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On Certain Indices for Ordinal Data
with Unequally Weighted Classes

M. PERAKIS, P. E. MARAVELAKIS, S. PSARAKIS, E. XEKALAKI
and J. PANARETOS∗
Department of Statistics, Athens University of Economics and Business, Greece
E-mail: jpan@aueb.gr

Abstract. In this paper, some new indices for ordinal data are introduced. These indices have
been developed so as to measure the degree of concentration on the “small” or the “large”
values of a variable whose level of measurement is ordinal. Their advantage in relation to
other approaches is that they ascribe unequal weights to each class of values. Although, they
constitute a useful tool in various fields of applications, the focus here is on their use in
sample surveys and specifically in situations where one is interested in taking into account
the “distance” of the responses from the “neutral” category in a given question. The prop-
erties of these indices are examined and methods for constructing confidence intervals for
their actual values are discussed. The performance of these methods is evaluated through an
extensive simulation study.

1. Introduction

Various types of indices are widely used in real world applications. Some
disciplines where the use of indices is widespread are index numbers
(e.g., Allen, 1975), statistical quality control (e.g., Kotz and Lovelace,
1998; Perakis, 2002), accounting (e.g., Wild et al., 2000) and sample sur-
veys (e.g., Bnerjee et al., 1999). An interesting discussion of the historical
background and the present situation on the use of statistical indicators in
various fields of applications is provided by De Vries (2001).

Recently, Maravelakis et al. (2003) developed some indices, which are
similar in nature with the index suggested by Perakis and Xekalaki (2002)
that have applications in statistical process control. The indices introduced
by Maravelakis et al. (2003) can be used to measure the degree of concen-
tration on the “large” or “small” values of a variable in ordinal scale. In
that paper, the use of these indices in sample surveys is considered, where
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and Business, 76 Patision Street, 104 34 Athens, Greece.
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often one is faced with questions whose answers have a somewhat nat-
ural ordering. A common example is a question whose possible answers
are “Very Good”, “Good”, “Moderate”, “Bad” and “Very Bad”. To our
knowledge no other authors have dealt with such indices.

Different features of such types of data can be measured through vari-
ous other indices such as Cohen’s (1960) Kappa and its modifications (see
e.g., Bnerjee et al., 1999; Doner, 1999) and the measure of nominal-ordinal
association proposed by Agresti (1981) and Piccarreta (2001).

In this paper, the indices suggested by Maravelakis et al. (2003) are
generalized so as to measure the observed concentration on the “small”
or “large” values more objectively. Specifically, the indices proposed here,
ascribe different weights to each value of the variable in question according
to its rank. These indices, as those suggested by Maravelakis et al. (2003),
can be used in connection with several types of ordinal data, as explained
in Section 7. Nevertheless, in the sequel we focus on their use in sample
surveys.

Section 2, describes the indices defined by Maravelakis et al. (2003) and
gives the rationale that led to the definition of the indices proposed in this
paper. In the third section, we introduce the new indices and investigate
their basic properties. Section 4 is devoted to the derivation of the vari-
ances of their estimators. The construction of confidence intervals for their
actual values, using three alternative bootstrap techniques, is discussed in
Section 5. The performance of the three methods is tested through simula-
tion. An illustrative example based on real data that clarifies their estima-
tion is given in Section 6. Finally, some concluding remarks are provided
in Section 7.

2. Motivation

Consider a discrete valued variable that takes a finite number of values
from 1 to k, or a continuous variable with values grouped in k classes.
Suppose that these k values or classes have a natural ordering starting from
the “best” (value 1) to the “worst” (value k) and exhibit an inherent sym-
metry, i.e. the number of values characterized as “positive” coincides with
that of the “negative” ones. Thus, the first [k/2] values have a “positive”
interpretation whereas the last [k/2] have a “negative” one. If the value of
k is odd, the ([k/2]+1)st value does not belong to any of these two cate-
gories and in the sequel, it is termed “neutral”.

In this paper, we consider the case where the variable under investiga-
tion consists of the answers to a question in a study which asks a person
to choose one out of k possible categories. However, the analysis can be
modified readily for any other variable with the above properties.
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Let πi (pi), i = 1,2, . . . , k denote the true (observed) proportion of
answers for each of the k categories, where π1 (p1) refers to the “best”
available answer, and πk (pk) to the “worst” one. Obviously, the “neutral”
answer, if such an answer exists (i.e. if k is odd), is located at the point
[k/2]+1. We should remark that among the k possible answers we include
the “neutral” answer (if it exists), but we do not take into consideration
answers of the type “No opinion/No answer”. If such a type of answer
exists, we should recalculate the observed proportions excluding this answer
and we proceed using the theory developed in the sequel.

In Maravelakis et al. (2003), three alternative indices were defined for
the assessment of the degree of concentration on “positive” answers. Index
I1 was defined as

I1 =
∑[k/2]

i=1 πi

π0
,

where π0 = [k/2] · (1/k).
Index I2, when k is odd, is given by

I2 =
∑[k/2]

i=1 πi
∑k

i=[k/2]+2 πi

,

whereas, when k is even, it becomes

I2 =
∑[k/2]

i=1 πi
∑k

i=[k/2]+1 πi

.

Finally, in situations where k is odd, I3 is defined as

I3 =
∑[k/2]+1

i=1 πi
∑k

i=[k/2]+1 πi

.

The actual values of these indices can be estimated by Î1, Î2, Î3, which are
defined by the above formulae by substituting pi for πi , i =1, . . . , k.

A drawback of these indices is that they give equal importance to all cat-
egories. This fact may cause some vagueness in the results since fixed sums
of “positive” or “negative” answers lead to the same values of the indices
considered, without taking into account how these sums are composed. This
statement is clarified through a simple artificial example given below.

