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Abstract 
 
The aim of this paper is the price calibration of basket default swap from Japanese market data. The 
value of this instruments depend on the number of factors including credit rating of the obligors in the 
basket, recovery rates, intensity of default, basket size and the correlation of obligors in the basket. A 
fundamental part of the pricing framework is the estimation of the instantaneous default probabilities 
for each obligor. Because default probabilities depend on the credit quality of the considered obligor, 
well-calibrated credit curves are a main ingredient for constructing default times. The calibration of 
credit curves take into account internal information on credit migrations and default history. We refer 
to Japan Credit Rating Agency to obtain rating transition matrix and cumulative default rates. Default 
risk is often considered as a rare-event and then, many studies have shown that many distributions 
have fatter tails than those captured by the normal distribution. Subsequently, the choice of copula and 
the choice of procedures for rare-event simulation govern the pricing of basket credit derivatives. Joshi 
and Kainth (2004) introduced an Importance Sampling technique for rare-event that forces a 
predetermined number of defaults to occur on each path. We consider using Gaussian copula and t-
student copula and study their impact on basket credit derivative prices. We will present an application 
of the Canonical Maximum Likelihood Method (CML) for calibrating t-student copula to Japanese 
market data. 
 
 
 
Keywords: Basket Default Swaps, Credit Curve, Monte Carlo method, Gaussian copula, t-student 
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1. Introduction 
 
The credit derivative and structured credit markets have grown very rapidly in size and complexity in 
recent years. The flourishing world of credit derivatives has in turn spurred huge growth in structured 
products. The demand for more tailored, tradable, and investment-grade instruments have been an 
important motivation for developments in structured credit markets. The dominant structured product 
is basket default swaps and collateralized debt obligation (CDO). The most common type of basket 
default swaps is the first-to-default swap (FTDS), where the seller compensates the buyer any loss of 
the principal and also, possibly, the accrued interest of the asset in the reference basket which defaults 
first. The main difference between (FTDS) and a credit default swap (CDS) is the event causing 
payout for the contract (in one case, it is the first default of any of a list of names and in the other is 
default of a single name). A nth to default basket default swap gives protection against the nth default in 
the underlyings pool of credits. A Collateralized debt obligation (CDO) refers to securitization1 of 
pools of assets. A CDO cashflow structure allocates interest income and principal repayments from a 
collateral pool of different debt instruments to a prioritized collection (tranches) of CDO securities. 
Following the classification of Tvakoli (2003), a CDO is backed by portfolios of assets that may 
include a combination of bonds, loans, securitised receivables, asset-backed securities, tranches of 
other CDO’s, or credit derivatives referencing any of the former. Some market practitioners define a 
CDO as being backed by a portfolio including only bonds. A Collateralized loan obligation (CLO) is a 
type of CDO that is backed by a portfolio of loans. A Collateralized bond obligation (CBO) is a type 
of CDO that is backed by a portfolio of bonds issued by a variety of corporate or sovereign obligors.  
 
In order to understand the significance of developments in the Japanese markets, it is useful to review 
quickly what is happening in the global market. The global market in Credit Derivatives is expected to 
rise to $33 trillion by the end of 2008 according to a new report to be published by the British Bankers' 
Association (BBA) at its Credit Derivatives conference2 . The report, based on a survey of market 
leaders in credit derivatives, predicts that London will remain one of the world's dominant centres for 
credit derivatives products According to SIFMATM, Global CDO issuance through the third quarter of 
2006, at $322 billion, has exceeded full year 2005 issuance by 20%.  Issuance in the third quarter of 
2006, at $117.8 billion, also exceeded issuance in the third quarter of last year by 30%. European 
Securitisation Forum (ESF) Forecasts Issuance to Grow to a New Record of €531 Billion in 2007, Led 
by residential mortgage-backed securities (RMBS), commercial mortgage-backed securities (CMBS) 
and CDO. Then, a 16.4 percent growth rate from the €456 billion issued in 2006. 
 According to Financial Times3, The explosive growth in credit derivatives is bypassing Japan. It 
accounts for 5 per cent of global activity, estimates the British Bankers’ Association, compared with 
about 40 per cent for London. There are some hopes that the introduction of risk-weighted Basel II 
capital rules will stimulate the use of CDSs for hedging purposes. There is some evidence of this: the 
country’s top bank last year issued a handful of balance sheet collateralised debt obligations 
referencing Japanese names. But do not bank on this starting a virtuous cycle of liquidity. Made-in-
Japan CDOs are still more likely to involve overseas names, to pick up bigger spreads. 
 
