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ABSTRACT 

 Vitellogenin (Vtg) is a precursor to yolk-proteins produced in the liver of many 

invertebrates and non-mammalian vertebrates; its synthesis is stimulated by the hormone 

estradiol (E2). This study is the first to characterize vitellogenin synthesis in a placental 

viviparous elasmobranch, the yolk-sac placental bonnethead shark, Sphyrna tiburo. This study 

focused on determining where and when Vtg is produced, as well as what hormonal factors 

regulate Vtg production. The liver was confirmed as the site of Vtg production via 

immunohistochemistry. Immunoreactivity was also observed within granulosa cells of ovarian 

follicles; further experimentation is needed to determine if this is indicative of Vtg production by 

these cells. Using immunoblotting, the highest proportions of Vtg positive females were found in 

March, with Vtg production continuing into April and May. Putative Vtg production was found 

to begin in August for some individuals, with production continuing throughout the fall and 

winter months. In regards to hormonal regulation, immunohistochemical analysis identified 

receptors for E2 and progesterone (P4) within the liver. Comparison of the monthly E2 and Vtg 

cycles provides evidence that E2 stimulates Vtg production in S. tiburo, as high or increasing 

concentrations of E2 correlated with Vtg presence in the plasma. Preliminary results also suggest 

in vitro production of Vtg by liver tissue when exposed to E2. Comparison of the monthly P4 

and Vtg cycles suggests P4 may inhibit Vtg synthesis, with higher levels of P4 found in the 

months when Vtg production declines. Additionally, the methods developed for this study were 

able to identify Vtg in the plasma of other elasmobranch species. Vtg detection in plasma may 

thus be an ideal new, nonlethal method for characterizing elasmobranch reproductive periodicity, 

which will aid in assessing population growth and allow for managers to possess more accurate 

information to make appropriate decisions for the populations. 
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1. INTRODUCTION 

 Understanding the reproductive cycles of elasmobranchs is critical for sustainable 

management of their populations. Many species of sharks and rays are particularly vulnerable to 

overexploitation due to their K-selected life history traits, including slow growth, late age at 

maturity, and low fecundity (Hoenig and Gruber, 1990; Stevens et al., 2000). In order to 

determine the status of a given elasmobranch population and decide on appropriate management 

strategies, scientists conduct stock assessments. These stock assessments examine the size, 

growth rate, and demographic make-up of a population, and also must consider information 

about the species’ reproductive cycle, including size and/or age at maturity, mating season, 

gestation period, female fecundity, and breeding periodicity (Hoenig and Gruber, 1990). 

Historically, understanding the reproductive cycles of elasmobranchs has generally 

required lethal sampling methods. A large number of males and females are typically collected 

throughout the year, and euthanized and dissected to examine changes in their reproductive tract 

morphology to determine when various reproductive events occur. However, this approach is not 

sustainable for many threatened elasmobranch species, and cannot be used to understand the 

reproductive cycles of endangered elasmobranchs. Therefore, in recent years scientists have 

moved to develop non-lethal methods for assessing the reproductive cycles of elasmobranchs 

(Awruch, 2013). These methods include ultrasonography to determine pregnancy and fecundity, 

as well as the assessment of plasma concentrations of reproductive hormones, including estradiol 

(E2), progesterone (P4), and testosterone (T), to examine maturity and reproductive stage. 

Tracking seasonal changes in plasma concentrations of these hormones has been found to 

correlate with changes in the reproductive tract, e.g. high E2 correlates with follicular 

development for females, while high T in males correlates with the peak time of spermatogenesis 
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(Awruch et al., 2008; Awruch, 2013; Hammerschlag and Sulikowski, 2011; Sulikowski et al., 

2007). Plasma concentrations of these reproductive hormones are commonly assessed using 

either radioimmunoassays (RIA) or chemiluminescence assays (CLIA), and concentrations of 

these hormones in muscle samples have also been measured using RIA (Prohaska et al., 2013).  

 While currently available nonlethal methods for assessing elasmobranch reproduction 

have been found to be reliable for most species, there are a few elasmobranch species for which 

simply assessing reproductive hormone concentrations is not enough to provide an accurate 

picture of their reproductive cycle. In particular, assessing plasma hormone concentrations often 

does not provide accurate information about the reproductive periodicity of a species. For 

example, recent studies have demonstrated that the blacknose shark (Carcharhinus acronotus) 

seems to be capable of both annual and biennial reproduction in the northwest Atlantic Ocean 

(Driggers et al., 2004; Ford et al., unpublished data). For this species, simply monitoring E2 or 

P4 concentrations has proven to be less effective for assessing reproductive stage than in past 

studies (Gelsleichter et al., unpublished data). Lack of clarity on the reproductive periodicity of a 

given elasmobranch species presents issues for management of a population. Specifically, the 

possible presence of both annually and biennially reproducing females in a single population will 

greatly change the total reproductive output of the population and thus estimates of population 

growth. There is thus a need for a nonlethal method for determining reproductive periodicity of 

elasmobranch species, particularly in cases when monitoring of E2 or P4 concentrations do not 

effectively illustrate an individual female’s reproductive stage. 

 One method for determining reproductive periodicity is to assess whether a female is 

undergoing follicular development during gestation. A potential nonlethal way to assess whether 

follicular development occurs concurrently with gestation would be to couple ultrasonography 
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with the plasma concentrations of vitellogenin, a reproductive protein that serves as a precursor 

to egg yolk proteins and is therefore increased during follicular development. Presence of 

vitellogenin in the plasma concurrent with pregnancy confirmed via ultrasonography would 

imply that a female is an annual reproducer, growing follicles during gestation to be prepared for 

mating and ovulation that same year. On the other hand, in a species with a long gestation period, 

lack of vitellogenin in the plasma during pregnancy would suggest that follicular development 

occurs separately from gestation, and that females will take a year or more off before mating and 

reproducing again.  

 Vitellogenin (Vtg) is a glycolipophosphoprotein expressed in many invertebrates, all non-

mammalian vertebrates, and monotremes (Hiramatsu et al., 2006; Ho et al., 1982; Matozzo et al. 

2008; Polzonetti-Magni et al., 2004; Romano et al., 2004). In all vertebrate species that have 

been studied to date, Vtg is synthesized in the liver of reproductively active female individuals 

during the period of follicular development. The synthesis of Vtg in the liver has been shown to 

be induced by E2 in all studied species. Several studies have also found that Vtg synthesis can be 

stimulated in male individuals that have been administered or exposed to E2 or synthetic 

estrogens, making Vtg analysis a commonly employed tool for assessing xenoestrogen exposure 

in toxicology studies (Denslow et al., 1999; Hiramatsu et al., 2006; Ho et al., 1982; Kleinkauf et 

al., 2004; Perez and Callard 1993; Yamane et al., 2013). Once Vtg has been synthesized, it is 

secreted into the bloodstream and taken up by growing oocytes in the ovaries via receptor-

mediated endocytosis. Within the ovary, Vtg is then cleaved into the yolk proteins lipovitellin 

(Lv) and phosvitin (Pv), which act as nutritional sources for developing embryos (Romano et al., 

2004). A large number of studies have characterized and examined Vtg in teleost fish, reptiles, 

amphibians, and birds, but very few studies have investigated the protein in elasmobranchs.  
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 The first study to examine elasmobranch vitellogenesis was conducted on the lesser 

spotted dogfish (Scyliorhinus canicula, Craik, 1978). This study made estimates of plasma Vtg 

using two methods. Plasma phosphoprotein concentrations were first measured as a proxy for 

Vtg, as the yolk is the major source of phosphoproteins in animals. Plasma phosphoprotein 

concentrations were significantly higher for adult females when compared to adult males and 

immature females; it was inferred that the higher concentration in adult females was due to the 

production of Vtg. Estimates of plasma Vtg levels were also made using radioimmunoassays. 

Antiserum was generated against yolk granule proteins, and both dilutions of yolk granules and 

unknown plasma samples were tested in radioimmunoassay using this antiserum. A standard 

curve was generated using the dilutions of yolk granules, which allowed for estimates to be made 

of the amount of yolk granule protein likely present within unknown plasma samples. It was 

again observed that mature females had much higher levels of yolk granule proteins in their 

plasma compared to adult males and immature females. Additionally, there was a close 

correlation between the measurement of phosphoprotein and yolk granule protein content, 

indicating that the amount of phosphoprotein in the plasma did likely act as a good estimate of 

the amount of Vtg being produced.  This was the first study to develop techniques to assess 

plasma concentrations of Vtg in an elasmobranch, but it did not investigate the hormonal 

regulation of Vtg production in elasmobranchs.  

 Since this initial study which developed methods for estimating plasma Vtg in 

elasmobranchs, more recent studies have utilized assays to definitively detect Vtg in the plasma 

and examine hormonal regulation of vitellogenesis in other elasmobranch species. The first study 

to investigate hormonal regulation of Vtg production in an elasmobranch was conducted on the 

viviparous spiny dogfish (Squalus acanthias); the roles of both E2 and P4 on Vtg production 
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were examined (Callard et al., 1991). When plasma concentrations of E2 were highest, Vtg was 

detected in the plasma of female S. acanthias. Similarly, concentrations of plasma Vtg were 

found to be highest in female S. acanthias when plasma concentrations of E2 were increased, 

and injection with E2 further increased Vtg levels during this time. It was also determined that 

when concentrations of P4 were high during gestation, Vtg was not present in the plasma of 

females. Additionally, injecting females with E2 during the time period when P4 was increased 

did not result in Vtg being detected in their plasma, which suggested that P4 may play a role in 

inhibiting Vtg production for S. acanthias. Concentrations of plasma Vtg were found to be 

highest in female S. acanthias when plasma concentrations of E2 were increased, and injection 

with E2 further increased Vtg levels during this time. This study was thus the first to confirm that 

E2 stimulates Vtg production in elasmobranchs, and also to find evidence that P4 may also have 

a role in regulating Vtg synthesis, perhaps in an antagonistic manner. 