Suppose that the obtained proportions of answers in two questions are
as given in Table I. The resulting estimates of the indices for both ques-
tions are: Î1 = 2, Î2 = 16 and Î3 = 4.75, even though there exist substan-
tial differences in the proportions of the “positive” categories. Actually, in
the first case, the “positive” answers are mainly comprised of the answer
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Table I. An artificial example

Question Very Good Good Moderate Bad Very Bad

1 0.02 0.78 0.15 0.02 0.03
2 0.78 0.02 0.15 0.02 0.03

“Good”, while, in the second case, of the answer “Very Good”. Thus, one
would expect larger index values for the second question since, despite the
fact that the sum of the proportions of the two “positive” categories coin-
cides with the corresponding sum of question 1, its much larger proportion
in the “best” category (i.e. “Very Good”) provides evidence of a stronger
tendency of the respondents to select the “positive” answers. The source
of this deficiency of I1, I2 and I3 is related to the fact that they assign
common weights (equal to unity) to all the components of the “positive”
or “negative” categories and hence their values do not reflect changes in
the values of each component when the sums of “positive” and “negative”
answers are fixed.

3. The New Indices

Our purpose is to define new indices in order to overcome the problem of
equal weights for all the possible answers. First, we introduce the method-
ology of computing the appropriate weights and afterwards we propose the
new indices.

3.1. The Weights

Let

wj, j =1, . . . , [k/2]

denote the weight of the j th category of the “positive” (“negative”)
answers. The value j =1 corresponds to the “best positive” and the “worst
negative” answer and j = [k/2] corresponds to the “worst positive” and the
“best negative” answer. An appropriate set of weights must satisfy the fol-
lowing conditions:

1.
∑[k/2]

j=1 wj = [k/2]
2. If the weight of the [k/2] category is equal to a positive constant

c, then the weight of the j th category is defined as ([k/2]− j +1) c.
Hence, the weights for the categories 1 through [k/2] are: [k/2] c,
([k/2]−1) c, . . . , c. Obviously, these weights satisfy the property

w1 −w2 =w2 −w3 =· · ·=w[k/2]−1 −w[k/2] = c
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and ensure that w1 ≥w2 ≥· · ·≥w[k/2].

The first condition is imposed so as to ensure the comparability of the
values of the new indices to those of the indices proposed by Marave-
lakis et al. (2003). This arises from the fact that the sum of weights in
both cases equals [k/2]. The second condition ensures that the difference
between the weights that correspond to any pair of equidistant categories
is fixed. By this definition, the weights reflect the strength of (positive or
negative) views as expressed by the responses. Responses reflecting extreme
situations should naturally carry more weight. The more “distant” from the
“neutral” a category is, the greater its influence should be on the overall
evaluation of the situation based on the totality of responses. This is indeed
achieved by the suggested weights.

These conditions lead to the following system of [k/2]+1 equations with
unknowns w1,w2, . . . ,w[k/2] and c

A × w = c
([k/2]+1)×[k/2] [k/2]×1 ([k/2]+1)×1 , (1)

where

A =











1 −1 0 · · · 0 0 0
0 1 −1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 −1
0 0 0 · · · 0 0 1
1 1 1 · · · 1 1 1











,

w = [w1 w2 · · · w[k/2]
]ᵀ

and c = [ c c · · · c [k/2]
]ᵀ

.
The system of equations in (1) has a unique solution given by

wj =2
(

[k/2]− j +1
[k/2]+1

)

, j =1, . . . , [k/2] (2)

and

c=w[k/2] = 2
[k/2]+1

.

For example, if k =7, the weights from the “best” or the “worst” category
to the closest to the “neutral” category are 6/4, 4/4 and 2/4, respectively.
In the sequel, some generalizations of the indices I1, I2 and I3 are consid-
ered based on the weights defined in (2).
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3.2. The Index I ∗
1

Taking advantage of the weights defined in (2), the index I1 can be gener-
alized to the form

I ∗
1 =

∑[k/2]
i=1 wiπi

π0
.

The values that I ∗
1 can take are in the interval [0, w1/π0]. The index takes

a value close to 0 when only a few of the given answers belong to the [k/2]
“positive” categories. On the contrary, values of I ∗

1 proximal to w1/π0, indi-
cate that the respondents have a tendency to select the “positive” catego-
ries and, specifically, the “best” of them. For example, in the case k = 5,
the index I ∗

1 lies within the interval [0,10/3].
Obviously, I ∗

1 takes finite positive values. In addition, it is easy to com-
pute confidence intervals for this index, not only via bootstrap, but also by
using some methods for simultaneous confidence intervals for multinomial
proportions (see Section 5). A drawback of this index is that it takes no
account of the “negative” and “neutral” answers, thus ignoring the infor-
mation provided by them.

The relationship between I ∗
1 and I1 is determined through the sign of

the quantity r1 =∑[k/2]
i=1 πi (1−wi). Specifically, if r1 is positive (negative),

then I ∗
1 <I1

(
I ∗

1 >I1
)
. Finally, I ∗

1 = I1 if r1 =0.

3.3. The Index I ∗
2

A generalisation of the index I2 can be obtained by

I ∗
2 =

∑[k/2]
i=1 wiπi

∑k
i=[k/2]+2 wk−i+1πi

,

assuming that k is odd. If k is even, I ∗
2 is defined as

I ∗
2 =

∑[k/2]
i=1 wiπi

∑k
i=[k/2]+1 wk−i+1πi

.

Index I ∗
2 takes values between 0 and infinity. When none of the respon-

dents have chosen any of the [k/2] “positive” answers, I ∗
2 takes the value 0.

