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The Use of Indices in Surveys

P. E. MARAVELAKIS, M. PERAKIS, S. PSARAKIS and J. PANARETOS
Department of Statistics, Athens University of Economics and Business, Greece

Abstract. The paper deals with some new indices for ordinal data that arise from sample surveys.
Their aim is to measure the degree of concentration to the “positive” or “negative” answers in a
given question. The properties of these indices are examined. Moreover, methods for constructing
confidence limits for the indices are discussed and their performance is evaluated through an ex-
tensive simulation study. Finally, the values of the indices defined and their confidence intervals are
calculated for an example with real data.

Key words: multinomial proportions, ordinal data, indices, confidence intervals, sample surveys

1. Introduction

Various types of indices are widely used in real world applications. Some fields
where the use of indices is widespread are index numbers (see e.g., Mudgett
(1951)), statistical quality control (see e.g., Kotz and Lovelace (1998) and Mont-
gomery (1997)), economics (see e.g., Cowell (1995)), fundamental analysis (see
e.g., Ritchie (1996)) and sample surveys (see e.g., Bnerjee et al. (1999)).

In the area of sample surveys, questions requiring answers that have a somewhat
natural ordering are frequently included. A common example of such type of an-
swers is “Very Good”, “Good”, “Moderate”, “Bad” and “Very Bad”. In practice, the
presentation of the observed proportions of the possible answers of such questions
is restricted to frequency tables, graphs (bar and pie charts) and some coefficients
such as Cohen’s (1960) Kappa and its modifications (see e.g., Bnerjee et al. (1999)
and Doner (1999)). A detailed presentation of categorical data analysis can be
found in Agresti (1990). However, no measure of the potential concentration of
the positive or negative answers is used.

In this paper we introduce some indices that can be used to measure this con-
centration, based on the observed proportions of the answers. In Section 2 we
define three alternative indices, we examine the properties of these indices and
compare their behavior. The third section deals with the construction of confidence
intervals for the true values of the indices. In particular, some methods for assessing
simultaneous confidence intervals for multinomial proportions are reviewed briefly.
These methods can be implemented for constructing confidence intervals for one
of the indices defined in Section 2. Furthermore, three bootstrap methods applied
to these indices (standard, percentile and bias corrected percentile) are illustrated
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and their use for obtaining confidence intervals for the indices is also described.
The results of a simulation study aimed at testing the performance of the bootstrap
confidence limits for the indices are shown in detail in Section 4. From these results
it is observed that the coverage of these bootstrap confidence limits is very satis-
factory, since it is quite close to the nominal, in most of the cases. An illustrative
example that clarifies the assessment of the indices and their corresponding confid-
ence intervals is given in Section 5. Further topics on the indices are presented in
the last section.

2. Definition and Properties of Indices

Consider a question in a study where the person who answers has to choose one
out of k possible answers. These answers have a natural ordering and thus can be
ordered from “positive” to “negative” ones. We assume that the number of “pos-
itive” answers is equal to the number of “negative” ones. Let pi , i = 1, 2, . . ., k
denote the observed percentage (%) of answers in each of the k categories, where
p1 refers to the “best” available answer, and pk to the “worst” one. Obviously,
the “neutral” answer, if such an answer exists (i.e. if k is odd), is located at point[
k/2

] + 1. We should remark that among the k possible answers we include the
“neutral” answer (if it exists), but we do not take into consideration answers of
the kind “No opinion/No answer”. If such a type of answer exists, we recalculate
the observed proportions excluding this answer and we proceed using the theory
developed in the following sections. In what follows, we define three alternative
indices.

2.1. INDEX I1

Let p0 denote the quantity
{[
k/2

] · (1/k)} 100. We define an index I1 as

I1 =
∑[

k
2

]
i=1 pi

p0
= p+

p0

where in the numerator we have the sum of the percentages (%) of “positive”
answers, represented by p+, and in the denominator the value of p0 is equal to the
expected percentage (%) of the “positive” answers assuming that all the answers
are uniformly distributed (i.e. each answer is chosen with the same frequency). The
use of the integer part for the computation of the “positive” answers ensures that
regardless of whether the number of available answers is odd or even we include
all the “good” answers in the computation of I1.