 Another study conducted on the little skate (Leucoraja erinacea) provided further 

evidence that both E2 and P4 likely play a role in regulating Vtg synthesis in elasmobranchs 

(Perez and Callard, 1993). For this study, a direct ELISA was developed to quantify Vtg levels in 

normal female specimens, as well as in normal males, males treated with E2, males treated with 

P4, and males treated with both E2 and P4. An antibody was developed against the yolk protein 

lipovitellin (Lv) in L. erinacea, and the specificity of the antibody for Vtg was confirmed via 

immunoblotting. Levels of Vtg in plasma varied throughout the cycle of ovulating female L. 

erinacea, decreasing before ovulation, when P4 concentrations are known to be highest for this 

species, and increasing to their highest level near the time of oviposition, when E2 reaches its 

highest concentration. This change in Vtg levels throughout the female reproductive cycle 

provided evidence that E2 and P4 both may regulate Vtg synthesis in L. erinacea; this was 
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further confirmed by the tests on males injected with E2 and P4. Vtg was not detectable in 

control males or males treated with P4 alone. Upon injection with E2, Vtg was detectable in the 

plasma of males. However, when males were treated first with E2 and later injected with P4, Vtg 

levels were still detectable, but were significantly lower than in males treated with E2 alone. The 

results of this study thus suggested that E2 does stimulate Vtg synthesis in L. erinacea, and that 

P4 seems to play a role in slowing or terminating Vtg synthesis. 

 Further evidence of the hormonal regulation of vitellogenesis in elasmobranchs was 

found in a study on male and female spotted rays (Torpedo marmorata) (Prisco et al., 2008). 

Using an antibody against lizard Vtg, a protein consistent with the molecular weight of Vtg was 

detectable in both vitellogenic females and male specimens injected with E2. In females, E2 

concentrations were also found to be highest for vitellogenic individuals. In contrast, P4 

concentrations were highest in pregnant female T. marmorata. Vtg was not detected in the 

plasma or liver of these pregnant females. Vitellogenic follicles were observed within the ovary 

of pregnant T. marmorata, but their growth was arrested. This suggests that high P4 

concentrations during pregnancy may act to inhibit Vtg synthesis during that time period for T. 

marmorata. 

 Vtg has also been investigated in two additional elasmobranch species. In the deep sea 

Portuguese dogfish (Centroscymnus coelolepis), which employs aplacental viviparity, a female- 

specific protein was detected in mature females. This female-specific protein reacted with an 

antibody against frog Vtg in an immunoblot (Tosti et al., 2006). In the cloudy catshark 

(Scyliorhinus torazame), an oviparous species, a female-specific protein was again detected and 

reacted with an antibody against catshark Vtg in an immunoblot. This same protein was detected 

in males injected with E2, suggesting E2 stimulation of Vtg synthesis in S. torazame as well 
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(Yamane et al., 2013). However, neither of these studies investigated the effect of P4 on 

vitellogenesis in these species, though P4 was found to vary little between immature and mature 

C. coelolepis, suggesting E2 may be more involved in regulating Vtg synthesis than P4 for this 

deep-sea species (Tosti et al., 2006).  

 In general, it has been determined that Vtg synthesis is stimulated by E2 in 

elasmobranchs, and there has been some evidence that P4 inhibits or terminates the protein’s 

synthesis in both oviparous and aplacental viviparous elasmobranch species. However, no 

studies to date have characterized the process of vitellogenesis in a placental viviparous 

elasmobranch. Understanding the regulation of Vtg synthesis, and particularly the role of P4 in 

this process, in a placental elasmobranch may help to clarify how placentation ultimately 

evolved, as P4 plays a key role in maintenance of pregnancy in eutherian mammals (Brawand et 

al., 2008; Callard et al., 1992; Rothchild, 2003). Thus, this study focused on characterizing 

vitellogenesis in the yolk-sac placental bonnethead shark, Sphyrna tiburo. S. tiburo is a small 

coastal shark that lives in shallow coastal waters and estuaries and has been extensively studied 

along the eastern coast of the United States (Frazier et al., 2014). The cycles of E2, P4, and T 

have already been well characterized for S. tiburo, and the timing of various reproductive events 

throughout their cycle is already known (Gonzalez De Acevedo, 2014; Manire et al., 1995). It 

was therefore possible to correlate the determined Vtg cycle from this study with the already-

known aspects of the S. tiburo female reproductive cycle. Additionally, since S. tiburo is a 

commonly caught shark throughout the Northwestern Atlantic and Gulf of Mexico, a sufficient 

number of samples from throughout the year were collected for analysis.  

 The primary goal of this study was to characterize vitellogenesis in S. tiburo. To fulfill 

this goal, it was first determined where Vtg is synthesized in this species. Immunohistochemistry 



8 
 

was conducted on S.tiburo liver to assess Vtg immunoreactivity in this organ. The overall 

seasonal cycle of Vtg in the plasma of female S. tiburo was also assessed. Immunoblots were 

conducted using anti-S. tiburo Vtg antibodies, testing for the presence of Vtg within the plasma 

of female S. tiburo sampled throughout the year. Finally, the effect of both E2 and P4 on Vtg 

synthesis was investigated. This objective was first fulfilled using immunohistochemistry to 

investigate the presence of E2 and P4 receptors in liver hepatocytes. Additionally, plasma 

concentrations of both E2 and P4 were measured; the cycles for both hormones were then 

compared to the determined Vtg temporal cycle for S. tiburo. Finally, in vitro liver assays were 

conducted. Precision-cut slices of liver were exposed in vitro to various concentrations of E2; the 

presence of Vtg within these cultures was assessed after exposure to the hormone for 72 hours. It 

was ultimately hypothesized that Vtg would be synthesized within the liver in S. tiburo, with E2 

stimulating synthesis, as has been found for all other species studied to date. Based on the results 

of studies on other elasmobranchs, it was also hypothesized that P4 would inhibit or slow Vtg 

synthesis in this species. Vtg presence in plasma was expected primarily in the months of March 

and April, as this is the previously established time period of follicular development for S. tiburo, 

when females have many large vitellogenic ova present within their ovaries.  

 A secondary goal of this study was to develop an antibody against Vtg that could be used 

for multiple elasmobranch species. Because Vtg is a nutritional rather than regulatory protein, its 

amino acid sequence is not highly conserved between species (Denslow et al., 1999). Thus, 

investigation of Vtg in a new species often requires the development of a new antibody, which 

could limit the effectiveness of analyzing plasma Vtg to better understand reproduction in a 

broad range of elasmobranch species. For this study, three new antibodies were created against 

more highly conserved portions of the amino acid sequence of S. tiburo Vtg. All three antibodies 
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were tested against plasma from other elasmobranch species to determine their efficacy in 

analyzing Vtg in other elasmobranchs.  

 

2. METHODS 

2.1 Sample collection 

 Female S. tiburo specimens were collected from estuarine, near-shore, and offshore 

locations off of South Carolina, Georgia, and Florida waters in the Atlantic and Gulf of Mexico. 

Collections were conducted via bottom longline and gillnet fishing in both fishery-independent 

surveys and commercial fishing trips. Blood was collected from all captured females via caudal 

venipuncture and transferred to vacuum tubes containing anticoagulant and aprotinin. 

Anticoagulant (E-ACD) preparation followed the recipe from Walsh and Luer (2004). A solution 

was then prepared of 16 µg/mL aprotinin (aprotinin from bovine lung, Sigma-Aldrich, St. Louis, 

MO, USA) in E-ACD. For every 3 mL of blood that was collected, 350 µL of this E-ACD 

solution (containing 5.6 µg aprotinin) was used. The blood samples were centrifuged at 1,900 × 

g for 5 minutes; the plasma was collected and stored at -20°C until needed for analysis. Liver and 

ovary samples were also collected from females and fixed in 10% elasmobranch phosphate-

buffered saline formalin (E-Formalin) for 48 hours, then rinsed and transferred to 70% ethanol 

for long-term storage at -80°C. 

Liver was also collected from both male and female S. tiburo specimens for use in in 

vitro assays. Specimens were euthanized by anesthesia without revival before their liver was 

dissected. Roughly 5 grams of liver was removed and placed into a sterile sample bag containing 

50 mL of phosphate buffered saline modified for elasmobranchs (E-PBS, recipe from Walsh and 

Luer 2004). The sample bag was then sealed and kept on ice until the liver was brought back to 
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the lab for thin section preparation and use in the in vitro assays. Before dissection, all tools used 

were cleaned and sterilized using 100% ethanol, and all media was filter-sterilized through a 0.22 

µm filter.  

2.2 Antibody development and testing 

 Three new antibodies were developed for use in this study against different highly 

conserved portions of the Vtg amino acid sequence from S. tiburo (Table 1), which was 

determined in prior studies (Gelsleichter, unpublished data). These antibodies were developed 

and provided by RayBiotech (Norcross, GA). All three antibodies were tested for their ability to 

detect Vtg via immunoblotting, indirect ELISA, and immunohistochemistry. For the second 

antibody, RayBiotech provided the antigen against which the antibody was developed. Dilutions 

of this antigen were also prepared and tested using the ELISA techniques. Ultimately, outcomes 

of the ELISA (see Results, Section 3.1) indicated it would be necessary to use immunoblotting 

rather than the indirect ELISA to detect Vtg within plasma samples. 

2.3 Immunoblotting 

Immunoblotting was conducted to identify the presence of Vtg in the plasma of S. tiburo 

specimens of all reproductive stages. Additionally, plasma samples from females of other 

elasmobranch species were tested using the same immunoblotting techniques. The other species 

assessed were the tiger shark (Galeocerdo cuvier), the spinner shark (Carcharhinus brevipinna), 

the blacktip shark (Carcharhinus limbatus), the great white shark (Carcharodon carcharias), the 

gulper shark (Centrophorus granulosus), the blacknose shark (Carcharhinus acronotus), the 

oceanic whitetip shark (Carcharhinus longimanus), the Atlantic stingray (Dasyatis sabina), and 

the smalltooth sawfish (Pristis pectinata).  
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Table 1. Amino acid sequences of three antibodies created against the amino acid sequence for 
vitellogenin in S. tiburo.  
 

