 50 100 200

5
10

20
50

10
0

20
0

Mean

S
.D

.

MRY
SMN
SMt

Taking both mean and standard deviation into account, the coefficient of vari-
ation equals 1 − π1 and 1 − π2 for the two states of MRY . Due to the high
persistence of the states, this yields values close to one. However, the aver-
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age coefficient of variation of the SMN(SM t) is 3.23 (3.72). Plotting mean
and standard deviation of the sojourn time against each other shows a clear
separation of the HMM and the two HSMMs, as shown in Figure 6.5.

To analyze the temporal properties of the three models we compare the empir-
ical autocorrelation function (ACF) of the 18 sectors to the model ACF. The
slow decay of the ACF for series of absolute/squared daily return is difficult to
model. RY stated that this stylized fact cannot be reproduced by the HMM
because the decay of the autocorrelations is (much) faster than that observed
in reality. He considered this stylized fact to be “the most difficult (...) to
reproduce with a HMM”. Figures 6.6, 6.7 and 6.8 show the empirical ACF
of squared returns as well as the ACF of the three models for the 18 sectors.
The solid line represents the ACF of MRY , while the dotted and dashed lines
represent SMN and SM t, respectively.

The HMM shows the typical strong decay of the autocorrelations and is far
from the gray empirical ACF, which confirms the results of RY. Both SMN

and SM t show a good fit in the tail of the ACF and reproduce this stylized
fact much better than the HMM. However, the SM t looses some of its cred-
ibility due to the bad fit for the lags of lower order. Here, SMN performs
clearly better. To measure the fit of the ACF, we calculate the mean squared
error (MSE) of the models and a weighted mean squared error (wMSE). The
wMSE reweights the error at lag i by 0.95(100−i) to increase the influence of
higher order lags. The results reported in Table 6.4 confirm the visual impres-
sion that SMN provides the best fit with respect to both criteria. Compared
to MRY , the MSE of the ACF for SMN is reduced by approximately 40%.

Table 6.4: Average mean squared error and weighed mean squared error for
the ACF of the 18 sectors

Criterion MRY SMN SM t

MSE · 102 5.37 3.22 5.47

wMSE · 103 10.36 5.06 5.46

A remarkable observation is the bad fit of all models for the sectors Banks,
Insurance, and Financial Services. We can offer no plausible explanation as to
why HMMs and HSMMs should not be an appropriate way to model the daily
returns for the sectors from the financial industry. In our observation period
between the years 1987 to 2005, this part of the economy was severely affected
by the boom and subsequent crash of the Internet bubble.
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Figure 6.6: Empirical (gray bars) and model ACF for the first six sectors at
lag 1 to 100
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Figure 6.7: Empirical (gray bars) and model ACF for the sectors seven to
twelve at lag 1 to 100
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Figure 6.8: Empirical (gray bars) and model ACF for sectors thirteen to eigh-
teen at lag 1 to 100
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On the other hand, the TMT (Technology, Media and Telecommunications)
stocks also experienced extreme fluctuations during and after the Internet bub-
ble and, for these sectors, the autocorrelation function is modeled reasonably
well. However, alternative approaches should be considered for the sectors from
the financial industry. Retail is the only example for a poorly fitting ACF from
the remaining sectors. We are unable to offer a fundamental explanation for
this anomaly.

To summarize, it may be stated that there is a trade off between the distri-
butional and the temporal properties of the two HSMMs. While t conditional
distributions are the first choice while considering the model selection criteria
AIC and LRT, the HSMM with normal conditional distributions reproduces
the shape of the empirical autocorrelation function much better than SMt and,
naturally, than MRY .