For illustration let us assume that we have a question with five possible answers,
which are “very good” (25%), “good” (20%), “moderate” (30%), “bad” (10%) and
“very bad” (15%) (in the parenthesis we have the observed percentages of each
answer). Then k = 5, p0 = 40, p+ = 45 and therefore I1 = 1.125.
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Index I1 can take values between 0 and 100/p0. When the index takes the value
0 it means that none of the given answers are among the [k/2] “positive” answers.
On the other hand, when I1 takes the value 100/p0, all of the given answers are
among the [k/2] “positive” answers. A value close to unity is an indication that the
number of positive answers is close to what we would expect if the answers are
uniformly distributed. It is obvious that I1 has always a finite value. In addition,
it is easy to compute confidence intervals for this index, not only via bootstrap,
but also by using some methods for simultaneous confidence intervals for multi-
nomial proportions as well (see Section 3.1). On the other hand, index I1 ignores
“negative” and “neutral” answers neglecting the information of these answers.

2.2. INDEX I2

We define an index I2 as follows

I2 = p+
p−

where p+ is defined as in I1 and p− is the sum of the percentages of the
[
k/2

]
“negative” answers. For the previous example and for the index I2 we have that
k = 5, p+ = 45, p− = 25 and I2 = 1.8.

Index I2 takes values between 0 and infinity. A value 0 means that nobody has
answered one of the [k/2] “positive” answers, whereas an infinite value means that
everyone has selected one of the [k/2] “positive” answers. A value close to unity is
an indication that the number of positive answers is similar to that of the negative
ones. Values greater than unity show a tendency towards the positive answers,
whereas values smaller than unity show a negative concentration. The fact that I2

can become infinite is a disadvantage, even though this is an extreme case. Another
drawback of this index is that it excludes the “neutral” answer. Also, as explained
in Section 3, the construction of confidence intervals for I2, without resorting to
bootstrap, is a difficult task, since it requires knowledge of the distribution of
ratios of multinomial proportions. However, I2 is superior to I1 because it takes
into account “negative” answers and, at the same time, its calculation is fairly easy.

2.3. INDEX I3

The third index that we consider is the index I3, defined as

I3 = p+ + pn

p− + pn

where p+, p− are defined as previously and pn is the percentage (%) of the “neut-
ral” answers. In the example of Section 2.1 I3 = 1.36, since k = 5, p+ = 45,
p− = 25 and pn = 30.
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The values that I3 can take, lie between 0 and infinity. I3 takes the value 0
when everyone has answered one of the ”negative” answers and is equal to infinity
when everyone has chosen one of the “positive” answers. The interpretation of this
index is similar to that of the index I2. A disadvantage of I3 is the difficulty in
constructing confidence intervals for it. The only way to overcome this problem
with I3 is to use the method of bootstrap. Also, its value is not finite in some cases.
However, this is not a very probable scenario. The advantage of I3 is that it takes
into account every category in its calculation, a property that makes this index
preferable to the previous two.

2.4. INTERRELATION OF THE THREE INDICES

The following relations hold for the three indices defined:
− I1 is greater (smaller) than I2 if p− is greater (smaller) than p0.
− I2 exceeds I3 if p+ > p− (or equivalently if I2 > 1) and vice versa.

3. Confidence Intervals

This section is devoted to the construction of confidence intervals for the indices
defined. These indices are functions of multinomial proportions. Therefore, the
construction of confidence intervals for these indices can be based on the con-
struction of simultaneous confidence limits for multinomial proportions. This is
a problem that many authors have dealt with and is described briefly in Section
3.1. However, such confidence intervals can be used only in connection to I1. Con-
fidence intervals for I1 can also be obtained using the binomial distribution since
regardless of the number of categories considered, we end up with two categories
- the “positive” and the “rest” (see Section 3.1.). The construction of parametric
confidence intervals for indices I2 and I3, which are ratios of sums of multinomial
proportions, is much more complicated and cannot be based on the existing theory.
For this reason we resort to the well-known method of bootstrap for obtaining such
limits for them.