Actually, more substantial empirical studies are devoted on basket default swap and CDO. The main 
problem in the pricing of such instruments is modelling the structure of dependency of the default 
times. Defaults are rarely observed. Copulas can be introduced to model these correlations by using 
the correlations of corresponding default time. We know that Kendall’s tau remains invariant under 
monotone transformations. This is the foundation of modelling the correlation of credit events by 
using the correlation of underlying default time via copulas. Li (2000) present a Gaussian copula 
method for the pricing of first to default swap. Other studies of elliptical copulas with higher tail 
dependence, such as the t-copula, can be found in Mashal and Naldi (2002). The Marshall-Olkin 

                                                 
1 According to Tvakoli (2003), securitization has been a means for banks to reduce the size of their balance 
sheets and to reduce the risk on their balance sheets. This allowed banks to do more business and allowed 
investors accsess to diversified pools of assets to which they otherwise not have had access.  
2 Thursday September 21,2006 
3 Financial Times, 14.03.2007. 



copula is yet another class of copula functions, which stems from the multivariate compound Poisson 
process. In this model, individual defaults are constructed from a series of independent common 
shock. Previous work on the use of the Marshall-Olkin copula in the context of credit risk modelling 
includes Duffie and Pan (2001), Wong (2000), Lindskog and McNeil (2003).Hull & White (2004) 
develop two procedures to pricing tranches of CDO and nth to default swap. The first procedure 
involves calculating the probability distribution of the number of defaults by a time T and suited to the 
situation where companies have equal weight in the portfolio and recovery rates are assumed to be 
constant. The second involves calculating the probability distribution of the total loss from defaults by 
time T. Jobst (2002) propose a pricing model that draws expected loan loss of CDO based on 
parametric bootstrapping through extreme value theory under the impact of asymmetric information. 
Tavares et al. (2004) present a basket model to deal with the Gaussian copula smile. They combine the 
copula model (to model the default risk that is driven by the economy) with independent Poisson 
processes (to model the default risk that is driven by a particular sector and by the company in 
question).Hull and White (2005) introduce the technique of perfect copulas. Their copula model can 
be regarded as ‘perfect’ in that it hits the tranche quotes exactly. The hazard-rate-path probability 
distribution is the only input about the underlying copula in order to value a CDO. Hull et al. (2005) 
price CDOs in a Black & Cox (1976) structural model by Monte Carlo simulation. They show that this 
model yields tranche spreads very similar to the standard Gaussian copula model, indicating that the 
model is unable to fit senior tranches. They consider two extensions of the model. The first reflects 
empirical research showing that default correlations are positively dependent on default rates. The 
second reflects empirical research showing that recovery rates are negatively dependent on default 
rates. Willemann (2005) extend a well-known structural jump-diffusion model for credit risk to pricing 
CDO instrument. He shows how the structural jump-diffusion credit risk model of Zhou (1997) can be 
extended to allow for correlation through innovations to the driving Brownian Motions and through 
correlation of common jumps in asset value. He provides efficient semi-analytical techniques for the 
calculation of the portfolio loss distribution. Laurent (2005) consider different pricing models 
associated with different copulas of default times: Gaussian, Student t, Clayton, Marshall-Olkin, 
double t. he emphasize the use of stochastic orders to derive some properties of CDO tranche 
premiums. Totouom & Armstrong (2005) develop a family of dynamic Archimedean copula processes 
to model the default times. They call for a stochastic process in which the copula defining the defaults 
amongst the n names is a valid n-copula at any point in time. Burtschell et al. (2005) employ the 
technique of the double Student-t copula model for the calibration of CDO. They find that this copula 
model fit better the features to the CDO market in comparison to other models like Gaussian, t-
Student, stochastic correlation, Clayton and Marshall-Olkin copulas. Madan (2004) provide details for 
the pricing of nth to default contracts using the one factor Gaussian and the Clayton copulas. He model 
the marginal default time densities using Weibull and Frechet families and the joint densities are 
obtained using the method of copula. Verschuere (2006) present a factor approach combined with 
copula functions to price tranches of synthetic Collateralized Debt Obligation (CDO) having totally 
inhomogeneous collateral (the obligors in the CDO pool have different spreads and different notional). 
Sircar and Zariphopoulou (2006) study the impact of risk aversion on the valuation of basket credit 
derivatives. They use the technology of utility-indifference pricing in intensity based models of default 
risk. Abid & Naifar (2007) present a Copula based simulation procedures for pricing basket Credit 
Derivatives. They argue that not only the choice of copula is an important input, but also the choice of 
procedures for rare-event simulation govern the pricing of basket credit derivatives 
 
