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Abstract:  In the framework of Black-Scholes-Merton option pricing models, by 

employing exotic options instead of plain options or warrants, this paper presents an 

equivalent decomposition method for usual Callable Convertible Bonds (CCB). Furthermore, 

the analytic valuation formulae for CCB are worked out by using the analytic formulae for 

those simpler securities decomposed from CCB. Moreover, this method is validated by 

comparing with Monte Carlo simulation. Besides, the effects of call clauses, coupon clauses 

and soft call condition clauses are analyzed respectively. These give lots of new insights into 

the valuation and analysis of CCB and much help to hedge their risks.  
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1. Introduction 

Convertible bonds have been playing a major role in the financing of companies 

because of their appealing hybrid feature that provides investors with both the 

downside protection of ordinary bonds and the upside return of equities. In practice, 

there are multifarious convertible bonds with diversified additional clauses, such as 

call clauses, put clauses, reset clauses, screw clauses and negative pledge clauses and 

so on. Although convertible bonds in the developed derivative markets such as 

American derivative market are generally very complex, those in the developing 

derivatives markets such as Chinese derivative market are relative simple. Anyway, 

callable convertible bonds are the most popular. 

There are many literatures on the valuation of the callable convertible bonds. 

The Black-Scholes-Merton option pricing theory has become the definitive theoretic 

foundation for valuing the convertible bonds since the pioneer paper by Ingersoll 

(1977a). For the first time, he obtained the analytic formulae for the callable 

convertible bonds by employing the theoretically reasonable one-factor (i.e. firm 

value) no-arbitrage model. From then on, the theoretical equilibrium price of the 

callable convertible bond is defined as the one that offers no arbitrage opportunity to 

either the holders or the issuers, on the assumption that at each point in time the 

issuers execute the optimal call policy that maximizes the common shareholder’s 

wealth (i.e. minimizes the value of this convertible bond) and that the holders execute 

the optimal conversion strategies that maximize the value of this convertible bond. 

The vast majority of subsequent research has focused on either extending 
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Ingersoll’s work to more complicated convertible bonds, or further relaxing his “ideal 

conditions”. The two-factor (i.e. firm value and interest rate) no-arbitrage model was 

presented firstly by Brennan and Schwartz (1980) and then developed further by 

Buchan (1997), Carayannopoulos (1996) and Lvov et al. (2004). Although these 

models based on firm value are theoretically appealing, they are impractical because 

they involve some unobservable parameters (notably, the volatility of the firm value). 

The more practical one-factor (i.e. stock price) no-arbitrage model was given 

for the first time by McConnell and Schwartz (1986). However, in order to capture 

default risk of convertible bonds, their model had to adopt the credit spread approach 

that would necessarily result into the theoretic inconsistence because a convertible 

bond as a kind of hybrid derivatives consists of a debt part that is subject to default 

risk and an equity part that is not. This theoretic inconsistence was reduced greatly by 

Goldman Sachs (1994) and Tsiveriotis and Fernandes (1998). Subsequently, the more 

reasonable two-factor (i.e. stock price and interest rate) no-arbitrage model was 

proposed firstly by Cheung and Nelken (1994) and developed further by introducing 

more reasonable interest rate models (Ho and Pfeffer, 1996; Yigitbasioglu, 2001).  

Recently, the reduced-form approach has been adopted to consider default risk 

of the convertible bonds (Davis and Lischka, 1999; Takahashi et al. 2001; Ayache, 

Forsyth and Vetzal, 2003; Yigitbasioglu and Alexander, 2004, Liao and Huang, 2006). 

To sum up, with the development of these models, the pricing results have become 

more and more reasonable and accurate, and the mean of prediction errors can be less 

than 5% (Barone-Adesi, Bermudez and Hatgioannides, 2003). 
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However, these models above could not provide the investors with enough help 

to deeply understand the value components of the callable convertible bonds and the 

effect of every kind of typical clauses, and to conveniently replicate them so that their 

risk can be effectively hedged. Furthermore, solving these models generally has to 

adopt intricate numerical procedures that are very difficult for investors, especially in 

developing derivative markets. Obviously, those problems will be solved easily as 

long as we are able to completely decompose the callable convertible bonds into 

simple tradable securities in the actual market.  

Since 1960s, researchers have attempted to reasonably decompose the 

convertible bonds into simple tradable securities. Baumol, Malkiel and Quandt (1966) 

proposed that a non-callable convertible bond could be regarded either as its 

corresponding ordinary bond (with the same principal and coupons and maturity) with 

a detachable call option struck at the value of this ordinary bond, or as stocks plus a 

put option struck at the value of this ordinary bond, which is greater. However, in 

light of later research, their conclusion is demonstrably incorrect. Ingersoll (1977a), 

under his “ideal conditions”, proved that a non-callable convertible bond had the same 

value as its corresponding ordinary bond plus an attached call warrant, and obtained 

its analytic valuation formula. Nyborg (1996) extended his decomposition by 

allowing the underlying stock to pay dividends and the capital structure to be more 

complex. However, both Ingersoll and Nyborg viewed the convertible bonds as 

contingent claims on the firm value. This makes parameter estimation very difficult 

since not all of firm assets are tradable. Connolly (1998, chapter 8) viewed them as 
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derivatives on the underlying stock price, and completely decomposed a non-callable 

convertible bond into its corresponding ordinary bond and European call warrants. 

His decomposition is relative reasonable in principal. 

However, in the existing literatures, until now is there no method to completely 

decompose the callable convertible bonds into simple securities trading in the actual 

market. To all appearances, one callable convertible bond can be directly decomposed 

into three simpler securities: one ordinary bond, one call option (i.e. the holders’ 

convertible option) and another call option (i.e. the issuers’ callable option). However, 

this direct decomposition is not valid because of the unnegligible interaction between 

the exercising of the embedded call option. As a result, the difference between the 

value of this callable convertible bond and that of the portfolio of these three 

securities can not be ignored (Ingersoll, 1977a; Ho and Pfeffer, 1996).  

Ingersoll (1977a) proved that a callable convertible discount bond had the same 

value as its corresponding ordinary discount bond plus an attached stock call warrant 

minus an additional third term representing the cost of giving the callable option to 

the issuers. However, his model is impractical because he viewed the callable 

convertible discount bonds as contingent claims on the firm value. Ho and Pfeffer 

(1996) considered the callable convertible bonds as derivatives on the underlying 

stock price and presented that the value of one callable convertible bond was equal to 

its investment value (i.e. the value of its corresponding ordinary bond) plus its 

embedded warrant value minus its forced conversion value. However, they only 

demonstrated the importance of its forced conversion value and did not work out its 
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analytic valuation formula. 