3.1. PARAMETRIC CONFIDENCE INTERVALS FOR INDEX I1

A first attempt for constructing simultaneous confidence limits for multino-
mial proportions was made by Quesenberry and Hurst (1964). They concluded
that one can obtain simultaneous confidence intervals for the actual proportions
(probabilities) (πi, i = 1, . . ., k) using the formula

1

2
(
n+ χ2

k−1,1−α
) ×
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χ2
k−1,1−α + 2Xi ±

√
χ2
k−1,1−α

√
χ2
k−1,1−α + 4

n
Xi (n−Xi)

)
, (1)

where n is the total number of answers corresponding the specific category,
χ2
k−1,1−α denotes the (1 − α)100% percentile of the chi-square distribution with
k − 1 degrees of freedom and Xi is the observed number of answers in category i
(i.e. Xi = pi · n/100).

Goodman (1965), proposed a modification of the previous interval. More
specifically, he found that the confidence interval (1) becomes shorter if one sub-
stitutes χ2

1,1−α/k for χ2
k−1,1−α. Hence, according to Goodman (1965), simultaneous

confidence intervals for πi’s can be obtained through the formula

1

2
(
n+ χ2

1,1−α/k
) ×

(
χ2

1,1−α/k + 2Xi ±
√
χ2

1,1−α/k

√
χ2

1,1−α/k + 4

n
Xi (n−Xi)

)
. (2)

Fitzpatrick and Scott (1987) suggested the use of the interval

pi

100
± d√

n
. (3)

The value of d depends on the desired coverage and it has to be 1 for 90% coverage,
1.13 for 95% coverage and 1.4 for 99% coverage.

Sison and Glaz (1995) proposed another method for constructing simultaneous
confidence intervals for multinomial proportions. This method is much more com-
plicated than the three methods described so far. However, as Sison and Glaz (1995)
point out their method achieves coverage closer to the nominal in comparison to
the coverage that the intervals (1), (2) and (3) achieve. A short description of this
method is given here. The method of Sison and Glaz (1995) (see also Glaz and
Sison (1999)) leads to confidence intervals of the form(

pi

100
− c

n
,
pi

100
+ c + 2γ

n

)
, (4)

where

γ = (1 − α)− v (c)

v (c + 1)− v (c)

and c is an integer such that

v (c) < 1 − α < v (c + 1)
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and finally

v (c) = P
(
Xi − c ≤ X∗

i ≤ Xi + c; i = 1, . . ., k
)
. (5)

Here,
(
X∗

1, . . ., X
∗
k

)
follows a multinomial distribution with parameters n, p1

100 , . . .,
pk
100 . In order to find the value of c, Sison and Glaz (1995) showed that (5) can be
rewritten as

n!
nne−n

{
k∏
i=1

P (Xi − c ≤ Vi ≤ Xi + c)

}
fe

n−∑k
i=1 µi√∑k

i=1 σ
2
i

 1√∑k
i=1 σ

2
i

,

where Vi, i = 1, . . ., k are independent Poisson random variables with parameters
npi and the function fe (x) is defined as

fe (x) =
(

1√
2π

e− x2
2

)
×
[
1 + γ1

6

(
x3 − 3x

) + γ2

24

(
x4 − 6x2 + 3

)
+γ 2

1

72

(
x6 − 15x4 + 45x2 − 15

)]
,

where

γ1 =
∑k

i=1 µ3,i(∑k
i=1 σ

2
i

)3/2 ,

and

γ2 =
∑k

i=1

(
µ4,i − 3σ 4

i

)(∑k
i=1 σ

2
i

)2

µi , σ 2
i and µ3,i , µ4,i are the expected values, the variances and the central mo-

ments of the truncated Poisson distribution with mean npi/100, to the interval
[Xi − c,Xi + c]. These central moments can be assessed using a formula for the
factorial moments of the truncated Poisson distribution provided by Sison and Glaz
(1995). May and Johnson (1997) studied the performance of various methods for
simultaneous confidence intervals for multinomial proportions and concluded that
the methods of Goodman (1965) and Sison and Glaz (1995) are superior.