 In our paper, we calibrate the price of multi-name credit derivatives such as nth to default swap from 
Japanese market data. To express dependencies between times of default, Gaussian and student 
copulas have been considered. We will present an application of the Canonical Maximum Likelihood 
Method (CML) for calibrating t-student copula. The remainder of this paper is organised as follows: 
section two describes simulation procedure for pricing basket credit default swap.  In section three, we 
present our data from Japanese market. Section four describes calibration procedure for copulas 
parameters. Section five present a procedure for calibrating credit curve. Section six calibrate recovery 
rate. Section seven present an estimation of basket default swap from market data using Monte Carlo 
simulation. Section nine present an estimation of basket default swap from market data using 
Importance Sampling technique. Section ten summarizes the findings and concludes. 



2. Pricing of Basket Credit Default Swaps 
 
The most common type of basket default swaps is the first-to-default swap (FTDS), where the seller 
compensates the buyer any loss of the principal and also, possibly, the accrued interest of the asset in 
the reference basket which defaults first. The main difference between (FTDS) and a credit default 
swap (CDS) is the event causing payout for the contract (in one case, it is the first default of any of a 
list of names and in the other is default of a single name). A nth to default basket default swap gives 
protection against the nth default in the underlying pool of credits.  

 
Regular Periodic premium till contract 

expiration or nth credit event occurs Protection 
Buyer 

Protection 
seller 

 
 
                                                              Figure 1: nth to Default Basket 
 
The valuation of a basket default swap comes down to the calculation of relevant default probabilities.  
If defaults of the reference entities are independent, a closed-form formula for such probabilities can 
be derived.  If defaults of the reference entities are not independent, then the calculations of first-to-
default or nth-to-default probabilities are more difficult.  Generally, closed-form formulae are not 
available and Monte Carlo simulation is used. 
 
Suppose a basket of credit default swap with the following characteristics: 

V: The total value of the basket. with A∑=
=

N

1i
iAV   is the notional amount of each contract. 

N: The number of contracts in the basket. 
δ : The payment frequency. =1 for annual payment frequency. δ
T: The maturity date of the basket. 
n: The basket seniority. n=1 for first to default basket, n=2 for second to default basket. 
s: The Fair price of the basket. 
 
According to Galiani (2003), the risk neutral price of the nth to default basket swap is computed by 
equating the expected value of the discounted premium payment leg (fixed cash flow to be paid till 
contract expiration T or nth credit event occurs) with the expected value of the discounted default leg 
(contingent payment in case of default), under the equivalent martingale measure . Under this 
measure, the price processes of any tradeable security, discounted by the money market account, are 

-martingales with respect to some filtration.  

*Ρ

*Ρ
The premium legs are paid as long as the underlying credit has not defaulted until the maturity of the 
contract. The present value of the premium leg of the nth to default basket default swap can be 
computed as follows:                                          
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Where ( ) the premium leg as function as the fair spread of the contract (f) as a fraction of is 
notional amount (A) in basis point, 
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The second part for pricing nth to default swap is the default leg [ ]nDLE . The default leg can be 
expressed as the difference between the expected discounted default payment   and the 
expected discounted accrued premium

[ nDPE ]
[ ]nAPE . Then, [ ]nDLE = [ ]nDPE - [ ]nAPE . 

With:            

  [ ] ( ) ( ) { }⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Ι−= ∑

=
≤

N

j
T

nn
n nRAEDPE

1

1. ττβ

                                                                         (2.3) ( ) ( ) ( ) ( )∑ ∫
=

=−=
N

j

T
jn

n
nn dtFRA

th

1 0

 1 τβ
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for allowing different recovery rates for the obligors.  
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The fair spread of the basket default swap is given by: 
                 

 
 
 
                 (2.5) 

From equation (2.5), we notice that the fair price depend on default probabilities, the structure of 
dependency between default times and the market perception of the loss severity given default through 
the recovery rate. The calibration of basket credit default swap fair spread from Japan market data 
contain the following steps: 
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- Step 1: Calibrate the parameters of the copula functions (Gaussian copula and t-student copula) 
chosen for modelling the structure of dependency among the names in the basket. The calibration of 
the parameters are described in§ 4.2. 
 
- Step 2: Calibrate credit curve for each names in the basket as described in § 5. 
 
- Step 3: Calibrate recovery rate for each names in the basket as described in § 6. 
 