On the other hand, the value of the index cannot be computed (it becomes
infinite) when none of the respondents has selected any of the [k/2] “nega-
tive” answers. It should be noted that, although this is an extreme case, it
is a disadvantage for the index. Another drawback of I ∗

2 is that it excludes
the “neutral” category. Furthermore, a difficulty with the use of this index
is the fact that construction of confidence intervals is not possible without
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resorting to the method of bootstrap, since it requires knowledge of the
distribution of the ratio of two weighted sums of multinomial propor-
tions (see Section 5). However, I ∗

2 is more informative than I ∗
1 because it

takes into account “negative” answers and, at the same time, its calcula-
tion is fairly easy. The mathematical formulation describing the relationship
between I ∗

1 and I ∗
2 is established in the sequel.

Let r2 =
(∑k

i=[k/2]+2 wk−i+1πi

)
/π0. Then I ∗

1 <I ∗
2 , provided that r2 <1. On

the other hand, in the case where r2 >1, it can be seen that I ∗
1 >I ∗

2 . Finally,
the two indices take the same value if r2 =1. These relationships hold when
k is odd and can be easily modified for even values of k.

3.4. The Index I ∗
3

The index I ∗
3 , defined subsequently, can be used in situations where the

total number of answers is odd. In this case, since the “neutral” category is
involved in the computation, we have to assign a weight for it. In particu-
lar, the appropriate weights arise from (2) by substituting the value [k/2]+1
for [k/2], i.e.

w
′
j =2

(
[k/2]− j +2

[k/2]+2

)

, j =1, . . . , [k/2]+1.

Therefore, the new index is defined as

I ∗
3 =

∑[k/2]+1
i=1 w

′
iπi

∑k
i=[k/2]+1 w

′
k−i+1πi

.

Index I ∗
3 takes values that lie between 0 and infinity. The value 0 arises

when all of the respondents have opted for a “negative” answer. On the
other hand, I ∗

3 approaches infinity as the number of “positive” respondents
increases. The fact that its value may tend to infinity is a drawback. How-
ever, it should be noted that this is not a probable scenario. Another dis-
advantage of I ∗

3 is that it is difficult to obtain confidence limits for its true
value analytically. This problem can be overcome by using the bootstrap
method (see Section 5). Index I ∗

3 surpasses a drawback of the indices I ∗
1

and I ∗
2 since it takes into account the “neutral” category.

3.5. Estimation

The actual values of the indices I ∗
1 , I ∗

2 , I ∗
3 can be estimated by
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Î ∗
1 =

∑[k/2]
i=1 wipi

π0
,

Î ∗
2 =

∑[k/2]
i=1 wipi

∑k
i=[k/2]+2 wk−i+1pi

, when k is odd,

Î ∗
2 =

∑[k/2]
i=1 wipi

∑k
i=[k/2]+1 wk−i+1pi

, when k is even,

and

Î ∗
3 =

∑[k/2]+1
i=1 w

′
ipi

∑k
i=[k/2]+1 w

′
k−i+1pi

,

respectively. Obviously, these estimators arise by substituting pi for πi in the
expressions of the indices.

3.6. An Example

Let us now reconsider the example of Section 2 so as to clarify the estima-
tion of the new indices and illustrate their superiority over I1, I2 and I3. In
the first question, the estimates of the new indices are:

Î ∗
1 = (4/3)0.02+ (2/3)0.78

0.4
=1.3667,

Î ∗
2 = (4/3)0.02+ (2/3)0.78

(4/3)0.03+ (2/3)0.02
=10.25

and

Î ∗
3 = (6/4)0.02+ (4/4)0.78+ (2/4)0.15

(6/4)0.03+ (4/4)0.02+ (2/4)0.15
=6.3214,

respectively. The corresponding values for the second question are

Î ∗
1 = (4/3)0.78+ (2/3)0.02

0.4
=2.6333,

Î ∗
2 = (4/3)0.78+ (2/3)0.02

(4/3)0.03+ (2/3)0.02
=19.75,

Î ∗
3 = (6/4)0.78+ (4/4)0.02+ (2/4)0.15

(6/4)0.03+ (4/4)0.02+ (2/4)0.15
=9.0353

and reflect the stronger tendency of the respondents to select the “positive”
answers in the second question.
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4. The Variances of the Estimators

In this section, the variances of the estimators of the three indices are
assessed. For all the indices the method of bootstrap is implemented. Espe-
cially for Î ∗

1 , a formula for finding the exact value of its variance is derived.
In the case of the index I ∗

1 , the parametric calculation is as follows.
Let p= [p1 p2 . . . pk

]ᵀ
denote the vector of observed proportions of the

k answers and π = [
π1 π2 . . . πk

]ᵀ
represent the corresponding true pro-

portions. The unrestricted unbiased maximum likelihood estimator of π is
given by p (see e.g. May and Johnson (1997)) and the covariance matrix of
p is

� = 1
N








π1(1−π1) −π1π2 . . . −π1πk

−π1π2 π2(1−π2) . . . −π2πk

...
...

. . .
...

−π1πk −π2πk . . . πk(1−πk)








,

where N is the number of available answers. The unrestricted maximum
likelihood estimator of � is computed by replacing πi with pi and is
denoted by S. Then,

Var(Î ∗
1 )=Var

(
wᵀp∗

π0

)

= 1

π2
0

wᵀVar(p∗)w = 1

π2
0

wᵀ�∗w, (3)

where �∗ is a partition of � containing the first [k/2] rows and columns
of � and p∗= [p1 p2 . . . p[k/2]

]ᵀ
. For instance, when k = 7, the expression

given in (3) simplifies to

Var(Î ∗
1 )=− 49

36N
(−9π1 +9π2

1 +12π1π2 +6π1π3 −4π2 +4π2
2

+4π3π2 −π3 +π2
3 ).

An estimate of Var(Î ∗
1 ) can be obtained by replacing πi (i = 1, . . . , k) by

their sample counterparts.
The derivation of exact formulae for the variance of the estimators of

the indices I ∗
2 and I ∗

3 is a difficult task since these are ratios of weighted
sums of multinomial proportions. However, we may approximate the value
of the variance for particular choices of π and N using the method of
bootstrap. (A detailed description of this method and its applications can
be found in Efron and Tibshirani (1993).