Antibody ID Amino Acid Sequence 
rabbit polyclonal anti-S tiburo Vtg 
antibody 1 

ELAFAQLRKEDLDTIKC 

rabbit polyclonal anti-S. tiburo Vtg 
antibody 2 

CNLALNVLSPKLEQLGH 

rabbit polyclonal anti-S. tiburo Vtg 
antibody 3 

KTDSRSIRRILSKLINC 
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The protein concentration of each plasma sample was first measured using the Bio-Rad 

Protein Assay. Samples were then diluted in 2x Laemmli sample buffer (Bio-Rad, Hercules, CA, 

USA) containing 355 mM 2-mercaptethanol to a level that would ensure that 100 µg of protein 

was loaded into each well of a protein gel. For protein separation, 4–20% Mini-PROTEAN TGX 

Precast Protein Gels (Bio-Rad) were used to ensure Vtg and any component proteins would be 

retained. The protein standard ladder used for each gel was the Precision Plus Dual Color Protein 

Standard (Bio-Rad). Each well was either loaded with 10 µL of the plasma sample or standard, 

or the appropriate volume to ensure that 100 µg of total protein were loaded into the well. All 

plasma samples were run in a Mini-PROTEAN Tetra Vertical Electrophoresis Cell (Bio-Rad) at 

200 V until appropriate separation was visualized. 

Protein transfer was performed in a Mini TransBlot Cell (Bio-Rad) onto an Immuno-Blot 

PVDF membrane (Bio-Rad) at 100 V for one hour. Following transfer, the PVDF membrane was 

incubated in a 10% blocking solution (5 grams of non-fat dry milk in 50 mL of Tris-buffered 

saline (TBS) pH 7.6) in order to block additional protein binding sites overnight at 4°C. The 

membrane was then incubated with the primary anti-Vtg antibody, which was rabbit polyclonal 

anti-S. tiburo Vtg (Table 1). For incubation with the primary antibody, first a 1% blocking 

solution was created by diluting the 10% solution with T-TBS (TBS with 0.05% tween-20). The 

primary antibody was then diluted in 1% blocking solution; the exact dilution used varied 

depending on which of the three anti-S. tiburo Vtg antibodies was used (Table 1). For use with S. 

tiburo samples, the first antibody was diluted 1:25,000, the second antibody was diluted 

1:10,000, and the third antibody was diluted 1:2000. When testing the plasma of other 

elasmobranch species, the first antibody was diluted 1:10,000, the second antibody was diluted 
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1:10,000, and the third antibody was diluted 1:1000. All membranes were covered with 10 mL of 

the primary antibody solution and incubated overnight at 4°C in a covered container.  

On the final day of immunoblotting, each membrane was incubated with the secondary 

antibody (anti-rabbit IgG conjugated to alkaline phosphatase, Sigma-Aldrich), diluted 1:30,000 

in 1% blocking solution. Incubation with this secondary antibody solution occurred for 1 hour at 

room temperature, with 15 mL of the solution covering each membrane. Between all antibody 

incubations the membranes were rinsed five times for five minutes each in T-TBS. Finally, 

binding of the primary antibody to Vtg was visualized using a BCIP/NBT Alkaline Phosphatase 

kit (Vector Laboratories, Burlingame, CA, USA) following the manufacturer’s instructions. 

Once a color reaction was visualized, the color reaction was stopped by rinsing the membranes 

for 5 minutes in reverse osmosis (RO) water and air-drying. Following the completion of an 

immunoblotting assay, all membranes were imaged using the Amersham Imager 600 (GE 

Healthcare, Uppsala, Sweden).  

2.4 Histology and immunohistochemistry 

 Formalin-fixed samples of liver and ovarian tissue were dehydrated via incubation in an 

ascending series of graded alcohol (80% – 100%), cleared using the limonene-based solvent 

CitriSolv (Fisher Scientific, Hampton, NH), and embedded in paraffin. The tissues were then 

sectioned (5 µm) using a rotary microtome and mounted on microscope slides coated with 0.01% 

poly-L-lysine (Sigma-Aldrich). All ovary sections were stained using the hematoxylin and eosin 

(H&E) staining protocol to aid in visualization of oocyte structure and correct identification of 

oocyte developmental stages. 

 Immunohistochemistry was performed on liver sections from female S. tiburo using 

polyclonal rabbit anti-human ER-α, monoclonal mouse anti-human PR, and polyclonal rabbit 
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anti-S. tiburo Vtg (antibody 1, Table 1) as primary antibodies. Sections of ovarian tissue were 

also analyzed via immunohistochemistry using polyclonal rabbit anti-S. tiburo Vtg (antibody 3, 

Table 1). Tissue sections were incubated in Citrisolv for deparaffinization, rehydrated via 

incubation in a descending series of graded alcohols (100 – 95%), and rinsed in tap water. 

Sections were then incubated at 95°C in antigen retrieval solution (10 mMol sodium citrate, pH 

6.0) for a period of 20 minutes. After sections were brought to room temperature, they were 

rinsed in water and phosphate-buffered saline (PBS), and finally blocked for nonspecific 

reactivity via overnight incubation with 2.5% normal goat serum in PBS at 4°C. 

 Following overnight blocking, all slides were rinsed twice in PBS. Endogenous 

peroxidase activity was quenched by incubating the slides in a 1:1 solution of 3% hydrogen 

peroxide and 100% methanol for 15 minutes. Sections were then rinsed twice with PBS before 

the appropriate primary antibody was added (Table 2). All primary antibodies were diluted in 

PBS containing 0.1% gelatin and 0.1% sodium azide (G-PBS). Control sections were incubated 

with G-PBS in place of primary antibody. The sections were incubated in primary antibody 

overnight at 4°C.  

 Following incubation with the primary antibodies, all sections were rinsed with PBS 

containing 0.05% Tween-20, rinsed twice with PBS, and then incubated with the appropriate 

secondary antibody for 1 hour at room temperature (Table 2). Antibody binding sites were then 

revealed using the appropriate peroxidase substrate kit. For ovarian sections, the peroxidase 

substrate 3’3-diaminobenzidine was used (ImmPACT DAB, Vector Laboratories). For liver 

sections, the ImmPACT NovaRED peroxidase substrate kit was used instead because of a high 

amount of endogenous melanin, which obscures the detection of DAB. Sections were incubated 

in the substrate mixture until there was a visible color change (~5 min), and then transferred to a  
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Table 2. Antibodies and dilutions used in immunohistochemistry for detection of Vtg, ER-α, and 
PR in formalin-fixed liver and ovary samples from S. tiburo.  
 
Protein Primary Antibody  Dilution Manufacturer Secondary 

Antibody 
Vtg Rabbit polyclonal anti-S. 

tiburo Vtg antibody 1 
1/500 RayBiotech Anti-Rabbit IgG 

Vtg rabbit polyclonal anti-S. tiburo 

Vtg antibody 3 
1/200 RayBiotech Anti-Rabbit IgG 

ER-α rabbit polyclonal anti-human 
ER-α 

1/100 Millipore, C1355  Anti-Rabbit IgG 

PR mouse monoclonal anti-human 
PR 

1/100 Thermo Scientific, 
alpha PR-22  

Anti-Mouse IgG 
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running tap water rinse for 10 minutes. The sections were counterstained using 2% methyl green 

(Vector Laboratories) at 37°C for 1 hour and then rinsed in tap water for 2 minutes. Finally the 

sections were dehydrated in an ascending series of graded alcohols (95 – 100%), cleared in 

Citrisolv, and coverslips were applied using Cytoseal 60 (Electron Microscopy Sciences, 

Hatfield, PA).  

2.5 Hormone analysis 

 Plasma concentrations of 17β-estradiol and progesterone were measured using AccuLite 

CLIA kits (Monobind, Lake Forest, CA) following the manufacturer instructions. Luminescence 

was measured using the Synergy HT Multi-Mode Microplate Reader (BioTek Instruments, 

Winooski, VT). All plasma was diluted in HAS calibrator matrix prior to conducting the assay; 

1/25 for E2 and 1/10 for P4 measurements. Optimal dilution levels were determined in an earlier 

study (Gonzalez De Acevedo, 2014). 

2.6 in vitro liver assays  

 Culture media was prepared for use with elasmobranch tissue; this culture media 

consisted of Leibovitz’s L-15 medium supplemented with urea and salt to appropriate 

concentrations for elasmobranch tissue (E-L15, pH 7.2 – 7.4). The media was sterilized by 

filtering through a 0.22 µm filter before use. Throughout the preparation of liver slices, all liver 

was kept on ice. Slice preparation took place in a sterile culture hood and all materials and 

surfaces were sterilized with 100% ethanol prior to use. 

Liver collected from female S. tiburo specimens was first cut into strips roughly 5 – 10 

mm wide. These pieces were then cut into precision slices of 1 mm using the McIlwain Tissue 

Chopper (Cavey Laboratory Engineering Co. Ltd., Guildford, UK). The slices were placed into a 

sterile Petri dish containing E-L15 culture media until enough slices were obtained to be plated.  
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 Test chemicals were added to the culture media (E-L15) using ethanol as the vehicle. 

Dilutions were made to achieve estradiol concentrations of 0 pg/mL, 3 pg/mL, 30 pg/mL, 300 

pg/mL, 3000 pg/mL, and 30,000 pg/mL E2 in E-L15. Control media was created by adding an 

appropriate volume of 100% ethanol to the E-L15 instead, so that the control media contained a 

final concentration of 0.1% ethanol. Wells of sterile 24-well culture plates were then prepared by 

adding 1 mL of the E-L15 containing either ethanol or the appropriate estradiol concentration 

into each well. Four wells were dedicated to each concentration. After the plates were prepared, 

the liver slices were randomly placed into the wells. A total of four plates were prepared for each 

assay. Three of these plates were used as replicates for the Vtg detection assays. The fourth plate 

was reserved for histology and immunohistochemistry to be conducted at a later date on the liver 

slices. All plates were incubated for 72 hours at 19 – 21°C; culture media was not changed 

during the incubation period. After the 72 hour incubation, the liver slices and sample media 

were collected from each plate and stored at -80°C.  

 As noted, for each of the three plates dedicated to the Vtg assays, four wells were 

dedicated for each E2 concentration. The liver slices from these four wells were thus pooled 

together and homogenized using a 1:5 mass:volume ratio of tissue to homogenization buffer 

(PBS) in a Fast Prep 24 bead homogenizer (MP Biomedicals LLC, Solon, OH, USA). The 

homogenate was first centrifuged for 10 minutes at 8,000 × g; the resulting supernatant was 

placed in a new tube and centrifuged at 20,000 × g for 20 minutes. The final supernatant was 

isolated and stored at -80°C. 