- Step 4: Generate correlated default times concisely with the estimated parameters as in § 7. 
  
 
 
 
 



3. Data description 
 
Tokyo Financial Exchange (TFX) distributes credit default swap Reference Rates with collaboration 
with many financial institutions4. The indicative rates provided by the designated financial institutions 
are the rates (premium) of the following standardized credit default swap contracts: 
 

- 5 year maturity ; 
- Amount of 500 million yen for notional principle; 
- 3 credit events such as "bankruptcy", "failure to pay", and "restructuring (old restructuring)"; 
- A Physical Settlement is required in case that any credit event occurs. 

 
We refer to Japan Credit Rating Agency (JCR) to obtain rating and industry sector of each reference 
entity. Daily stock prices of each name are obtained from Tokyo Stock Exchange. 
We construct an example of basket default swap with five names of different rating and industry 
sector. Similarly, we set the notation used throughout this paper: 
 

Basket default swap 
Initial Par Value 

∑=
=

N

1i
iAV  

A  is the notional amount of the 
contract 

2500 million yen 

Number of obligors:  N 5 
Start date:  0t 26/01/2007 

Maturity date: T 26/01/2012 

Payment frequency: δ =1               Annual payment  

Fair price                      s 
 

Table 1: Basket default swap description 
 

 

Name Notional 
Principle (YEN) 5y CDS spread Industry sector Rating 

East Japan Railway 
Company (1) 500 million yen 4,86 

 
Transport-Rail 

 AAA 

Bridgestone Corporation 
(2) 500 million yen 6,72 

 
Rubber-Tires 

 AA  

Konica Minolta Holdings, 
Inc. (3) 500 million yen 18,00 

 

Photo 
Equipment&Supplies 

 
A  

Sanyo Electric Co., Ltd. (4) 
 500 million yen 101,84 

 
Electric Products-

Misc BBB 

Japan Airlines Corporation 
(5) 500 million yen 233,71 

 
Airlines 

 BBB 

 
Table 2: Basket default swap at January, 26th 2007 

 
 
                                                 
4 15 Financial institutions, which support to distribute CDS Reference Rates for the infrastructure development 
of credit default swap market (Barclays Capital Japan Limited, Bear Stearns (Japan) Ltd.,...). 
 



4. Calibration of copulas 
 
4.1. Stylised facts about Copula functions   
  
The copula function links the univariate margins with their full multivariate distribution. It presents a 
useful tool when modelling non Gaussian data since the Pearson’s correlation coefficient is adapted 
for linear dependence and normal distribution. One appealing feature of a copula function is that the 
margins do not depend on the choice of the dependency structure and then, we can model and estimate 
the structure of dependency and the margins separately. Copula functions are getting more and more 
popular credit correlation modelling due to its simplicity and fast computation. Embrechts, et al (1999) 
clarified many issues concerning dependence and its relationship to correlation, especially in financial 
data such as market crashes, credit crises. According to Gennheimer (2002) there are several reasons 
why copulas are such an attractive tool for modelling dependence: 
1. They provide us with a powerful tool for building a large number of multivariate models and are 
extremely useful in the Monte Carlo simulation of dependent risk factors. 
2. They allow us to overcome the fallacies and dangers of approaches to dependence that focus only 
on correlation. 
3. They provide a way of studying scale-free measures of dependence. 
4. They express dependence on a quantile scale, which we will find is useful for describing the 
dependence of extreme outcomes. 
 
Frey & McNeil (2002) analyse default correlation and the pricing and hedging of credit sensitive 
instruments with copulas functions. Jouanin et al (2001) address the problem of incorporating default 
dependency in intensity-based credit risk models by using copulas functions to model the joint 
distribution of the default times. Abid & Naifar (2005, 2006) study the impact of Stock returns 
volatility of reference entities on credit default swap rates using Archimedean copula.  
For n uniform random variables , the joint distribution function C is defined as: nuuu ...,,2,1
 

                           (4.1) 

With θ   is the dependence parameter. 
( ) [ ]nn2211n21 uU,...,uU,uUPr,u,...,u,uC ≤≤≤=θ

We present the following definition for the bivariate case: A copula function is the restriction to 
of a continuous bivariate distribution function whose margins are uniform on [ . A (bivariate) [ ]21,0 ].1,0

copula is a function [ ] [ 1,01,0: 2 →C ] which satisfies the boundary conditions:    
                        

Similarly, copula satisfies the 2-increasing property:  
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 the importance of copulas as 
efinition, applying the cumulative di

                                                

 
sSklar (1959) show a universal tool for studying multivariate 

distributions5. By d stribution function (CDF) to a random variable 
(r.v.) results in a r.v. that is uniform on the interval [0,1]. Let X a random variable with continuous 
distribution function FX, FX(X) is uniformly distributed on the interval [0,1]. This result is known as 
the probability integral transformation theorem and present many statistical procedures. With this 
result in hand, we may introduce the copula using basic statistical theory. In particular, the copula C 
for (X,Y) is just the joint distribution function for the random couple FX(X), FY(Y) provided FX and FY 
are continuous. 

