
MPRA
Munich Personal RePEc Archive

Optimal Multi-Object Auctions with
Risk Averse Buyers

Cagri Kumru and Hadi Yektas

Universtiy of Pittsburgh, University of Melbourne

9. March 2008

Online at http://mpra.ub.uni-muenchen.de/7575/
MPRA Paper No. 7575, posted 9. March 2008 05:41 UTC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munich Personal RePEc Archive

https://core.ac.uk/display/213896449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/7575/


Optimal Multi-Object Auctions with Risk Averse Buyers�

Ça¼gr¬S. Kumruy and Hadi Yektaşz
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Abstract

We analyze the optimal auction of multiple non-identical objects when buyers are risk averse.

We show that the auction formats that yield the maximum revenue in the risk neutral case are

no longer optimal. In particular, selling the goods independently does not maximize the seller�s

revenue. We observe that seller�s incentive for bundling arises solely due to the risk aversion of

the buyers. The optimal auction which remains weakly e¢ cient has the following properties:

The seller perfectly insures all buyers against the risk of losing the object(s) for which they have

high valuation. While the buyers who have high valuation for both objects are compensated

if they do not win either object, the buyers who have low valuation for both objects incur a

positive payment to the seller in the same event.
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1 Introduction

Optimal selling mechanisms for multiple objects have been analyzed extensively due to their the-

oretical and practical importance (e.g., the spectrum auctions, second hand car auctions).1 One

of the main assumptions in these studies is that the buyers are risk neutral. However, in many

situations this assumption is violated and further analysis is needed.2

The optimal design problem in the presence of risk averse buyers can be described as follows:

When the number of objects is limited, the buyers face the risk of not getting the object(s) they

want. And in order to reduce this risk, the risk averse buyers, as compared to those that are risk

neutral, bid more aggressively.3 Therefore, in the presence of risk averse buyers, the seller will

be tempted to increase the magnitude of the risk so as to induce aggressive bidding and, in turn,

to increase the revenue from the sale. Yet, this comes with a trade-o¤, as the high type buyers

(namely, the ones who value the good highly), when confronted with too much risk, may �nd it

more pro�table to follow the bidding strategy of the low type buyers or may even be discouraged

to participate.4 Therefore, a revenue maximizing selling scheme should impose "the right amount

risk" on "the right type of buyers".

For the case of single object, Maskin and Riley [19], Matthews [21], and Es½o [9] describe how

the above mentioned trade-o¤ should be balanced and observe that relaxing the risk neutrality

assumption delivers quite di¤erent results. In his seminal work, Myerson [24] shows that if the

buyers are risk neutral and their private valuations are independently distributed, then it is optimal

to give the object to the buyer who has the highest virtual valuation (not the actual valuation)

that exceeds the seller�s outside option.5 Thus, the standard auctions, including the "high bid"

1See for example, Harris and Raviv [12], Maskin and Riley [20], Levin [16], Figueroa and Skreta [10].
2 In many auctions, the buyers are �rms and they generally are risk neutral. Yet, �rms whose ownership are non-

diversi�ed (e.g. most family owned companies), those that are bound by liquidity constraints or under a �nancial
distress, and those that are subject to a nonlinear tax system should be assumed to be risk averse. (Asplund [4])
Even a �rm which is owned by risk-neutral shareholders may behave in a risk-averse manner if the control of the
�rm is delegated to a risk-averse manager and his payment is linked to the �rm�s performance.(i.e. through stock
options.)
Cox, et al. [7] show that the overbidding relative to Nash predictions (for the risk neutral environment) which has

been observed in the �rst-price auction cannot be attributed to noisy-decision making, supporting the hypothesis
that it must be due to the risk aversion of the buyers.

3See, for example, Maskin and Riley [19] and Matthews [21].
4As we know from the optimal auction literature, it may be desirable to exclude the low-type (and in some

environments the high-type) buyers from the auction. (Exclusion Principle) Yet, if the seller imposes too much risk
on all types then she will herself face the �greatest�risk of no sale, hence ending up with zero pro�t.

5Virtual valuations are the adjusted valuations that take into account buyers� informational rents and, more
precisely, are de�ned as  i(vi) = vi� [1�Fi(vi)]=fi(vi); if buyer i�s valuation vi is distributed according to cumulative
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and "English" auctions, with appropriately chosen reserve price are all optimal. He further shows

that any two auctions with the same allocation rule are revenue equivalent if the expected utility

of each buyer in some benchmark case is the same, the celebrated revenue equivalence theorem.

To the contrary, if the buyers are risk averse, the standard auctions with appropriate reserve price

neither generate the same expected revenue nor are they optimal. (Maskin and Riley [19], Matthews

[21]).6 Another contrast is observed when the buyers�valuations are correlated: If the buyers are

risk neutral, then the seller can fully extract the informational rents using an e¢ cient auction

(Crémer and McLean [8]), but she cannot do so if the buyers are risk averse, unless the correlation

is su¢ ciently strong. (Es½o [9]).7

In the light of these works, the current paper studies the optimal design problem for the case

of multiple objects and seeks answers to the following two naturally-arising questions:

1. How does the optimal multi-object auction with risk-averse buyers compare to that with

risk-neutral buyers?

2. Which features of the optimal single-object auction with risk averse buyers carry over to the

optimal multi-object auction?

To answer the �rst question, we compare our results with those of Armstrong [1] who, in a binary

model, characterizes the optimal multi-object auction for risk-neutral buyers.8 This comparison

provides a threefold answer.

One, in both problems, the optimal auction is weakly e¢ cient.9 ;10

distribution function Fi(:) with associated density function fi(:).
6 In a second price auction, the buyers bid truthfully regardless of their risk preference. But in the �rst price

auction, a risk-averse buyer shades his bid less than a risk-neutral buyer. As a result, the �rst price auction yields
more revenue than the second price auction. Nevertheless, the �rst price auction is not optimal because it imposes
too much risk on the high type buyers.

7Optimal auction should remove the risk from high type buyers, which requires providing insurance (and hence
leaving some surplus) to them.

8Armstrong [1] inherited his setting from Armstrong and Rochet [2], who study a principal-agent problem. Both
of these papers and the current paper assume that buyers/agents have multidimensional private information and, in
this regard, di¤er from the references mentioned in footnote 1.
Manelli and Vincent [17] and Manelli and Vincent [18] also assume multidimensional private information, but

di¤erent from the current paper, they assume a single buyer.
9Weak e¢ ciency requires each object to be given to the buyer with the highest valuation whenever it is sold. Some

of the objects can be kept by the seller eventhough there is a buyer who has valuation that exceeds that of the seller.
For strong e¢ ciency, on the other hand, the objects valued more highly by a buyer than the seller must always be
sold. In this sense, the optimal auctions in Myerson [24] are weakly e¢ cient.
10 It must be noted, though, that the optimal multi-object auction is no longer weakly e¢ cient when the model

assumes a continuous type space.
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Two, none of the auction formats that are shown to be optimal in Armstrong [1] maximize the

seller�s revenue when the buyers are risk averse. In particular, it is not optimal to sell the two

objects independently. This is our main result. The sharp contrast is due to the way in which

the objects are allocated in the state �all buyers have low valuation for both objects�. (That is,

�all buyers are of type LL�.) The optimal auctions, in the risk neutral case, can take the form of

independent auction, bundling auction, or mixed auction, depending on how buyers�valuations are

correlated across objects.11 ;12 These three formats allocate each object independently and randomly

if all buyers are of type LL. However, doing so does not impose high enough risk on type LL.

Contrarily, we show that, with risk averse buyers the optimal auction must give both objects to

the same (LL type) buyer in this state.13 ;14 Since the seller does not observe the buyers�types ex

ante, she cannot sell the goods independently.

Three, in the risk neutral case, only the expected payments conditional on buyers�type matter

in the design of the optimal scheme. That is, any two selling schemes with the same allocation

rule but di¤erent payment rule, yield the same revenue to the seller if the buyers�ex ante expected

payment conditional on their own type is the same. On the other hand, we show that, when

the buyers are risk averse, the seller can improve the revenue by making the expected payments

conditional also on the type and the number of the objects that the buyer wins. Moreover, it is not

optimal to make these expected payments random.15

For the second question, we do a robustness check in order to see to what extent our results,

11 In all three forms, the buyers have the same expected probability of winning the object(s) for which they have
high valuation. These forms di¤er only in the expected probability of winning the objects for which buyers have low
valuation. In a mixed auction, a buyer who has low valuation, say, for object A but high valuation for object B, is
assigned object A more often than a buyer who has low valuation for both objects. While independent auctions don�t
distinguish between these two types for object A, bundling auction perfectly discriminates against the type that has
low valuations for both objects. It should be noted that the bundling auction allows the goods to end up in the hands
of di¤erent buyers.
12Avery and Hendershott [5] also consider risk-neutral buyers. While Armstrong [1] assumes that all buyers have

demand for both objects, in Avery and Hendershott [5], only one buyer demands multiple objects and the remaining
buyers demand only one or the other. Not surprisingly, the optimal auction in the latter paper may not be weakly
e¢ cient due to the good deal of asymmetry among buyers. Yet, even in that case, the optimal auction bundles the
objects probabilistically for the multi-demand buyer.
13 It is riskier to lose both objects than to lose a single object.
14 In Armstrong [1], bundling is optimal only when buyers�valuations are negatively correlated across objects, or in

other words, when a buyer�s high value for one object, say A, is likely to be accompanied by a relatively low value for
the other object, say B. The goods are bundled only for the types HL or LH. In this case, their incentive conditions
in all directions are binding.
In the current paper, we show that the seller utilizes bundling not only to make the desired incentive conditions

binding but also to increase the risk as much as possible for type LL.
15This also implies that it is not optimal to make the payments dependent on other buyers�reports.
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which we obtain in a binary model, are comparable to those of the current literature which assumes

continuous distribution of types. (Namely, Maskin and Riley [19] and Matthews [21])16 We observe

that the optimal single-object auction in the binary model replicates the behavior of that of the

continuous model at the two extremes of the type space. This analogy helps us interpret our results

regarding the features of the optimal multi-object auction: The seller perfectly insures all buyers

against the risk of losing the object(s) for which they have the high(est) valuation. The buyers

who are (most) eager to win both objects (namely, type HH) are compensated if they lose both

objects. On the other hand, those (most) reluctant to win both objects (namely, type LL) must

incur a positive payment to the seller if they lose both objects.17

The intuition for our results is as follows: While, on one hand, the seller would like to screen

the buyers, on the other hand, she would like to confront them with risk. Screening the buyers

requires leaving informational rents to (and, in turn, decreasing the risk for) the buyers who have

high valuation for either or both objects. As a result, the buyers�marginal utility of income must

remain the same regardless of whether they win or lose the objects for which they have high

valuation. This also implies providing perfect insurance to type HH. On the other hand, the

buyers who have low value for both objects must confront the highest risk from which the seller

bene�ts in two ways: One, she makes imitating LL unattractive to the other types and two, she

fully extracts the informational rents from type LL. Confronting these types with the highest risk

involves not only bundling the objects whenever all buyers are LL but also collecting payments

from them even when they lose both objects.