In the sequel, the method of bootstrap is implemented for the approxi-
mation of the variances of the estimators of the three new indices for var-
ious choices of π and N . Specifically, assuming that we have a question
with k possible answers, N observations and proportions π1, π2, . . . , πk, we
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Table II. The variances of the estimators of the three indices for B =1000 and N =50

Î ∗
1 Î ∗

2 Î ∗
3

Proportions E A A A

0.03 0.02 0.05 0.45 0.05 0.20 0.20 0.0100 0.0093 0.0091 0.0093
0.06 0.06 0.08 0.40 0.10 0.15 0.15 0.0195 0.0187 0.0407 0.0265
0.10 0.10 0.10 0.35 0.15 0.10 0.10 0.0283 0.0287 0.1707 0.0680
0.15 0.15 0.10 0.30 0.10 0.10 0.10 0.0361 0.0376 0.4012 0.1484
0.20 0.15 0.15 0.20 0.10 0.10 0.10 0.0394 0.0408 0.8039 0.3135
0.20 0.20 0.20 0.10 0.10 0.10 0.10 0.0370 0.0378 0.7993 0.4863
0.25 0.25 0.20 0.10 0.10 0.05 0.05 0.0367 0.0372 5.7835 2.1036
0.25 0.25 0.30 0.10 0.05 0.03 0.02 0.0312 0.0326 – 19.148
0.30 0.30 0.30 0.05 0.02 0.02 0.01 0.0261 0.0261 – –

generate a large number of multinomial samples, say B = 1000, via sam-
pling with replacement. The B samples are termed bootstrap samples. For
each bootstrap sample, the value of the index I ∗ is calculated. The general
notation I ∗ is used here to denote any of the three new indices. An approx-
imation of the variance for the estimator of each index (S2

I ∗) can be found
through the formula

S2
I ∗ = 1

B −1

B∑

i=1

(
I ∗
i − I

∗)2
,

where I ∗
i is the index value assessed on the basis of the ith bootstrap sam-

ple and I
∗

is the mean of the B bootstrap index values.
The obtained results, assuming k = 7, are summarized in Tables II–V.

Each of these tables corresponds to a different sample size (N ). Moreover,
the proportions considered were selected to cover a wide range of cases, i.e.
small, moderate or large index values.

In the case of I ∗
1 , the bootstrap approximations (A) can be compared

with the exact ones (E) computed using formula (3).
From Tables II–V one may draw the following conclusions:

• As the sample size increases, the variance of all the estimators decreases
• The variance of Î ∗

1 appears to be generally smaller in comparison to the
variances of the estimators of the other indices

• The variance of Î ∗
1 is not seriously affected by changes in the values of

the proportions
• The variances of Î ∗

2 and Î ∗
3 increase as the degree of concentration on

the “positive” answers increases
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Table III. The variances of the estimators of the three indices for B =1000 and N =100

Î ∗
1 Î ∗

2 Î ∗
3

Proportions E A A A

0.03 0.02 0.05 0.45 0.05 0.20 0.20 0.0050 0.0049 0.0045 0.0047
0.06 0.06 0.08 0.40 0.10 0.15 0.15 0.0097 0.0102 0.0190 0.0127
0.10 0.10 0.10 0.35 0.15 0.10 0.10 0.0142 0.0143 0.0777 0.0347
0.15 0.15 0.10 0.30 0.10 0.10 0.10 0.0181 0.0181 0.1683 0.0696
0.20 0.15 0.15 0.20 0.10 0.10 0.10 0.0197 0.0190 0.2182 0.1108
0.20 0.20 0.20 0.10 0.10 0.10 0.10 0.0185 0.0189 0.2717 0.1789
0.25 0.25 0.20 0.10 0.10 0.05 0.05 0.0183 0.0183 1.8565 0.8036
0.25 0.25 0.30 0.10 0.05 0.03 0.02 0.0156 0.0160 26.303 4.9743
0.30 0.30 0.30 0.05 0.02 0.02 0.01 0.0131 0.0135 – 76.386

Table IV. The variances of the estimators of the three indices for B =1000 and N =250

Î ∗
1 Î ∗

2 Î ∗
3

Proportions E A A A

0.03 0.02 0.05 0.45 0.05 0.20 0.20 0.0020 0.0020 0.0017 0.0018
0.06 0.06 0.08 0.40 0.10 0.15 0.15 0.0039 0.0035 0.0066 0.0046
0.10 0.10 0.10 0.35 0.15 0.10 0.10 0.0057 0.0055 0.0261 0.0125
0.15 0.15 0.10 0.30 0.10 0.10 0.10 0.0072 0.0070 0.0578 0.0257
0.20 0.15 0.15 0.20 0.10 0.10 0.10 0.0079 0.0080 0.0868 0.0452
0.20 0.20 0.20 0.10 0.10 0.10 0.10 0.0074 0.0068 0.0951 0.0655
0.25 0.25 0.20 0.10 0.10 0.05 0.05 0.0073 0.0072 0.6194 0.2827
0.25 0.25 0.30 0.10 0.05 0.03 0.02 0.0063 0.0061 6.3119 1.5515
0.30 0.30 0.30 0.05 0.02 0.02 0.01 0.0052 0.0053 79.097 16.941

• The performance of the bootstrap method is fairly satisfactory as can
be observed from the differences between the exact and the approximate
(bootstrap) values of the variance of Î ∗

1• For small sample sizes, the approximations of the variances of Î ∗
2 and

Î ∗
3 cannot be obtained in situations where the proportions of the “posi-

tive” answers are very large (see the last rows of Tables II and III). This
is a consequence of the fact that the values of these indices become infi-
nite for some of the bootstrap samples.
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Table V. The variances of the estimators of the three indices for B =1000 and N =500