 
5 The original definition of copula is given by Sklar (1959) and the Sklar’s theorem is considered as the most 
important theorem about copula functions. The problem of obtaining a joint distribution is reduced to selecting 
the appropriate copula. 



The previous representation is called canonical representation of the distribution. Thus, copulas link 
joint distribution functions to their margins. Then, in continuous distribution, the problem of obtaining 
the joint distribution has reduced to selecting the appropriate copula. We can build multidimensional 

t is the choice of the appropriate copula which describes the 

ultivariate normal distribution has two appealing 

distributions with different marginals. 
Copula functions allow us to separate the structure of dependency between default times into two 
parts: the first part is the specification of the marginal distribution function (the distribution of default 
time of each obligor. The second par
structure of dependency between default times. 
Numerous copulas can be found in the literature (see Nelson (1999) and Joe (1997)). The most 
commonly applied copula function (especially in finance modelling) is the Gaussian copula6. This 
could be justified by the fact that the m
characteristics: first, their marginal distributions are normal and second, it can be fully described by 
their marginal distribution and a variance-covariance matrix. For univariate margins F1,…,Fn which 
are Gaussians, the dependence structure among the margins is described by a unique normal copula 
function. Let n1 X,...,X be random variables which are standard normal distributed with 
means n1 ,...,µµ , standard deviations n1 ,...,σσ  and correlation matrixΣ . Then, the distribution 
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If we use a Gaussian copula, we preserve the underlying distribution of the individual random 
variables but the joint distribution is like a multidimensional Gaussian. This naturally assigns very 

ttle weight to the tails. In reality, we find that within the financial markets, tail events occur much li
more frequently. So we would like a joint distribution which has fatter tails but preserves the same 
(bell shaped, non-skewed) characteristics of the Gaussian, hence we use the t-Student copula.  
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The t-student copula with the correlation matrix
 

Σ  and ν  degrees of freedom is presented as follow: 
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6 Credit Metrics  and KMV mod corporate copula functions bas d on the multivariate Gaussian 
distribution of asset value process. 
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4.2. Estimating parameters of copulas 

The Gaussian copula is completely determined by the knowledge of the correlation matrix and the 
p

 

∑
parameters involved are simple to estimate. To simulate random variables from Gaussian co ula, it is 
enough to simulate a vector from the standard multivariate normal distribution with correlation matrix 
∑  and then to transform this vector through a univariate cumulative distributions function so that you 

 obtain a vector from the chosen copula. The matrix can ∑ positive definite can be easily determined 
with the cholesky decomposition in order to calculate a ma ix A such as ∑=TAA  
The following algorithm generate random variates 

tr
( )n1 u,...,u  which are determination of correlated 

uniform variates on [0,1] from the Gaussian copula with the correlation matrixΣ : 
 

- Find the Cholesky decomposition7 A of the correlation matrixΣ , such that ;  TAA ⋅=Σ

- Simulate n independent standard normal random variates ( )Tn21 z,...,z,Z = z ; 

x back an n-dimensional vector u of uniform variates on 
- Set ZAx ⋅= ; 
- Set to [ ]1,0 by computing ( )xu Φ= . 

The t-student copula is defined by two parameters: the correlation matrix and the number of 

The vector u is a random variate from the n-dimensional Gaussian copula ΣC . 

∑
degrees of freedomν .  To simulate random variates from the t-Student c ula Σν,C  with the 
correlation matrixΣ  and 

op
ν  degrees of freedom, we can use the following algorithm: 

- Find the Cholesky decomposition A of the correlation matrixΣ , such that ;  TAA ⋅=Σ

- Simulate n independent standard normal random variates ( )Tn21 z,...,z,zZ = ; 
ndent of Z; 

- Set 

- simulate a random variate, s, from 2
νχ  distribution, indepe

- Set ZAy ⋅= ; 

s
yx ν

= ; 

ensional vector u of uniform variates on - Set x back to an n-dim [ ]1,0 by computing ( )xtu ν= . 