The current paper contributes substantially to the literature on bundling.18 From the existing

literature, some of the reasons as to why the bundling decision of a monopoly arises are: to

take advantage of economies of scale and/or economies of scope, to reduce the transaction and

information costs, to facilitate entering a new market, to signal the quality of the unknown product,

to reduce the divergence in incentives, to acquire and maintain monopoly power and to exclude

16Matthews [21] studies the same problem as Maskin and Riley [19]. While the former assumes a particular form
of utility function, namely CARA, and obtains necessary and su¢ cient conditions for an auction to be optimal, the
latter considers di¤erent forms of risk aversion and characterize the properties of the optimal auction for all of these
forms.
17A natural question to ask is how the punishment for type LL can be implemented in real life. When there is a

single object, the optimal auction reduces to a modi�ed �rst price auction for some parameter values. (Maskin and
Riley [19]) The seller charges an entry fee, but she does not return it to the buyers with low valuation if they don�t
win the object.
18See Kobayshi [15] for a recent review of the literature.
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possible entrants. Bundling may also arise when the goods are complementary, when valuations

across objects are negatively correlated or when the positive correlation is weak. In the absence of

the above-mentioned in�uences, we show that the incentive for bundling results solely due to the

risk aversion of buyers.

We comment on the solution methods used in this paper: In section 2, we describe the optimal

single object auction in reduced form, meaning we construct the buyers� expected probability of

obtaining the object (contingent only on his own type), rather than his actual probability of winning

as a function of all buyers�types. This technique was also utilized by Matthews [21] and Maskin and

Riley [19] in order to avoid the computational complexity that risk aversion involves.19 Yet, when

solving the seller�s optimal design problem in reduced form, in addition to the incentive constraints

and the participation constraints, one must also impose the so-called implementability constraints

that guarantee the existence of the actual probabilities.20

The number of implementability constraints increases exponentially with the number of goods

(or more precisely with the number of elements in the type space), nevertheless Armstrong [1] was

still able to solve the problem in reduced form. However in our problem with risk averse buyers, the

correlation between the events of winning object A and object B also matters for the buyers (and in

turn for the seller), making it very di¢ cult, if not impossible, to characterize the implementability

conditions that one needs to impose.21 Therefore, in section 3, we describe the optimal auction

in non-reduced form and construct the actual probabilities of the events that a buyer can possibly

face as functions of the entire type pro�le (as reported by all participating buyers).22 Since the

buyers don�t observe their opponents�types, only the expected probabilities of observing each event

(conditional only on one�s type) matter in the incentive conditions. Therefore, we also make use of

these expected probabilities throughout our analysis.23

19The technique was introduced to the literature by Myerson [24].
20When there is a single object or when the buyers are risk neutral, these conditions take a very simple form, which,

can be interpreted as the probability that a buyer whose type belongs to a given subset of the type space obtains a
particular object cannot be higher than the probability that there is a buyer whose type is in that subset.
The implementability conditions need to be imposed because the seller has only a limited number of each type of

good. A multi-product monopolist who has unlimited number of each type of good does not face this constraint.
(See Manelli and Vincent [17] and Manelli and Vincent [18])
21Using the main result of Border[6] (Also footnote 28), Armstrong [1] was able to describe the implementability

conditions. In his environment, the main di¢ culty is to identify the conditions that are binding at the optimum. In
the current paper, on the other hand, Border[6]�s theorem is not applicable.
22These events are winning only object A, only object B, winning both objects and winning nothing.
23 In regard to the solution method, this paper is also related to Menicucci [22] which extends Armstrong [1] by

allowing for a synergy if the two goods end up in the hands of the same buyer. He shows that in this case the optimal
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The remainder of the paper is organized as follows: In section 2, we construct the optimal

single-object auction for risk averse buyers in a binary framework and analyze its properties. In

Section 3, we assume two objects are for sale and we characterize the properties of the optimal

auction when buyer valuations are strongly and positively correlated across objects. Finally, in

section 4, we discuss the main results and their implications.

2 Optimal Single-Object Auctions

2.1 Description of the Problem

A single indivisible object is to be sold to one of n � 2 potential buyers, whose private valuations

are discretely distributed according to a random variable vi, which takes values vH with probability

�H > 0 and vL with probability �L > 0 such that �H + �L = 1: Without loss of generality,

we assume vH > vL > 0; so that vH and vL denote valuations of high-type (eager) and low-type

(reluctant) buyers, respectively. Buyer valuations are distributed independently and identically.

Buyers are risk-averse and have a constant measure of absolute risk aversion (CARA). In particular,

their preferences are represented by a utility function u(!) = � e�r!

r ; where r(> 0) measures the

level of risk aversion. Note that, u0(:) > 0 and u00(:) < 0. Speci�cally, if a buyer with valuation v

wins the object and incurs a net payment of � then his utility is u(v � �) = � e�r(v��)

r : The seller

is risk-neutral and her valuation for the object is zero. Both the seller and the buyers are expected

utility maximizers.

The seller�s problem is to design a selling scheme that maximizes her expected revenue.24 Such a

scheme generally consists of a message set,M =M1�����Mn; and an outcome function,  :M ! ~A;

that maps the list of messages, m 2M; into a possibly random allocation ~a 2 ~A = ~A1� � � �� ~An:
25

Buyers�behavior is described by a Bayesian Nash equilibrium, s = (s1; :::; sn); where sb : �b !Mb

is the equilibrium strategy of buyer b; sb(�b) representing the message that maximizes buyer b�s

expected utility given that his type is �b and all buyers other than him follow the equilibrium

auction is likely to allocate the goods ine¢ ciently.
24Milgrom [23] de�nes an auction to be a mechanism (scheme) to allocate resources among a group of bidders.

Therefore, we use these three terms interchangeably.
25An allocation consists of a decision about who is going to get which object(s) and possibly negative monetary

transfers from buyers to the seller.
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strategy.26 So, any selling scheme, in a given equilibrium, will result in an outcome represented by

 (s1(�1); :::; sn(�n)); if the buyers�type pro�le is (�1; :::; �n):

Alternatively, when looking for the optimal selling scheme, attention can be restricted to the

revelation schemes in which the message space is the type space, �: This is because any alloca-

tion,  (s1(�1); :::; sn(�n)), resulting from an equilibrium of an arbitrary selling scheme can also be

obtained in a revelation scheme in which the outcome is determined via the composite function

 � s : � ! ~A and truth-telling is an equilibrium (Revelation Principle).27 Thus, the seller�s

problem can be reduced to �nding the optimal revelation scheme in which the buyers are willing

to participate (individual rationality) and have incentive to truthfully report their type (incentive

compatibility).

Given a pro�le of reports, a selling scheme must, most generally, assign each buyer a probability

of winning, a payment in case he wins and another payment in case he loses. That is, the outcome

is determined by functions of the form  b(m) = (pb(m); ~t
w
b (m); ~t

l
b(m)) for b = 1; :::; n, where tildes

represent the possibility that the payment functions are random. Since there is only one object for

sale, a feasible scheme must satisfy
Pn
b=1 pb(m1; :::;mn) � 1 for all (m1; :::;mn):

Given an equilibrium, we can calculate buyer b�s expected probability of winning and his expected

random payments in case of winning and losing, respectively, as

�b(mb) = E�b[pb(m) j mb] (1)

~�wb (mb) = E�b[~t
w
b (m) j mb] (2)

~� lb(mb) = E�b[t
l
b(m) j mb]: (3)

Since buyers are ex ante identical, only the schemes that treat them symmetrically need to be

considered. This is because, for any asymmetric scheme, we can construct a symmetric scheme

that generates the same revenue as the proposed asymmetric scheme. Symmetric schemes satisfy

26 In this section, each type of a buyer corresponds to a possible valuation , namely �j = fvH ; vLg for all j = 1; :::; n,
whereas, in the next section, there are four di¤erent types of buyers. That is, �j = fHH;HL;LH;LLg for all
j = 1; :::; n; where the �rst (second) letter in each type represents buyer j�s value for object A (B).
27See Myerson [24].
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the following condition:

For any b; b0 2 f1; :::; ng and any m;m0 2M;

 b(m) =  b0(m
0)

if mb = m0
b0 ;mb0 = m0

b; and for all b
00 6= b; b0 mb00 = m0

b00 :

Therefore, in a symmetric scheme, the expected probability and the expected payments of two

di¤erent buyers submitting the same message are equal. Hence, we can drop the subscript on each

of the functions in 1-3. Describing a selling scheme from the perspective of an arbitrary buyer,

using �(:); ~�w(:); ~� l(:), is called reduced form representation.

Three points need to be emphasized about our approach to solving the seller�s problem. First,

using the Revelation Principle, we consider only the revelation schemes that satisfy two sets of

conditions: individual rationality and incentive compatibility.

Second, we construct the optimal auction in reduced form. We justify this by imposing another

set of conditions called implementability conditions.28 These conditions make sure that the reduced

form probability, �(:); is implementable, that is, they make sure that there exists a symmetric

auction with actual allocation probabilities, p(:), which satis�es

�(mb) = E[p(m) j mb]: (4)

The �nal point is that we initially consider only the schemes in which the expected payments

contingent on winning and losing are nonrandom. In other words, we �rst construct the optimal

28Border [6] states the necessary and su¢ cient conditions, for the reduced form probabilities to be implementable.
We include the proposition for easy reference:
Let (S;�) be a measurable space of possible types of bidders and �(:) be a probability measure on S. De�ne an

auction to be a measurable function p : Sn ! [0; 1]n satisfying
Pn

i=1 p
i(s) � 1 for all s 2 Sn: De�ne an auction to be

symmetric if pi(s) is independent of i. Given an auction, de�ne

�i(si) =

Z
Sn�1

p(s1; :::; sn)d�(s1; :; si�1;si+1;::; sn)

to be the probability that a buyer i wins when he reports his type as si:
Then � is implementable by a symmetric auction if and only if for each measurable set of types A 2 �, the following

inequality is satis�ed: Z
A

�(s)d�(s) � 1� �(Ac)n

n

Furthermore, if S is a topological space and � is a regular Borel probability on S; then � may be replaced by either
the open subsets or the closed subsets of S.
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scheme within the class of schemes for which ~�w(:) and ~� l(:) are deterministic. (So, we drop the

tildes.) Later, in proposition 6, we establish that this scheme is also optimal among all selling

schemes, including those that assign random payments.