In a word, none of these existing decompositions above is good enough to fully 

illustrate the value components of the callable convertible bonds and to conveniently 

replicate them so that their risk can be effectively hedged. As a matter of fact, due to 

the interactions between the embedded convertible option and the embedded callable 

option, one callable convertible bond is equivalent to its corresponding ordinary bond 

(with the same principal and coupons and maturity) plus an embedded peculiar 

path-dependent exotic option, whose exercise price and exercise time are 

indeterminate. Thus, inevitably, if a callable convertible bond is decomposed with 

only non-path-dependent plain options or warrants, there must be some unregular 

residual (e.g. the additional third term and the forced conversion value mentioned 

above) .  

In this paper, in the framework of Black-Scholes-Merton option pricing models, 

according as the risk-neutral valuation principle, by employing simple exotic options 

instead of plain options or warrants, an equivalent decomposition method is presented 

for the Callable Convertible Bonds (CCB) defined in Subsection 3.1. Using this 

method, one callable convertible discount bond can be completely decomposed into 

its corresponding ordinary discount bond and three kinds of simple exotic options: 

regular American binary calls with an immediately-made fixed payment, regular 

up-and-out calls and regular American binary calls with a fixed payment deferred 

until maturity. Similarly, one coupon-bearing callable convertible bond can be 

completely decomposed into its corresponding ordinary bond and five kinds of simple 
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exotic options. Intuitively and exactly, this method shows us the value components of 

CCB. Obviously it is very helpful to conveniently replicate CCB and effectively 

hedge their risks. 

Furthermore, the analytic valuation formulae for CCB are worked out by 

making full use of the existing analytic valuation formulae for these simple securities 

decomposed from CCB. At the same time, these analytic formulae for CCB are 

validated by comparing with Monte Carlo simulation. Without doubt, these formulae 

can produce pricing results and corresponding Greeks more conveniently and quickly, 

because they need not to consume huge computational resources necessary for 

numerical procedures. Besides, they can be used to analyze the effects of call clauses, 

coupon clauses and soft call condition clauses respectively. These obviously give a lot 

of new insights into the valuation and analysis of CCB. 

The remainder of this paper is organized as follows. In the next section, the 

assumptions and the rationale needed in this paper are explicated in detail. In Section 

3, we present an equivalent decomposition method for CCB. In Section 4, the analytic 

valuation formulae are worked out. Subsequently, Section 5 validates these formulae 

by comparing with Monte Carlo simulation. In Section 6, we further analyze in detail 

the effect of every kind of typical clauses respectively. Section 7 concludes the paper. 

2. Valuation framework 

2.1. Assumptions 

(a) The framework of Black-Scholes-Merton option pricing models is adopted. 
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It’s well-known that this framework is very rigorous and has been relaxed gradually in 

order to value stock options more exactly. However, this framework has still often 

been adopted in order to obtain analytic valuation formulae for those complex 

derivative securities. As we know, in the Black-Scholes-Merton framework, capital 

market is both perfect and efficient; the term structure of the risk-free rate of interest 

is flat; there is no riskless arbitrage opportunity; and the underlying stock price 

follows the diffusion process below. 

dS Sd SdWμ τ σ= +                                           (1) 

where the variable W  follows a standard Wiener process under the probability 

measure ; Ρ μ  and σ  are the expected rate of return and volatility of the 

underlying stock price respectively. Let  denote the continuous risk-free interest 

rate and assume that  is constant

r

r

                                                       

**. This assumption is relatively reasonable since 

both Brennan and Schwarz (1980) and Carayannopoulos (1996) concluded that, for 

the reasonable range of parameters, the addition of an interest rate factor did not 

significantly improve the model’s accuracy.  

(b) All investors prefer more wealth to less. That is to say, the holders of the 

convertible bonds always seek to maximize the price of the convertible bonds; the 

issuers of the convertible bonds, as the deputies of the shareholders, act at all times to 

maximize the shareholders’ wealth, i.e. the underlying stock price.   

(c) Both the holders and the issuers behave with symmetric market rationality. 

 
** Since Black and Scholes (1973) are only interested in the underlying asset price at maturity, they can allow  

to be known functions of time. However, CCB and exotic options involved in this paper depend in complex ways 

on the time path of the variable . Simply, we assume here that  is constant through time.  

r

r r
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This implies that both the holders and the issuers are completely rational and one part 

can expect the optimal behaviors of the other. The same assumption was adopted in 

many literatures such as Ingersoll (1977a) and Barone-Adesi and Bermudez and 

Hatgioannides (2003). 

(d) The potential dilution, which results from the possible conversion in the 

future, has already been reflected in the current underlying stock price. That is to say, 

the convertible bonds “can be valued without correction for dilution by using the 

volatility of the quoted share” (Connolly, 1998).  

2.2. The rationale 

According as the risk-neutral valuation principle, in the risk-neutral world, the 

expected return on all securities is the risk-free interest rate and the present value of 

any payoff can be obtained by discounting its expected value at the risk-free interest 

rate (Cox and Ross, 1976). Although the risk-neutral world is merely an artificial 

device for pricing derivative securities in the framework of the Black-Scholes-Merton 

option models, the valuation formulae obtained in the risk-neutral world are valid in 

all worlds. “When we move from a risk-neutral world to a risk-averse world, two 

things happen. The expected growth rate in the stock price changes and the discount 

rate that must be used for any payoff from the derivatives changes. It happens that 

these two changes always offset each other exactly (Hull, 2000, chapter 11).” 

As seen in Harrison and Kreps (1979), in the risk-neutral world, the diffusion 

process that the underlying stock price follows becomes 
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dS rSd SdWτ σ= +                                               (2) 

where the variable W  follows another standard Wiener process under the 

risk-neutral probability measure Ρ , which is equivalent to the probability measure Ρ . 

Obviously, in the risk-neutral world, the expected return rate becomes the risk-free 

interest rate, but the expected volatility has no change.  

3. Decomposing the callable convertible bond 

3.1. Definition 

In this paper, we focus on the usual Callable Convertible Bond (CCB) whose 

conversion feature and call feature are defined as follows. More specifically, (d1) they 

entitle the holders to convert them into common shares at the predetermined 

conversion price at any time in the future; (d2) they entitle the issuers to call them 

back at the predetermined call price at any time in the future; (d3) they have no call 

notice period (this limit is relative reasonable because the effect of the call notice 

period is relative little); (d4) both the conversion price and the call price are constant; 

(d5) they have the usual screw clauses, i.e. upon conversion the holders can not 

receive accrued interests any longer; (d6) they have no put clauses and reset clauses 

and other non-standard clauses. In Subsection 6.4, we will discuss further when they 

have the soft call condition clauses.  

Although CCB with these clauses are relative simple, their value components are 

very similar with those of more complex convertible bonds with various flavor and 

forms. Therefore, if we completely decompose this kind of CCB into simple securities 
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trading in the actual market, we will better understand the value components of CCB 

and better replicate them, even the more complex convertible bonds. 