6.4 Conclusion

We present a generalized approach of RY to model daily return series and, in
particular, improve the temporal dependence properties. We show that the
one stylized fact, the slowly decaying autocorrelation function which could not
be reproduced by a HMM, is well described by a HSMM with negative bino-
mial sojourn time and normal conditional distributions.
The negative binomial sojourn time distribution is only one of the many pos-
sibilities to extend a HMM. It certainly seems to be a more appropriate choice
than the geometric sojourn time distribution of a HMM. Future research may
show that other, parametric or non-parametric alternatives are better.
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Table 6.5: Parameter estimates for the HMM

Estimated parameters of the HMM with normal component distributions for the eighteen DJ STOXX
sector indices. For state i, i = 1, 2, pi is the parameter of the sojourn time distribution, µi and σ2

i

model the component distribution.

Sector 1 − p1 1 − p2 µ1 · 103 µ2 · 103 σ2

1
· 104 σ2

2
· 104 S.D. · 102 E.K. AIC

Automobiles 0.968 0.991 −1.777 0.585 6.288 0.978 1.47 3.15 −28473

Banks 0.957 0.987 −1.204 0.667 4.427 0.502 1.19 4.10 −31114

Basics 0.948 0.982 −1.490 0.803 4.160 0.635 1.24 3.00 −30061

Chemicals 0.953 0.980 −0.925 0.761 3.947 0.657 1.29 2.50 −29645

Construction 0.962 0.989 −1.416 0.766 3.259 0.601 1.09 2.60 −31058

Financials 0.957 0.987 −1.229 0.640 4.172 0.460 1.16 4.16 −31483

Food 0.946 0.985 −0.870 0.608 3.646 0.514 1.10 3.48 −31398

Healthcare 0.963 0.981 −0.622 0.842 3.835 0.663 1.31 2.26 −29407

Industrials 0.975 0.989 −0.845 0.757 3.288 0.506 1.16 2.70 −30931

Insurance 0.964 0.989 −1.141 0.496 6.785 0.739 1.45 4.31 −29360

Media 0.968 0.989 −1.273 0.740 6.520 0.778 1.49 3.79 −28989

Oil & Gas 0.983 0.992 −0.195 0.651 3.482 0.666 1.24 2.13 −29955

Personal 0.956 0.991 −1.303 0.681 3.375 0.599 1.05 2.86 −31418

Retail 0.978 0.987 −1.166 0.923 8.173 0.822 1.87 3.07 −27222

Technology 0.981 0.989 −0.546 0.843 5.511 1.010 1.63 1.99 −27351

Telecom 0.940 0.977 −0.493 0.495 5.559 0.922 1.48 2.66 −20559

Travel 0.986 0.996 −0.962 0.598 5.274 1.255 1.48 1.80 −20337

Utilities 0.975 0.991 −0.743 0.547 3.594 0.627 1.19 2.57 −22230
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Table 6.6: Parameter estimates for the HSMM with normal conditional distributions

Estimated parameters of the HSMM with normal component distributions for the eighteen DJ STOXX sector indices.
For state i, i = 1, 2, πi and ri are the parameters of the sojourn time distribution, µi and σ2

i
model the component

distribution.