To summarize, the seller�s problem is to construct the optimal revelation scheme, the reduced

form of which can be represented by six variables, f�i; �wi ; � ligi=H;L, where �i 2 [0; 1] denotes the

probability that a buyer wins the object when he reports a valuation of vi, and �wi ; �
l
i 2 R denote

the net deterministic payments that the same type of buyer incurs when he wins and loses the

object, respectively. As mentioned above three sets of conditions are imposed:

If a buyer with valuation vi reports vj then his utility is equal to �ju(vi� �wj )+ (1� �j)u(�� lj):

Thus, buyers truthfully reveal their valuations if the auction satis�es the following two incentive

compatibility conditions:

�Hu(vH � �wH) + (1� �H)u(�� lH) � �Lu(vH � �wL) + (1� �L)u(�� lL)

�Lu(vL � �wL) + (1� �L)u(�� lL) � �Hu(vL � �wH) + (1� �H)u(�� lH):

Buyers are free to participate in the auction. Thus, participating buyers satisfy the individual

rationality conditions of the form

�Hu(vH � �wH) + (1� �H)u(�� lH) � u(0)

�Lu(vL � �wL) + (1� �L)u(�� lL) � u(0):

Finally, the implementability conditions take the following form in our binary model:

n(�L�L + �H�H) � 1 (IMfH;Lg)

n�H�H � 1� �nL (IMfHg)

n�L�L � 1� �nH : (IMfLg)
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One can interpret these conditions as follows: the probability the object is won by a buyer who

belongs to a particular subset of the type space should be no greater than the probability that

there is a buyer who belongs to that subset.29

The seller�s revenue is the sum of the expected payments made by each buyer. Since buyers are

ex ante identical the seller�s revenue can be written in terms of the expected payments made by an

arbitrary buyer (namely, the term in the bracket):

� = n[�H(�H�
w
H + (1� �H)� lH) + �L(�L�wL + (1� �L)� lL)]:

To sum up, the seller�s problem is to choose a reduced form scheme, f�i; �wi ; � ligi=H;L; that

maximizes � subject to the two incentive compatibility conditions, the two individual rationality

conditions, and the three implementability conditions.

For convenience, we de�ne ci = e�rvi and yki = er�
k
i . Note that, 0 < cH < cL < 1 and yki > 0

for all i and k: So, we can rewrite the seller�s problem as

max
f�i;ywi ;yligi=H;L

� =
n

r
[�H(�H ln y

w
H + (1� �H) ln ylH) + �L(�L ln ywL + (1� �L) ln ylL)] (5)

subject to

�HcHy
w
H + (1� �H)ylH � �LcHy

w
L + (1� �L)ylL (ICH)

�LcLy
w
L + (1� �L)ylL � �HcLy

w
H + (1� �H)ylH (ICL)

�HcHy
w
H + (1� �H)ylH � 1 (IRH)

�LcLy
w
L + (1� �L)ylL � 1 (IRL)

n(�L�L + �H�H) � 1 (IMfH;Lg)

n�H�H � 1� �nL (IMfHg)

n�L�L � 1� �nH (IMfLg)

29Armstrong [1] alternatively calls these conditions resource constraints.
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and the non-negativity conditions �H ; �L � 0:

For convenience, we refer to the left-hand side of the inequalities in IRH and IRL as DH

and DL, respectively. Similarly, right hand side of ICH and ICL are referred to as DL
H and DH

L ,

respectively. The subscripts denote a buyer�s actual type, whereas superscripts denote the type he

is imitating.

2.2 Solution to the Problem

Since cL > cH , ICH and IRL together imply IRH .30 Hence, this condition is redundant. For now,

we also ignore ICL when we solve the seller�s problem. That is, we suppose that the low-type

buyers do not have the incentive to misrepresent their types. Below, in proposition 5, we prove

that this is indeed the case.

De�nition 1 The relaxed problem is de�ned to be a design problem that ignores the upward incen-

tive constraints.

The following lemma shows that when only the downward incentive conditions are considered,

high-type�s incentive condition and low-type�s individual rationality condition must be binding.

Lemma 1 In the relaxed problem, where ICL is ignored, the constraints ICH and IRL must be

binding.

The seller may want to increase her revenue by excluding the low-type buyers from the auction

if, for a given distribution of types, their valuation is small enough compared to that of the high-

type buyers.31 This results in an ine¢ ciency, because with positive probability the seller keeps the

object even if all buyers value the object more highly than her.

Ine¢ ciency may also be due to a misallocation of the objects. To be consistent with Armstrong

[1], we focus only on the latter kind of ine¢ ciency, by assuming that the goods are always sold,

i.e. �L > 0.
32 In this case, it is optimal for the seller to leave informational rents to the high-type

buyers.
30DH � DL

H � DL � 1, where the second inequality is due to cH < cL:
31The same behavior is also observed when a monopolist implements second-degree price discrimination.
32Clearly, high-type buyers should not be excluded from participating in the auction if revenue is maximized. That

is, �H must be strictly positive. If not, then the incentive conditions would imply �LcL � �LcH ; and since cL > cH
this in turn would imply �L = 0; meaning the good is not sold, at all. Yet, the seller can always guarantee a positive
pro�t by posting a �xed price of vL > 0:
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Lemma 2 At the optimum, if the low-type buyers are not excluded from the auction, then IRH

must be slack.

The following proposition states that it is not optimal to impose any risk on the high-type

buyers. The risk is fully eliminated for them.

Proposition 1 High-type buyers are fully insured against the risk of losing the object.

Through insurance, a high-type�s marginal utility of income in cases of winning and losing is

made the same. Eliminating the risk rewards the high-type buyer for revealing his true type.

If the seller does not pay informational rents to the high type buyer (�wH = vH), perfect (full)

insurance requires that the seller sets the high type buyer�s payment contingent on losing equal

to zero (� lH = 0) in order to keep him at the same level of utility. However, when there is

an information gap between the seller and the buyers, high-type buyers should receive information

rent to be active. In this case (i.e. �wH < vH), perfect insurance requires that the seller compensates

the high type buyer (� lH > 0).

Proposition 2 High-type buyers are compensated if they lose the object.

Using proposition 1, we can write the seller�s pro�t as

� =
n

r
[�H(�H ln

1

cH
+ ln ylH) + �L(�L ln

ywL
ylL
+ ln ylL)] (6)

Note that, since 0 < cH < 1, the seller�s pro�t is strictly increasing with respect to �H . Thus, given

the values of other variables, �H must be set as high as possible at the optimum. This implies that

either IMfHg or IMfH;Lg, or both are binding.

The Kuhn-Tucker conditions with respect to ywL and y
l
L can be written as

@L
@ywL

= �L�L
1

ywL
� �L�LcL + �H�LcH = 0

@L
@ylL

= �L(1� �L)
1

ylL
� �L(1� �L) + �H(1� �L) = 0:

Since �L�L
1
ywL

> 0; these two equations together yield

ywL
ylL
=

�L � �H
�LcL � �HcH

: (7)
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Note that the right-hand side of equation 7 is smaller than 1
cH
: So, we have

ywL
ylL

<
1

cH
: (8)

This condition has a very nice implication: At the optimum, iso-revenue curve must be �atter than

the line corresponding to the implementability condition IMfH;Lg.33

Thus, IMfHg and IMfH;Lg are both binding and the optimal allocation probabilities can be

calculated as

�H =
1��nL
n�H

; �L =
�n�1L
n

(9)

which is the point where the iso-revenue curve (6) is tangent to the feasible set that is bound by

the implementability conditions (Figure 1)

It is not surprising to see that the allocation probabilities that we have obtained in 9 are the

same as those in the risk-neutral environment. The optimal allocation is monotonic with respect

to buyer types in either case.

Note that, n�L�L = �nL , meaning the probability that the object is won by a low-type buyer

is equal to the probability that all buyers are low-type. In other words, the object is won by a

high-type buyer whenever there is one. Hence, the proposition follows.

Proposition 3 The optimal auction is weakly e¢ cient.

Contrary to the insurance provided to the high-type buyers, the seller confronts the low-type

buyers with risk by making their marginal utilities vary in cases of winning and losing. In this

circumstance, a high-type buyer who considers imitating the low-type buyers would face a greater

risk, and will eventually reveal his own true valuation. Hence, it is optimal for the seller to relax

the high-type buyer�s incentive constraint and not to o¤er insurance to the low-type buyers. The

following proposition states that at the optimum low-type buyers�marginal utility of income is

greater when he wins the object than when he loses it.

Proposition 4 Low-type buyers are better o¤ winning than losing: cLy
w
L < ylL: Moreover, in

33This condition is equivalent to �L ln(y
w
L=y

l
L)

�H ln(1=cH )
< �L

�H
; where the left hand side of the inequality is slope of the

iso-pro�t curve and the right hand side is the slope of the line corresponding to the implementability condition
IMfH;Lg:
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Figure 1: Single object - Optimal allocation probabilities are the same regardless of buyers�risk
attitude.

case of losing the object, they incur a payment that is less than what they would pay if they win:

1 < ylL < ywL :

Next, we show that the solution to the relaxed problem also solves the full problem that does

not ignore ICL.

Proposition 5 Low-type buyers do not have the incentive to misrepresent their type. That is, ICL

is slack.

The reduced form of the revelation scheme that we�ve constructed above is optimal within the

class of schemes in which the expected payments contingent on winning and losing are deterministic.

Finally, we establish that making twi and t
l
i random has a negative e¤ect on seller�s revenue.

Proposition 6 If buyer preferences are represented by CARA, then, in an optimal auction, the

payments, twi and t
l
i; must be deterministic.

Remark 1 Above proposition also implies that it is not pro�table for the seller to condition the

payments made by a buyer on the realizations of his opponents�types.
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3 Optimal Multi-object Auctions

3.1 Description of the Problem

Now, there are two nonidentical objects, denoted A and B, to be sold to n � 2 buyers: The

seller�s valuation for both objects is zero, whereas buyer valuations are random and described by

a pair (vA; vB), where vo denotes the buyer�s valuation for object o. Suppose that vo 2 fvoH ; voLg,

where the subscripts denote whether the buyer is of high-type (H) or low-type (L). Thus, we

assume voH � voL > 0. There are four types of buyers corresponding to the four possibilities

(vAH ; v
B
H); (v

A
H ; v

B
L ); (v

A
L ; v

B
H) and (v

A
L ; v

B
L ): Using a slightly shorter notation, we de�ne the set of

possible types as � = fHH;HL;LH;LLg. A typical element of this set is denoted with ij; where

i represents a buyer�s valuation for object A and j represents his valuation for object B. Types

are independently and identically distributed across buyers according to a probability measure �

over �, so that the probability that a buyer is of type ij is represented by �ij : The marginal prob-

ability that a buyer has a high value for object A is denoted with �AH = �HH + �HL: Similarly,

�AL = �LH + �LL denotes the marginal probability that the buyer has a low value for object A: In

the same fashion, we de�ne �BH = �HH+�LH and �BL = �HL+�LL to be the marginal probabilities

that the buyer has a high and low value for object B, respectively.

Each buyer is risk-averse and has preferences represented by the common CARA utility function

of the form u(!) = � e�r!

r , where r > 0. In the event that a buyer wins object(s) of a (total) value

v and incurs a net payment � , his utility will be equal to u(v��): For example, if a buyer wins only

object A when his valuation for that object is vAL and incurs a net payment �
A then his utility is

equal to u(vAL � �A): Similarly, if a buyer of type HL wins both objects and incurs a net payment

�AB then his utility will be u(vAH + v
B
L � �AB): Both the seller and the buyers are expected utility

maximizers.34

The seller�s problem is to design a selling scheme that maximizes her revenue. In view of the

Revelation Principle, we solve this problem within the class of revelation schemes which satisfy

incentive compatibility and individual rationality constraints.35 Furthermore, as justi�ed in the

34We assume that there are no economies of scope in the production of the bundle nor are there complementarities
in the consumption of the bundle. We make this assumption so as to isolate the role that bundling has on the seller�s
ability to extract the consumer surplus.
35Remember that in a revelation scheme, buyers are asked to report their types.
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previous section, among the revelation schemes, we focus only on the symmetric ones in which the

buyers of the same type are treated the same.