Î ∗
1 Î ∗

2 Î ∗
3

Proportions E A A A

0.03 0.02 0.05 0.45 0.05 0.20 0.20 0.0010 0.0010 0.0009 0.0010
0.06 0.06 0.08 0.40 0.10 0.15 0.15 0.0020 0.0019 0.0036 0.0025
0.10 0.10 0.10 0.35 0.15 0.10 0.10 0.0028 0.0027 0.0129 0.0062
0.15 0.15 0.10 0.30 0.10 0.10 0.10 0.0036 0.0037 0.0270 0.0124
0.20 0.15 0.15 0.20 0.10 0.10 0.10 0.0039 0.0039 0.0420 0.0225
0.20 0.20 0.20 0.10 0.10 0.10 0.10 0.0037 0.0038 0.0504 0.0348
0.25 0.25 0.20 0.10 0.10 0.05 0.05 0.0037 0.0040 0.2856 0.1391
0.25 0.25 0.30 0.10 0.05 0.03 0.02 0.0031 0.0031 2.7278 0.7130
0.30 0.30 0.30 0.05 0.02 0.02 0.01 0.0026 0.0026 27.230 7.1804

5. Confidence Intervals

This section is devoted to the construction of confidence intervals for the
true values of the indices defined. Owing to the fact that these indices are
functions of multinomial proportions, the construction of confidence inter-
vals for them relates to the construction of simultaneous confidence lim-
its for multinomial proportions. This is a problem dealt with by several
authors (e.g. Quesenberry and Hurst, 1964; Goodman, 1965; Fitzpatrick
and Scott, 1987; Sison and Glaz, 1995; Kwong, 1996, 1998; Ahmed, 2000).
However, these confidence limits can be used only in the case of I ∗

1 . The
construction of parametric confidence intervals for indices I ∗

2 and I ∗
3 , which

are ratios of weighted sums of multinomial proportions, is much more
complicated. For this reason, we resort to the method of bootstrap for
obtaining confidence intervals for them. A 100(1−a)% confidence interval
of index I ∗

1 is given by

(∑[k/2]
i=1 wip

(i)
L

π0
,

∑[k/2]
i=1 wip

(i)
U

π0

)

, (4)

where p
(i)
L , p

(i)
U are the lower and the upper simultaneous confidence limits

for category i calculated using any of the suggested methods.
Alternatively, one may take advantage of the bootstrap method so as to

assess confidence intervals for the actual values of the indices I ∗
1 , I ∗

2 and
I ∗

3 . For simplicity, we adopt again the general notation I ∗ for any of these
indices. For the calculation of bootstrap confidence intervals we order the
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B index values, obtained following the procedure described in the previous
section, in a non-descending order and we denote the ith of these values
by

I ∗
(i), i =1, . . . ,B.

We will now describe three alternative methods that one can apply in order
to create bootstrap confidence intervals. These are the standard bootstrap,
the percentile bootstrap and the bias-corrected percentile bootstrap.

According to the standard bootstrap method, a 100(1−α)% confidence
interval for the index I ∗ is given by

(
Î ∗ − z1−α/2SI ∗, Î ∗ + z1−α/2SI ∗

)
,

where zα denotes the 100α percentile of the standard normal distribution,
SI ∗ is the standard deviation of the B index values and Î ∗ is the index
value that was assessed from the initial sample.

Following the percentile bootstrap technique, a 100(1 −α)% confidence
interval for the index I ∗ is given by

(
I ∗
(Bα/2), I ∗

(B(1−α/2))

)
.

The bias-corrected percentile bootstrap method is similar to the per-
centile bootstrap, but involves a slight correction for the potential bias.
According to this method, we firstly find the two successive values I ∗

(i) and
I ∗
(i+1) between which the value of the index that was assessed from the

initial sample (Î ∗) lies. Then, we derive the value for which the cumula-
tive distribution function of the standard normal distribution (�) takes the
value i/B. If we denote this value by z0, then we calculate the probabilities
pl and pu, which are defined as pl =�(2z0 +zα/2) and pu =�(2z0 +z1−α/2).
Using these probabilities we end up with a 100(1−α)% confidence interval
of the form

(
I ∗
(B·pl)

, I ∗
(B·pu)

)
.

The performance of the three bootstrap techniques is examined via a
simulation study. The results obtained are provided in the Appendix. In
this study, 10,000 random samples were generated from the multinomial
distribution with parameters N =250 and 500 and various combinations of
π1, π2, . . . , π7. These combinations are the same as those considered in Sec-
tion 4. The number k of the selected categories was assumed to be 7, with-
out loss of generality.

The number of bootstrap samples generated each time is B = 1000. For
any case, the observed coverage (OC) and the mean range (MR) are com-
puted. Tables X and XII refer to confidence level 0.90, whereas Tables XI
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and XIII refer to confidence level 0.95. The first entry of each cell corre-
sponds to the standard bootstrap (SB) method, the second to the percentile
bootstrap (PB) and the third to the bias-corrected percentile bootstrap (BB).

On the basis of these tables one may conclude that:
• The observed coverage is not seriously affected by the sample size.

Hence, one may construct confidence intervals for the true values of the
indices even when the number of available observations is not very large

• The mean range of the confidence intervals produced from all the tech-
niques reduces as the sample size increases

• For the index I ∗
1 , all the methods appear to attain a coverage close to

the nominal. Likewise, the mean range of the confidence intervals pro-
duced from the three methods is nearly the same

• In the case of index I ∗
2 , despite the fact that we do not observe sub-

stantial differences in the coverage of the three methods, BB seems to
provide the confidence intervals with the best coverage. The mean range
of the SB confidence intervals appears to exceed the ones of the other
two methods

• For index I ∗
3 , method BB results in a coverage closer to the nominal in

most of the examined cases. In addition, method SB gives the widest
intervals

It should be remarked that the mean range of the confidence intervals I ∗
2

and I ∗
3 could not be computed in some cases because, for some of the gen-

erated bootstrap samples, the values of these indices become infinite.