Sector 1 − π1 1 − π2 r1 · 10 r2 · 10 µ1 · 103 µ2 · 103 σ2

1
· 104 σ2

2
· 104 S.D. · 102 E.K. AIC

Automobiles 0.983 0.995 0.518 0.746 −1.866 0.576 6.763 0.924 1.47 3.70 −28537

Banks 0.969 0.993 0.847 0.775 −1.102 0.625 4.656 0.459 1.19 4.66 −31203

Basics 0.969 0.991 0.922 0.966 −1.571 0.812 4.366 0.592 1.24 3.39 −30132

Chemicals 0.979 0.990 0.544 0.821 −1.111 0.804 4.213 0.611 1.28 2.95 −29736

Construction 0.965 0.994 0.995 0.824 −1.553 0.748 3.614 0.575 1.09 3.19 −31104

Financials 0.971 0.994 0.890 0.848 −1.413 0.631 4.652 0.448 1.15 5.00 −31569

Food 0.919 0.995 1.752 0.629 −0.950 0.581 4.110 0.500 1.09 4.26 −31464

Healthcare 0.981 0.991 0.703 0.843 −0.801 0.897 4.035 0.631 1.31 2.58 −29468

Industrials 0.988 0.993 0.728 1.081 −0.940 0.793 3.375 0.475 1.16 2.96 −30979

Insurance 0.977 0.995 0.558 0.622 −1.233 0.469 7.630 0.707 1.44 5.29 −29464

Media 0.992 0.993 0.471 1.427 −1.329 0.749 6.713 0.742 1.48 4.11 −29055

Oil & Gas 0.986 0.996 0.644 0.476 −0.367 0.705 3.701 0.633 1.24 2.49 −30006

Personal 0.976 0.993 0.615 1.176 −1.616 0.711 3.712 0.575 1.04 3.44 −31454

Retail 0.996 0.990 0.280 1.232 −1.316 0.960 8.534 0.777 1.86 3.40 −27331

Technology 0.990 0.987 0.495 1.178 −0.503 0.825 5.704 0.873 1.63 2.32 −27423

Telecom 0.991 0.975 0.231 2.313 −0.568 0.502 5.993 0.859 1.48 3.17 −20640

Travel 0.996 0.988 0.183 1.549 −0.996 0.710 5.074 1.074 1.47 2.04 −20361

Utilities 0.980 0.996 0.488 0.429 −0.793 0.522 3.975 0.600 1.17 3.20 −22279
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Table 6.7: Parameter estimates for the HSMM with Student t conditional distributions

Estimated parameters of the two-state HSMM with t component distributions for the eighteen DJ STOXX sector indices. For state i,
i = 1, 2, πi and ri are the parameters of the sojourn time distribution, µi, σ2

i and νi model the component distribution.

Sector 1 − π1 1 − π2 r1 · 10 r2 · 10 µ1 · 103 µ2 · 103 σ2

1 · 104 σ2

2 · 104 ν1 ν2 S.D. · 102 E.K. AIC

Automobiles 0.985 0.997 0.588 0.511 −1.562 0.622 4.525 0.769 7.55 10.94 1.46 6.53 −28594

Banks 0.977 0.996 0.792 0.466 −0.684 0.628 3.039 0.383 7.04 10.38 1.18 8.42 −31258

Basics 0.983 0.996 0.962 0.550 −1.045 0.816 2.283 0.482 5.53 9.94 1.24 8.78 −30224

Chemicals 0.986 0.995 0.549 0.410 −0.592 0.744 2.490 0.484 6.71 8.81 1.27 5.70 −29814

Construction 0.982 0.996 1.146 0.935 −1.027 0.805 1.966 0.490 5.90 13.49 1.08 7.25 −31170

Financials 0.979 0.996 0.902 0.678 −1.011 0.671 2.810 0.366 6.33 11.03 1.15 9.87 −31625

Food 0.994 0.993 1.405 3.281 −0.263 0.658 1.351 0.370 4.37 10.37 1.08 17.56 −31639

Healthcare 0.997 0.991 0.238 1.052 −0.320 0.932 2.299 0.516 6.61 11.89 1.30 5.17 −29564

Industrials 0.994 0.997 0.722 0.823 −0.441 0.787 1.999 0.401 6.21 12.13 1.15 7.07 −31066

Insurance 0.979 0.997 0.659 0.399 −0.892 0.516 4.898 0.575 7.20 11.10 1.44 9.02 −29512

Media 0.993 0.995 0.499 1.199 −1.084 0.767 4.380 0.642 6.32 12.34 1.48 9.30 −29121

Oil & Gas 0.994 0.998 0.397 0.289 −0.049 0.640 2.523 0.526 8.15 10.56 1.23 4.41 −30066

Personal 0.977 0.996 0.868 0.863 −1.457 0.710 2.624 0.495 9.26 12.80 1.04 4.96 −31483

Retail 0.996 0.995 0.328 0.815 −1.077 0.983 6.548 0.631 9.35 7.99 1.85 5.51 −27386