 

In terms of the appropriate choice for the number of degrees of freedom, it is often necessary to carry 
 

                                                

The vector u is a random variate from the n-dimensional t-Student copula Σν,C . 

  

out some statistical tests with historical data to ascertain how fat we require the tails to be. Many woks

 
7 A symmetric and positive definite matrix can be efficiently decomposed into a lower and upper triangular 
matrix. For a given matrix, this is achieved by the LU decomposition which factorizes A=LU. If A satisfies the 
above criteria, one can decompose more efficiently into , where L (which can be seen as the ``matrix 
square root'' of A) is a 

TLLA =
lower triangular matrix with positive diagonal elements. L is called the Cholesky triangle. 

 

http://planetmath.org/encyclopedia/SymmetricMatrix.html
http://planetmath.org/encyclopedia/PositiveDefinite.html
http://planetmath.org/encyclopedia/Matrix.html
http://planetmath.org/encyclopedia/TriangularMatrix.html
http://planetmath.org/encyclopedia/TriangularMatrix.html
http://planetmath.org/encyclopedia/LUDecomposition2.html
http://planetmath.org/encyclopedia/SatisfactionRelation.html
http://planetmath.org/encyclopedia/TriangularMatrix.html
http://planetmath.org/encyclopedia/Negative.html


explain how to calibrate t-student copula to real market data (Mashal and Zeevi (2003), Romano 
(2002), Meneguzzo and Vecchiato (2002)…). According to Galiani (2003), we find three methods: 

- Exact Maximum Likelihood Method (EML): The idea behind maximum likelihood parameter 
estimation is to determine the parameters that maximize the probability (likelihood) of the sample 
data. Unlike the case of Gaussian copula, the calibration of t-student copula via the EML methode 
requires simultaneous estimation of the parameters of the margins and the parameters related to the 
dependence structure. 

- The Inference for Margins Method (IFM): This method has emerged as the preferred fully parametric 
method because it is close to EML in approach and is easier to implement. Joe and Xu (1996) present 
an approach that consists of estimating univariate parameters from separately maximizing univariate 
likelihoods, and then estimating dependence parameters from separate bivariate likelihoods or from a 
multivariate likelihood. The jackknife method is proposed for obtaining standard errors of the 
parameters and functions of the parameters. Kim et al (2007) compare the maximum likelihood (ML) 
and IFM methods with a semi-parametric method that treats the univariate marginal distributions as 
unknown functions. They find that, in terms of statistical computations and data analysis, the semi-
parametric method is better than ML and IFM methods when the marginal distributions are unknown 
which is almost always the case in practice. 

- The Canonical Maximum Likelihood Method (CML): Both EML and IFM require the parametric 
form of the univariate margins. The CML method does not require any prior assumption on the 
distribution form of the margins. Genest et al (1995) proposed a semi-parametric procedure for 
estimating the dependence parameters in a family of multivariate distributions when one does not want 
to specify any parametric model to describe the marginal distribution. This procedure consists of 
transforming the marginal observations into uniformly distributed vectors using the empirical 
distribution function. Then, the copula parameters are estimated by maximisation of a Pseudo log-
likelihood function. 
 
The CML tend to estimate the unknown parametric marginals ( ).Fn for N,...,1n = with the empirical 

distribution functions defined as: ( ).F̂n ( ) {∑ Ι=
=

≤
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1.F̂ } for N,...,1n = and represents the 

indicator function. The CML method is composed with two steps: 
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- Step1: Transformation of the data set ( )T 1tNtt2t1 X,...,X,XX == into uniform variates, using the empirical 
marginal distribution. Then, for    ;T,...,1t =

                             ( ) ( ) ( ) ( )[ ]Ntt22t11
t
N

t
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1t XF̂,...,XF̂,XF̂û,...,û,ûû   ==  

- Step2: Estimation of the vector of the copula parameters α as follow: 
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In our paper, we present an application of the CML method for calibrating the parameter of the t-
student copula. Bouyé et al (2000) present an approach based on a recursive optimization 
procedure for the correlation matrix. We use the approach proposed by Mashal & Zeevi (2002) 
based on the rank correlation estimator given by the Kendall tau. Schweizer & Wolff (1981) show 
that two standard nonparametric rank correlation (Kendall’s tau and Spearman Rho ) can be 
expressed solely in terms of the copula function. They are nonparametric measures of dependence 
since they are independent of the margins.  
The Kendall’s tau (τ ) for two random variables X and Y is the probability of concordance minus 
the probability of discordance. Suppose that (X,Y) and (X*,Y*) are two independent realizations 
of a joint distribution:  ( ) ( )