Let nij be the number of buyers of type ij and � = (nHH ; nHL; nLH ; nLL) be the vector repre-

senting the pro�le of reports where
P
ij2� nij = n. Then, a symmetric revelation scheme can most

generally be described with two sets of rules:

� a decision rule, pkij(�); that assigns each type ij 2 � probabilities of realizing possible events

k = A;B;AB;O, for each pro�le of reports �. Given �; the decision rule must satisfy

X
ij2�

nij [p
A
ij(�) + p

AB
ij (�)] � 1 (10)X

ij2�
nij [p

B
ij(�) + p

AB
ij (�)] � 1 (11)

pAij(�) + p
B
ij(�) + p

AB
ij (�) + p

O
ij(�) = 1 8ij 2 � (12)

� a payment rule, ~tkij(�), that, for each pro�le of reports �; assigns each type ij 2 � possibly

random payments to be made to the seller at each possible event k = A;B;AB;O.

The decision rule speci�es the probability that a buyer b of type ij realizes the valuations vAi ,

vBj , v
A
i + v

B
j or 0. We abuse the notation and list these four events respectively as:

Event A - winning only object A

Event B - winning only object B

Event AB - winning both object A and object B

Event O - winning neither object.

Remember from Armstrong [1] that the risk-neutral buyers are only interested in the marginal

probabilities of winning the objects. For risk-averse buyers, on the other hand, the correlation

between the events of winning object A and object B matters. The decision rule in the above

speci�cation takes this into consideration.

Note that, pAij(�)+p
AB
ij (�), in 10, represents the marginal probability of winning object A which

we shortly denote with p̂Aij(�): Similarly, p
B
ij(�)+ p

AB
ij (�), in 11, represents the marginal probability

of obtaining object B which is denoted with p̂Bij(�). Thus, conditions 10 and 11 are the resource

constraints representing the fact that there is only one unit of each object. Condition 12 states
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that the events A;B;AB and O are all inclusive.

Although the payment rule allows the seller impose random payments, when we solve the seller�s

problem, we assume ~tkij(�) = �kij where �
k
ij 2 R for all ij 2 � and k = A;B;AB;O, and characterize

the optimal scheme within the class of schemes that assign deterministic payments. We will show

later that imposing random payments to each type ij under each event k cannot improve the seller�s

revenue.

Now, de�ne an ij type buyer�s expected probability of realizing the event k = A;B;AB;O as

�kij =
nX

nHH=0

n�nHHX
nHL=0

n�nHH�nHLX
nLH=0

pkij(nHH ; nHL; nLH ; nLL)	
nij
�ij

(13)

where 	 = (n�1)!�nHHHH �
nHL
HL �

nLH
LH �

nLL
LL

nHH !nHL!nLH !nLL!
: For any nij > 0; 	

nij
�ij

denotes the probability that the buyer

pro�le is � = (nHH ; nHL; nLH ; nLL) given that there is one ij in that pro�le (of course, conditional

on incentive constraints hold).36

The reduced form of a symmetric revelation scheme, then, can be represented with

f�Aij ; �Bij ; �ABij ; �Oij ; �
A
ij ; �

B
ij ; �

AB
ij ; �Oijgij2�:

�Aij and �
B
ij are type ij�s expected probability of winning object A or B, alone; whereas �ABij is his

probability of winning both objects. Apparently, �Oij = 1��Aij��Bij��ABij represents the probability

of winning neither object. �kij is the net deterministic payment that type ij must incur if event k

occurs.

Then, the utility of a buyer of type ij who misrepresents his type as i0j0 is

�Ai0j0u(v
A
i � �Ai0j0) + �Bi0j0u(vBj � �Bi0j0) + �ABi0j0 u(vAi + vBj � �ABi0j0 ) + �Oi0j0u(��Oi0j0):

Let coi = e�rv
o
i for o = A;B and i = H;L and ykij = er�

k
ij for k 2 K = fA;B;AB;Og and

ij 2 �: Then a scheme is individually rational if, for each type ij 2 �;

Dij � �Aijc
A
i y

A
ij + �

B
ijc

B
j y

B
ij + �

AB
ij cAi c

B
j y

AB
ij + �Oijy

O
ij � 1:

36The multinomial distribution is used.
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An auction is incentive compatible if, for any ij 2 � and i0j0 2 � n f ijg;

Dij � �Ai0j0c
A
i y

A
i0j0 + �

B
i0j0c

B
j y

B
i0j0 + �

AB
i0j0 c

A
i c
B
j y

AB
i0j0 + �

O
i0j0y

O
i0j0 � Di0j0

ij :

The seller�s revenue can, then, be written in terms of the expected payment of an arbitrary

buyer, namely the term in brackets:

� = n[
X
ij2�

f�ij
X
k2K

�kij�
k
ijg]: (14)

Note that, �kij =
1
r ln y

k
ij : Then, if the reduced form probabilities are �implementable�we can

write the seller�s problem in reduced form as

max
f�kij ;ykijgij2�;k2K

n

r

X
ij2�

f�ij
X
k2K

�kij ln y
k
ijg (SP)

subject to

Dij � 1 ij 2 � (15)

Dij � Di0j0

ij ij 2 �; i0j0 2 � n fijg (16)

Since the buyers are risk-averse, the correlation between the events of winning object A (namely,

event A[AB ) and object B (namely, event B [AB) matters for the buyers and also for the seller

through 14. Thus, Border�s [6] theorem does not apply to this problem.37 As it is also mentioned in

Armstrong [1], the conditions that we need to impose to ensure that the reduced form probabilities

are implementable are not clear. For this reason, di¤erent from the previous section, we aim to

construct the actual probabilities, pkij(�); 8ij 2 �, k = A;B;AB and 8�.38 Given a payment

rule, the optimality of a decision rule will be analyzed as follows: For any modi�cation of pkij(�);

we will �rst describe how expected probabilities �kij will be a¤ected. Then, we �gure out whether

the incentive constraints in 16 and individual rationality constraints in 15 hold and whether the

objective function (SP) increases after the modi�cation. To demonstrate how this works, we borrow

37See footnote 28.
38Given ij and �, pOij(�) can be calculated using 13 and the values of p

A
ij(�); p

B
ij(�), and p

AB
ij (�) are found.
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the following example from Menicucci [22]:

Suppose for a given pro�le of reports with nHH � 1 and nLH � 1 each type wins object A with

probability 1
nHH

and each type LH wins object B with probability �
nLH

(0 < � � 1). Note that

from 13, this generates a contribution to �BLH equal to

�

nLH
	
nLH
�LH

:

Consider reducing � by �� > 0 while increasing by �� the probability that the same buyer of type

HH winning object A will also win object B. Then,

��BLH = � ��
nLH

	
nLH
�LH

��AHH = � ��

nHH
	
nHH
�HH

= ���ABHH :

So, ��ABHH = ���AHH = � �LH
�HH

��BLH : We can then evaluate the pro�tability of reducing � since

the seller�s pro�t function and the constraints are linear with respect to the expected probabilities.

3.2 Solution to the problem

Before we attempt to solve problem SP, note that, since 0 < cH < cL, incentive compatibility

conditions imply that among the individual rationality conditions only the one corresponding to

type LL matters.

3.2.1 The relaxed problem

Using the same approach as in Armstrong [1], we �rst solve the seller�s problem considering only the

�ve downward incentive constraints, that ensure that a buyer does not underreport his valuation

for an object. We show ex post that the remaining constraints are satis�ed (Propositions 14 and

15).

Thus, the seller solves
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max �HHf�AHH ln yAHH + �BHH ln yBHH + �ABHH ln yABHH + �OHH ln yOHHg

+�HLf�AHL ln yAHL + �BHL ln yBHL + �ABHL ln yABHL + �OHL ln yOHLg

+�LHf�ALH ln yALH + �BLH ln yBLH + �ABLH ln yABLH + �OLH ln yOLHg

+�LLf�ALL ln yALL + �BLL ln yBLL + �ABLL ln yABLL + �OLL ln yOLLg

subject to

�ALLc
A
Ly

A
LL + �

B
LLc

B
Ly

B
LL + �

AB
LL c

A
Lc
B
Ly

AB
LL + �

O
LLy

O
LL � 1 (IRLL)

�ALHc
A
Ly

A
LH + �

B
LHc

B
Hy

B
LH + �

AB
LHc

A
Lc
B
Hy

AB
LH + �

O
LHy

O
LH

� �ALLc
A
Ly

A
LL + �

B
LLc

B
Hy

B
LL + �

AB
LL c

A
Lc
B
Hy

AB
LL + �

O
LLy

O
LL (ICLLLH)

�AHLc
A
Hy

A
HL + �

B
HLc

B
Ly

B
HL + �

AB
HLc

A
Hc

B
Ly

AB
HL + �

O
HLy

O
HL

� �ALLc
A
Hy

A
LL + �

B
LLc

B
Ly

B
LL + �

AB
LL c

A
Hc

B
Ly

AB
LL + �

O
LLy

O
LL (ICLLHL)

�AHHc
A
Hy

A
HH + �

B
HHc

B
Hy

B
HH + �

AB
HHc

A
Hc

B
Hy

AB
HH + �

O
HHy

O
HH

� �ALLc
A
Hy

A
LL + �

B
LLc

B
Hy

B
LL + �

AB
LL c

A
Hc

B
Hy

AB
LL + �

O
LLy

O
LL (ICLLHH)

�AHHc
A
Hy

A
HH + �

B
HHc

B
Hy

B
HH + �

AB
HHc

A
Hc

B
Hy

AB
HH + �

O
HHy

O
HH

� �ALHc
A
Hy

A
LH + �

B
LHc

B
Hy

B
LH + �

AB
LHc

A
Hc

B
Hy

AB
LH + �

O
LHy

O
LH (ICLHHH)

�AHHc
A
Hy

A
HH + �

B
HHc

B
Hy

B
HH + �

AB
HHc

A
Hc

B
Hy

AB
HH + �

O
HHy

O
HH

� �AHLc
A
Hy

A
HL + �

B
HLc

B
Hy

B
HL + �

AB
HLc

A
Hc

B
Hy

AB
HL + �

O
HLy

O
HL: (ICHLHH)

We �rst establish that it is not optimal to make the expected payments, namely ykijs, random.

This is because if a ykij is random for an ij and k, then the seller could replace it with its expected

value without a¤ecting the incentive conditions (because they are linear in ykij) and increase her

revenue (as the seller�s revenue is a concave function of ykij).

Proposition 7 If the buyers� preferences are represented by CARA utility function then, in an

optimal auction, the expected payments conditional on types and allocation must be deterministic.

Now, we determine which of the six conditions in the relaxed problem are binding.
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Lemma 3 At the optimum of the relaxed problem, IRLL must be binding.