 Protein concentrations were determined both for the culture media and liver homogenates 

using the Bio-Rad Protein Assay. Where protein concentrations were low, the TCA precipitation 

protocol was followed to precipitate proteins from samples. For liver homogenates, 100 – 200 µg 
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of protein was precipitated from the samples. For the culture media, 300 – 600 µg of protein was 

precipitated. The required volume to achieve each amount of protein was loaded into a microtube 

along with trichloroacetic acid (ratio 1:4 TCA to culture media or liver homogenate). The 

samples were centrifuged for 15 minutes at 18,407 × g and the supernatant was removed. The 

resulting protein pellet was washed twice with acetone; 200 µL of acetone was added to the 

pellet and the resulting solution was centrifuged for 5 minutes at 18,407 × g. The final pellet was 

dried briefly under a fume hood. Laemmli sample buffer (2x, Bio-Rad, containing 355 mM 2-

mercaptethanol) was then added directly to this pellet; enough Laemmli buffer was added so the 

final protein content of a 10 µL load would be 100 µg for liver homogenates and 300 µg for the 

culture media. After the pellet had sufficiently dissolved in the sample buffer, the samples were 

heated at 95°C for 5 minutes to denature the proteins. Immunoblot analysis was then conducted 

of both the homogenates and culture media samples using the methods outlined in section 2.3. 

However, due to the limitations of the protein gels used, however, evidence of Vtg production 

was analyzed only for the liver tissue exposed to 0 pg/mL, 3 pg/mL, 300 pg/mL, and 30,000 

pg/mL E2. 

2.7 Data analysis 

To determine relative concentrations of vitellogenin present in plasma samples, 

membranes were analyzed using ImageJ software following the completion of an 

immunoblotting assay. In order to facilitate this analysis, all immunoblots included a positive 

control plasma sample from a known vitellogenic female S. tiburo. This positive control sample 

was used as a baseline, and the optical density of each sample on a given membrane was 

compared to the optical density of the positive control.  
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 Plasma concentrations of E2 and P4 were grouped by month of capture to examine 

temporal changes in concentration. Mean hormone concentrations per month were compared 

using a Kruskal-Wallis nonparametric test followed by Dunn-Bonferroni multiple comparisons, 

as the data for hormone concentrations did not pass tests for normality. A significance level of 

0.05 was used for all tests.  

 

3. RESULTS 

3.1 Detection of Vtg in S. tiburo plasma 

 All three antibodies were tested against the plasma of female S. tiburo known to be 

undergoing vitellogenesis. All antibodies detected a high molecular weight protein consistent 

with the expected molecular weight of vitellogenin in elasmobranchs (~205 kD, Perez and 

Callard, 1992) in these plasma samples (Figure 1). The third antibody provided the strongest 

signal and was able to detect Vtg even when it was apparently present in low concentrations in 

the plasma; this antibody was thus used for immunoblotting. The first antibody was utilized for 

some of the immunohistochemistry assays, as this antibody also provided a relatively strong 

signal, though it did not detect Vtg when plasma concentrations appeared relatively low.  

 In some plasma samples, the third anti-S. tiburo Vtg antibody detected a second protein 

whose molecular weight is consistent with that of lipovitellin (Lv), one of the breakdown 

products of Vtg (Figure 2). The molecular weight of Lv in L. erinacea was determined to be 

either 105, 91, or 67 kD (Perez and Callard, 1992). A protein of a molecular weight around 70 

kD was detected in some plasma samples, which suggests that Vtg was likely present in these 

samples but the protein may have degraded, resulting in the antibody detecting a component 

protein rather than the whole Vtg protein.  
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Figure 1. Results of immunoblotting testing anti-S. tiburo Vtg antibodies against S. tiburo 
plasma. Lane 1: protein ladder (Precision Plus Dual Protein Color Protein Standard, Bio-Rad). 
Lanes 2-8: plasma of known vitellogenic females collected in early March. Lane 9: plasma of an 
S. tiburo male. Lane 10: plasma of a mature female collected during April. Lanes 11-15: plasma 
of females collected during May; lanes 11-13 represent mature females, while lanes 14-15 are 
immature females. All antibodies were tested against the same samples: a) antibody 1 b) 
antibody 2 and c) antibody 3.  
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Figure 2. Immunoblot of plasma samples tested using anti-S. tiburo Vtg antibody 3 diluted 
1:2000. Positive control of a known vitellogenic female (collected in March) is shown in lane 15. 
Vtg was detected for the positive control (Lane 15) and two other samples, but the antibody also 
detected a second protein in many samples (boxed). Lane 1: protein ladder (Precision Plus Dual 
Protein Color Protein Standard, Bio-Rad). Lane 2: mature postpartum female collected in 
October. Lane 3: mature postpartum female collected in August. Lane 4: mature female collected 
in November, noted to have mating scars. Lane 5: mature postpartum female collected in August. 
Lane 6: mature female collected in September. Lane 7: mature female collected in December 
with noted mating scars. Lanes 8-11: plasma from females identified as immature, collected in 
September (8), August (9), and October (10, 11). Lane 12: vitellogenic mature female collected 
in April. Lane 13: mature ovulating female collected in April. Lane 14: pregnant female 
collected in late September.  
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 An attempt was made to develop an indirect ELISA to detect changes in Vtg 

concentrations over time. However, even when the plasma was diluted at a level of only 1/2 in 

the coating buffer to concentrate the protein as much as possible, the antibody detected no 

difference in the absorbance at 450 nm between the blank sample (coating buffer), confirmed 

Vtg negative, and confirmed Vtg positive plasma samples. This suggests that the antibodies were 

not able to detect Vtg within plasma in the indirect ELISA. However, when the dilutions were 

prepared of the antigen for the second antibody, differences in the amount of Vtg present were 

detected. This indicates that the lack of Vtg detection was not due to the techniques used in the 

indirect ELISA, but instead likely because the Vtg concentration in the plasma was too low for 

detection or other components in plasma interfered with detection. 

3.2 Temporal Vtg cycle 

 A high molecular weight protein consistent with Vtg was detected in the plasma of 

female S. tiburo known to be undergoing vitellogenesis sampled during March. Three females 

sampled in April also had Vtg present within their plasma. Vtg was also detected in the plasma 

of one female S. tiburo each sampled in the months of May and October, along with two females 

sampled in December (Figure 3).  

 As noted previously, for some plasma samples the antibody did not detect Vtg, but did 

detect a second protein whose molecular weight is consistent with that of Lv. It is possible that 

Vtg was initially present in these samples, but degraded into its component parts during sample 

storage. When the females with this putative Lv protein in their plasma are included in the 

temporal Vtg cycle, there is evidence for Vtg presence in the plasma of some females in late 

August, with production then continuing from September through December. There was also 

evidence of a higher proportion of females with Vtg in their plasma in April (Figure 4).  
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Figure 3. Proportion of mature S.tiburo females that were determined to have vitellogenin 
present within their plasma during each month.  
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Figure 4. Proportion of mature S.tiburo females that were determined to have either vitellogenin 
or the putative lipovitellin protein present within their plasma during each month.  
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3.3 Temporal changes in plasma Vtg concentrations 

 Comparisons were first made of the amount of Vtg present in the plasma of females 

collected in early March and early May based on analysis of the optical density of signals on an 

immunoblot membrane (Figure 5a). The optical density of each sample was compared to a 

chosen positive control (FBay3, Lane 4 on Figure 5a). Based on this analysis, plasma 

concentrations of vitellogenin did vary by month. In March, the majority of females tested 

positive for Vtg, but the concentration of Vtg in the plasma varied between individuals. The 

optical density of the signals ranged from 22.2% to 129% of the optical density found for the 

chosen positive control sample. The concentration of Vtg present in the plasma of the female 

sampled in May was much lower, with an optical density 4.5% of that for the positive control 

plasma sample (Figure 5b). 

 As noted previously, three S. tiburo females collected in April were identified to have 

Vtg in their plasma, along with three additional S. tiburo females collected in March. One S. 

tiburo female in October had Vtg in her plasma, as did two females collected in December. An 

immunoblot containing all of these samples is depicted in Figure 6a, with the same positive 

control plasma sample (FBay3) shown in the last lane of the immunoblot. It was notable that the 

concentration of Vtg present in the March samples on this immunoblot appeared much lower 

when compared to the positive control, also collected in March. The relative optical density for 

the Vtg signals from the three samples on this immunoblot collected later in March ranged from 

2.3 – 5.9% of the optical density of the positive control. The concentration of Vtg in the plasma 

samples collected in April also appeared consistently lower than that for the positive control, 

with optical density for the April signals ranging from 4.7% to 13.9% of the optical density for 

the positive control (Figure 6b).  
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Figure 5. Analysis of relative concentrations of Vtg present in plasma samples from the months 
of March and May based on relative optical density. a) Immunoblot results, using the third anti-
S. tiburo Vtg antibody. Lane 1: protein ladder (Precision Plus Dual Protein Color Protein 
Standard, Bio-Rad). Lanes 2-8: plasma samples from known vitellogenic S. tiburo females in 
early March. Individual FBay3 (lane 4) was chosen as the sample against which all other samples 
were compared. Lane 9: male S. tiburo plasma. Lane 10: plasma of a mature female from April. 
Lanes 11-15: plasma of females from May; lanes 11-13 represent mature females, while lanes 
14-15 are immature females. Lane 12 contains sample ST213, collected in early May. b) Relative 
optical density of the Vtg signals from the immunoblot.  
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Figure 6. Analysis of relative concentrations of Vtg present in female S. tiburo plasma samples 
based on relative optical density. a) Immunoblot results, using the third anti-S. tiburo Vtg 
antibody. Lane 1: protein ladder (Precision Plus Dual Protein Color Protein Standard, Bio-Rad). 
Lanes 2-4: plasma from March (2217-2, 2225-5, 2229-2 respectively). Lanes 5-11: plasma from 
April (labeled in order as ST82, ST83, ST205, ST247, ST248, ST249, and 4/23/17 #1). Lane 12: 
plasma from October (ST246). Lanes 13-14: plasma from December (2201-4 and 2201-6 
respectively). Lane 15: plasma from confirmed vitellogenic female from March (FBay3).           
b) Relative optical density of the Vtg signals from the immunoblot. Order of samples on graph 
follows order of samples on the immunoblot.   
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 The concentration of Vtg in the plasma in October and December also appeared to be 

much lower than that found in March, based on comparison to the positive control. For the 

October sample (ST246), the optical density of the Vtg signal was 9.3% of the optical density for 

the positive control. Both of the December samples (2201-4 and 2201-7) showed considerably 

lower Vtg concentrations, with optical densities of 1.1% and 1.6% respectively when compared 

to the optical density of the positive control (Figure 6b). 