6. An Illustrative Example

In the sequel, the data analyzed by Jensen (1986) are used in order to illus-
trate the advantages of the indices I ∗

1 , I ∗
2 and I ∗

3 proposed in this paper
in comparison to the indices I1, I2 and I3 suggested by Maravelakis et al.
(2003). Jensen (1986) dealt with data acquired through a questionnaire that
was given between 1973 and 1976 to 60% of the students of the only Cath-
olic high school and its two neighboring public high schools in a southeast-
ern city of the United States. For more details on this survey, the reader
is referred to Jensen (1986). The questionnaires that were given to the
students include several questions whose answers have a natural ordering.
Therefore, one can take advantage of the theory developed in this paper
so as to measure the observed degree of concentration on the “positive”
categories in each question.

In Table IV of Jensen (1986), the obtained results for various questions
associated with students’s choices, moral evaluations and perceptions of
risk are provided separately for the students of public and catholic schools.
Some of these questions are:
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Table VI. The proportions and the number of responses for
questions 1 and 2 for Jensen’s (1986) data

Question DY Y U NO DN N

1 0.473 0.327 0.086 0.065 0.049 1480
2 0.623 0.243 0.052 0.030 0.052 440

Table VII. Estimates of the values of the six indices for ques-
tions 1 and 2

Question Î1 Î ∗
1 Î2 Î ∗

2 Î3 Î ∗
3

1 2 2.122 7.018 7.810 4.430 5.948
2 2.165 2.482 10.561 11.112 6.851 8.981

1. Suppose you and your friends were messing around one afternoon and
they decided to steal something from a store just for kicks. Do you
think it would be wrong to go along? (Public schools)

2. Suppose you and your friends were messing around one night and they
decided to break into a place and steal some things. Would it be wrong
to go along? (Catholic schools)

In both questions the possible answers were “Definitely Yes” (DY), “Yes”
(Y), “Uncertain” (U), “No” (NO), “Definitely No” (DN).

The observed proportions and the number of responses for these ques-
tions are displayed in Table VI, while in Table VII the corresponding esti-
mates of the values of the six indices are presented.

In both questions, the values of the six indices indicate a tendency of the
respondents to prefer the “positive” answers. Likewise, this tendency seems
to be stronger in question 2.

Suppose now that the obtained proportions of the two questions were as
shown in Table VIII. Obviously, in this case the proportions of the first two
categories are given in reverse order. However, as one may observe from
Table IX, the indices I1, I2 and I3 do not reflect these changes since their
values remain unchanged. On the other hand, in both cases, the values of
the new indices decreased as a consequence of the fact that even though
the total proportion of the “positive” answers remains constant its distri-
bution to the two categories has changed substantially.

7. Concluding Remarks

In this paper, some new indices were introduced and their properties were
studied. These indices can be considered as generalizations of the indices
proposed by Maravelakis et al. (2003). Their aim is to measure the degree
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Table VIII. The proportions and the number of responses for
questions 1∗ and 2∗

Question DY Y U NO DN N

1∗ 0.327 0.473 0.086 0.065 0.049 1480
2∗ 0.243 0.623 0.052 0.030 0.052 440

Table IX. Estimates of the values of the six indices for ques-
tions 1∗ and 2∗

Question Î1 Î ∗
1 Î2 Î ∗

2 Î3 Î ∗
3

1∗ 2 1.878 7.018 6.914 4.430 5.545
2∗ 2.165 1.848 10.561 8.276 6.851 7.563

of concentration on the “small” or the “large” values of ordinal variables
and have applications in various disciplines. The use of these indices was
illustrated in connection with data obtained from sample surveys. Never-
theless, various other fields of applications where these indices may serve
as a useful tool, exist. As an example, we refer to the educational field and
especially the evaluation of different groups of students in situations where
their grades are in ordinal scale.

As already mentioned, indices have been used in a number of fields. A
natural question in using weighted indices is how the weights are chosen.
In Statistical Process Control the Exponentially Weighted Moving Average
(EWMA) control chart is a statistic (index) of the current level of a pro-
cess. The weights in this statistic decrease geometrically, assigning the larg-
est weight to the most recent observation and a continuously decreasing
weight from the next most recent observation to the oldest (see, e.g. Mont-
gomery, 2001). This selection of weights stems from the fact that the newer
observation gives the best outlook of the process. In the education field
different weights are assigned to the factors related to the quality of edu-
cation. These weights are not based on a mathematical formulation but
rather on a subjective selection (see Han, 1996). In the areas of classifica-
tion and clustering different indices have been proposed with various types
of weighting. The criteria for selecting these weights is based on the analyst
(Cox and Cox, 2000). Therefore, one may conclude that the set of weights
chosen in each subject depends on the nature of the problem and even for
the same problem different weights may be assigned. In the problem stud-
ied, the set of weights used are based on mathematical relations with the
aim to arrive at a logical selection.