Lemma 4 At the optimum of the relaxed problem, ICLLLH and ICLLHL must be binding.

Lemma 5 At the optimum of the relaxed problem, at least one of ICLLHH ; IC
LH
HH and ICHLHH must

be binding.

Using the above lemmata, we write the Lagrangian of the relaxed problem and derive its Kuhn-

Tucker conditions with respect to the payments, namely ykijs Then, we establish the relation among

the payments using these Kuhn-Tucker conditions, the details of which we relegate to the appendix.

Similar to the single object case, when a buyer wins an object, say object i, for which he has

high valuation, he pays viH more than what he would have paid if he lost that object. The intuition

for proposition 1 also applies here.

If the objects are not limited, the seller can make the high-type buyer�s probability of obtaining

the object(s) equal to one in order to reward him for revealing his true valuation(s). However, when

the objects are limited, the same rewarding strategy does not work because each high-type buyer

may face the risk of losing the object(s) to another high-type buyer and hence, the marginal utility

of income may di¤er in the events of winning and losing. The resource constrained seller, however,

can reward a high-type buyer by o¤ering perfect insurance and increase her revenue. Note that, if

buyers are risk neutral, there is no insurance issue. In other words, if the buyers are risk averse

the seller has an additional tool to extract more revenue from them when compared to risk neutral

environment.

Proposition 8 Each buyer is perfectly insured against the risk of losing the object(s) for which he

has high valuation.

When it comes to the LL-type buyers, the seller faces the following predicament: to extract

more revenue from the LL-type buyer by o¤ering insurance and to exploit the risk-bearing of the

buyers who have high-valuation for one or both of the objects to screen them. At the optimum,

the marginal bene�t of exploiting high-type buyers risk bearing exceeds the marginal cost of not

o¤ering insurance to LL-type buyers. Moreover, LL-type buyers pay penalty when he loses both

objects which further deters high-type buyers from behaving as if they are LL-type.
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Proposition 9 Suppose that type LL is not excluded from the auction. Then, he incurs a positive

payment if he loses both objects.

With the help of the preceding results, the seller�s problem can be written as

[�HH �̂
A
HH + �HL�̂

A
HL] ln

1

cAH
+ [�HH �̂

B
HH + �LH �̂

B
LH ] ln

1

cBH
+ �HH ln y

O
HH

+�HL[�̂
B
HL ln y

B
HL + (1� �̂BHL) ln yOHL] + �LH [�̂ALH ln yALH + (1� �̂ALH) ln yOLH ]

+�LL[�
A
LL ln y

A
LL + �

B
LL ln y

B
LL + �

AB
LL ln y

AB
LL + �

O
LL ln y

O
LL]

subject to

DLL = 1

DLL
LH = �̂ALHc

A
Ly

A
LH + (1� �̂ALH)yOLH

DLL
HL = �̂BHLc

B
Ly

B
HL + (1� �̂BHL)yOHL

yOHH = min

8>>>><>>>>:
DLL
HH

�̂ALHc
A
Hy

A
LH + (1� �̂ALH)yOLH

�̂BHLc
B
Hy

B
HL + (1� �̂BHL)yOHL

where �̂Aij = �Aij + �
AB
ij and �̂Bij = �Bij + �

AB
ij : Let�s call this problem SP 0:

Thus, for the optimality of an auction only the following reduced form probabilities matter:

f�̂Aij ; �̂Bijgij=HH;HL;LH ; f�kLLgk=A;B;AB

Consider a mechanism where, for a given pro�le, �; both objects are sold with probability one.

Then, if the seller modi�es the mechanism by increasing pkij(�) by
1
nij
"kij , the following condition

must hold: X
ij2S

("kij + "
AB
ij ) � 0 for k = A;B:

After this modi�cation, �kij will increase by
1
�ij
"kij	:

We now establish that the solution to the relaxed problem is weakly e¢ cient. That is, if there
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is a buyer with high valuation for an object then that object is never sold to a buyer who has low

valuation for that object.

Proposition 10 Let � = (nHH ; nLH ; nHL; nLL) be the pro�le of the participating buyers. Then,

the solution to the relaxed problem satis�es the following two rules:

i) For any � with nHH + nHL > 0; nHH p̂AHH(�) + nHLp̂
A
HL(�) = 1

ii) For any � with nHH + nLH > 0; nHH p̂
B
HH(�) + nHLp̂

B
LH(�) = 1:

If there is a buyer who has a high value for object A (B) then with probability one it is given

to a buyer who has a high value for it. While proposition 10 states this result in terms of actual

probabilities, the following corollary does the same in terms of the expected probabilities.

Corollary 1 At the optimum of the relaxed problem, reduced form probabilities satisfy

i) �HH �̂AHH + �HL�̂
A
HL =

1
n(1� (�

B
L )
n) and

ii) �HH �̂BHH + �LH �̂
B
LH =

1
n(1� (�

A
L)
n):

The next lemma establishes that both objects are sold with probability one, if a buyer�s payment

contingent on winning an object for which he has low valuation is larger than his payment contingent

on losing both objects.

Similar to the previous section, we assume that the seller never keeps the object. We have

already established in proposition 10 that the seller does not keep an object whenever there is a

buyer who has a high value for it. This requires the probability that an object is won by a buyer

who has a low value for it to be equal to the probability that all buyers have low value for it.

�LL�̂
A
LL + �LH �̂

A
LH =

1

n
(�AL)

n

�LL�̂
B
LL + �HL�̂

B
HL =

1

n
(�BL )

n

In terms of actual probabilities, we can write these conditions as

For any � with nHH + nHL = 0; nLH p̂
A
LH(�) + nLLp̂

A
LL(�) = 1 (17)

For any � with nHH + nLH = 0; nHLp̂
B
HL(�) + nLLp̂

B
LL(�) = 1 (18)
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Proposition 11 The necessary conditions for 17-18 are yALH > yOLH ; y
B
HL > yOHL; and y

A
LL; y

B
LL; y

AB
LL >

yOLL:

Since DHH = yOHH � 1, when HH loses both objects he either does not pay anything (i.e.

yOHH = 1) or he is compensated (i.e. y
O
HH < 1).

Proposition 12 In any mechanism that solves the relaxed problem, if an HH type buyer loses both

objects then he is compensated.

This proposition results because the seller needs to provide insurance to type HH. This is

a property that carries over from the single unit optimal auction. (Maskin and Riley [19]) They

show that when the type space is continuous, the seller provides full insurance (and hence full

compensation) only to the highest type but partial insurance to the types that are su¢ ciently high.

Proposition 13 In any mechanism that solves the relaxed problem, if all the buyers are of type LL

(i.e. nLL = n) then the objects are bundled and each buyer wins the bundle with equal probability.

(i.e. pABLL (�) =
1
n).

An immediate implication of the proposition above is that it is not optimal to sell the goods

independently in which case with positive probability the objects may end up in the hands of

di¤erent LL type buyers. Yet, the proposition has further implications.

When the buyers are risk neutral (Armstrong [1]), depending on how buyers�valuations are

correlated across objects, the optimal multi-object auction can take the form of independent auc-

tions, mixed auction or bundling auction. But all of these auction forms allocate the two objects

independently and randomly when all buyers are of type LL. This contradicts with the proposition.

Therefore, none of these auction forms are optimal when the buyers are risk averse.

Theorem 1 Whenever the parameter values are such that the relaxed method solves the full prob-

lem, the three auction formats that are optimal when the buyers are risk neutral do not maximize

the seller�s revenue if the buyers are risk averse.

The main reason as to why we obtain this contradictory result is that the optimal auction forms

for the risk neutral buyers do not impose the right amount of risk on type LL. The optimal auction

25



for risk averse buyers, on the other hand, imposes two kinds of risk on this type. The �rst kind

removes the possibility of winning a single object when all buyers are of type LL and the second

kind assigns a positive payment if he doesn�t win any objects. These two kinds of risk improve

the sellers revenue in the following way. The former exploits the risk bearing of the buyers who

have high valuation for one or both objects by facing them with even greater risk when imitating

LL than the optimal auction for risk neutral buyers. The latter, on the other hand, help the seller

collect the penalty fees from more people.

Since the seller probabilistically assesses the buyer valuations (i.e. only ex ante probabilities

of the type distribution matter) and never keeps the objects by assumption, there always exists a

probability that LL type buyers can obtain both objects. This can happen only if all buyers are of

type LL. On the other hand, whenever there is a type HH or both HL and LH, then LL cannot

win any objects. The following lemma states the conditions under which an LL can obtain a single

object.

Lemma 6 In any mechanism that solves the relaxed problem,

i) if � is such that nLH ; nLL > 0 and nLH +nLL = n; then object A is sold to an LH type buyer

(i.e. nLH p̂ALH(�) = 1) if

�LH < (
�HL

yOHL

yOHH
�HH

+ 1)(
�LL

yOLL

yOLH
�LH

+ 1)�1 � 
LH : (y)

Otherwise, an LL type buyer gets object A (i.e. nLLp̂ALL(�) = 1).

ii) if � is such that nHL; nLL > 0 and nHL + nLL = n; then object B is sold to an HL type

buyer (i.e. nHLp̂BHL(�) = 1) if

�HL < (
�LH

yOLH

yOHH
�HH

+ 1)(
�LL

yOLL

yOHL
�HL

+ 1)�1 � 
HL: (z)

Otherwise, an LL type buyer gets object B (i.e. nLLp̂BLL(�) = 1):

According to the previous lemma, in the optimal auction, if the excess payment that LH makes

for object A is larger than that of LL (namely, tALH � tOLH > tALL � tOLL), then LH wins object A.

By this lemma, the solution to the relaxed problem depends on the values of 
LH and 
HL:

Note that, 
LH � 1 if and only if 
HL � 1: Thus, we can divide the rest of the analysis into three
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Figure 2: Allocation of each object when all buyers have low valuation for it.

cases (See Figure 2):

� 
LH + 
HL � 1 (Region A1),

� 1 � 
LH + 
HL � 2 (Region A2),

� 2 � 
LH + 
HL (Region A3).

Remark 2 Readers should note that the three cases listed above are analogous to those mentioned

in Lemma 2 of Armstrong [1]: strong positive correlation, weak positive correlation, and negative

correlation, respectively.