 Ultimately, it was determined that female S. tiburo definitively had Vtg in their plasma in 

the months of March, April, May, October, and December. In order to determine how the amount 

of Vtg varied throughout these months, the average relative optical density was calculated for 

each month and compared. This comparison illustrated that in general the highest amount of Vtg 

was present in the plasma in March, with lower amounts present in April, May, October, and 

December (Figure 7).  

3.4 Detection of Vtg in plasma of other elasmobranch species 

 Of the nine other species which were tested (G. cuvier, C. brevipinna, C. limbatus, C. 

carcharias, C. granulosus, C. acronotus, C. longimanus, D. sabina, and P. pectinata), the 

antibodies detected proteins with molecular weights consistent with would be expected for either 

elasmobranch Vtg or one of its component proteins (presumably Lv) in the plasma of all species 

with the exception of the spinner shark (C. brevipinna). Clear detection of Vtg (~205 kD, Perez 

and Callard, 1992) occurred for four of the species: the blacktip shark C. limbatus (Figures 8a 

and 8c, antibodies 1 and 3), the great white shark C. carcharias (Figure 8b, antibody 2), the 

blacknose shark C. acronotus (Figure 8c, antibody 3), and the oceanic whitetip shark C. 

longimanus (Figures 8b and 8c, antibodies 2 and 3). 
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Figure 7. Average relative optical density of the Vtg signal detected in S. tiburo plasma from 
March, April, May, October, and December. Numbers above each bar indicate the sample size 
for each month, illustrating the number of females from that month for which the antibody 
clearly detected the Vtg protein. Error bars indicate standard error.   
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Figure 8. Immunoblots showing Vtg-like immunoreactivity with the plasma of multiple 
elasmobranch species. Lane 1: protein ladder (Precision Plus Dual Protein Color Protein 
Standard, Bio-Rad). Lanes 2-3: G. cuvier, Lane 4: C. brevipinna, Lanes 5-6: C. limbatus, Lanes 
7-8: C. carcharias, Lanes 9-10: C. granulosus, Lanes 11-12: C. acronotus, Lanes 13-14: C. 

longimanus, Lane 15: vitellogenic S. tiburo (positive control). a) Antibody 1, diluted 1:10,000 b) 
Antibody 2, diluted 1:10,000 c) Antibody 3, diluted 1:1000.  
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 Additionally, all three antibodies bound to other proteins present within the plasma of the 

elasmobranch species. However, analysis focused on proteins with molecular weights that would 

be expected for elasmobranch Lv. This protein is a component of Vtg, so detection of a protein 

with a molecular weight consistent with Lv would be indicative of putative Vtg presence in the 

plasma. The antibodies bound to a protein with a molecular weight around 70 kD in plasma 

samples from multiple species, suggesting that evidence of Vtg was being detected in the 

samples. The third antibody bound to a protein suggestive of the Lv component of Vtg in the 

plasma of the tiger shark G. cuvier (Figure 8c), gulper shark C. granulosus (Figure 8c), Atlantic 

stingray D. sabina (Figure 9, antibody 3), and smalltooth sawfish P. pectinata (Figure 8, 

antibody 3). This Lv component was also detected by the third antibody in plasma samples for 

which Vtg itself was clearly detected: C. carcharias, C. longimanus, and S. tiburo (Figure 8c).  

 All three antibodies also bound to proteins of smaller molecular weights, which likely are 

indicative of more extensive breakdown of Vtg and the Lv component of the protein (Figure 8c). 

It was not clear whether the antibodies were able to detect Vtg in the C. brevipinna plasma 

sample, but the third antibody did bind to a protein at ~25 kD, which could be indicative of Vtg, 

particularly if there was significant degradation of the Vtg protein within the plasma sample. 

3.5 Liver immunohistochemistry 

 Immunohistochemistry was conducted on S. tiburo liver slices to detect the presence of 

estrogen receptors (ER-α), progesterone receptors (PR), and Vtg. Positive immunoreactivity for 

Vtg was observed within the hepatocytes, with strong immunoreactivity observed within the 

sinusoids and also around the ducts of the liver (Figure 10). Positive immunoreactivity for ER-α 

and PR was also observed within the hepatocytes, primarily around the ducts of the liver (Figure 

11).  
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Figure 9. Immunoblot showing Vtg-like immunoreactivity with the plasma of multiple 
elasmobranch species. Lane 1: protein ladder (Precision Plus Dual Protein Color Protein 
Standard, Bio-Rad). Lanes 2-3: D. sabina, Lanes 4-14 P. pectinata, Lane 15: vitellogenic S. 

tiburo (positive control). Anti-S. tiburo Vtg Antibody 3 was used for this immunoblot, diluted 
1:1000.   
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Figure 10. Immunohistochemistry of the liver of a vitellogenic S. tiburo female. Top row depicts 
magnification at 100x (scale=508 µm) of a) negative control (G-PBS) and b) reactivity with anti-
S. tiburo Vtg antibody. Bottom row depicts magnification at 400x (scale=100 µm) of c) negative 
control (G-PBS) and d) reactivity with anti-S. tiburo Vtg antibody. Antibody 1 was used for 
these analyses, diluted 1:500.  
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Figure 11. Immunohistochemistry of the liver of two different vitellogenic S.tiburo females 
(Identified as ♀1 and ♀2). For ♀1: a) negative control (G-PBS), b) ER-α immunoreactivity, c) 
PR immunoreactivity. For ♀2: d) negative control (G-PBS), e) ER-α immunoreactivity, f) PR 
immunoreactivity. The ER-α and PR antibodies were both diluted 1:100. All images taken at 
400x magnification (scale=100 µm). 
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3.6 Ovary immunohistochemistry 

 Immunohistochemistry was conducted on sections of ovarian follicles of various stages 

(pre-vitellogenic through late vitellogenic) to detect the presence and localization of Vtg within 

the follicles. All slices were first stained using the H&E protocol to assist in visualization of 

structures and correct analysis of follicle developmental stage.  

 Pre-vitellogenic follicles were identified based on the presence of a layer of cuboidal 

granulosa cells and an established zona pellucida.  Little positive immunoreactivity with Vtg was 

observed in pre-vitellogenic follicles, though potential immunoreactivity was observed within 

the layer of small cuboidal granulosa cells. As the follicles entered the early stages of 

vitellogenesis, the granulosa cells became more columnar in shape, with the overall granulosa 

layer increasing in thickness. The zona pellucida increased in thickness as follicles entered early 

vitellogenesis, but thickness decreased as follicles entered middle to late vitellogenesis. Yolk 

platelets began to form within the ooplasm of follicles in early vitellogenesis, and took on a 

clearer circular shape in middle vitellogenesis. For ovarian follicles in the early and middle 

stages of vitellogenesis, positive immunoreactivity was noted within the developing yolk 

platelets within the ooplasm, as well as in a layer just inside the zona pellucida in the ooplasm. 

Potential immunoreactivity was again observed within the cells of the granulosa layer, even as 

the cells elongated and became more columnar as vitellogenesis progressed (Figure 12).  

 Follicles in the late stages of vitellogenesis were identified based on the presence of many 

distinct cuboidal yolk platelets within the ooplasm; the zona pellucida of these follicles was also  

much thinner. Positive immunoreactivity with Vtg was again observed within the yolk platelets, 

in a thin layer inside zona pellucida in the ooplasm, and potentially within the cells of the 

granulosa layer (Figure 12).   
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Figure 12. Immunohistochemistry of ovarian follicles throughout development, from pre-
vitellogenic to late vitellogenesis. H&E stain was used to show structures; G-PBS was used as 
the negative control, and all follicles were stained with the third anti-S. tiburo antibody, diluted 
1:100. Images taken at 400x magnification (scale=100 µm). Structure of follicles labeled as: 
oo=ooplasm, zp=zona pellucida, gc=granulosa cells, tc=theca cells, yp=yolk platelets.  
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3.7 Hormone cycles 

 Plasma concentrations of E2 were found to vary significantly by month (Kruskal-Wallis, 

df=8, p=0.0012). The mean plasma concentration of E2 was significantly higher in April, and 

significantly lower in June when compared to all other months (Kruskal-Wallis and Dunn-

Bonferroni, p=0.022).  In general, E2 concentrations were relatively high during the months of 

March and April, and then began to fall in May. Plasma concentrations of E2 remained low 

throughout the summer months, but began to increase as early as August and September for 

some females. Concentrations of E2 continued to increase throughout October, November, and 

December, even reaching similar concentrations as were found in March for some females.  

 Plasma concentrations of P4 were not found to vary significantly by month (Kruskal-

Wallis, df=9, p=0.731). However, it was notable that in general, high concentrations of P4 were 

observed in more female S. tiburo captured during the months of March and May when 

compared to all other months, with the highest concentrations of P4 occurring during May 

(Figure 14). 

3.8 in vitro liver assays 

 The liver homogenates were assessed first for the presence of Vtg within the tissue to 

determine if E2 stimulated Vtg production. Neither Vtg nor any breakdown proteins were 

detected within the liver homogenates for the first two liver cultures that were analyzed, from 

two maturing S. tiburo females (ST1929-12, Figure 15a; ST1921-1, Figure 15b). The antibody 

did still detect Vtg within the plasma of the positive control S. tiburo female (FBay3), indicating 

the lack of detection was most likely due to the lack of Vtg presence within the liver itself. Based 

on these initial results, further analysis of Vtg production by the liver in vitro focused on 

assessing Vtg presence within the culture media.  
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Figure 13. Comparison of monthly plasma E2 concentrations and Vtg production by female S. 

tiburo. a) Plasma concentrations of E2 in S. tiburo females (n=86). Values represent mean 
concentration, and error bars represent standard error. Significance was determined using the 
non-parametric Kruskal-Wallis test (p=0.0012). b) Proportion of mature S.tiburo females that 
were determined to have either vitellogenin or the putative lipovitellin protein present within 
their plasma during each month   
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Figure 14. Comparison of monthly plasma P4 concentrations and Vtg production by female S. 

tiburo. a) Plasma concentrations of P4 in S. tiburo females (n=45). Values represent mean 
concentration, and error bars represent standard error. Significance was determined using the 
non-parametric Kruskal-Wallis test (p=0.731).  b) Proportion of mature S.tiburo females that 
were determined to have either vitellogenin or the putative lipovitellin protein present within 
their plasma during each month (n=123).   
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p=0.731 
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Figure 15. Immunoblots of liver homogenates from the liver cultures of two different S. tiburo 

females. a) Liver homogenates from liver culture of female ST1929-12, identified as likely 
maturing, captured 23 May. b) Liver homogenates from liver culture of female ST1921-1, 
identified as likely maturing, captured 17 May. Lane 1: protein ladder (Precision Plus Dual 
Protein Color Protein Standard, Bio-Rad). Lanes 2-13: Replicates of liver exposed to the 
concentrations of E2 indicated on the figure. Lane 14: Plasma sample for each of the two 
females, respectively. Lane 15: Positive control S. tiburo plasma (FBay3) from confirmed 
vitellogenic female.  
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 Culture media from two mature females, three maturing females, and one immature male 

was assessed for Vtg presence. The two mature females (ST1933-3 and ST1943-3) were 

confirmed to have ovulated, and had fertilized eggs present within their uteri. All three maturing 

females (ST1921-1, ST1929-12, and ST1943-1) were identified as not yet reproductively active, 

and had no visible vitellogenic ova within their ovaries or eggs present within their uteri. 