Consider one CCB defined above. For convenience, we denote its face value by 

FB , conversion price by , call price by 1P cB , remaining time to maturity by . 

Then, its conversion ratio, i.e. the number of shares of the underlying common stocks 

into which it can be converted, is 

T

( )1FB P . 

Without loss of generality, assume that it still has  times payments of nominal 

coupons from now to maturity. Let 

N

( )1, ,i iτ = N  denote correspondingly the time 

span from now to the  ex-coupon date. Obviously, thi N Tτ = . Let  

and 

( )1, ,iC i N=

( 1, ,i )R i = N  denote respectively the coupon amount and the coupon rate at 

time iτ . In this way, obviously i FC B Ri= . And let ( );Pv T C  denote the present 

value of all coming nominal coupons from now to maturity and ( );Fv T C  denote the 

future value of them at maturity. Let ( );Pv Cτ ∗  denote the present value of all 

coming nominal coupons from now to the time τ ∗  at which the issuers will 

announce a call on their own initiative and ( ); ,Fv Cτ ∗  denote the future value of 

them at time τ ∗ .  

Besides, let , 0S Sτ  and  denote the underlying stock price respectively at 

current time zero, at any future time 

TS

τ  and at maturity T , where 0 Tτ< ≤ . Let 

 denote its theoretical value at current time zero and ( 0 , ;CCB S T C ) )( ;B T C  denote 

the theoretical value at current time zero of its corresponding ordinary bond (with the 

same principal and coupons and maturity), i.e. the so-called investment value.  
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3.2. Constraint Conditions 

Based on the assumption (d) above, the conversion of CCB would not result in 

the immediate reduction of the underlying stock price since the underlying stock price 

has already reflected the potential dilution. Thus, its conversion value at any time τ  

will be exactly equal to ( )1FB P Sτ . From McConnell and Schwartz (1986), its 

theoretical value must be at least as great as its conversion value and otherwise a 

riskless arbitrage opportunity exists. In addition, its so-called investment value can 

provide it with the downside protection at any time. Hence, the theoretical value of 

CCB at any time in the future before the call announcement and maturity must satisfy 

( ) ( ) ( )1, ; max , ; , FCCB S T C B S T C B P Sτ ττ τ− ≥ −⎡⎣ τ ⎤⎦                   (3) 

Following McConnell and Schwartz (1986) and Barone-Adesi, Bermudez and 

Hatgioannides (2003), due to the callable option, its theoretical value will not be 

possible to exceed the predetermined call price. 

( ), ; cCCB S T C Bτ τ− ≤                                            (4) 

Putting (3) and (4) together, we can obtain 

( ) ( ) ( )1max , ; , , ;F cB S T C B P S CCB S T C Bτ τ ττ τ− ≤ −⎡ ⎤⎣ ⎦ ≤               (5) 

If a call were to be announced at time τ ∗  prior to maturity, since no call notice 

period (see Subsection 3.1), the holders would have to choose immediately the more 

attractive of the two options: accepting the call price cB  in cash or obtaining the 

conversion value ( )1FB P Sτ
∗ , where Sτ

∗  denote the underlying stock price at τ ∗ .  

( ) ( )1, ; max ,      at callF cCCB S T C B P S Bτ ττ∗ ∗ ∗⎡ ⎤− = ⎣ ⎦                     (6) 

If no call were to be announced prior to maturity, according to the optimal 
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conversion strategies given in the next subsection, CCB would be held until maturity.  

At maturity, the holders can accept the balloon payment or convert to obtain the 

conversion value, which is greater. Due to the usual screw clauses, the balloon 

payment is F NB C+ . Therefore, the final condition is  

( ) ( )1,0; max ,T F TCCB S C B P S B C= ⎡⎣ F N+ ⎤⎦                           (7) 

3.3. Optimal conversion strategies 

The holders are entitled to convert one unit of CCB at any time in the future into 

( 1F )B P  units of shares of the underlying common stock. Based on the assumption (b) 

above, optimal conversion strategies of the holders are those strategies that maximize 

the theoretical value of CCB. 

Theorem 1:  Given the assumptions in the subsection 2.1, it is optimal for the 

holders never to voluntarily convert the callable convertible bond defined in the 

subsection 3.1 except at maturity or the call announcement. 

The proof of this theorem sees Appendix A. In fact, this theorem is similar with 

Ingersoll’s Theorem II (Ingersoll, 1977a) that “a callable convertible security will 

never be exercised except at maturity or call”. The only difference is that he viewed 

CCB as the contingent claims on the firm value, but we view CCB as derivatives on 

the underlying stock price.  

Prior to maturity, if a call were to be announced, from (6) the holders must 

choose immediately between accepting the call price in cash and converting. Based on 

the assumption (c) above, the holders can expect the optimal call policy of the issuers. 
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From Theorem 2 in the next subsection, it is optimal for the issuers to announce a call 

as soon as the underlying stock price reaches ( ) 1/c FS B Bτ
∗ = P , i.e. the conversion 

value reaches the call price, ( )1F cB P S Bτ
∗ = . Therefore, upon the call announcement, 

the holders would be indifferent between accepting the call price in cash and 

converting.  

If no call were to be announced prior to maturity, CCB would be held until 

maturity. At maturity, from the final condition (7), it is self-evident that the holders 

should voluntarily convert if the conversion value ( )1F TB P S  is greater than the 

balloon payment F NB C+ , i.e. the underlying stock price at maturity  is greater 

than the adjusted conversion price 

TS

( ) 11 N

F

C
B P+ , and otherwise claim the balloon 

payment. 

3.4. Optimal call policies 

The issuers are entitled to call CCB back at the predetermined call price at any 

time in the future. Based on the assumption (b), optimal call policies of the issuers are 

those policies that maximize the underlying stock price or, what is the same thing, 

minimize the theoretical value of CCB.  

Theorem 2:  Given the assumptions in the subsection 2.1, it is optimal for the 

issuers to announce to call back the callable convertible bond defined in the 

subsection 3.1 as soon as the underlying stock price reaches ( ) 1/c FS B Bτ
∗ = P . 

The proof of this theorem sees Appendix B. In fact, this theorem is similar with 

Ingersoll’s Theorem IV (Ingersoll, 1977a). Upon the call announcement, the holders 
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will be in the same way indifferent between accepting the call price in cash and 

converting, though he viewed CCB as the contingent claims on the firm value and we 

view CCB as derivatives on the underlying stock price,.  