The 100(1 − a)% confidence interval of index I1 based on any of the preceding
methods is given by(

100 ·∑[k/2]
i=1 p

(i)
L

p0
,

100 ·∑[k/2]
i=1 p

(i)
U

p0

)
, (6)
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where p(i)L , p(i)U are the lower and the upper simultaneous confidence limits for
category i, using any of the previous methods.

Since, in index I1, the k categories are separated into only two groups - the first
group consisting of the positive answers and the second of the remaining answers
- we may compute exact confidence intervals for it using the existing theory for
binomial proportions (see e.g., Johnson et al. (1993)). Using the property that

n∑
x=r

(
n

x

)( p+
100

)x (
1 − p+

100

)n−x = P

[
F ≤ ν2p+

ν1(100 − p+)

]
,

where F follows the F distribution with ν1 = 2r and ν2 = 2(n− r + 1) degrees of

freedom, a confidence interval for
∑[k/2]

i=1 πi is given by(
δ1Fδ1,δ2,a/2

δ2 + δ1Fδ1,δ2,a/2
,

δ3Fδ3,δ4,1−a/2

δ4 + δ3Fδ3,δ4,1−a/2

)
, (7)

where δ1 = 2X+, δ2 = 2(n − X+ + 1), δ3 = 2(X+ + 1), δ4 = 2(n − X+) and

X+ = ∑[k/2]
i=1 Xi . If we denote the limits of (7) by p+

L and p+
U we conclude that the

100(1 − a)% confidence interval for I1 is given by(
100 · p+

L

p0
,

100 · p+
U

p0

)
. (8)

3.2. BOOTSTRAP CONFIDENCE INTERVALS

As it is well-known bootstrap is a non-parametric technique that can be used
whenever it is troublesome to create confidence intervals for a parameter using
standard statistical techniques. The method was introduced by Efron (1979) and a
detailed description of it and its implementation for the construction of confidence
intervals can be found in Efron and Tibshirani (1993). In this section we illustrate
how the bootstrap method is used for constructing confidence intervals for the
indices that were defined previously. For simplicity we adopt the general notation
I for all indices defined.

Let us assume that we have a sample with k categories, n observations and
observed proportions p1/100, p2/100, . . ., pk/100. From this initial sample we
generate a large number of multinomial samples, say B, by sampling with re-
placement. The choice of B is arbitrary, but its value must be sufficiently large.
In practice, the number of B that is preferred, is 1000. The B samples are called
bootstrap samples. For each bootstrap sample the value of the index I is calculated.
After the assessment of all B index values, we order them in a non-descending
order and we denote the i − th of these values by

I(i), i = 1, . . ., B.
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In the sequel, we describe three alternative methods that one can apply in order to
create bootstrap confidence intervals. These methods, are the standard bootstrap,
the percentile bootstrap and the bias-corrected percentile bootstrap (see e.g., Efron
and Tibshirani (1993)).

3.2.1. The Standard Bootstrap

According to this method, a 100(1 − α)% confidence interval for the index I is
given by(

Î − z1−α/2SI , Î + z1−α/2SI
)

,

where zα denotes the 100α% percentile of the standard normal distribution,

SI =
√√√√ 1

B − 1

B∑
i=1

(
I(i) − I

)2

is the standard deviation of the B index values,

I = 1

B

B∑
i=1

I(i)

is the mean of the B index values and Î is the index value that was assessed from
the initial sample.