Technology 0.990 0.997 0.616 0.294 −0.538 0.834 4.358 0.709 10.46 6.83 1.60 3.67 −27497

Telecom 0.990 0.992 0.340 0.981 −0.070 0.465 4.349 0.742 8.29 7.90 1.47 5.26 −20679

Travel 0.989 0.999 0.419 0.250 −1.036 0.619 5.311 0.987 47.02 10.20 1.44 2.53 −20382

Utilities 0.984 0.997 0.562 0.285 −0.288 0.500 2.427 0.503 7.98 20.67 1.16 5.04 −22313



Chapter 7

Conclusion and Future Work

In this final chapter we review our main results and discuss possible extensions
to our work. The common theme of all chapters of this thesis is the application
of HMMs and HSMMs to financial time series. We examine different classes
of models, e.g., regime switching models in the CAPM framework or semi-
Markovian mixture distribution for daily return series. Moreover, we address
various computational issues in the parameter estimation of HMMs.

In Chapter 3 we present the most familiar methods of parameter estimation for
HMMs. We investigate the coverage probability of bootstrap-based confidence
bands and the effect of different parameterizations on the performance of es-
timation algorithms. We show that a hybrid algorithm provides an excellent
compromise to overcome the trade-off between stability of the EM algorithm
and the speed of DNM. If a choice has to be made between the EM algorithm
and DNM, the latter is preferable if one can provide accurate initial values, or
if the estimation is time-critical. Clearly, if the formulae required for the EM
algorithm are too difficult to derive, or if one wishes to avoid deriving these,
then one has to use DNM. In all other cases the EM algorithm is the preferred
method due to its greater stability.
An interesting aspect for further analysis would be an extension to HSMMs.
For these models, neither the estimation results of DNM, nor the coverage
probabilities of confidence bands, are available in the literature.

The analysis of different approaches to model time-varying beta risk in Chap-
ter 4 yielded various interesting results. It is seen that the Markov switching
approach provides an efficient method to reduce the number of parameters
when a large number of time series have to be modeled jointly. However, in
comparison to other modeling techniques, the Markov regime switching mod-
els showed an unsatisfactory out-of-sample forecast performance.
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The results could be improved significantly by increasing the number of states
of the models substantially. Special attention has to be paid to the number
of parameters of such a model, in particular the entries of the TPM. A possi-
bility that could be considered in future research is to reduce the number of
parameters by imposing appropriate restrictions on the TPM.

In Chapter 5 and 6 we introduce the theoretical basis of right-censored HSMMs
and present a generalization of the approach of Rydén et al. (1998) to model
daily return series. We succeed to improve the temporal properties and show
that the one stylized fact that a HMM cannot reproduce, namely the slowly
decaying autocorrelation function, is significantly better described by a HSMM
with negative binomial sojourn time and normal conditional distributions.
The semi-Markov approach is, in our opinion, the field with the largest num-
ber of possible extensions. While HMMs allow, basically, only the conditional
distributions to be changed (apart from certain generalizations such as feed-
back or duration dependent models), the HSMM additionally allows one to
modify distribution of the state-dependent sojourn time distribution. Finally,
the asymptotic properties of maximum likelihood estimators are far from com-
pletely explored and offer a challenging problem requiring further research.



Appendix A

The EM Algorithm

A popular method for estimating the parameters of HMMs is the Baum-Welch
algorithm, a technique similar to what became known as the EM algorithm
later (Baum et al. 1970). Originally, the EM algorithm was developed for es-
timating the parameters of a model in the case of missing data. However, it
could also be adopted in the estimation of HMMs and HSMMs.
In this section, we briefly describe the EM algorithm in a general form which is
applicable to a variety of other problems dealing with hidden/missing/incom-
plete data. Mathematical strictness is relaxed for the benefit of a better, intu-
itive comprehension of the subject. For further reading, a good introduction
is given by Bilmes (1998) and the references therein.