Whether object A (B) is given to an LL or LH (HL) type buyer depends on whether (
LH ; 
HL)

falls in region A1, A2; or A3:

3.2.2 Case A1 - Strong positive correlation:

[
LH + 
HL � 1] We can set

�LL = 1� 
LH � 
HL, �LH = 
LH , �HL = 
HL (19)

In this case, all incentive constraints of type HH are binding. This also implies that the seller is

indi¤erent between LH and LL for object A and between HL and LL for object B.
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For any given allocation probabilities, the payments

fyALL; yBLL; yABLL ; yOLL; yALH ; yOLH ; yBHL; yOHL; yOHHg39 (20)

solve

max �HH ln y
O
HH + �LH(1� �̂ALH) ln yOLH + �HL(1� �̂BHL) ln yOHL ++�LL�OLL ln yOLL (21)

+�LH �̂
A
LH ln y

A
LH + �HL�̂

B
HL ln y

B
HL + �LL�

A
LL ln y

A
LL + �LL�

B
LL ln y

B
LL + �LL�

AB
LL ln y

AB
LL

subject to

�ALLc
A
Ly

A
LL + �

B
LLc

B
Ly

B
LL + �

AB
LL c

A
Lc
B
Ly

AB
LL + �

O
LLy

O
LL = 1 (22)

�ALLc
A
Ly

A
LL + �

B
LLc

B
Hy

B
LL + �

AB
LL c

A
Lc
B
Hy

AB
LL + �

O
LLy

O
LL = �̂ALHc

A
Ly

A
LH + (1� �̂ALH)yOLH (23)

�ALLc
A
Hy

A
LL + �

B
LLc

B
Ly

B
LL + �

AB
LL c

A
Hc

B
Ly

AB
LL + �

O
LLy

O
LL = �̂BHLc

B
Ly

B
HL + (1� �̂BHL)yOHL (24)

�ALLc
A
Hy

A
LL + �

B
LLc

B
Hy

B
LL + �

AB
LL c

A
Hc

B
Hy

AB
LL + �

O
LLy

O
LL = yOHH (25)

�̂ALHc
A
Hy

A
LH + (1� �̂ALH)yOLH = yOHH (26)

�̂BHLc
B
Hy

B
HL + (1� �̂BHL)yOHL = yOHH : (27)

By 19 and lemma 6,

yALHy
O
LL = yALLy

O
LH and y

B
HLy

O
LL = yBLLy

O
HL (28)

must also be true. Using equations 22-27, and the two conditions in 28, we can solve for eight of

the variables (say, except yOHH) listed in 20 in terms of y
O
HH ; the parameters and the reduced form

probabilities. After plugging these variables into the objective function 21 we can solve it for yOHH .

Now, we consider the conditions that we have omitted in the relaxed problem.

Proposition 14 (Full problem - Case A1) The upward incentive conditions, ICLHLL , IC
HL
LL , IC

HH
LH

39The payments that are not listed in (20), namely yBLH ; y
AB
LH ; y

A
HL; y

AB
HL; y

A
HH ; y

B
HH ; y

AB
HH ; can be calculated using

proposition 15.
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and ICHHHL are not binding.

The above proposition states that type LL does not have incentive to imitate the types LH or

HL. Moreover, neither type LH nor type HL has incentive to imitate HH.

The conditions ICHLLH and ICLHHL together imply

yOHHf
�ALH
�̂ALH

�A

cAH
+ (

�ABLH
�̂ALH

� �ABHL
�̂BHL

)
cALc

B
H � cAHcBL
cAHc

B
H

+
�BHL
�̂BHL

�B

cBH
g (29)

� yOHLf�AHL
�A

cAH
� �ABHL
�̂BHL

(1� �̂BHL)
cALc

B
H � cAHcBL
cAHc

B
H

+
�BHL
�̂BHL

(1� �̂BHL)
�B

cBH
g

+ yOLHf�BLH
�B

cBH
+
�ABLH
�̂ALH

(1� �̂ALH)
cALc

B
H � cAHcBL
cAHc

B
H

+
�ALH
�̂ALH

(1� �̂ALH)
�A

cAH
g:

where �i = ciH � ciL.

ICHHLL takes the following form:

1 � yOHHf�AHH
cAL
cAH

+ �BHH
cBL
cBH

+ �ABHH
cALc

B
L

cAHc
B
H

+ �OHHg (30)

and 
HL � 1 can be written as

�LH�HL
�LL�HH

� yOLHy
O
HL

yOLLy
O
HH

(31)

Proposition 15 The optimal allocation probabilities satisfy the necessary condition 31. Moreover,

29 and 30 are not binding.

4 Discussion and Concluding Remarks

In a binary model, we show that when the buyers are risk-averse, the optimal auction is weakly

e¢ cient. That is, with probability one each object is sold to a buyer who has high valuation for it,

if such a buyer exists. Each buyer is perfectly insured against the risk of losing the object(s) for

which he has high valuation. Buyers who are eager to win both objects are compensated if they

lose both objects; whereas, buyers who have low value for both objects make a positive payment

to the seller if they lose both objects. The optimal auction must bundle the two objects when all

buyers have low value for both objects. This result allows us to conclude that the auction forms
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listed in Armstrong [1] are not optimal.

In a more general framework, it has been shown that among all mechanisms for allocating

multiple objects that are strongly e¢ cient, incentive compatible, and individually rational, the

Vickrey-Clarke-Groves mechanism maximizes the expected revenue.40 The optimal multi-object

auction that we have constructed for risk averse buyers is incentive compatible and individually

rational but is only weakly e¢ cient.

While the ine¢ ciency may result either because some types are ex ante excluded from partici-

pating in the auction, or because of a misallocation, in this paper, we con�ned ourselves to the �rst

kind of ine¢ ciency, and showed that the latter kind of ine¢ ciency does not occur in an optimal

auction. Yet, this result is very sensitive to relaxing the assumption of binary type distribution.

Armstrong [1] shows that weak e¢ ciency does not survive once the type space is made continuous.

Finally, we comment on the restrictions of our model. For tractability reasons, we focused only

on the case where the buyers�utility function exhibits constant absolute risk aversion. Instead a

buyer�s utility may exhibit increasing or decreasing absolute risk aversion, in which case the answer

to the optimal design problem is not clear. Alternatively, one can also consider the situations where

the buyers have di¤erent risk attitudes with respect to each good, in addition to that with respect

to the wealth level. In that case, one would have to consider a generalization of the Arrow-Pratt

theory (Arrow [3] and Pratt [25]) which extends to the case of multi-dimensional risk attitudes.

One such generalization is proposed by Kihlstrom and Mirman [13].

Gal-Or [11], considers the case where the risk-averse buyers worry about the possibility of

breakdowns. She shows that running "sales" improves the revenue of the single-unit monopolist.

This is because the risk-averse buyers tend to buy more frequently than necessary to avoid buying

at the higher regular price and to avoid the cost of waiting for the next sales period. Since, in

our model, the seller owns only one unit of each object and the objects are not related, our results

would not change if the buyers worry about breakdowns. In this case, buyers� concerns can be

easily embodied into their valuations.

40For a clear and concise discussion of VCG mechanisms see Krishna [14].
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Appendix A: Optimal single object auction

The Lagrangian to the relaxed problem can be written as

L = � � �L(DL � 1)� �H(DH �DL
H)

��fH;Lg(n�L�L + n�H�H � 1)� �fHg(n�H�H � 1 + �nL)

��fLg(n�L�L � 1 + �nH)

where �L and �H are the Lagrange multipliers on IRL and ICH , respectively, and �fH;Lg, �fHg,

and �fLg are the multipliers on the implementability conditions.

Proof of Lemma 1. Suppose �rst that IRL is slack. Then, the seller can improve her revenue

by increasing ylL by " =
1�DL
2 > 0. This would not violate any of the constraints of the relaxed

problem. So, IRL must be binding.

Suppose, next, that ICH is slack. Then, again, the mechanism can be improved pro�tably,

without violating any of the conditions considered in the relaxed problem. Namely, increasing ylH

by " = DL
H�DH
2 > 0 improves the revenue: Hence, ICH is also binding.

Proof of Lemma 2. Suppose, by contradiction, that IRH is binding. Then, we have 1 = DH =

DL
H = DL, where the equalities are due to IRH , ICH , and IRL, respectively. Yet, since low-type

buyers are not excluded, this would contradict with DL �DL
H = �L(cL � cH)y

w
L > 0: Hence, IRH

is slack.

Proof of Proposition 1. Kuhn-Tucker conditions with respect to ywH and y
l
H yield

@L
@ywH

= �H�H
1

ywH
� �H�HcH = 0

@L
@ylH

= �H(1� �H)
1

ylH
� �H(1� �H) = 0

These equations together imply that ylH = cHy
w
H :

Proof of Proposition 2. Remember that IRH is slack by Lemma 2. Using Proposition 1, we

can rewrite this condition as

DH = ylH < 1:
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This is equivalent to tlH < 0; implying that, at the optimum, an high-type buyer is compensated

when he loses the object.

Proof of Proposition 4. Armed with the optimal values of �H ; and �L;(see 9) we will now

calculate the payments made by each type of buyer. Using ICH , IRL; and proposition 1, we write

the payments, ywL ; y
l
L; and y

w
L ; as

ywL =
1�ylH

�L(cL�cH)
; ylL =

cLy
l
H�cH

(1��L)(cL�cH)
; ywH =

ylH
cH

where ylH is in

argmax
ylH

fn
r
[�H(�H ln

1

cH
+ ln ylH) + �L(�L ln(1� ylH) + (1� �L) ln(cLylH � cH))]g:

Equivalently, ylH solves the �rst-order condition of the form

�H

ylH
+
�H(1� �L)cL
cLylH � cH

� �L�L
1� ylH

= 0:

This equation can be rewritten as

cL(y
l
H)

2 � �ylH + �HcH = 0 (32)

where � = (1� �L)(cL + �HcH) + �L(cH + �HcL):

Since 0 < �L < 1 and cH < cL, � > (cH + �HcL) must be true. Then, �2 � 4�HcLcH >

(cH+�HcL)
2�4�HcLcH = (cH��HcL)2 � 0. Thus, a solution to equation 32 exists. Furthermore,

if a buyer of type H loses the object he pays

ylH =
� +

p
�2 � 4�HcLcH
2cL

:

Proof of Proposition 5. We have already established above that IRL and ICH are binding

and IRH is slack. We only need to show that ICL is slack. Equivalently, we need to show that
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�Ly
w
L < �Hy

w
H :
41 Plugging in the values of ywL and y

w
H gives

1� ylH
(cL � cH)

<
�Hy

l
H

cH
() cH

�HcL + (1� �H)cH
< ylH :

We substitute in the value of ylH to get

cLcH + �H [�HcL + (1� �H)cH ]2 < �[�HcL + (1� �H)cH ]:

Substituting in the value of � and using IMfH;Lg yields

0 < c2L�H(n� 1) + c2H(1� �H) + cLcH [(2� n)�H � 1]:

Now, we plug in the value of �H and rewrite this condition as

0 < (1� �nL)[c2L(n� 1)� c2H + cLcH(2� n)] + (1� �L)[c2Hn� cLcHn]:

Since c2Hn�cLcHn < 0; we can replace (1��L) with (1��nL) and get the following more restrictive

condition

0 < (1� �nL)(n� 1)(cL � cH)2;

which holds for any parameter values. Hence, ICL must be slack.

Proof of Proposition 6. Suppose that twi and t
l
i [hence y

w
i and y

l
i] are stochastic. Replacing y

w
i

and yli with their expected values would not a¤ect any of the incentive compatibility and individual

rationality conditions (because buyers�utilities are linear with respect to these variables), but would

strictly improve the seller�s revenue (as revenue is concave with respect to ywi and y
l
i), which is a

contradiction.