3.2.2. The Percentile Bootstrap

According to this approach, the 100(1 − α)% confidence limits for the index I are
the 100 (a/2)% and 100(1 − α/2)% percentile points of the bootstrap distribution
of I . Consequently, the interval is(

I(Bα/2), I(B(1−α/2))
)

.

It has to be remarked that, sometimes, Bα/2 or (1 − α/2)B are not integers and
so we cannot find the exact 100 (a/2)% and 100(1 − α/2)% percentiles. In such
cases, we take the nearest integers to Bα/2 and (1 − α/2)B.

3.2.3. The Bias-corrected Percentile Bootstrap

This third approach is similar to the second but involves a slight correction. The
reason why this correction is made is the potential bias. This method, despite the
fact that it is more complicated than the two previously described, performs usually
better than they do. According to this method, we firstly find the two successive
values I(i) and I(i+1) between which the value of the index that was assessed from
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the initial sample (Î ) lies. Then, we assess the value for which the cumulative
distribution function of the standard normal distribution ( takes the value i/B.
If we denote this value by z0, then z0 = (−1 (i/B). Finally, we calculate the
probabilities pl and pu, which are defined as

pl = ((2z0 + zα/2)

and

pu = ((2z0 + z1−α/2).

Using these probabilities we end up with a 100(1 − α)% confidence interval of the
form (

I(B·pl), I(B·pu)
)

.

4. A Simulation Study

The performance of the three bootstrap methods that were described in the previ-
ous section is examined through a simulation study, whose results are presented
in the current section. In this study 10000 random samples from the multinomial
distribution with parameters n = 250 and n = 500 and various combinations of
π1, π2, . . ., π7 were generated. We selected 9 combinations of proportions so as
to include cases where the values of the indices are small, moderate or large. The
number of the selected categories is k = 7. Other choices of k are not considered
since the values of the three indices depend only on the percentages of the positive,
the negative and the neutral answers no matter how many positive and negative
answers exist. The selected combinations of the proportions are these presented in
Tables AI–AIV in the Appendix.

From each of the samples we generated B = 1000 samples. In each case
we found the observed coverage (OC), which must be as close as possible to
the nominal coverage. The nominal coverage is 0.90 (Tables AI and AIII ) and
0.95 (Tables AII and AIV). The first entry of each cell corresponds to the standard
bootstrap (SB) method, the second to the percentile bootstrap (PB) and the third to
the bias corrected percentile bootstrap (BB). Moreover the tables present the mean
range (MR) of the confidence intervals that each method gives. Similarly, the first
value corresponds to the SB, the second to PB and the third to BB.

From the tables we observe that:
− The observed coverage is not affected by the value of n (250 or 500). Thus,

we may construct confidence intervals for the indices even when we have a
relatively small number of available observations.

− For the index I1, method BB does not give satisfactory results in many cases.
On the other hand, method SB appears to be the one with the best results. The
mean range of the confidence intervals produced from the three methods is
nearly the same.
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− For index I2, in almost all cases, PB and BB provide confidence intervals
with very good coverage. However, using the method SB seems to be ill-
conditioned and it also gives the largest mean range. The mean range of the
other two methods is quite close even though BB method results generally in
shorter intervals.

− For index I3 methods PB and BB result in coverage close to the nominal
in all the examined cases. On the contrary, SB performs quite well in most
of the parameters combinations, but leads to unsatisfactory results when the
proportion of positive answers is very large. Generally, method SB gives wider
intervals while BB gives shortest ones.

Note that the mean range of I2 and I3 can not be computed in any case as
these indices may equal infinity. Finally, it should be remarked that the previously
described procedure was also implemented for B = 500 and the obtained results
were similar. However, we suggest the use of B = 1000, since it is the standard
practice in most related papers.