A.1 Prerequisites

Consider a sample of τ i.i.d. observations from a random variable X:

x0, . . . , xτ−1.

It is assumed that the observations xτ−1
0 = x0, . . . , xτ−1 are incomplete; i.e.,

we deal with a data set one part of which is observable and the other part is
missing. The complete data are denoted by C and the missing data by S:

C = (X,S).

Let the density functions of C, X and S be denoted by

pC(c | θ), pX(x | θ) and pS(s | θ),
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respectively. For better readability, we omit the subscripts of the above func-
tions in the following.

The aim of the EM-algorithm is the maximization of the log-likelihood of the
observed data

logL(θ) := log p(xτ−1
0 | θ)

=
τ−1∑

t=0

log p(xt | θ). (A.1)

Analytic maximization of Equation (A.1) can be difficult. In many cases, an
analytic solution is unavailable or the calculation is extremely difficult. The
EM algorithm, a special iterative procedure, offers one solution to handle this
problem. It makes use of an auxiliary function, the so called “Q-function”, to
deal with the missing observations. The Q-function plays an important role in
the calculation of the complete-data log-likelihood logLc(θ), which is defined
as

log Lc(θ) := log( p(X,S) | θ).

As a part of the data is unknown, logLc(θ) cannot be calculated directly.
However, the complete-data likelihood can be handled in a reasonable way by
estimating the distribution of the missing data S and calculating the expecta-
tion of the complete-data likelihood as follows.
Let θ(k) be a predetermined parameter for the distribution p(c|θ) of the com-
plete data. The Q-function is defined by

Q(θ | θ(k)) := ES

[
log
(
Lc(θ) | θ

(k), xτ−1
0

)]
.

This function gives the expectation of the complete-data likelihood w.r.t. the
density of the missing data, conditioned on the observations x0

τ−1 and the pre-
determined (set of) parameter(s) θ(k). The Q-function depends only on θ ∈ Θ
and maps from Θ to R.

In many cases, the Q-function cannot be directly used for explicit calculations
if it is given in the form given above. However, it can be transformed in the
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following way:

Q(θ|θ(k)) = ES

[
log
(
Lc(θ) | θ

(k), x0
τ−1

)]

= ES

[
τ−1∑

t=0

log (p(xt, s | θ)) |θ
(k), xτ−1

0 )

]

=

∫

s

[
τ−1∑

t=0

log (p(xt, s | θ))

]
p(s | θ(k), xτ−1

0 ) ds.

(A.2)

The density p(s | θ(k), xτ−1
0 ) represents another difficulty because an explicit

expression is often difficult to obtain. However, it may be substituted by the
density p(s | θ(k), xτ−1

0 )·p(xτ−1
0 | θ(k)) which is obtained as a product of Equation

(A.2) with p(xτ−1
0 | θ(k)). The last mentioned expression is independent of θ

and therefore does not affect the subsequent steps of the algorithm. The Q-
function becomes

Q(θ | θ(k)) =

∫

s

[
τ−1∑

t=0

log (p(xt, s | θ))

]
p(s, xτ−1

0 | θ(k)) ds. (A.3)

A.2 Implementation of the EM Algorithm

The EM algorithm is an iterative algorithm which splits up into the so-called
E- and M-step.

1. Enter the observations xτ−1
0 , the appropriate density functions of the

corresponding Q-function, the initial value for θ, θ(0), and a stopping
criterion. The stopping criterion may be determined by the number of
repetitions that have to be executed, or by a minimum increase of the
log-likelihood.

2. This is the main iteration step of the estimation procedure. The E-step
and the M-step are carried out in a loop.

• E-Step: Compute the conditional expectation of the missing ob-
servations given the observed data and θ(k). Then evaluate the
complete-data log-likelihood by substituting the functions depend-
ing on S by the corresponding functions depending on the condi-
tional expectation; this yields the expected log-likelihood. That is,



A The EM Algorithm 129

the Q-function from Equation (A.2) has to be calculated, consider-
ing θ(k) as fixed parameters:

Q(θ | θ(k)) := ES

[
log(Lc(θ) | θ

(k), xτ−1
0 )

]
.