[ ]
∫∫ −=τ

21,0
2121 1u,udCu,uC4  



                                       ( )( ){ } ( )( ){ }0YYXX Prob0YYXX Prob  **** <−−−≥−−=  
For simplicity, it is assumed that the marginal distributions are continuous. Following Genest & 
MacKay (1986), Kendall tau verifies the following properties: 
• 11 ≤≤− τ  
• τ is invariant under monotone transformations: if andf g are monotone increasing or 

decreasing functions, then ( ) ( )( ) ( )YXYgXf ,, ττ =  
• 0=τ if X and Y are independent (but not conversely). 
According to Lindskog et al (2001), the following theorem is presented: 
 

Theorem 1: Let ~X ( )ρΣν ,,E N .  and are continuous for iX jX { }N,...2,1j,i ∈ , then:   

                                                              ( ) ijji Rarcsin2X,X
π

=τ .                                                       (4.2.1) 

Where  denote the N-dimensional elliptical distribution with parameters ( ρΣν ,,E N ) ( )ρΣν ,, , 
( )ji X,Xτ is The Kendall’s tau and denote the Pearson correlation coefficient for the random 

variables 
ijR

( )ji X,X . 
As mentioned in table 2, our basket credit default swap is composed with five names. The calibration 
procedures contain three steps: 
-Step1: Transform the initial stock prices data X into a set of uniform variates using the empirical 
marginal transformation. 

Û

-Step 2: Estimate the correlation matrix CMLR from equation  (4.2.1). 
- Step 3: Extract the CML Estimator of the degrees of freedom by maximizing the log likelihood 

function of the t-student copula: 
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The above method has computational advantages over other methods. This method does not require 
matrix inversion and therefore has the advantage of being numerically stable in the presence of close-
to-singular correlation matrices.  
 
The existing literature on default correlations can be divided into two approaches: the structural 
approach that models default correlations through companies’ assets values; and the reduced-form 
approach that models default correlations through default intensities. Elizalde (2005) distinguishs three 
different approaches to model default correlation in the literature of intensity credit risk modelling. 
The first approach introduces correlation in the firms’ default intensities making them dependent on a 
set of common variables and on a firm specific factor (conditionally independent defaults  models). 
The second approach default dependencies arise from direct links between firms (Contagion models). 
The third model default correlation makes with copula functions. Li (2000) points out that 
CreditMetrics uses a bivariate normal copula function with asset correlation as the correlation 
factor.Patel & Pereira (2005) extract common or latent factors that drive companies default 
correlations using a factor-analytical technique. The results indicate that the common factors, which 
capture the overall state of the economy, explain default correlations. In KMV methodology, the 
model and the correlation matrix is computed on asset returns but proxied by equity returns on 
CreditMetrics. The correlation model in CreditMetrics provides estimates of equity correlations 
instead of asset correlations.. Then, it has become market practice to use equity correlation as a proxy 
for asset correlation. 
 
The equity prices used in this paper is from Tokyo Stock Exchange. It consist of 754 daily observation 
Spanned from January, 02 th 2004 to January 25 th 2007. As mentioned in table 2, our basket credit 
default swap is composed with five names. The calibration procedures contain three steps: 
 
-Step1: Transform the initial stock prices data X into a set of uniform variates using the empirical 
marginal transformation. 

Û

-Step 2: Estimate the correlation matrix from equation  (4.2.1). CMLR



- Step 3: Extract the CML Estimator of the degrees of freedom by maximizing the log likelihood 

function of the t-student copula: 
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From equation (4.2.1), we obtain the following correlation matrix : 
 
 
 

1 0.34197 0.17727 0.19895 0.17839 
0.34197 1 0.31106 0.33717 0.21573 
0.17727 0.31106 1 0.36427 0.25319 
0.19895 0.33717 0.36427 1 0.29069 
0.17839 0.21573 0.25319 0.29069 1 

 

 
 
Figure 2 : Log-likelihood function of the t-student copula density as a function of degrees of freedom 