5. An Illustrative Example

In order to illustrate the assessment of the indices defined in this paper and the
construction of confidence intervals for their true values we used the data analyzed
by Jensen (1986). These data were collected between 1973 and 1976 from the only
Catholic high school and its two neighboring public high schools of a southeastern
city of the United States. Questionnaires were given to about 60% of the students
of each school. (More details on the survey design and the data collection are given
in Jensen (1986)). The questionnaires that were given to the students include some
questions with ordinal answers for which one can implement the theory developed
in the preceding sections.

In Table 5 of Jensen (1986) we have answers on some questions related to the
attitudes of the students toward school. These questions are

1. The things we learn in school are important to me
2. Going to school is making me a better person
3. Getting good grades is important to me
4. I wish I could drop out of school

and the possible answers were “strongly agree” (SA), “agree” (A), “uncertain” (U),
“disagree” (D), “strongly disagree” (SD).

Jensen (1986) gives the observed proportions of the answers for public-school
and catholic-school students separately. The observed proportions (%) of public
and catholic schools are displayed on Tables I and II, respectively.

In Table III, we present the values of the three indices for the two types of
schools and for all the four questions. For the first three questions, we see that the
students seem to prefer the positive answers (SA and A) since the values of all the
indices are greater than one. On the other hand, for the fourth question the values
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Table I. Public schools

Question SA A U D SD n

1 25.2 49.1 14.6 7.5 3.7 1463

2 24.0 41.3 21.9 8.4 4.5 1481

3 37.3 47.0 8.0 5.7 2.0 1481

4 3.7 4.7 9.0 25.4 57.2 1478

Table II. Catholic schools

Question SA A U D SD n

1 27.9 48.5 11.7 8.9 3.0 437

2 27.2 39.0 20.9 10.0 2.9 441

3 45.6 41.7 7.0 3.6 2.0 441

4 2.3 5.7 12.9 26.5 52.6 441

of all the indices are very small, which means that the students avoid selecting
positive answers.

In Tables IV–IX we present confidence intervals for the indices using the
techniques described in Section 3. In particular, Tables IV and V refer to boot-
strap confidence intervals for the three indices for public and catholic schools,
respectively. Tables VI–IX correspond to the parametric methods of Section 3.1
for confidence intervals of index I1.

From all the confidence intervals we conclude that in the first three questions
the students seem to prefer the positive answers (SA and A) since all the values
contained in the intervals are greater than one. In the fourth question the range
of values of all the intervals is restricted to values less than one, which indicates
that the students do not tend to select positive answers. Furthermore, according to

Table III. Values of the three indices

Public schools Catholic schools

Question I1 I2 I3 I1 I2 I3

1 1.857 6.634 3.446 1.910 6.420 3.733

2 1.632 5.062 2.506 1.655 5.132 2.577

3 2.108 10.948 5.879 2.182 15.589 7.484

4 0.210 0.102 0.190 0.200 0.101 0.227
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Table IV. Bootstrap confidence intervals

Public schools

Question I1 I2 I3

SB (1.8007, 1.9143) (5.5403, 7.7276) (3.1001, 3.7914)

1 PB (1.8011, 1.9122) (5.7676, 7.9643) (3.1401, 3.8134)

BB (1.8011, 1.9122) (5.6774, 7.8085) (3.1157, 3.7886)

SB (1.5719, 1.6931) (4.2574, 5.8666) (2.2987, 2.7128)

2 PB (1.5699, 1.6965) (4.3807, 6.0488) (2.3175, 2.7421)

BB (1.5716, 1.6965) (4.3670, 5.9814) (2.3110, 2.7220)

SB (2.0615, 2.1535) (8.7435, 13.1527) (5.1139, 6.6441)

3 PB (2.0645, 2.1556) (9.2313, 13.5376) (5.2326, 6.7246)

BB (2.0679, 2.1590) (9.2481, 13.5914) (5.2852, 6.8209)

SB (0.1756, 0.2444) (0.0834, 0.1199) (0.1677, 0.2122)

4 PB (0.1776, 0.2453) (0.0842, 0.1209) (0.1681, 0.2117)

BB (0.1810, 0.2503) (0.0852, 0.1226) (0.1704, 0.2151)