Q(θ, θ(k)) depends on two arguments: The parameter θ that max-
imizes the likelihood in the next step, and θ(k), which is used to
evaluate the expectation.

• M-Step: To determine θ(k+1)s the Q-function has to be maximized
w.r.t. θ:

θ(k+1) = arg max
θ
Q(θ | θ(k)).

3. The two steps are repeated until the prescribed stopping criterion is
fulfilled. This may be when the increase of the log-likelihood falls below
a given limit or when a certain number of repetitions has been carried
out.

Note that the M-step strongly depends on the distributions chosen for the data.
It may happen that an explicit solution for the M-step cannot be obtained by
straightforward calculus. In that case the algorithm may be slowed down by
numerical approximations that are necessary in every iteration.

A.3 Convergence properties of the EM Algo-

rithm

In this section we briefly state some general results for the convergence of the
EM algorithm in short form. For a detailed outline see, e.g., Dempster et al.
(1977), Little & Rubin (1987), Liporace (1982), and Wu (1983).

Let θ(k) and θ(k+1) denote two elements of the sequence of estimates obtained
by the EM algorithm. The log-likelihood increases at each step until it reaches
a stationary point, i.e.,

logL(θ(k+1)) ≥ logL(θ(k)).

If bounded from above, the sequence L(θ(k))) converges to some L∗. Fur-
thermore, under certain technical conditions, L∗ is a stationary value of the
likelihood. To ensure that L∗ is a stationary value, the Q-function must be
continuous in both arguments. This holds true, e.g. in the case of the curved
exponential family (Wu 1983).
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In general the speed of convergence of the EM algorithm depends on the quan-
tity of unknown information. For θ(k) sufficiently close to the true parameter
θ̃, the convergence behavior can be described by

|θ(k+1) − θ̃| = rc|θ
(k) − θ̃|,

where rc is given by the ratio of the missing to the complete information (cf.
Dempster et al. 1977). Thus the rate of convergence can become very low if
many observations are missing (see Little & Rubin 1987).

Another issue is the dependence on the initial value. Very often the log-
likelihood function has multiple maxima. Hence the convergence of the EM
algorithm depends strongly on the initial value (see e.g. Hasselblad 1966, Laird
1978). To increase the probability of obtaining good estimates, different initial
values should be tried.

In the context of HMMs/HSMMs, the unobserved state sequence of the under-
lying (semi-)Markov chain are regarded as the missing data. The two steps of
the EM algorithm can be implemented by means of the forward and back-
ward probabilities. The effort required to estimate the parameters of the
state-dependent distributions depends on the particular model used for the
observation process. For example, models with t observation distributions, or
negative binomial sojourn time distributions, require numerical maximization
procedures (which may be avoided by the One-Step-Late algorithm of Green
(1990)).



Appendix B

The Forward-Backward

Algorithm

The forward-backward algorithm is a very elegant solution for the computa-
tion of the quantities required for the calculation of the E-step. The form
presented here was introduced by Guédon (2003) and has a number of appeal-
ing properties: immunity to numerical underflow and, compared to most other
approaches, a low computational complexity. Furthermore this implementa-
tion of the forward-backward algorithm calculates the smoothing probability

Lj(t) = P
(
St = j |Xτ−1

0 = xτ−1
0

)
, t ∈ {0, 1, . . . , τ − 1}

directly during the backward pass through the observations. The sequence of
observations is denoted by xτ−1

0 := x0, . . . , xτ−1 and the hidden state sequence
by sτ−1

0 := s0, . . . , sτ−1.

The main components involved in the derivation are the quantities

• Fj (t) = P (St+1 6= j, St = j |X t
0 = xt

0) ,

• L1j (t) = P
(
St+1 6= j, St = j |Xτ−1

0 = xτ−1
0

)
, and

• P
(
St+1 = j, St 6= j |Xτ−1

0 = xτ−1
0

)
.