However, the size of these females suggested they were likely approaching reproductive 

maturity, and were not truly immature females. All females were collected between 17 May and 

31 May, so it was possible the liver of any females could have already been producing Vtg in 

vivo. Therefore, liver from a male S. tiburo was cultured in addition to the females to serve as a 

negative control, as males have never been identified to naturally produce Vtg in vivo.  

 The antibody detected a high molecular weight protein consistent with Vtg in only one 

culture media sample for one of the females identified as maturing (ST1943-1, Figure 16c). The 

antibody appeared to detect Vtg in one of the three control culture media samples containing 0 

pg/mL E2 (Lane 2, Figure 16c). However this female also appeared to have a low concentration 

of Vtg present within her plasma sample (Lane 14, Figure 16c), indicating that this individual 

may have been producing Vtg in vivo, and this production continued in vitro by the liver tissue 

even when it was not exposed to E2. For this female, the antibody did detect putative Vtg 

component proteins in the experimental culture media samples as well. A signal around 50 kD 

was detected in the experimental culture media samples containing 3, 300, and 30,000 pg/mL E2. 

However, because there was some evidence of in vivo Vtg production by the liver of this female, 

it cannot be confirmed whether any Vtg produced in the experimental samples was the result of 

exposure to E2 or was simply Vtg production continuing to occur naturally in vitro. 
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 The antibody did detect other proteins within the culture media samples from the four 

other females and one male that were assayed. Vtg itself was not detected in any of these 

samples, which could be due to protein degradation during the culture period or the processing of 

samples. The most commonly detected protein in the experimental culture media samples had a 

molecular weight around 50 kD; this protein could be indicative of Vtg degradation, particularly 

as a protein of this molecular weight had previously been detected in some S. tiburo plasma 

samples that were not stored with aprotinin (see Figure 2, section 3.1). This protein was not 

detected in any of the control culture media samples containing 0 pg/mL E2. The protein was 

also not detected consistently across individuals at all concentrations of E2 that the liver tissue 

was exposed to, but the protein was detected in at least one experimental replicate for all assayed 

liver. This protein was detected in culture media containing 3 pg/mL for two of the maturing 

females (ST1921-1, Figure 16a; ST1929-12, Figure 16b), one of the mature females (ST1943-3, 

Figure 17b), and the immature male (ST1979-1, Figure 18). This protein was also detected in 

culture media containing 300 pg/mL E2 for both mature females (ST1933-3, Figure 17a; 

ST1943-3, Figure 17b) and in culture media containing 30,000 pg/mL E2 for the immature male 

liver (ST1979-1, Figure 18). Though the protein was not detected consistently across all in vitro 

cultures or across all concentrations of E2, its molecular weight suggests that its presence could 

be indicative of Vtg production by the S. tiburo liver in response to E2 stimulation. The presence 

of this protein in experimental culture media from a male S. tiburo further strengthens this 

assumption, as the male liver was not likely producing Vtg in vivo, so detection of Vtg or a Vtg 

breakdown protein in the culture media could only be due to production that occurred in vitro 

upon exposure to E2.  
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 The antibody also commonly detected a protein with a molecular weight just below 37 

kD in multiple culture media samples from both males and females (ST1929-12, Figure 16a; 

ST1979-1, Figure 18). This protein was detected not only in the experimental media containing 3 

– 30,000 pg/mL E2, but also within the control culture media containing 0 pg/mL E2. In females, 

this could be attributed to in vivo production of Vtg by the liver continuing once the liver was 

cultured. However, the protein was also detected within one replicate of control media for the 

male S. tiburo, which suggests that this protein, while it may have a sequence similar to Vtg, is 

not indicative of Vtg being produced by the liver. It is possible that this protein was being 

produced by the liver naturally in vitro, and that its production was unrelated to E2 stimulation. 

 A protein with a molecular weight between 50 – 75 kD was detected in one control 

culture media sample for a mature female (ST1943-3, Figure 17b, Lane 2). This female was 

confirmed to have ovulated and had fertilized eggs present within her uterus, but it is nonetheless 

possible that her liver was still producing small amounts of Vtg in vivo, and that this production 

continued in vitro even without exposure to E2 in the control sample. This protein was also 

detected within one culture media sample that contained 300 pg/mL E2 for that female (Figure 

16b, Lane 9). However, within the culture samples from this female, there is still evidence of in 

vitro production of Vtg being stimulated by E2 exposure. The concentrations of putative Vtg 

breakdown proteins appear to be higher in the experimental culture media samples exposed to 

E2, based on the optical density of the signals between 37 – 50 kD detected in the experimental 

culture media samples, which is suggestive of Vtg production being stimulated to occur in vitro 

by exposure to E2. 
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Figure 16. Immunoblots of culture media collected from the liver cultures of three different S. 

tiburo females identified as likely maturing, but not yet reproductively active. The third anti-S. 

tiburo Vtg antibody was used for these immunoblots, diluted 1:2000. a) ST1921-1, collected 17 
May. b) ST1929-12, collected 23 May. c) 1943-1, collected 31 May. Lane 1: protein ladder 
(Precision Plus Dual Protein Color Protein Standard, Bio-Rad). Lanes 2-13: Replicates of culture 
media from liver exposed to the concentrations of E2 indicated on the figure. Lane 14: Plasma 
sample from the female whose liver was cultured. Lane 15: Positive control S. tiburo plasma 
(FBay3) from confirmed vitellogenic female.  
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Figure 17. Immunoblots of culture media collected from the liver cultures of two different S. 

tiburo females identified as mature; both females had fertilized eggs present within their uteri. 
The third anti-S. tiburo Vtg antibody was used for these immunoblots, diluted 1:2000. a) 
ST1933-3, collected 24 May. b) ST1943-3, collected 31 May. Lane 1: protein ladder (Precision 
Plus Dual Protein Color Protein Standard, Bio-Rad). Lanes 2-13: Replicates of culture media 
from liver exposed to the concentrations of E2 indicated on the figure. Lane 14: Plasma sample 
from the female whose liver was cultured. Lane 15: Positive control S. tiburo plasma (FBay3) 
from confirmed vitellogenic female.  
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Figure 18. Immunoblot of culture media collected from the liver culture of an immature male S. 

tiburo (ST1979-1, collected 14 June), using the third anti-S. tiburo Vtg antibody. Lane 1: protein 
ladder (Precision Plus Dual Protein Color Protein Standard, Bio-Rad). Lanes 2-13: Replicates of 
culture media from liver exposed to the concentrations of E2 indicated on the figure. Lane 14: 
Plasma sample collected from ST1979-1. Lane 15: Positive control S. tiburo plasma (FBay3) 
from confirmed vitellogenic female. 
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4. DISCUSSION 

 The overall goal of this study was to characterize the process of vitellogenesis in S. 

tiburo. Characterization of the process was accomplished by determining where Vtg is produced, 

when the protein is produced and present within the plasma, and how the hormones E2 and P4 

influence Vtg production. The liver was the expected site of Vtg production based on numerous 

previous studies on other organisms (Polzonetti-Magni et al., 2004; Romano et al., 2004). 

Immunohistochemistry using anti-S.tiburo Vtg antibodies was conducted on liver sections to 

confirm this expectation. Immunohistochemistry was also conducted on ovary sections to test for 

evidence of Vtg production by the granulosa cells of ovarian follicles. Temporal analysis of Vtg 

presence was accomplished by testing S. tiburo plasma samples from specimens obtained 

throughout the year for Vtg presence using immunoblotting. The hormonal regulation of Vtg 

synthesis primarily focused on the role of E2. First, immunohistochemistry was conducted to 

assess the presence of E2 receptors in liver hepatocytes. Plasma concentrations of E2 were then 

compared to Vtg presence in the plasma throughout the year. Finally, slices of liver were 

exposed in vitro to various concentrations of E2 to test for induction of Vtg synthesis. The role of 

P4 on Vtg synthesis was also investigated by assessing the presence of P4 receptors in liver 

hepatocytes and comparing P4 concentrations to Vtg presence in the plasma. 

 The liver was confirmed as the likely site of Vtg synthesis in S. tiburo using 

immunohistochemistry; reactivity was observed within liver hepatocytes, with the strongest 

reactivity observed in the sinusoids and around the ducts of the liver. These observations suggest 

that Vtg is likely produced within the hepatocytes and then immediately released into the 

bloodstream, where the protein then travels to the ovaries and is incorporated by growing 

oocytes. This result was expected, as it is well established that the liver is where Vtg is 
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synthesized in other organisms (Polzonetti-Magni et al., 2004). Additionally, the liver was 

confirmed as the likely primary site of Vtg synthesis in another viviparous elasmobranch, the 

aplacental spotted ray (Torpedo marmorata) using immunohistochemistry and in situ 

hybridization (Prisco et al., 2008). 