In practice, however, the call policies executed by the issuers are not consistent 

with these theoretical works. The issuers generally delay announcing a call until the 

conversion value is substantially higher than the call price (Ingersoll, 1977b; 

Constantinides and Grundy, 1987). Some reasons are demonstrated by Jalan and 

Barone-Adesi (1995) and Ederington, Caton and Campbell (1997) and so on. In order 

to consider this inconsistency, following Barone-Adesi, Bermudez and Hatgioannides 

(2003), the restriction condition (4) can be modified as: 

                                              (8) ( ), ; cCCB S T C kBτ τ− ≤

where  is a conveniently-chosen factor bigger than one. In the same way, we can 

obtain that it is optimal for the issuers to announce a call as soon as the underlying 

stock price reaches . 

k

( ) 1
ˆ /c FS k B Bτ
∗ = P

3.5. The equivalent decomposition 

Concerned with the ending of CCB, based on the assumptions in the subsection 

2.1 and the optimal conversion strategies in the subsection 3.3 and the optimal call 

policy in the subsection 3.4, there exist only three possible cases. For convenience, let 

. ( )2 1/c FP S B B Pτ
∗= =

In the first case, the underlying stock price will reach  prior to maturity, and 

then the issuers will announce a call at once on their own initiative. At that time, the 

2P
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holders will be indifferent between accepting the call price in cash and converting. In 

the second case, the underlying stock price will not reach  prior to maturity but at 

maturity will exceed the adjusted conversion price 

2P

( ) 11 N

F

C
B P+ , and then CCB will be 

voluntarily converted at maturity by the holders on their own initiative. In the third 

case, the underlying stock price will neither reach  prior to maturity nor at 

maturity exceed the adjusted conversion price, and then CCB will be redeemed at 

maturity by the issuers. 

2P

As a matter of fact, since the critical stock price  can be regarded as the 

barrier of a regular American binary call with an immediately-made fixed payment, 

the payoff feature of CCB in the first case is similar with that to this regular American 

binary call. Furthermore, since the critical stock price  and the adjusted conversion 

price 

2P

2P

( ) 11 N

F

C
B P+  can be regarded respectively as the barrier and the exercise price of 

a regular up-and-out call, the payoff feature of CCB in the second case is similar with 

that to this regular up-and-out call. Therefore, firstly we can try to separate this 

American binary call and regular up-and-out call from CCB respectively. Finally, 

CCB can be completely decomposed into its corresponding ordinary bond and five 

kinds of simple exotic options through four steps as follows. 

At the first step, off one unit of CCB, we strip ( )1/FB P  units of long regular 

American binary calls, denoted as ( )0 2 1 2, ; ,iABC S T P P P− , whose fixed payment 

 is made immediately when the underlying stock price reaches the barrier 

 for the first time. 

( 2 1P P− )

2P

At the second step, from the rest, we separate ( )1/FB P  units of long regular 

 16



up-and-out calls, denoted as ( )( )0 , ; 1 ,N

F

C
BUOC S T P P+ 1 2 , whose barrier is also  

and whose exercise price is the adjusted conversion price 

2P

( ) 11 N

F

C
B P+ . 

After two steps above, the residual can be completely decomposed into three 

simpler securities. One is a short non-regular American binary call, denoted as 

, with a time-varying payment ( )( 0 , ; ; ,d
FABC S T B Fv T C P+ )2 ( );FB Fv T C+  

deferred until maturity when the underlying stock price reaches the barrier  for the 

first time. Another is a long non-regular American binary call, denoted as 

2P

( )( )0 , ; ; ,i
F 2ABC S T B Fv C Pτ ∗+ , with an immediately-made indeterminate payment 

( ;F )B Fv Cτ ∗+  when the underlying stock price reaches the barrier  for the first 

time. And the third one is its corresponding ordinary bond 

2P

( )0 , ;B S T C . 

In order to better demonstrate the value components of CCB, we continue the 

fourth step. In brief, ( )( 0 , ; ; ,d
FABC S T B Fv T C P+ )2  can be further completely 

decomposed into one regular American binary call with a fixed payment FB  

deferred until maturity, denoted as ( )0 , ; ,d
FABC S T B P2 , and one non-regular 

American binary call with a time-varying payment ( );Fv T C  deferred until maturity, 

denoted as ( )( )0 2, ; ; ,dABC S T Fv T C P . ( )( )0 2, ; ; ,i
FABC S T B Fv C Pτ ∗+  can be further 

completely decomposed into one regular American binary call with an 

immediately-made fixed payment FB , denoted as ( )0 , ; ,i
FABC S T B P2 , and one 

non-regular American binary call with an immediately-made indeterminate payment 

( );Fv Cτ ∗ , denoted as ( )( )0 2, ; ; ,iABC S T Fv C Pτ ∗ . 

  

Theorem 3:  Given the assumptions in the subsection 2.1, one unit of the 
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callable convertible bond defined in the subsection 3.1 has the same value at any time 

as the portfolio consisting of ( 1/F )B P  units of long regular American binary calls 

, ( )0 2 1 2, ; ,iABC S T P P P− ( )1/FB P  units of long regular up-and-out calls 

( )( 0 , ; 1 ,N

F

C
BUOC S T P P+ )1 2

)2

)2

)2

)2

, one unit of short regular American binary call 

, one unit of short non-regular American binary call 

, one unit of long regular American binary call 

, one unit of long non-regular American binary call 

( 0 , ; ,d
FABC S T B P

( )( 0 , ; ; ,dABC S T Fv T C P

( 0 , ; ,i
FABC S T B P

( )( 0 , ; ; ,iABC S T Fv C Pτ ∗ , and its corresponding ordinary bond ( )0 , ;B S T C . This 

can be shown as the following equation. 

( )
( ) ( ) ( ) ( )( )

( ) ( )
( )( ) ( )( )

( )

0

1 0 2 1 2 1 0 1

0 2 0 2

0 2 0 2

0

, ;

     / , ; , / , ; 1 ,

          , ; , , ; ,

          , ; ; , , ; ; ,

          , ;

N

F

Ci
F F B

i d
F F

i d

CCB S T C

2B P ABC S T P P P B P UOC S T P P

ABC S T B P ABC S T B P

ABC S T Fv C P ABC S T Fv T C P

B S T C

τ ∗

= − +

+ −

+ −

+

+

   (9) 

The proof of this theorem is proved in Appendix C. Obviously the equation (9) 

demonstrates fully the value components of CCB. It is worth noting that 

 and ( )( )0 2, ; ; ,dABC S T Fv T C P ( )( )0 , ; ;iABC S T Fv Cτ ∗  are non-regular American 

binary calls. Fortunately, both of them result only from coupon payments and the 

holders take the short position in the former and the long position in the latter. It turns 

out that their total contribution to the value of CCB is relatively small, especially at 

near maturity and low current stock price.  