Appendix B: Optimal multi-object auction

We can write the Lagrangian of the relaxed problem as

41We add up ICH (binding) and ICL (slack).
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L = �HHf�AHH ln yAHH + �BHH ln yBHH + �ABHH ln yABHH + �OHH ln yOHHg

+�HLf�AHL ln yAHL + �BHL ln yBHL + �ABHL ln yABHL + �OHL ln yOHLg

+�LHf�ALH ln yALH + �BLH ln yBLH + �ABLH ln yABLH + �OLH ln yOLHg

+�LLf�ALL ln yALL + �BLL ln yBLL + �ABLL ln yABLL + �OLL ln yOLLg

+�LLf1� �ALLcALyALL � �BLLcBLyBLL � �ABLL cALcBLyABLL � �OLLyOLLg

+�LHfcAL [�ALLyALL � �ALHyALH ] + cBH [�BLLyBLL � �BLHyBLH ]

+ cALc
B
H [�

AB
LL y

AB
LL � �ABLHyABLH ] + [�OLLyOLL � �OLHyOLH ]g

+�HLfcAH [�ALLyALL � �AHLyAHL] + cBL [�BLLyBLL � �BHLyBHL]

+ cAHc
B
L [�

AB
LL y

AB
LL � �ABHLyABHL] + [�OLLyOLL � �OHLyOHL]g

+�HH(�LLfcAH [�ALLyALL � �AHHyAHH ] + cBH [�BLLyBLL � �BHHyBHH ]

+ cAHc
B
H [�

AB
LL y

AB
LL � �ABHHyABHH ] + [�OLLyOLL � �OHHyOHH ]g

+ �LHfcAH [�ALHyALH � �AHHyAHH ] + cBH [�BLHyBLH � �BHHyBHH ]

+ cAHc
B
H [�

AB
LHy

AB
LH � �ABHHyABHH ] + [�OLHyOLH � �OHHyOHH ]g

+ �HLfcAH [�AHLyAHL � �AHHyAHH ] + cBH [�BHLyBHL � �BHHyBHH ]

+ cAHc
B
H [�

AB
HLy

AB
HL � �ABHHyABHH ] + [�OHLyOHL � �OHHyOHH ]g)

Since the number of buyers participating in the auction are assumed to be larger than three

and since buyers of each type are treated the same in a symmetric auction, each type�s probability

of losing both objects is positive. That is, �Oij > 0 for all ij 2 S: Thus, using the four Kuhn-Tucker

conditions, @L
@yOij

= 0;
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@L
@yOHH

= �OHH [
�HH

yOHH
� �HH ] = 0

@L
@yOLH

= �OLH [
�LH

yOLH
+ �HH�LH � �LH ] = 0

@L
@yOHL

= �OHL[
�HL

yOHL
+ �HH�HL � �HL] = 0

@L
@yOLL

= �OLL[
�LL

yOLL
� �LL + �LH + �HL + �HH�LL] = 0

we can solve for �ijs:

�HH =
�HH

yOHH

�HL =
�HL

yOHL
+
�HH

yOHH
�HL

�LH =
�LH

yOLH
+
�HH

yOHH
�LH

�LL =
�LL

yOLL
+
�LH

yOLH
+
�HL

yOHL
+
�HH

yOHH
:

The remaining Kuhn-Tucker conditions are of the following form

35



@L
@yAHH

= �AHH [
�HH

yAHH
� �HHcAH ] = 0

@L
@yBHH

= �BHH [
�HH

yBHH
� �HHcBH ] = 0

@L
@yABHH

= �ABHH [
�HH

yABHH
� �HHcAHcBH ] = 0

@L
@yAHL

= �AHL[
�HL

yAHL
� (�HL � �HH�HL)cAH ] = 0

@L
@yBHL

= �BHL[
�HL

yBHL
� (�HLcBL � �HH�HLcBH)] = 0

@L
@yABHL

= �ABHL[
�HL

yABHL
� cAH(�HLcBL � �HH�HLcBH)] = 0

@L
@yALH

= �ALH [
�LH

yALH
� (�LHcAL � �HH�LHcAH)] = 0

@L
@yBLH

= �BLH [
�LH

yBLH
� (�LH � �HH�LH)cBH ] = 0

@L
@yABLH

= �ABLH [
�LH

yABLH
� cBH(�LHcAL � �HH�LHcAH)] = 0

@L
@yALL

= �ALL[
�LL

yALL
� cAL(�LL � �LH) + cAH(�HL + �HH�LL)] = 0

@L
@yBLL

= �BLL[
�LL

yBLL
� cBL (�LL � �HL) + cBH(�LH + �HH�LL)] = 0

@L
@yABLL

= �ABLL [
�LL

yABLL
� cAL(�LLcBL � �LHcBH) + cAH(�HLcBL + �HH�LLcBH)] = 0:

Proof of Lemma 3. Suppose that IRLL is slack. Then, we have

DLL � �ALLc
A
Ly

A
LL + �

B
LLc

B
Ly

B
LL + �

AB
LL c

A
Lc
B
Ly

AB
LL + �

O
LLy

O
LL < 1:

Since number of buyers are larger than three and since buyers are treated symmetrically, each type�s

probability of losing both objects is positive. So, �OLL > 0. Thus, an increase in y
O
LL by "=�

O
LL for

" = (1�DLL)=2 > 0 strictly improves seller�s payo¤. Note that, this modi�cation on yOLL does not

violate any of the constraints, yielding a contradiction.

Hence, IRLL must be binding.
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Proof of Lemma 4. Suppose �rst that ICLLLH is slack. Then, we have

DLH � �ALHc
A
Ly

A
LH + �

B
LHc

B
Hy

B
LH + �

AB
LHc

A
Lc
B
Hy

AB
LH + �

O
LHy

O
LH

< �ALLc
A
Ly

A
LL + �

B
LLc

B
Hy

B
LL + �

AB
LL c

A
Lc
B
Hy

AB
LL + �

O
LLy

O
LL � DLL

LH

Let " = (DLL
LH �DLH)=2: Since �OLH > 0; if we increase yOLH by "=�OLH ; seller�s payo¤ will improve

and none of the constraints are violated. This is a contradiction. So, ICLLLH must be binding.

Along the same lines, we can easily show that ICLLHL is binding, too.

Proof of Lemma 5. Suppose that all three conditions are slack. Then, we have DHH <

minfDLL
HH ; D

LH
HH ; D

HL
HHg: De�ne " = (minfDLL

HH ; D
LH
HH ; D

HL
HHg�DHH)=2: An increase in yOHH in the

amount of "=�OHH ; improves seller�s payo¤ and does not violate any of the conditions. This is a

contradiction. So, at least one of these three conditions must be binding.

Proof of Proposition 8. Since DHH = minfDLL
HH ; D

LH
HH ; D

HL
HHg, we can replace the last

three incentive compatibility conditions with DHH = �LLD
LL
HH + �LHD

LH
HH + �HLD

HL
HH where

�LL; �LH ; �HL � 0 and �LL + �LH + �HL = 1 provided that �ij = 0 if and only if DHH < Dij
HH

(or equivalently, �ij > 0 if and only if DHH = Dij
HH):

The Kuhn-Tucker conditions with respect to ykij for k = A;B;AB and ij 2 S can be written as
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�AHH�HH [y
O
HH � yAHHcAH ] = 0 (a)

�BHH�HH [y
O
HH � yBHHcBH ] = 0 (b)

�ABHH�HH [y
O
HH � yABHHcAHcBH ] = 0 (c)

�AHL�HL[y
O
HL � yAHLcAH ] = 0 (d)

�BHL[
�HL

yBHL
� �HH

yOHH
�HL(c

B
L � cBH)�

�HL

yOHL
cBL ] = 0 (e)

�ABHL[
�HL

yABHL
� cAH(

�HH

yOHH
�HL(c

B
L � cBH) +

�HL

yOHL
cBL )] = 0 (f)

�ALH [
�LH

yALH
� �HH

yOHH
�LH(c

A
L � cAH)�

�LH

yOLH
cAL ] = 0 (g)

�BLH�LH [y
O
LH � yBLHcBH ] = 0 (h)

�ABLH [
�LH

yABLH
� cBH(

�HH

yOHH
�LH(c

A
L � cAH) +

�LH

yOLH
cAL)] = 0 (i)

�ALL[
�LL

yALL
� �LL

yOLL
cAL � f

�HL

yOHL
+
�HH

yOHH
(�HL + �LL)g(cAL � cAH)] = 0 (j)

�BLL[
�LL

yBLL
� �LL

yOLL
cBL � f

�LH

yOLH
+
�HH

yOHH
(�LH + �LL)g(cBL � cBH)] = 0 (k)

�ABLL [
�LL

yABLL
� �LL

yOLL
cALc

B
L �

�LH

yOLH
cAL(c

B
L � cBH)�

�HL

yOHL
cBL (c

A
L � cAH)

��HH
yOHH

(cALc
B
L � �LHcALcBH � �HLcAHcBL � �LLcAHcBH)] = 0: (l)

Note that, these equations are of the form �kij
 = 0. We can use them to solve for ykij for ij 2 S

and k = A;B;AB; by implicitly assuming that �kij = 0: This is without loss of generality, because

each of these ykij�s appears with the corresponding �
k
ij everywhere in the problem. Thus, if �

k
ij = 0

for a type ij and for an event k, then the value of ykij will not matter in the solution, if �
k
ij > 0, on

the other hand, then 
 = 0 must be true.

Thus, equations (a)-(d) and (h) respectively yield

yAHH =
yOHH
cAH
; yBHH =

yOHH
cBH
; yABHH =

yOHH
cAHc

B
H

;

yAHL =
yOHL
cAH
; yBLH =

yOLH
cBH
;
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and the pairs �(e),(f)�and �(g),(i)�respectively give

yABHL =
yBHL
cAH
; yABLH =

yALH
cBH

:

These two sets of equations imply that the excess payment that a buyer makes for an object for

which he has high valuation is equal to his valuation for that object. In other words, each buyer is

perfectly insured against the risk of losing the object(s) for which he has high valuation.

Proof of Proposition 9. Similarly, equations (e),(g),(j),(k) and (l) can be used to solve for

yBHL; y
A
LH ; y

A
LL; y

B
LL and y

AB
LL , respectively.

�LH

yALH
=

�LH

yOLH
cAL +

�HH

yOHH
�LH(c

A
L � cAH)

�HL

yBHL
=

�HL

yOHL
cBL +

�HH

yOHH
�HL(c

B
L � cBH)

�LL

yALL
=

�LL

yOLL
cAL +

�HL

yOHL
(cAL � cAH) +

�HH

yOHH
(�HL + �LL)(c

A
L � cAH)

�LL

yBLL
=

�LL

yOLL
cBL +

�LH

yOLH
(cBL � cBH) +

�HH

yOHH
(�LH + �LL)(c

B
L � cBH)

�LL

yABLL
=

�LL

yOLL
cALc

B
L +

�LH

yOLH
cAL(c

B
L � cBH) +

�HL

yOHL
cBL (c

A
L � cAH)

+
�HH

yOHH
(cALc

B
L � �LHcALcBH � �HLcAHcBL � �LLcAHcBH)

Remember from �rst section that a low-type buyer has to make a payment if he cannot win the

object. Using the last three of the above equations we get a similar result for type LL.