The first expression is calculated by the forward iteration, the latter two result
from the backward iteration.
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Forward Iteration

For t = 0, . . . , τ − 2 and j = 0, . . . , J − 1, the forward iteration is given by

Fj (t) = P
(
St+1 6= j, St = j |X t

0 = xt
0

)

=
t∑

u=1

∑

i6=j

P
(
St+1 6= j, St−v = j, v = 0, . . . , u− 1, St−u = i |X t

0 = xt
0

)

+P
(
St+1 6= j, St−v = j, v = 0, . . . , t |X t

0 = xt
0

)

=

t∑

u=1

[
P
(
X t

t−u+1 = xt
t−u+1 |St−v = j, v = 0, . . . , u− 1

)

P
(
X t

t−u+1 = xt
t−u+1 |X

t−u
0 = xt−u

0

)

×P (St+1 6= j, St−v = j, v = 0, . . . , u− 2 |St−u+1 = j, St−u 6= j)

×
∑

i6=j

{
P (St−u+1 = j |St−u+1 6= i, St−u = i)

×P
(
St−u+1 6= i, St−u = i |X t−u

0 = xt−u
0

)}
]

+
P (X t

0 = xt
0 |St−v = j, v = 0, . . . , t)

P (X t
0 = xt

0)

×P (St+1 6= j, St−v = j, v = 0, . . . , t)

=
bj (xt)

Nt

[
t∑

u=1

{
u−1∏

v=1

bj (xt−v)

Nt−v

}
dj (u)

∑

i6=j

pijFi (t− u)

+

{
t∏

v=1

bj (xt−v)

Nt−v

}
dj (t+ 1) πj

]
,

where

bj (xt) = P (Xt = xt |St = j) ,

dj (u) = P (St+u+1 6= j, St+u−v = j, v = 0, . . . u− 2 |St+1 = j, St 6= j) , and

Nt = P
(
Xt = xt |X

t−1
0 = xt−1

0

)
.
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Backward Iteration

The backward recursion is based on the probabilities L1j (t), t ∈ {0, . . . , τ−2},
which are given by

L1j (t) = P
(
St+1 6= j, St = j |Xτ−1

0 = xτ−1
0

)

=
∑

k 6=j

[
τ−2−t∑

u=1

P (St+u+1 6= k, St+u−v = k, v = 0, . . . , u− 1,

St = j |Xτ−1
0 = xτ−1

0

)

+P
(
Sτ−1−v = k, v = 0, . . . , τ − 2 − t, St = j |Xτ−1

0 = xτ−1
0

)
]
.

(B.1)

According to Guédon (2003), the first term in equation (B.1) can be decom-
posed to

P
(
St+u+1 6= k, St+u−v = k, v = 0, . . . , u− 1, St = j |Xτ−1

0 = xτ−1
0

)

=
P
(
St+u+1 6= k, St+u−v = k, v = 0, . . . , u− 1, St = j,Xτ−1

0 = xτ−1
0

)

P
(
St+u+1 6= k, St+u = k,Xτ−1

0 = xτ−1
0

)

×P
(
St+u+1 6= k, St+u = k |Xτ−1

0 = xτ−1
0

)

=
P
(
Xτ−1

t+u+1 = xτ−1
t+u+1 |St+u+1 6= k, St+u = k

)

P
(
Xτ−1

t+u+1 = xτ−1
t+u+1 |St+u+1 6= k, St+u = k

)

×
P
(
St+u+1 6= k, St+u = k |Xτ−1

0 = xτ−1
0

)

P
(
St+u+1 6= k, St+u = k |X t+u

0 = xt+u
0

)

×
P
(
X t+u

t+1 = xt+u
t+1 |St+u−v = k, v = 0, . . . , u− 1

)

P
(
X t+u

t+1 = xt+u
t+1 |X

t
0 = xt

0

)

×P (St+u+1 6= k, St+u−v = k, v = 0, . . . , u− 2 |St+1 = k, St 6= k)

×P (St+1 = k |St+1 6= j, St = j)P
(
St+1 6= j, St = j |X t

0 = xt
0

)
(B.2)

=
L1k (t+ u)

Fk (t+ u)

{
u−1∏

v=0

bk (xt+u−v)

Nt+u−v

}
dk (u) pjkFj (t) .