In fact,  and ( )0 , ; ,i
FABC S T B P2 ( )1/FB P  units of  

may be merged into 

( )0 2 1 2, ; ,iABC S T P P P−

( )( 0 2 1, ; / ,i
FABC S T B P P P )2 , whose fixed payment ( )2 1/FB P P  
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is made immediately. Then, the equation (9) becomes 

( )
( )( ) ( ) ( )( )

( ) ( )( )
( )( ) ( )

0

0 2 1 2 1 0 1

0 2 0 2

0 2 0

, ;

     , ; / , / , ; 1 ,

         , ; , , ; ; ,

         , ; ; , , ;

N

F

Ci
F F B

d i
F

d

CCB S T C

ABC S T B P P P B P UOC S T P P

ABC S T B P ABC S T Fv C P

ABC S T Fv T C P B S T C

τ ∗

= +

− +

− +

2+

)

    (10) 

This equation implies that CCB can be completely replicated with only five kinds of 

exotic options and its corresponding ordinary bond.  

Let , then CCB retrogresses to the callable convertible 

discount bond. Accordingly, the equation (10) becomes 

(0 1, ,iC i N= =

( ) ( )( ) ( ) ( )
( ) ( )

0 0 2 1 2 1 0

0 2 0

, ;0 , ; / , / , ; ,

                             , ; , , ;0

i
F F

d
F

CCDB S T ABC S T B P P P B P UOC S T P P

ABC S T B P DB S T

= +

− +

1 2  (11) 

This equation implies that the callable convertible discount bond can be completely 

replicated with only three regular exotic options and its corresponding ordinary 

discount bond, .  ( )0 , ;0DB S T

Let , then , the callable option will never be exercised. Then, 

CCB retrogresses to the non-callable convertible bond. Accordingly, the equation (10) 

becomes  

cB →+∞ 2P →+∞

( ) ( ) ( )( ) (0 1 0 1 0, ; / , ; 1 , ;N

F

C
F BCB S T C B P W S T P B S T C= + + )               (12) 

where ( )( )0 , ; 1 N

F

C
BW S T P+ 1  denotes a European call warrant with the exercise price 

( ) 11 N

F

C
B P+  and the remaining time to maturity T . This equation implies that the 

non-callable convertible bonds can be completely replicated with European call 

warrants and its corresponding ordinary bond. In essence, this equation is the same as 

the one derived from the binomial tree method by Connolly (1998, Chapter 8).  
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4. Aanalytic valuation formulae 

For regular American binary calls and up-and-out calls mentioned above, their 

analytic formulae have already been obtained in the Black-Scholes-Merton 

framework by Rubinstein and Reiner (1991a and 1991b). For the non-regular 

American binary call ( )( 0 , ; ; ,i )2ABC S T Fv C Pτ ∗ , its analytic formula has been 

derived in Appendix D. In short, the analytic formulae for these securities 

decomposed from CCB can be directly expressed below.  

( ) ( ) ( )( ) ( ) ( )( ) ( )
2 2/ /

0 2 1 2 2 1 2 0 1 2 0 2, ; ,iABC S T P P P P P P S N a P S N aμ μ σ μ μ σ+ −⎡ ⎤− = − − + −⎢ ⎥⎣ ⎦
 (13) 

( )( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2

2 2

0 1 2

0 1 1 1

0 2 1 2

ˆ2 / 2 /
0 2 0 3 1 2 0 3

ˆ2 / 2 /
0 2 0 4 1 2 0 4

, ; 1 ,

1

    1

    / 1 /

    / 1 /

N

F

N

F

N

F

N

F

N

F

C
B

C rT
B

C rT
B

C rT
B

C rT
B

UOC S T P P

S N d Pe N d T

S N d Pe N d T

S P S N d Pe P S N d T

S P S N d Pe P S N d T

μ σ μ σ

μ σ μ σ

σ

σ

σ

σ

−

−

−

−

+

⎡ ⎤= − + −⎣ ⎦
⎡ ⎤− − + −⎣ ⎦
⎡ ⎤+ − − + −⎢ ⎥⎣ ⎦
⎡ ⎤− − − + −⎢ ⎥⎣ ⎦

+

+

 (14) 

( ) ( ) ( ) ( )
22 /

0 2 2 0 3, ; , /d rT
F FABC S T B P B e P S N a N aμ σ−

4
⎡ ⎤= − + −⎢ ⎥⎣ ⎦

          (15) 

( ) ( )( ) ( ) ( )( ) ( )
2 2/ /

0 2 2 0 1 2 0, ; ,i
F FABC S T B P B P S N a P S N aμ μ σ μ μ σ+ −⎡ ⎤= − +⎢ ⎥⎣ ⎦2−   (16) 

( )( ) ( ) ( ) ( ) ( )
22 /

0 2 2 0 3, ; ; , ; /dABC S T Fv T C P Pv T C P S N a N aμ σ
4

⎡ ⎤= − + −⎢ ⎥⎣ ⎦
  (17) 

( )( )
( ) ( ) ( )

( ) ( ) ( )

2

2

0 2

2 /
1 2 0 3 4

2 /1
2 0 5 6

, ; ; ,

/
        

         /
i

i

N
r

F i
i

ABC S T Fv C P

P S N a N a
B R e

P S N a N a

μ σ

τ

μ σ

τ ∗

−
−

=

⎧ ⎫⎧ ⎫⎡ ⎤− + −⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦= ⎨ ⎨ ⎬⎬
⎡ ⎤⎪ ⎪ − − + ⎪⎪−⎢ ⎥⎣ ⎦⎩ ⎭⎩ ⎭

∑
       (18) 

( )0
1

, ; i

N
rrT

F
i

iB S T C B e C e τ−−

=

= +∑                                    (19) 

where, 21
2rμ σ= − , 21

2ˆ rμ σ= + , ( )1 22 22rμ μ σ= + , 

 20



( ) ( )1 2 0ln / /a P S Tμ σ= +⎡ ⎤⎣ ⎦ T , ( ) ( )2 2 0ln / /a P S Tμ σ= −⎡ ⎤⎣ ⎦ T , 

( )( ) ( )1 0 1 ˆln / 1 /N Fd S C B P Tμ σ⎡ ⎤= + +⎡ ⎤⎣ ⎦⎣ ⎦ T , ( ) ( )2 0 2 ˆln / /d S P Tμ σ= +⎡ ⎤⎣ ⎦ T , 

( )( ) ( )2
3 2 0 1 ˆln / 1 /N Fd P S C B P Tμ σ⎡ ⎤= + +⎡ ⎤⎣ ⎦⎣ ⎦ T , ( ) ( )4 2 0 ˆln / /d P S Tμ σ= +⎡ ⎤⎣ ⎦ T , 

( ) ( )3 2 0ln / /a P S Tμ σ= +⎡ ⎤⎣ ⎦ T , ( ) ( )4 2 0ln / /a P S Tμ σ= −⎡ ⎤⎣ ⎦ T , 

( ) ( )5 2 0ln / /i ia P S μτ σ τ= +⎡ ⎤⎣ ⎦ , ( ) ( )6 2 0ln / /ia P S iμτ σ τ= −⎡ ⎤⎣ ⎦  and ( )N x  is the 

cumulative probability distribution function for a variable x  that is normally 

distributed with a mean of zero and a standard deviation of 1.0. 