Specifically, the first condition for selecting the appropriate weights in
Section 3 is not a binding one because the sum of the weights could be
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any value. We choose the particular one for comparison purposes. On the
other hand, the second condition is crucial on the selection of the weights.
In the case of a questionnaire it seems natural that the weights of sym-
metrical classes be equal, although there may be cases where the researcher
may decide otherwise.
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Appendix

Table X. The simulation study for N =250 and 1−α =0.9

I ∗
1 I ∗

2 I ∗
3

Proportions OC MR OC MR OC MR

SB 0.8880 0.1459 0.8975 0.1400 0.9015 0.1435
0.03 0.02 0.05 0.45 0.05 0.20 0.20 PB 0.8928 0.1456 0.8918 0.1390 0.8962 0.1430

BB 0.8889 0.1453 0.8923 0.1402 0.8968 0.1432

SB 0.8938 0.2040 0.9012 0.2839 0.9000 0.2337
0.06 0.06 0.08 0.40 0.10 0.15 0.15 PB 0.9018 0.2038 0.8948 0.2817 0.8959 0.2327

BB 0.9014 0.2036 0.8961 0.2827 0.8969 0.2330

SB 0.9003 0.2466 0.9121 0.5440 0.9028 0.3703
0.10 0.10 0.10 0.35 0.15 0.10 0.10 PB 0.9070 0.2465 0.8991 0.5385 0.9005 0.3685

BB 0.9062 0.2464 0.9021 0.5387 0.8998 0.3687

SB 0.8972 0.2789 0.9176 0.8095 0.9102 0.5342
0.15 0.15 0.10 0.30 0.10 0.10 0.10 PB 0.8957 0.2789 0.9023 0.7995 0.9017 0.5308

BB 0.8954 0.2789 0.9038 0.7982 0.9028 0.5307

SB 0.9028 0.2912 0.9150 0.9616 0.9111 0.6932
0.20 0.15 0.15 0.20 0.10 0.10 0.10 PB 0.9026 0.2912 0.8989 0.9491 0.9003 0.6878

BB 0.9023 0.2913 0.9005 0.9464 0.9024 0.6872

SB 0.9011 0.2822 0.9147 1.0674 0.9111 0.8789
0.20 0.20 0.20 0.10 0.10 0.10 0.10 PB 0.9076 0.2822 0.8980 1.0537 0.8983 0.8706

BB 0.9065 0.2823 0.9004 1.0500 0.9009 0.8687

SB 0.9000 0.2812 0.9228 2.6657 0.9131 1.7879
0.25 0.25 0.20 0.10 0.10 0.05 0.05 PB 0.9005 0.2812 0.8927 2.6045 0.8921 1.7621

BB 0.8991 0.2814 0.8941 2.5788 0.8927 1.7529

SB 0.8977 0.2592 0.9399 9.0278 0.9271 4.2237
0.25 0.25 0.30 0.10 0.05 0.03 0.02 PB 0.8977 0.2592 0.8917 8.4496 0.8925 4.1226

BB 0.8969 0.2594 0.8943 8.2090 0.8949 4.0723

SB 0.8965 0.2372 0.8653 – 0.9385 14.703
0.30 0.30 0.30 0.05 0.02 0.02 0.01 PB 0.9028 0.2372 0.8784 – 0.8873 13.727

BB 0.9036 0.2375 0.8871 – 0.8916 13.275
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Table XI. The simulation study for N =250 and 1−α =0.95

I ∗
1 I ∗

2 I ∗
3

Proportions OC MR OC MR OC MR

SB 0.9386 0.1739 0.9387 0.1668 0.9463 0.1710
0.03 0.02 0.05 0.45 0.05 0.20 0.20 PB 0.9431 0.1732 0.9432 0.1621 0.9445 0.1706

BB 0.9420 0.1729 0.9473 0.1675 0.9452 0.1710

SB 0.9414 0.2431 0.9464 0.3383 0.9468 0.2786
0.06 0.06 0.08 0.40 0.10 0.15 0.15 PB 0.9487 0.2426 0.9448 0.3372 0.9465 0.2779

BB 0.9456 0.2424 0.9460 0.3384 0.9481 0.2782

SB 0.9480 0.2939 0.9499 0.6483 0.9510 0.4413
0.10 0.10 0.10 0.35 0.15 0.10 0.10 PB 0.9504 0.2937 0.9488 0.6459 0.9496 0.4403

BB 0.9494 0.2935 0.9492 0.6461 0.9493 0.4405

SB 0.9462 0.3324 0.9584 0.9646 0.9551 0.6366
0.15 0.15 0.10 0.30 0.10 0.10 0.10 PB 0.9465 0.3321 0.9508 0.9605 0.9512 0.6348

BB 0.9471 0.3320 0.9504 0.9590 0.9517 0.6346

SB 0.9504 0.3470 0.9560 1.1458 0.9542 0.8261
0.20 0.15 0.15 0.20 0.10 0.10 0.10 PB 0.9508 0.3468 0.9502 1.1406 0.9493 0.8237

BB 0.9508 0.3468 0.9499 1.1376 0.9495 0.8227

SB 0.9482 0.3363 0.9559 1.2719 0.9540 1.0473
0.20 0.20 0.20 0.10 0.10 0.10 0.10 PB 0.9509 0.3362 0.9482 1.2665 0.9499 1.0438

BB 0.9508 0.3363 0.9501 1.2621 0.9501 1.0416

SB 0.9501 0.3350 0.9587 3.1764 0.9549 2.1304
0.25 0.25 0.20 0.10 0.10 0.05 0.05 PB 0.9495 0.3350 0.9442 3.1514 0.9457 2.1205

BB 0.9478 0.3352 0.9447 3.1193 0.9460 2.1090

SB 0.9467 0.3089 0.9624 10.757 0.9605 5.0329
0.25 0.25 0.30 0.10 0.05 0.03 0.02 PB 0.9469 0.3088 0.9397 10.461 0.9439 4.9899

BB 0.9466 0.3090 0.9432 10.155 0.9456 4.9291

SB 0.9484 0.2826 0.8870 – 0.9636 17.519
0.30 0.30 0.30 0.05 0.02 0.02 0.01 PB 0.9530 0.2825 0.9333 – 0.9378 17.024

BB 0.9518 0.2828 0.9400 – 0.9421 16.442
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Table XII. The simulation study for N =500 and 1−α =0.9