Table V. Bootstrap confidence intervals

Catholic schools

Question I1 I2 I3

SB (1.8091, 2.0109) (4.4006, 8.4397) (2.9849, 4.4812)

1 PB (1.8078, 2.0080) (4.8060, 8.8974) (3.1074, 4.5814)

BB (1.8078, 2.0080) (4.8333, 8.9487) (3.1176, 4.5862)

SB (1.5434, 1.7666) (3.5798, 6.6837) (2.1727, 2.9811)

2 PB (1.5420, 1.7630) (3.9286, 7.1860) (2.2256, 3.0226)

BB (1.5420, 1.7687) (3.9437, 7.1905) (2.2470, 3.0630)

SB (2.1038, 2.2612) (7.9414, 23.2371) (5.3908, 9.5774)

3 PB (2.1032, 2.2619) (10.8000, 26.1333) (5.8429, 10.2381)

BB (2.0918, 2.2562) (10.7429, 25.1875) (5.8857, 10.2927)

SB (0.1378, 0.2622) (0.0668, 0.1355) (0.1831, 0.2712)

4 PB (0.1417, 0.2664) (0.0708, 0.1377) (0.1827, 0.2720)

BB (0.1474, 0.2721) (0.0718, 0.1399) (0.1849, 0.2744)

the index values and confidence intervals we do not observe significant differences
in the degree of concentration to the positive answers in all the questions for the
two types of schools (the corresponding confidence intervals have common values).
However, Jensen (1986) implemented chi-square test in order to capture differences
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Table VI. Confidence intervals (8)

Question Public schools Catholic schools

1 (1.7995, 1.9131) (1.8041, 2.0083)

2 (1.5702, 1.6930) (1.5397, 1.7655)

3 (2.0578, 2.1522) (2.0957, 2.2566)

4 (0.1757, 0.2480) (0.1398, 0.2716)

Table VII. Confidence intervals (1)

Question Public schools Catholic schools

1 (1.6741, 2.0492) (1.5772, 2.2693)

2 (1.4544, 1.8213) (1.3341, 2.0121)

3 (1.9132, 2.3052) (1.8296, 2.5489)

4 (0.1431, 0.3056) (0.1002, 0.3935)

in the way that the students of public and catholic schools answered and concluded
that there exist significant differences in the third question.

Finally, we have to remark that the method of Sison and Glaz (1995) has not
been implemented as it would have been extremely cumbersome due to the large
sample size of our example.

6. Discussion-Conclusions

In the previous sections we introduced some new indices for ordered answers in
questionnaires. Various methods for constructing confidence intervals for these
indices are outlined. Finally, the performance of some of these methods was
investigated.

Table VIII. Confidence intervals (2)

Question Public schools Catholic schools

1 (1.8342, 1.8866) (1.8547, 1.9844)

2 (1.6104, 1.6620) (1.6039, 1.7318)

3 (2.0818, 2.1351) (2.1214, 2.2531)

4 (0.2029, 0.2371) (0.1910, 0.2740)
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Table IX. Confidence intervals (3)

Question Public schools Catholic schools

1 (1.7098, 2.0052) (1.6405, 2.1810)

2 (1.4855, 1.7792) (1.3863, 1.9244)

3 (1.9599, 2.2535) (1.9135, 2.4516)

4 (0.0628, 0.3567) (0.0072, 0.4675)

It would be useful to compare the observed coverage of the confidence intervals
for index I1 based on formulae (1), (2), (3) and (4), even though the coverage of the
bootstrap confidence intervals seems to be quite satisfactory in most of the cases.
Nevertheless, we believe that bootstrap confidence limits should be preferred since
the method of Sison and Glaz (1995), which performs better than the other three
parametric methods (see Sison and Glaz (1995)), is extremely complicated and
time consuming. Finally, it should be noted that we currently work on possible
modifications of the indices introduced, that overcome some of their drawbacks.

Appendix

See tables on following pages
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