By substituting the equations (13) through (19) into the equation (10), the 

analytic formula for CCB can be obtained easily. Despite the seemingly complex form, 

this formula is theoretically rigorous. Moreover, its derivation requires only the same 

preconditions about capital markets as the Black-Scholes option pricing formulae. 

Besides, it needs to estimate only σ .  

In practice, widespread use of this formula can be expected owing to its several 

obvious advantages below. First, it can be used to quickly estimate the value of CCB 

without consuming huge computation resource always required by numerical 

procedures. Second, base on it, the important Greeks (such as delta and gamma) for 

risk management can be directly calculated. Third, it may be used for sensitivity 

analysis that can give much help to design CCB. Four, it may also help investors seize 

possible riskless arbitrage opportunities between CCB and its duplicate portfolio 

mentioned in Theorem 3. 
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5. Comparison 

To assess the validity of the equivalent decomposition above, we have compared 

the pricing results from our analytic formula with those from Monte Carlo simulation 

(Boyle, Broadie and Glasserman 1997), which has been widely considered as an 

essential method in the pricing of daily monitored derivative securities. In this paper, 

Monte Carlo prices are computed by using 10,000 simulation paths on assumption 

that there are 252 closing prices per year, i.e. 1 / 252tΔ = . Moreover, the antithetic 

variable technique for variance reduction is adopted. 

Since our analytic formula is obtained in the continuous context, its pricing 

results for the daily monitored CCB consequentially includes continuity errors. In 

order to remove the continuity errors, we have adopted the continuity correction by 

Broadie, Glasserman and Kou (1997). Specifically, the original barrier  should be 

adjusted to be 

2P

(2 expP tβσ Δ ) , where 0.5826β ≈ .  

Without loss of generality, consider a numerical example of the daily monitored 

CCB: , $1000FB = ( )0.04 1, ,iR i N= = , 1 $100P = , $1200cB = , , 0.03r =

0.3σ = . Since both the current underlying stock price and the remaining time to 

maturity are state variables, comparisons are made in the following two different 

cases. In the first case, we set the remaining time to maturity to be five years and the 

current stock price to be variable within the reasonable range from $30 to $120, which 

is equally divided into 50 intervals, i.e. (120 30) / 50 $1.8SΔ = − = . In the second case, 

we set the current stock price to be $100 (at the money) and the remaining time to 

maturity to be variable within the range from zero to five years, which is equally 
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divided into 50 intervals too, i.e. 5 / 50 0.1τΔ = = . 

As illustrated in Fig. 1 and 2, the pricing results from our analytic formula with 

the continuity correction (denoted as “Solution with correction”) are extremely close 

to those from Monte Carlo simulation (denoted as “Simulation”). The mean of 

percentage errors relative to the results from simulation is only 0.03% and the largest 

does not exceed 0.08% in magnitude. Moreover, with the number of simulation paths 

increasing, the percentage errors become smaller. Hence, our analytic formula is 

indeed valid.  
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 Fig. 1 Comparison when the current stock price is variable  
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Fig. 2 Comparison when the remaining time to maturity is variable 

To illuminate the effect of continuity errors, the pricing results from our analytic 

formula without the continuity correction (denoted as “Solution without correction”) 

are also illustrated in Fig. 1 and 2. By comparison, it can be concluded that the 

uncorrected results are always greater than the corrected ones. Moreover, the closer 

the current stock price is to the barrier , the larger their differences are. The mean 

of the percentage errors is 0.16% and the largest reaches 0.38%. Hence, it is better to 

adopt the continuity correction when our analytic formula is applied to the discretely 

monitored CCB. 

2P

6. Analyzing the callable convertible bond 

6.1. Theoretical value and state variables 

On the assumptions stated in the subsection 2.1, the theoretical value of CCB 

depends on two state variables: its remaining time to maturity and the current 
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underlying stock price. By employing the same numerical example in the section 5, 

the three-dimensional graph (see Fig. 3) has been plotted to demonstrate the 

relationships between its theoretical value and two state variables. Fig. 3 shows 

clearly that its value increases with the current underlying stock price. Fig. 3 also 

shows that its value rupture downside shortly after the ex-coupon dates and increases 

gradually with the remaining time to maturity decreasing during the periods between 

two conjoint coupon dates except the last.  

In the same way, based on the formulae from (13) to (19), the three-dimensional 

graphs can be plotted easily to demonstrate the relationships between the value of 

each component of CCB and two state variables. 
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 Fig. 3 Relationships between ( )0 , ;CCB S T C  and two state variables 

6.2. The effect of coupon clauses 

Without doubt, coupon payments must add the theoretical value of CCB. 

However, the added value by coupon payments is always less than the present value 
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of all coming nominal coupons because of two reasons below. First, if CCB were to 

be called back prior to maturity, the nominal coupons hereafter would not be paid any 

more. Second, if it were to be voluntarily converted at maturity, due to the screw 

clauses the last nominal coupon would not be paid. In principal, the added value by 

coupon payments obviously should be the difference between  and 

. In terms of the equations (9) and (11), it can be expressed as  

( )0 , ;CCB S T C

( 0 , ;0CCB S T )

( ) ( ) ( )
( ) ( )( ) ( )( ){ }
( ) ( ) ( )( ){ }

0 0 0

0 2 0

1 0 1 2 0 1 2

, , ; , ;0

    ; , ; ; , , ; ; ,

         / , ; , , ; 1 ,N

F

d i

C
F B

CCBCoupon S T CCB S T C CCB S T

Pv T C ABC S T Fv T C P ABC S T Fv C P

B P UOC S T P P UOC S T P P

τ ∗

= −

= − −

− − +

2  (20) 

By employing the same example above, its three-dimensional graph (see Fig. 4) 

has been plotted too. Fig. 4 shows clearly that it decreases with the current stock price 

increasing. Moreover, the curves of the relationship between it and the remaining time 

to maturity look saw-toothed.  
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 Fig. 4 Relationships between ( )0 ,CCBCoupon S T  and state variables 

To further demonstrate the effect of coupon clauses, we have designed another 
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indicator that is the ratio of the added value by coupon payments to the present value 

of all coming nominal coupons. It can be expressed as 

( ) ( ) ( )0 0, ; , / ;Ratio S T C CCBCoupon S T Pv T C=                      (21) 

Similarly, we plot its three-dimensional graph (see Fig. 5). Fig. 5 clearly shows 

that it decreases from 1 to 0 with the current stock price increasing. This is because 

the higher the current stock price is, the more possible it is for the issuers to call CCB 

back prior to maturity. In addition, it increases gradually with the remaining time to 

maturity decreasing during the periods between two conjoint coupon dates except the 

last, but ruptures downside shortly after the coupon dates, especially near 

at-the-money.  
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Fig. 5 Relationships between ( )0 , ;Ratio S T C  and state variables  

6.3. The effect of call clauses 

Since the only difference between CCB and its corresponding non-callable 
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convertible bond rests with call clauses, the effect of call clauses can be obtained by 

subtracting the value of the former from that of the latter. In terms of the equations 

(10) and (12), its analytic formula can be derived below.  