I ∗
1 I ∗

2 I ∗
3

Proportions OC MR OC MR OC MR

SB 0.8962 0.1035 0.8990 0.0978 0.8979 0.1008
0.03 0.02 0.05 0.45 0.05 0.20 0.20 PB 0.8962 0.1034 0.8954 0.0975 0.8981 0.1006

BB 0.8965 0.1033 0.8965 0.0979 0.8976 0.1007

SB 0.9000 0.1448 0.9058 0.1981 0.9045 0.1644
0.06 0.06 0.08 0.40 0.10 0.15 0.15 PB 0.9045 0.1447 0.9016 0.1972 0.9024 0.1640

BB 0.9030 0.1447 0.9017 0.1977 0.9012 0.1642

SB 0.8998 0.1746 0.9018 0.3748 0.8991 0.2589
0.10 0.10 0.10 0.35 0.15 0.10 0.10 PB 0.9027 0.1746 0.8961 0.3728 0.8982 0.2582

BB 0.9030 0.1746 0.8975 0.3730 0.8993 0.2584

SB 0.8999 0.1974 0.9062 0.5555 0.9021 0.3728
0.15 0.15 0.10 0.30 0.10 0.10 0.10 PB 0.9029 0.1973 0.8983 0.5522 0.8995 0.3716

BB 0.9003 0.1974 0.8996 0.5521 0.8998 0.3717

SB 0.9021 0.2062 0.9085 0.6596 0.9044 0.4818
0.20 0.15 0.15 0.20 0.10 0.10 0.10 PB 0.9054 0.2063 0.9003 0.6553 0.8987 0.4799

BB 0.9036 0.2063 0.8990 0.6548 0.8976 0.4798

SB 0.8938 0.1998 0.9051 0.7333 0.9026 0.6086
0.20 0.20 0.20 0.10 0.10 0.10 0.10 PB 0.8989 0.1998 0.8947 0.7286 0.8958 0.6056

BB 0.8992 0.2000 0.8961 0.7279 0.8976 0.6052

SB 0.8983 0.1990 0.9067 1.7864 0.9012 1.2241
0.25 0.25 0.20 0.10 0.10 0.05 0.05 PB 0.9013 0.1989 0.8908 1.7672 0.8918 1.2157

BB 0.9011 0.1991 0.8917 1.7601 0.8938 1.2132

SB 0.8999 0.1836 0.9265 5.5162 0.9129 2.8152
0.25 0.25 0.30 0.10 0.05 0.03 0.02 PB 0.8988 0.1836 0.9002 5.3798 0.8991 2.7828

BB 0.8982 0.1837 0.9015 5.3161 0.9003 2.7683

SB 0.9013 0.1679 0.9371 19.016 0.9219 8.9700
0.30 0.30 0.30 0.05 0.02 0.02 0.01 PB 0.9048 0.1679 0.8841 17.789 0.8912 8.7384

BB 0.9025 0.1681 0.8895 17.267 0.8947 8.6164
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Table XIII. The simulation study for N =500 and 1−α =0.95

I ∗
1 I ∗

2 I ∗
3

Proportions OC MR OC MR OC MR

SB 0.9414 0.1234 0.9473 0.1166 0.9507 0.1201
0.03 0.02 0.05 0.45 0.05 0.20 0.20 PB 0.9432 0.1231 0.9499 0.1163 0.9497 0.1200

BB 0.9437 0.1230 0.9479 0.1168 0.9473 0.1201

SB 0.9487 0.1725 0.9487 0.2361 0.9532 0.1959
0.06 0.06 0.08 0.40 0.10 0.15 0.15 PB 0.9510 0.1722 0.9493 0.2357 0.9510 0.1957

BB 0.9513 0.1722 0.9505 0.2361 0.9510 0.1958

SB 0.9484 0.2081 0.9486 0.4466 0.9494 0.3085
0.10 0.10 0.10 0.35 0.15 0.10 0.10 PB 0.9502 0.2079 0.9485 0.4457 0.9482 0.3081

BB 0.9504 0.2079 0.9489 0.4459 0.9499 0.3083

SB 0.9484 0.2353 0.9532 0.6620 0.9510 0.4442
0.15 0.15 0.10 0.30 0.10 0.10 0.10 PB 0.9512 0.2351 0.9491 0.6604 0.9483 0.4436

BB 0.9500 0.2352 0.9481 0.6601 0.9466 0.4436

SB 0.9493 0.2458 0.9537 0.7860 0.9519 0.5741
0.20 0.15 0.15 0.20 0.10 0.10 0.10 PB 0.9523 0.2456 0.9483 0.7840 0.9492 0.5731

BB 0.9511 0.2457 0.9494 0.7832 0.9501 0.5729

SB 0.9474 0.2382 0.9539 0.8737 0.9521 0.7252
0.20 0.20 0.20 0.10 0.10 0.10 0.10 PB 0.9506 0.2381 0.9466 0.8718 0.9472 0.7239

BB 0.9483 0.2382 0.9456 0.8707 0.9463 0.7236

SB 0.9458 0.2371 0.9545 2.1287 0.9522 1.4586
0.25 0.25 0.20 0.10 0.10 0.05 0.05 PB 0.9482 0.2370 0.9438 2.1205 0.9450 1.4547

BB 0.9484 0.2371 0.9436 2.1118 0.9457 1.4517

SB 0.9498 0.2188 0.9616 6.5728 0.9548 3.3545
0.25 0.25 0.30 0.10 0.05 0.03 0.02 PB 0.9489 0.2186 0.9481 6.5214 0.9484 3.3410

BB 0.9486 0.2188 0.9489 6.4418 0.9495 3.3229

SB 0.9517 0.2001 0.9604 22.658 0.9598 10.689
0.30 0.30 0.30 0.05 0.02 0.02 0.01 PB 0.9529 0.2000 0.9398 22.046 0.9410 10.597

BB 0.9541 0.2002 0.9436 21.374 0.9425 10.448