 It has also been proposed that the granulosa cells of ovarian follicles synthesize Vtg in T. 

marmorata (Prisco et al., 2004). Positive immunoreactivity was observed using anti-Vtg 

antibodies within the granulosa cells, and the authors also conducted in situ hybridization using a 

probe developed against Vtg cDNA from the zebrafish (Danio rerio). That probe hybridized 

within the granulosa cells of both previtellogenic and vitellogenic follicles; hybridization was 

also observed within the zona pellucida. While these results do provide evidence that the 

granulosa cells may produce Vtg, it should be noted that the cDNA probe used was not 

developed specifically against the sequence of Vtg in T. marmorata. The sequence of Vtg is 

known to vary significantly between organisms because the protein is nutritional rather than 

regulatory (Denslow et al., 1999). Additionally, a study that cloned Vtg cDNA from the cloudy 

catshark (Scyliorhinus torazame) found significant differences between the sequences of 

elasmobranch and teleost Vtg, and actually classified the cDNA sequence of S. torazame Vtg as 

more closely related to the sequences of Vtg found in amphibians and birds than sequences 

found in fish (Yamane et al., 2013). Thus, the binding of D. rerio Vtg cDNA to mRNA within 

the granulosa cells of T. marmorata may not truly indicate the presence of T. marmorata Vtg 

mRNA within these cells, but there nevertheless is evidence to support  the hypothesis that 

granulosa cells produce Vtg. 

 To address this question, this study conducted immunohistochemistry on S. tiburo 

ovarian follicles of various developmental stages using an anti-S. tiburo Vtg antibody. Positive 
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immunoreactivity was observed within the granulosa cells of previtellogenic follicles and of 

vitellogenic follicles throughout all stages of vitellogenesis. Positive immunoreactivity was also 

observed inside the ooplasm in a thin layer just inside the zona pellucida in vitellogenic follicles. 

These results match the findings of Prisco et al. (2004) in T. marmorata, but do not by 

themselves confirm that granulosa cells produce Vtg in S. tiburo. After Vtg has been synthesized 

in the liver and travels to the ovaries, the protein must pass through the layers of the ovarian 

follicle, including the theca and granulosa cells, before accumulating within the ooplasm 

(Polzonetti-Magni et al., 2004). Thus, detection of Vtg within the granulosa cells could be 

explained as the protein passing through these cells before being incorporated by the oocyte. The 

thin layer of positive reactivity inside the zona pellucida could also be explained as Vtg entering 

the ooplasm before forming distinct yolk platelets. Further exploration is needed to determine if 

Vtg presence within granulosa cells is due to the protein being synthesized in these cells or 

travelling through the cells on its way to the oocyte; in situ hybridization using a cDNA probe 

against S. tiburo Vtg mRNA should be conducted to answer this question. 

 In regards to the temporal cycle of Vtg production, this study ultimately determined that 

Vtg is primarily produced in the month of March in S. tiburo, with production continuing into 

April and May for some individual females. The amount of Vtg produced appeared to decrease 

into April and May, with lower amounts of Vtg also found within the plasma of three individuals 

collected later in March (Figure 6). Previous studies on S. tiburo reproduction support this 

finding, with the observation of large vitellogenic ova present within the ovaries in March 

(Parsons, 1993). Some geographical variation has been observed in the timing of S. tiburo 

reproductive events, which explains why some females may still produce Vtg in April and even 

into May while other females have already ovulated and no longer produce Vtg in these months 
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(Manire et al., 1995; Parsons 1993). Vtg was not produced for any females during the summer 

gestation period of S. tiburo in this study, as was expected. S. tiburo females do not undergo 

gestation and follicular development concurrently, and levels of E2 remain low throughout the 

gestation period (Gonzalez De Acevedo, 2014; Manire et al., 1995). 

 A new finding of this study was the fact that Vtg was produced as early as October for 

one female, as well as in the month of December for two females. A putative Vtg component 

protein (around 70 kD) was detected in the plasma of some female S. tiburo in late August, 

suggesting that Vtg was likely present in the plasma at this time, but the protein likely degraded 

into its component parts during plasma storage. Overall the results of this study suggest that Vtg 

production may begin as early as August (after females in some populations have given birth) 

and continue throughout the fall, winter, and spring until ovulation occurs in March, April, or 

May. The lack of Vtg detection in a large number of females in August and September may 

again be attributed to geographical variation in S. tiburo reproduction, as it has been observed 

that females in south Florida give birth earlier in the year than females in northern Florida 

(Lombardi-Carlson et al., 2003). Vtg production does not appear to begin until parturition has 

occurred, as no Vtg was detected in gravid females and all individuals sampled in August were 

identified as postpartum. The onset of Vtg synthesis thus likely varies between populations 

depending on when parturition occurs. 

 Investigation of the hormonal factors regulating Vtg synthesis began by testing for the 

presence of receptors for E2 and P4 within liver hepatocytes. Immunohistochemistry confirmed 

that both ER-α and PR are present within the liver of S. tiburo. It was previously confirmed that 

Vtg is synthesized within the liver of S. tiburo, so the presence of ERs and PRs within the organ 
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leads to the hypothesis that both hormones may play a role in regulating Vtg synthesis either by 

stimulating, inhibiting, or terminating the process. 

 A comparison of the temporal Vtg cycle with the temporal E2 cycle in S. tiburo suggests 

that E2 likely stimulates Vtg production, as has been found for all other organisms studied to 

date. It was observed that concentrations of E2 were highest during April. The highest 

proportions of females were producing Vtg in March and April; notably high E2 concentrations 

were also observed in March. Previous studies have identified high concentrations of E2 in post-

ovulatory female S. tiburo, which may account for the high E2 concentrations in April not 

coinciding with a high number of females still producing Vtg during this month (Gonzalez De 

Acevedo, 2014; Manire et al., 1995). Concentrations of E2 remained low throughout the summer 

gestation period, during which time Vtg was also not detected in the plasma of any female S. 

tiburo. However, E2 concentrations began to increase as early as August for some females, and 

this increase continued throughout the fall and winter, with E2 concentrations in December 

similar to concentrations that were found in March. Previous studies also identified high 

concentrations of E2 during the winter months, but attributed these higher concentrations 

perhaps as evidence of the hormone playing a role in sperm storage during this time period 

(Gonzalez De Acevedo, 2014; Manire et al., 1995). The findings of this study suggest that the 

increase in plasma E2 that occurs during the fall and winter also likely stimulates Vtg synthesis 

to begin, as Vtg was found to be present in the plasma of females in October and December, 

while Lv was detected in the plasma of females as early as August. 

 Further investigation into the role that E2 has in regulating Vtg synthesis was conducted 

by exposing slices of liver directly to various concentrations of E2 in vitro. The methods for this 

in vitro assay were based on a previous study which exposed precision-cut liver slices from the 
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rainbow trout (Oncorhynchus mykiss) to E2 and measured Vtg production. That study detected 

Vtg in both liver homogenates and culture media after only 24 hours, with concentrations 

increasing over time (Shilling and Williams, 2000). Previous studies have also exposed 

hepatocytes to E2 and measured Vtg production (Maitre et al., 1986; Navas and Segner, 2006; 

Pelissero et al., 1993; Smeets et al., 1999). However, the use of precision-cut liver slices allows 

for a more realistic model of what would occur in vivo as the structure of the whole organ, along 

with any cell-to-cell interactions, is maintained in the culture environment (Shilling and 

Williams, 2000).  

 For this study, precision-cut slices of S. tiburo liver (~1 mm) were exposed in vitro to E2 

for a total of 72 hours; after this time both the liver and culture media were collected and 

analyzed. Immunoblotting was conducted to determine if Vtg was present either within 

homogenates of the liver or within the culture media. Vtg was not detected within the liver 

homogenates; this was in contrast to the aforementioned previous study, which detected Vtg 

within homogenates of O. mykiss liver after only 24 hours of exposure to E2 (Shilling and 

Williams, 2000). Still, the lack of Vtg detection within liver homogenates was not entirely 

unexpected, as Vtg is secreted by the liver and would likely then be present within the culture 

media. It was expected that Vtg would be present within the culture media of liver exposed to 

concentrations of E2 above 3 pg/mL, and that the concentration of Vtg present in the culture 

media would increase as the E2 concentration increased; no Vtg detection was anticipated in 

culture media of liver exposed to 0 pg/mL. 

 Ultimately, there is some evidence to suggest that exposure to E2 in vitro stimulated liver 

to produce Vtg. A protein with the molecular weight of Vtg was not detected within any of the 

experimental culture media samples, though Vtg did appear to be present in the control culture 
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media from one maturing female (ST1943-1). This female also had a low concentration of Vtg 

present within her plasma, so it is possible that the liver of this maturing female was still 

producing Vtg in vivo in May, and this production continued in vitro even without E2 exposure. 

For the other four females and one male whose liver was assayed, there was some evidence of 

Vtg production occurring when the tissues were exposed to E2 based on the presence of a 

putative Vtg breakdown protein. This protein, around 50 kD, was detected in experimental 

culture media samples from both male and female liver and was not detected within any of the 

control culture media samples. Presence of this 50 kD protein within the culture media thus 

provides some evidence that liver tissue possibly produced Vtg upon exposure to various E2 

concentrations in vitro, though Vtg production did not occur consistently in all replicates of the 

experimental samples.  

 A protein between 50 – 75 kD was detected in one control culture media sample for the 

mature female identified as ST1943-3. Though this female was confirmed to have fertilized eggs 

within her uteri, it is still possible that her liver was producing small amounts of Vtg in vivo 

which continued in vitro even in the control media. For this female there was still evidence of 

Vtg production being stimulated by E2 exposure, as the concentrations of another putative Vtg 

breakdown protein (around 50 kD) appeared higher in the experimental media containing E2 

based on the optical density of the signals.  

 The final protein detected commonly within the culture media samples had a molecular 

weight just below 37 kD. This protein was detected in some experimental culture media, but was 

also detected in control media for both female and male S. tiburo. Males do not naturally produce 

Vtg, so it could not be determined if this 37 kD protein was indicative of Vtg production, or if 
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the protein was produced naturally by the liver in vitro, unrelated to E2 exposure, and had a 

sequence similar enough to Vtg to allow the antibody to bind.  

 Ultimately, analysis of in vitro Vtg production focused solely on assessing when the 50 

kD protein was identified within culture media, as this protein was only found in experimental 

culture media when the liver tissue was exposed to E2. This protein was not detected consistently 

but was detected in at least one replicate of media containing 3, 300, and 30,000 pg/mL E2 for 

all assayed liver, from both male and female specimens. Lack of consistent detection of this 

protein, and thus lack of consistent Vtg production by the liver in vitro could be due to tissue 

degradation or death during the culture period, or a delayed response of the liver to E2 

stimulation. In initial in vitro assays, liver tissue was cultured for 24, 48, and 72 hours; Vtg was 

potentially detected after only 24 hours for one sample, but no Vtg detection occurred for any 

samples cultured for 48 hours. In O. mykiss, Vtg was detected in an ELISA after liver tissue was 

exposed to E2 for only 24 hours, with concentrations of Vtg increasing with increased culture 

time and with increased concentrations of E2 (Shilling and Williams, 2000). However, it has 

been noted that there are significant differences between Vtg production in bony fishes and 

elasmobranchs. Perez and Callard (1993) noted that concentrations of Vtg found in the plasma of 

L. erinacea were significantly lower than concentrations found in bony fishes. These lower 

concentrations may be due to the differing reproductive strategies between the two groups, as 

follicular growth occurs over a longer time period in elasmobranchs in comparison to bony fishes 

(Perez and Callard, 1993).  