( ) ( ) ( )
( ) ( )( ) ( )( )

( ) ( )( ) ( )

( )( ) ( )( )

0 0 0

1 0 1 0 2 1 2

1 0 1 2 0

0 2 0

, ; , ; , ;

       / , ; 1 , ; / ,

            / , ; 1 , , ; ,

            , ; , , , ; , ,

N

F

N

F

C i
F FB

C d
F FB

i d

Call S T C CB S T C CCB S T C

B P W S T P ABC S T B P P P

2

2

B P UOC S T P P ABC S T B P

ABC S T Fv C P ABC S T Fv C T Pτ ∗

= −

= + −

− + +

− +

       (22) 

Its three-dimensional graph has also been plotted (see Fig. 6) by employing the 

same example above. Fig. 6 clearly shows that it increases with the current stock price 

and/or the remaining time to maturity.  
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 Fig. 6 Relationships between ( )0 ,CCBCall S T  and state variables 

6.4. The effect of soft call condition clauses 

Commonly, CCB are issued with soft call condition clauses that restrict the 

issuers to exercise the callable option. In this section, we analyze the effect of the soft 
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call condition clauses where the issuers may call CCB back only if the underlying 

stock trades for no less than a predetermined trigger price (denoted as 2P ). Based on 

Theorem 2, 2P  must be greater than the critical stock price , i.e. (2 1/c FP S B B Pτ
∗= = )

( ) ( )1 2 1 2/ /F F cB P P B P P B> = , or else the issuers will not be restricted at all by the 

soft call condition clauses to exercise the callable option. Obviously, the soft call 

condition clauses benefit the holders. 

Based on the analysis in the subsection 3.3 and 3.4, since 2 2P P Sτ
∗> = , it is 

optimal for the issuers to announce a call immediately as soon as the underlying stock 

price reaches the trigger price 2P ; and then the holders must choose converting at 

once since at that time ( ) ( )1 2 1 2/ /F F cB P P B P P B> = . Except at the call 

announcement, the soft call condition clauses have no effect on the conversion 

optimal strategies in the subsection 3.3. Therefore, with the same proof as the 

equation (10), the analytic valuation formula for CCB with the soft call condition 

clauses can be expressed as. 

( )
( )( ) ( ) ( )( )

( ) ( )( )
( )( ) ( )

0 2

0 2 1 2 1 0 1

0 2 0 2

0 2 0

, ;

     , ; / , / , ; 1 ,

         , ; , , ; ; ,

         , ; ; , , ;

N

F

Ci
F F B

d i
F

d

CCB S T P

ABC S T B P P P B P UOC S T P P

ABC S T B P ABC S T Fv C P

ABC S T Fv T C P B S T C

τ ∗

= +

− +

− +

2+
    (23) 

In this way, the effect of the soft call condition clauses can be expressed as 

    ( ) ( ) ( )0 2 2 0 2 0 2, ; , , ; , ;CCBSoft S T P P CCB S T P CCB S T P= −               (24) 

Its three-dimensional graph has also been plotted (see Fig. 7) by using the same 

example above and setting 2 $130P = . Fig. 7 clearly shows that it increases with the 

current stock price and/or the remaining time to maturity. 
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Fig. 7 Relationships between ( )0 2 2, ; ,CCBSoft S T P P  and state variables  

7. Conclusion 

This paper presents an equivalent decomposition method for the callable 

convertible bonds (CCB) defined in Subsection 3.1, on the assumption that they are 

derivatives on their underlying stock prices according to Brennan and Schwarz (1980) 

and Carayannopoulos (1996). Using this method, the callable convertible discount 

bond can be completely replicated with its corresponding ordinary discount bond and 

three kinds of regular exotic options; the coupon-bearing callable convertible bond 

can be completely replicated with its corresponding ordinary bond and five kinds of 

exotic options. These are very helpful to understand the value components of various 

callable convertible bonds and to replicate them and hedge their risks.  

Furthermore, the analytic valuation formulae for CCB have been obtained and 

validated by comparing with Monte Carlo simulation. These formulae can save huge 

computational resources required by numerical procedures. Moreover, although these 
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formulae seem complicated, both the required assumptions about capital market and 

parameter estimations are the same as the Black-Scholes option pricing formulae. 

Therefore, widespread use of these formulae in practice would be expected, especially 

in the developing derivatives markets such as Chinese market. 

In addition, we analyze in detail respectively the effects of coupon clauses, call 

clauses and soft call condition clauses on the theoretic value of CCB. These give a lot 

of new insights into the analysis of various callable convertible bonds.  

A useful direction for further research is to analyze the impacts of other clauses 

such as put clauses or other factors such as default risk and dividends, which have not 

been considered in this paper. 

 

Appendix A 

Proof:  Consider two investment portfolios: Portfolio I consists of only one unit 

of CCB; Portfolio II consists of ( )1FB P  units of shares of the underlying stocks. 

Since no dividend has been assumed in Subsection 2.1, Portfolio II always consists of 

( 1F )B P  units of shares of the underlying stock.  

If no call were to be announced prior to maturity, from the inequality (3), prior to 

maturity Portfolio I would be worth at least as great as Portfolio II, even if there is no 

coupon. At maturity, in terms of the equality (7), the payoffs to these two portfolios 

are compared in Table 1. Table 1 shows clearly that Portfolio I is generally worth 

more than Portfolio II unless not only the holders voluntarily convert at maturity but 
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also there is no coupon, in which case they have the same value.  

 
Table 1.  Demonstration that at maturity the payoff to Portfolio I will be  

at least as great as that to Portfolio II. 

Stock price at maturity 
Portfolio Current value 

( ) 11 N

F

C
T BS P< + ( ) 11 N

F

C
T BS P≥ +  

I ( )0 , ;CCB S T C  ( );FB Fv T C+ ( ) ( )1 ;F T NB P S Fv T C C+ −  

II ( )1 0FB P S  ( )1F TB P S  ( )1F TB P S  

Relationship between terminal 
values of Portfolio I and II I IV V> I I I IV V≥  

 

If a call were to be announced prior to maturity, assuming at that time the 

underlying stock price is Sτ
∗ , from the equality (6) Portfolio I would be worth 

( )1max ,F cB P S Bτ
∗⎡⎣ ⎤⎦ . The payoffs to these two portfolios at the call announcement 

are compared in Table 2. Table 2 shows that Portfolio I will never be worth less than 

Portfolio II and in some cases will be worth more, even if there is no coupon.  