134 B The Forward-Backward Algorithm

The second term in (B.1), corresponding to the last visited state, can be de-
composed using a similar argument. This yields

P
(
Sτ−1−v = k, v = 0, . . . , τ − 2 − t, St = j |Xτ−1

0 = xτ−1
0

)

=

{
τ−2−t∏

v=0

bk (xτ−1−v)

Nτ−1−v

}
Dk (τ − 1 − t) pjkFj (t)

where Dj (u) =
∑

v≥u dj (v) denotes the survivor function. Combining the two
decompositions, L1j (t) becomes

L1j (t) =

[
∑

k 6=j

[
τ−2−t∑

u=1

L1k (t+ u)

Fk (t+ u)

{
u−1∏

v=0

bk (xt+u−v)

Nt+u−v

}
dk (u)

+

{
τ−2−t∏

v=0

bk (xτ−1−v)

Nτ−1−v

}
Dk (τ − 1 − t)

]
pjk

]
Fj (t) .

The third term of equation (5.24) can also be transformed using a similar
decomposition as in (B.2). We obtain

P
(
St+1 = j, St 6= j |Xτ−1

0 = xτ−1
0

)

=

τ−2−t∑

u=1

∑

i6=j

P
(
St+u+1 6= j, St+u−v = j, v = 0, . . . , u− 1, St = i |Xτ−1

0 = xτ−1
0

)

+
∑

i6=j

P
(
Sτ−1−v = j, v = 0, . . . , τ − 2 − t, St = i |Xτ−1

0 = xτ−1
0

)

=

[
τ−2−t∑

u=1

L1j (t+ u)

Fj (t+ u)

{
u−1∏

v=0

bj (xt+u−v)

Nt+u−v

}
dj (u)

+

{
τ−2−t∏

v=0

bj (xτ−1−v)

Nτ−1−v

}
Dj (τ − 1 − t)

]
∑

i6=j

pijFi (t) .



Appendix C

Source Code for the Estimation

Procedures

The software for the estimation procedures of HSMMs is available on the home-
page of the Institute for Statistics and Econometrics at
http://www.statoek.wiso.uni-goettingen.de. It includes:

• The source code for the algorithms (C++).

• A dynamically linked library (dll) which can be loaded by the software
package R.

• An interface written in R-code to access the dll.

Please take into account that the estimation algorithms are still under con-
struction.
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Appendix D

Notational Conventions and

Abbreviations

DNM : Direct numerical maximization
EM : Expectation maximization
HMM(s) : Hidden Markov Model(s)
HSMM(s) : Hidden Semi-Markov Model(s)
MAE : Mean average error
MR : Mean reversion
MS : Markov switching
MSM : Markov switching Market
MSE : Mean squared error
TPM : Transition probability matrix
OLS : Ordinary least squares
KF : Kalman filter
RW : Random walk
1{··· }(·) : Indicator function
J : Number of hidden states
L : Likelihood
Lc : Complete-data Likelihood
Q(·) : Q-function
{St} : Hidden/state process
St2

t1 : Sequence St1 , . . . , St2

T : Transition probability matrix
{Xt} : Observed process
X t2

t1 : Sequence Xt1 , . . . , Xt2

(·)T : Transposition
Γ(·) : Gamma function
Ψ(·) : Digamma function
τ : Number of observations
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Böhning, D. (1999), Computer-assisted analysis of mixtures and applications,
Vol. 81 of Monographs on Statistics and Applied Probability, Chapman &
Hall/CRC, Boca Raton, FL. Meta-analysis, disease mapping and others.
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