 These observations lead to two possibilities. It is possible that S. tiburo liver was 

producing Vtg in vitro, but concentrations were too low for detection within culture media after 

only 72 hours. Alternately, it is possible that elasmobranch liver does not respond immediately to 
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E2 stimulation. Prior studies also noted complications with inducing Vtg protein synthesis in S. 

tiburo (Gelsleichter, unpublished data). In particular, those studies found no evidence of Vtg 

protein induction in male S. tiburo experimentally treated with E2 over 2-8 week periods, despite 

the ability to induce hepatic Vtg mRNA expression within 48 h of a single E2 injection. This 

suggests that there may be a significant delay in production of Vtg by the liver after E2 exposure 

in S. tiburo. This hypothesis could be further supported by the fact that E2 concentrations begin 

to increase in August and reach high concentrations in December. S. tiburo liver thus appears to 

be exposed to high E2 concentrations in vivo for a prolonged time period, but Vtg production 

appears to peak in March, indicating that a prolonged exposure to E2 may be necessary to induce 

production of Vtg. Analysis of future in vitro liver assays may thus instead require assessment of 

differing levels of Vtg mRNA expression in liver exposed to various E2 concentrations using 

qPCR techniques, as actual production of the protein may occur over a longer time period than 

liver tissue can be kept viable in culture media.  

 While it has been clearly established by previous studies that E2 stimulates Vtg synthesis 

by the liver, fewer studies have investigated the role that P4 might play in regulating Vtg 

synthesis. It has been proposed that P4 inhibition of vitellogenesis in viviparous organisms may 

have ultimately led to the evolution of placentation in eutherian mammals and the loss of 

vitellogenin altogether, as P4 plays a critical role in maintaining pregnancy in eutherian 

mammals (Callard et al., 1992; Rothchild, 2003). Several studies have found evidence of P4 

slowing or terminating vitellogenesis in both oviparous and viviparous organisms. Evidence 

suggests that P4 injection delays Vtg synthesis in the oviparous turtle (Chrysemys picta), though 

this delay depends on the dose of P4 administered (Ho et al., 1982). In an oviparous 

elasmobranch, L. erinacea, males injected with P4 after being injected with E2 were found to 



56 
 

have significantly lower concentrations of Vtg present in their plasma when compared to males 

injected only with E2 for the same time period (Perez and Callard, 1992). In viviparous 

organisms, no direct experimentation has been conducted with P4 injections, but a general 

relationship between high plasma P4 concentrations and the termination of vitellogenesis has 

been noted. In general, viviparity is associated with a postovulatory rather than preovulatory 

increase in P4 secretion, which has previously been noted for S. tiburo (Callard et al., 1992; 

Gonzalez De Acevedo, 2014). In a viviparous snake (Vipera aspis), P4 concentrations rapidly 

increase towards the end of vitellogenesis (Bonnet et al., 2001). For viviparous elasmobranchs, 

including the spiny dogfish (S. acanthias) and spotted ray (T. marmorata), researchers have 

noted that high plasma P4 concentrations coincide with the absence or diminished presence of 

Vtg in the plasma (Callard et al., 1991; Prisco et al., 2008). For T. marmorata, it was observed 

that P4 concentrations increased at the time of ovulation, and continued to increase throughout 

gestation.  It was further observed that pregnant T. marmorata did have vitellogenic follicles 

within their ovaries, but their growth was arrested. This suggests that the high P4 levels during 

pregnancy may inhibit Vtg synthesis by the liver (Prisco et al., 2008).  

 The present study identified P4 receptors within S. tiburo liver hepatocytes, which 

indicates P4 may play a role in regulating Vtg synthesis. However, plasma concentrations of P4 

did not vary significantly by month in S. tiburo. There was a slight peak in the month of May, as 

well as generally higher levels of P4 in the months of March and April. These results are 

supported by a previous finding that P4 levels are higher in preovulatory, ovulatory, and 

postovulatory female S. tiburo compared to during gestation, with the highest concentrations 

detected in postovulatory females (Gonzalez De Acevedo, 2014). The highest P4 concentrations 

were observed in May, and it appeared that Vtg production had ceased for the majority of 
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females during this month; this result suggests that P4 may play a role in terminating Vtg 

production. Relatively high concentrations of P4 were also observed in March and April, and 

fewer females were observed to produce Vtg in April, which again could suggest that P4 might 

slow Vtg production. The high number of females with Vtg present in their plasma in March 

despite relatively high P4 concentrations could be explained by Vtg remaining in the plasma 

even after P4 has perhaps stimulated the liver to cease the protein’s production. It should also be 

noted that the P4 concentrations in March and April were similar to what was observed in 

October and December, when P4 did not appear to be inhibiting Vtg production. It is possible 

that the effect of P4 on Vtg production varies depending on what P4 receptor is more highly 

expressed, as it was noted in a previous study on the painted turtle (C. picta) that the effect of P4 

on vitellogenesis varied depending on which PR isoforms was more highly expressed (Custodia-

Lora et al., 2004). Ultimately, initial evidence suggests that P4 may play a role in slowing Vtg 

production in S. tiburo, with higher P4 concentrations coinciding with an apparent break in the 

protein’s production. However, further investigation is certainly needed into the role of P4 on 

Vtg production in this species. Clarification of the monthly P4 cycle in S. tiburo is necessary to 

determine correlations between P4 concentrations and Vtg presence in the plasma. Additionally, 

it would be beneficial to expose slices of S. tiburo liver to P4 in vitro after exposure to E2 to 

determine if P4 inhibits Vtg synthesis.  

 A secondary goal of this study was to use the antibodies and methods developed to detect 

Vtg in the plasma of other elasmobranch species. The antibodies detected a protein with the 

expected molecular weight of Vtg (~205 kD) within the plasma of four other elasmobranch 

species: C. limbatus, C. carcharias, C. acronotus, and C. longimanus. All three antibodies also 

bound to other putative Vtg component proteins present within the plasma of other elasmobranch 
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species, which may be indicative of Vtg presence within the plasma. These putative Vtg 

component proteins were detected in the plasma of G. cuvier, C. granulosus, D. sabina, and P. 

pectinata. The majority of these plasma samples were not stored with aprotinin, so the possibility 

for protein degradation existed. It is thus likely that the antibodies could detect evidence of Vtg 

production within the plasma of these other species, but detected component proteins rather than 

the large Vtg molecule due to degradation.   

 Nevertheless, the detection of Vtg and putative component proteins of Vtg within the 

plasma of other elasmobranch species suggests that the methods developed in this study could be 

applicable to characterizing vitellogenesis in other elasmobranch species. It may still be ideal to 

develop antibodies specifically against the Vtg sequence in each species in order to reduce 

binding to other proteins and allow for definitive detection of Vtg in the plasma. However, the 

methods developed for this study will certainly be applicable to other elasmobranch species, 

allowing for the development of a nonlethal method for determining reproductive periodicity by 

coupling ultrasonography with testing for Vtg presence in the plasma. Development of such a 

nonlethal method will be important for elasmobranch conservation and the establishment of 

potentially more accurate population growth models for various species, such as C. acronotus. 

Preliminary evidence suggests that the Atlantic population of C. acronotus may contain both 

annually and biennially reproducing females, but current management practices consider the 

population to be biennially reproducing. Accurate assessment of reproductive periodicity is 

needed in order to assess the reproductive output and assess population growth potential when 

developing  management practices for C. acronotus and other elasmobranch species, and the 

methods developed through this study will allow those assessments to be conducted in a non-

lethal way.  
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 Ultimately, this study determined the temporal cycle of Vtg production in S. tiburo. The 

highest number of Vtg positive females occurred in March, with Vtg production continuing into 

April and May for some females likely due to individual and geographical differences in S. 

tiburo reproductive cycle. Evidence was also found of Vtg production beginning as early as 

August for some female S. tiburo, with production continuing throughout the fall and winter time 

period. Previous studies stated that follicular development (and thus Vtg production) occurred in 

the spring for S. tiburo, but the present results suggest Vtg production begins much earlier, likely 

immediately following parturition in the fall. Concentrations of Vtg were determined to be 

highest in March based on estimates of optical density, with lower concentrations of Vtg found 

in the plasma in April and May as well as during the fall and winter. The liver was confirmed to 

be the site of Vtg synthesis in S. tiburo based on immunohistochemistry. Further investigation is 

needed to answer the question of whether granulosa cells produce Vtg; Vtg immunoreactivity 

was observed but cannot conclusively be used to state that the cells produce rather than store 

Vtg. Correlations between high plasma E2 concentrations and Vtg presence in the plasma 

provide evidence that E2 likely stimulates Vtg production, but in vitro liver assays were unable 

to conclusively confirm this hypothesis. There was some evidence of Vtg production by liver 

tissue upon exposure to E2, but only putative Vtg component proteins were detected in 

experimental culture media, and these proteins were not detected consistently across replicates of 

the assay. Future in vitro assays may need to occur for longer periods of time, and assessments of 

mRNA expression levels in the liver may provide a more decisive answer to how E2 influences 

hepatic Vtg production in elasmobranchs. Preliminary evidence also suggested that P4 plays a 

role in inhibiting Vtg synthesis, with levels of P4 increasing towards the end of vitellogenesis in 

March, April, and May in individual females. However, future experimentation is needed to 
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confirm that P4 does slow or terminate Vtg synthesis in vitro. The methods developed for this 

study were also able to detect Vtg within the plasma of other elasmobranch species. Thus, 

detection of Vtg within the plasma can develop into a nonlethal method for determining when 

follicular development occurs. Together with ultrasonography, such a method would help clarify 

reproductive periodicity for some elasmobranch species, allowing for better estimates of total 

reproductive output and population growth when setting management decisions for 

elasmobranch species.  
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