 

Table 2.  Demonstration that at the call announcement the payoff to Portfolio I 
              will never be less than that to Portfolio II. 

stock price at the call announcement 
Portfolio Current value 

( )1F cB P S Bτ
∗ ≥  ( )1F cB P S Bτ

∗ <  

I ( )0 , ;CCB S T C  ( ) ( )1 ;FB P S Fv Cτ τ∗ ∗+ ( );cB Fv Cτ ∗+  

II ( )1 0FB P S  ( )1FB P Sτ
∗  ( )1FB P Sτ

∗  

Relationship between the values of 
Portfolio I and II I IV V≥ I I I IV V>  
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To sum up, both conditions for dominance defined by Merton (1973) exist. 

Hence, unless the current value of Portfolio I exceeds the current value of Portfolio II, 

i.e. ( ) ( )0 , ; FCCB S T C B P S> 1 0 , the former will dominate the latter. Obviously, CCB 

should never be voluntarily converted except at maturity or the call announcement.  

 

Appendix B  

Proof:  Suppose that this theorem is not the case.  

From the inequality (5), both the decline of interest rates and the rise of the 

underlying stock price can increase the lower limit of CCB. However, since the flat 

term structure has been assumed in Subsection 2.1, only the latter is relevant here. In 

terms of the inequality (5), it is very clear that the lower limit will approach the upper 

limit with the underlying stock price increasing. Therefore, the optimal call policy 

must yield a critical stock price Sτ
∗  so that it is optimal for the issuers to announce a 

call as soon as the underlying stock price reaches Sτ
∗ .  

From the inequality (5) again, we can be sure ( ) 1/c FS B Bτ
∗ ≤ P .  

Assume that it is optimal for the issuers to announce a call as soon as the 

underlying stock price reaches ( ) 1/c FS B Bτ < P . Let τ  denote the time at which the 

underlying stock price reaches Sτ  for the first time. According to this assumed 

optimal call policy, if Tτ < , the issuers will immediately announce a call at time τ . 

From the equality (6) together with ( ) 1/c FS B Bτ < P , the holders must choose to 

accept the call price in cash when the issuers announce a call. 
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( ) ( )1, ; max ,F cCCB S T C B P S B Bτ τ ⎡− = =⎣ cτ ⎤⎦

)

                      (B1) 

On the other hand, assume that the issuers do not follow the assumed optimal call 

policy and will announce a call as soon as the underlying stock price reaches 

( 1/c FB B P . Let τ̂  denote the time at which the underlying stock price reaches 

( 1/c F )B B P  for the first time. Due to ( ) 1/c FB B P Sτ> , we must get ˆτ τ< . From the 

inequity (5), we can obtain at time τ  

( ) ( ) ( )1max ; , , ;F cB T C B P S CCB S T C Bτ ττ⎡ ⎤− ≤ −⎣ ⎦ τ ≤                 (B2) 

From Barone-Adesi, Bermudez and Hatgioannides (2003), the equality 

( ) ( )1 , ;F cB P S CCB S T C Bτ τ τ= − =  is valid only when ( ) 1/c FS B Bτ = P . However, 

( 1/c FS B Bτ < )P . Hence, if the issuers announce a call as soon as the underlying stock 

price reaches ( ) 1/c FS B Bτ
∗ = P , we can obtain  

( ), ; cCCB S T C Bτ τ− <                                           (B3) 

From (B1) and (B3), we can know that the assumed optimal call policy can not 

result in the minimum price for CCB, so it is not optimal. Hence, it must be optimal 

for the issuers to call CCB back as soon as the underlying stock price reaches 

.  ( ) 1/c FS B Bτ
∗ = P

 

Appendix C 

Let  denote the set of the paths where the underlying stock price will reach 

the critical value  from below prior to maturity. Let  denote the set of the paths 

where the underlying stock price at maturity will exceed 

U

2P V

( ) 11 N

F

C
B P+ . In this way, the 
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set  can be expressed as U { }U τ ∗= ≤ T  where τ ∗  denotes the first time at which 

the underlying stock price reaches the critical value  from below prior to maturity, 

the set V  as 

2P

( ){ }11 N

F

C
T BV S P= > + , the intersection UV  as 

( ){ }1, 1 N

F

C
TS BUV T Pτ ∗= > > +  and the intersection UV  as 

( ){ }1, 1 N

F

C
T BUV T S Pτ ∗= > ≤ + . In terms of the description described in Subsection 3.5, 

the first, second and third case of the ending of CCB respectively corresponds to the 

set , U UV  and UV . Let ( )1 A  denote the indicator function of the set A . Then, 

it’s easy to get 

( ) ( ) ( )1 1 1E U UV UV⎡ + +⎣ 1⎤ =⎦

)

                                    (C1) 

Based on these, in the risk-neutral world, the payoffs to the corresponding 

ordinary bond and exotic options decomposed from CCB can be expressed 

respectively as follows.  

( ) (0 , ; ;rT
FB S T C B e Pv T C−= +                                    (C2) 
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( )
1

; i

N
r

i
i

Pv T C C e τ−

=

=∑                                            (C9) 

( ) ( ) (
1

; i
N

r T rT
i

i

Fv T C C e e Pv T Cτ−

=

= =∑ );

k+1

                             (C10) 

( ) k
1

;     i

k
r

i
i

Pv C C e ττ τ τ τ−∗

=

= ≤∑ ∗ <

k+1

                              (C11) 

( ) ( ) ( )
k

1

; ;      i
k rr

i
i

Fv C e Pv C C e τ τττ τ τ τ τ
∗∗ −∗ ∗ ∗

=

= = ≤∑ <               (C12) 

 

Obviously, the payoffs to CCB in the risk-neutral world are a lot more complex 

than these exotic options above. If the first case of its ending happens, its present 

value can be expressed as ( ) ( )1 2/r
Fe B P P Fv Cτ τ

∗− ⎡ +⎣ ;∗ ⎤⎦ . If the second case happens, 

its present value is ( ) ( )1/ ;rT
F Te B P S Fv T C C− + −⎡⎣ N ⎤⎦

⎤⎦

. If the third case happens, its 

present value is . So the total payoffs to CCB can be expressed 

as follows. 

( );rT
Fe B Fv T C− +⎡⎣
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Substituting the equations (C1) through (C8) into the equation (C13) yields 
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Therefore, Theorem 3 holds in the risk-neutral world. According to the 

risk-neutral valuation principal, Theorem 3 still holds even if the assumption of the 

risk-neutral world is relaxed. 

 

Appendix D 

From Rubinstein and Reiner (1991b), we can get the expression of 
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(1 iE )jτ τ τΡ ∗⎡ ≤ <⎣ ⎤⎦ . Based on this expression, the analytic formula for 
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