Using the last three equations, one can write

yALL =
yOLL
cAL+"1

; yBLL =
yOLL
cBL+"2

; yABLL =
yOLL

cALc
B
L+"3

for some "1; "2; "3 > 0: We plug these values into LL�s individual rationality constraint to get

yOLL(1� �ALL
"1

cAL + "1
� �BLL

"2

cBL + "2
� �ABLL

"3

cALc
B
L + "3

) = 1:

Note that, the term in the parenthesis is less than one if LL gets either or both objects. Thus,

if �OLL 6= 1; then yOLL > 1 (hence, tOLL > 0) must be true.

Proof of Proposition 10. i) Let � be such that nHH + nHL > 0 and without loss of generality

39



assume that nHH > 0: Now, suppose by contradiction, that nHH p̂AHH(�) + nHLp̂
A
HL(�) < 1: Let

" � 1� nHH p̂AHH(�)� nHLp̂AHL(�):

There are three possibilities that we need to consider:

- nLH + nLL = 0 :

In this case, modify the mechanism by increasing pAHH(�) by
"

nHH
: This would increase �̂AHH by

	 "
�HH

. Change in the Lagrangian can be calculated as 	" ln 1
cH

> 0: This is a contradiction.

- nLH p̂ALH(�) > 0 :

We will now show that for some " < nLH p̂
A
LH(�); decreasing p̂

A
LH(�) by

"
nLH

; and increasing

p̂AHH(�) by
"

nHH
is pro�table. After this modi�cation, �̂ALH decreases by 	 "

�LH
and �̂AHH increases

by 	 "
�HH

:42 We calculate the change in the Lagrangian as

�L = 	"fln 1

cAH
� ln y

A
LH

yOLH
+ �LH [c

A
L

yALH
�LH

� yOLH
�LH

]� �HH�LH [cAH
yALH
�LH

� yOLH
�LH

]g

= 	" ln
yOLH
cAHy

A
LH

which is positive since yOLH > cHy
A
LH :

- nLLp̂ALL(�) > 0 and nLH p̂
A
LH(�) = 0 :

Suppose �rst that nLLpALL(�) > 0: Then consider modifying the mechanism by decreasing p
A
LL(�)

by "
nLL

and increasing pAHH(�) by
"

nHH
for some " < nLLp

A
LL(�): This would decrease �

A
LL by 	

"
�LL

and increase �̂AHH by 	
"

�HH
: Lagrangian then changes by

�L = 	"fln 1

cAH
� ln y

A
LL

yOLL
+ (�LL � �LH)[

cALy
A
LL

�LL
� yOLL
�LL

]� (�HL + �HH�LL)[
cAHy

A
LL

�LL
� yOLL
�LL

]g

= 	" ln
yOLL
cAHy

A
LL

> 0

Suppose now that nLLpALL(�) = 0: Then, nLLpABLL (�) > 0 must be true. We will show that

the following modi�cation is pro�table: For some " < nLLp
AB
LL (�); decrease p

AB
LL (�) by

"
nLL

and

increasing pABHH(�) by
"

nHH
: This would decrease �ABLL by 	 "

�LL
and increase �̂AHH and �̂BHH by

42 p̂ALH(�) can be decreased either by decreasing p
A
LH(�) or p

AB
LH(�): If the former, is positive then we decrease p

A
LH(�)

(and increase pAHH(�)): If the former is zero, however, p
AB
LH(�) should be decreased (and in response p

AB
HH(�) should

be increased) In this case, marginal probabilities of winning A and B are a¤ected for both types HH and LH. Yet,
either modi�cation, have the same e¤ect on the Lagrangian.
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	 "
�HH

: As a result, Lagrangian will increase by

�L = 	"fln 1

cAH
+ ln

1

cBH
� ln y

AB
LL

yOLL
+ �LL[

cALc
B
Ly

AB
LL

�LL
� yOLL
�LL

]

��LH [
cALc

B
Hy

AB
LL

�LL
� yOLL
�LL

]� �LH [
cAHc

B
Ly

AB
LL

�LL
� yOLL
�LL

]

��HH�LL[
cAHc

B
Hy

AB
LL

�LL
� yOLL
�LL

]g

= 	" ln
yOLL

cAHc
B
Hy

AB
LL

> 0

Thus, we conclude that if � is such that nHH + nHL > 0; then nHH p̂AHH(�) + nHLp̂
A
HL(�) = 1:

We can prove part ii) of the Lemma along the same lines.

Proof of Corollary 1. We will prove only part i): Proof of part ii) is similar. (*5) implies that

�HH �̂
A
HH =

nX
nHH=0

n�nHHX
nHL=0

n�nHH�nHLX
nLH=0

nHH p̂
A
HH(�)	

�HL�̂
A
HL =

nX
nHH=0

n�nHHX
nHL=0

n�nHH�nHLX
nLH=0

nHLp̂
A
HL(�)	:

Adding these two equalities and multiplying both sides with n gives

n[�HH �̂
A
HH + �HL�̂

A
HL] =

nX
nHH=0

n�nHHX
nHL=0

n�nHH�nHLX
nLH=0

[nHH p̂
A
HH(�) + nHLp̂

A
HL(�)]n	

=
nX

nHH=0

n�nHHX
nHL=0

n�nHH�nHLX
nLH=0

n	�
nX

nLH=0

n!�nLHLH �n�nLHLL

nLH !(n� nLH)!

= 1� (�LH + �LL)n:

The second equality follows from the part i of proposition 9.

Proof of Proposition 11. i) Suppose that the pro�le is such that nHH + nHL = 0; but

nLH p̂
A
LH(�) + nLLp̂

A
LL(�) < 1: Let " < 1 � nLH p̂

A
LH(�) � nLLp̂

A
LL(�): There are two cases that we

need to consider:

- nLH > 0 : Let�s increase p̂ALH(�) by
"

nLH
; which would increase �̂ALH by 	 "

�LH
: Change in the
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Lagrangian is calculated as

�L = 	"fln y
A
LH

yOLH
+ �LH [�cAL

yALH
�LH

+
yOLH
�LH

] + �HH�LH [c
A
H

yALH
�LH

� yOLH
�LH

]g

= 	" ln
yALH
yOLH

which is positive if yALH > yOLH ; or
cAL�cAH
1�cAL

< �LH
yOLH

yOHH
�HH

1
�LH

:

- nLH = 0 : A pro�table modi�cation would be to increase pALL(�) by
"
nLL

and hence �ALL by

	 "
�LL

: Lagrangian will increase by

�L = 	"fln y
A
LL

yOLL
� (�LL � �LH)[

cALy
A
LL

�LL
� yOLL
�LL

] + (�HL + �HH�LL)[
cAHy

A
LL

�LL
� yOLL
�LL

]g

= 	" ln
yALL
yOLL

which is positive if yALL > yOLL; or
cAL�cAH
1�cAL

< �LL
yOLL

(�HL
yOHL

+ �HH
yOHH

(1� �LH))�1:

ii) Along the same lines of the previous part, we can easily show that this part holds, too, if

yBHL > yOHL and y
B
LL > yOLL, or equivalently if

cBL � cBH
1� cBL

< minf�HL
yOHL

yOHH
�HH

1

�HL
;
�LL

yOLL
(
�LH

yOLH
+
�HH

yOHH
(1� �HL))�1g:

Proof of Proposition 12. Suppose, for now, that HH is not compensated. Then yOHH = 1:

Since cAH < cAL and c
B
H < cBL ; we have 1 = yOHH � Dij

HH � Dij � 1 for ij = LL;LH;HL where

the �rst inequality is due to ICijHH ; and the last inequality is the individual rationality constraint.

So, all individual rationality constraints are binding and Dij = Dij
HH = 1 for ij = LL;LH;HL:

Moreover, since Dij �Dij
HH = 0; we have

�ALL(c
A
L � cAH)yALL + �BLL(cBL � cBH)yBLL + �ABLL (cALcBL � cAHcBH)yABLL = 0

�̂ALH(c
A
L � cAH)yALH = 0

�̂BHL(c
B
L � cBH)yBHL = 0
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Each term in these equations are nonnegative, therefore �ALL = �BLL = �ABLL = �̂ALH = �̂BHL = 0 must

be true. This contradicts with the previous Corollary because �LL�̂ALL + �LH �̂
A
LH > 0:

Proof of Proposition 13. Suppose, by contradiction, that for some pro�le � with nLL = n,

pABLL (�) <
1
n : Since both objects are sold with probability one, this implies that p

A
LL(�) = pBLL(�) > 0:

Let " < 1 � npABLL (�): Consider modifying the mechanism by decreasing pALL(�) and p
B
LL(�) both

by "
n and increasing p

AB
LL (�) by

"
n . This would imply ��

AB
LL = ���ALL = ���BLL = 	 "

�LL
: Now, we

calculate the change in the Lagrangian:

�L = 	" ln y
O
LLy

AB
LL

yALLy
B
LL

which is positive if yOLLy
AB
LL > yALLy

B
LL or, equivalently, if

�LL

yALL

�LL

yBLL
>
�LL

yOLL

�LL

yABLL
() (�LH�HL + �LL�HH�LL)(c

A
L � cAH)(cBL � cBH) > 0:

Since the last inequality holds for any parameter values, this modi�cation is pro�table. Thus, we

conclude that if all the buyers are of type LL then the objects are bundled and each buyer gets the

bundle with equal probability.

Proof of Theorem 1. Any of the three auction formats, namely independent auction, bundling

auction and mixed auction, that are optimal when the buyers are risk neutral allocate the objects

independently and randomly when all buyers report to be of type LL.

Yet, by proposition 21, when the buyers are risk averse, a necessary condition for the optimality

of the auction is to give both object to the same buyer if all buyers are of type LL.

Proof of Lemma 6. i) Suppose that for some � with nLH ; nLL > 0 and nLH + nLL = n;

nLH p̂
A
LH(�) < 1: Then, since A is sold with probability one, pALL(�) must be positive. Let " <

nLLp
A
LL(�): Now, consider modifying the mechanism by decreasing pALL(�) by

"
nLL

and increasing

p̂ALH(�) by
"

nLH
: This, would decrease �̂ALL by

	"
�LL

and increase �̂ALH by 	"
�LH

: As a result, the

Lagrangian will change by

�L = 	" ln y
A
LHy

O
LL

yOLHy
A
LL

:

This is positive if yALHy
O
LL > yOLHy

A
LL; or equivalently if

�LH
yOLH

�LL
yALL

> �LH
yALH

�LL
yOLL

: Using the Kuhn-Tucker
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conditions, we can rewrite this inequality as

(�LH � �HH�LH)[cAL(�LL � �LH)� cAH(�HL + �HH�LL)] >

(cAL�LH � cAH�HH�LH)(�LL � �LH � �HL � �HH�LL):

After some manipulation, we get

�LH(�HL + �HH�LL) > �HH�LH(�LL � �LH)

(
�HL

yOHL

yOHH
�HH

+ 1)(
�LL

yOLL

yOLH
�LH

+ 1)�1 > �LH :

Proof of part ii) is similar.
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