 
The degrees of freedom is then =10.  ν

 
5. Calibration of credit curves 
 
In the basket default swap pricing, one of the fundamentally important issues is the estimation of 
default probabilities and correlations. Because default probabilities depend on the credit quality of the 
considered obligor, well-calibrated credit curves are a main ingredient for constructing default times.  
The calibration of credit curves take into account internal information on credit migrations and default 
history.  There are dozens of rating agencies that provide yearly rating migration and default data for 
corporations and governments.  From this data a rating transition matrix can be constructed.  Such a 
matrix gives transition probabilities for a corporation migrating, in one year, from one rating level to 
another.  Of particular interest is the transition probability to default status8. To calibrate credit curve, 
we will introduce the concept of hazard function. In the following, we present some mathematical 

                                                 
8 The method used by Standard & Poor's to estimate credit curves involves two stages. The first stage is the 
estimation of the probabilities of transitions between different ratings (transition matrix). The second stage is the 
repeated application of this matrix to determine the credit curves. In both cases, rating transitions are assumed to 
follow a Markov process, in which transition probabilities are constant over time, and do not depend on the 
previous rating of the firm. 



background for modelling default times. We assume a probability space { }( )ΡℑℑΩ ≥ ,,, 0tt , whereΩ is 
the underlying probability space containing all possible events over a finite time horizon.  is a ℑ σ -
field representing the collection of all events. { } 0tt ≥ℑ  is a filtration that carries information with times 
and  is a probability measureΡ 9. The pricing is assumed under no arbitrage and then,  is risk-neutral 
measure. 

Ρ

Default time Rτ for each R-rated obligor { }KR ,...,1= should be a random variable and the event of 
default should be known for everybody at any times because we assume a perfect market with a free 
flow of information. Default is a stopping time τ  with respect to the filtration:{ } 0  , ≥∀ℑ⊂< tt tτ . Let 

( ) ( )ttF RR ≤Ρ= τ  be the distribution function and ( )tf R is the density function of stopping time, the 
hazard rate of Rh Rτ  or intensity process is defined such that we have for the probability of default for 
R-rated obligor until time (t + ) given survival till t is given by:  t∆
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With ( )tdtttdF RRR >+≤<= ττ ,  , ( ) ( ) ( )tStPtF RRR =>=− τ1 is called the survival function 
for R-rated obligor that gives the probability that a security will attain age t .The hazard rate function 
gives the instantaneous default probability for a security that has attained age t .The marginal survival 
distributions for R-rated obligor  is assumed to be smooth and strictly decreasing, this can be 
written as: 

( )iR tS
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( ).Rh is the default intensity process for R-rated obligor. The default times Rτ are defined:  
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Where Rθ has an exponential distribution with unit intensity10. 
 
Let Q=(qi,j, i,j = 1,2,…, k) be a one year rating transition matrix with rating grades R1, …, Rk-1 and 
default state D, where qi,j is the probability that an obligor with current rating Ri will migrate to rating 
Rj in one year.  
The aim of this section is to calibrate a credit curve for each rating, where a credit curve for R is a 
mapping: ( ) [  tin time , DRRtPt → ]Ρ=a , with R the rating grades R1, …, Rk-1 and default state 
D. Where →denotes migration from a rating state to another. Then, ( )RtP ,  is the probability that an 
obligor with a current rating defaults with the next t years. Suppose that a firm’s rating follows a time 
homogeneous Markov process model11 with the transition probability matrix (as have with Jarrow et al 
(1997) and other authors).  Jarrow et al (1997) model default and transition probabilities by using a 

                                                 
9 According to Bielecki et al (2005), the probability space is endowed with a filtration , where the 
filtration H carries information about evolutions of credit events, such as changes in credit ratings of perspective 
credit names and F is some reference filtration. 

FH ∨=ℑ

10 The exponential distribution is used to model Poisson processes, which are situations in which an object 
initially in state A can change to state B with constant probability per unit time λ. The time at which the state 
actually changes is described by an exponential random variable with parameter λ 
11 A process with the Markov property is called a Markov process. A stochastic process has the Markov property 
if the conditional probability distribution of future states of the process, given all past and the present state, 
depends only upon the present state. 

http://en.wikipedia.org/wiki/Poisson_process
http://en.wikipedia.org/wiki/Stochastic_process
http://en.wikipedia.org/wiki/Probability_distribution


discrete time, time-homogenous Markov chain on a finite state space S={1,......,K}. The state space S 
represents the different rating classes. It seems to be common market practice to model default 
probability term structures via Markov chain techniques. 
 
Given the one-year K × K transition matrix M, we are interested in finding a generator matrix such as 

. Dealing with the question if it exist a generator matrix, the following theorem Noris 
(1998) can be used: 

)exp(QM =

 
Theorem 2: If the transition matrix M=(mi,j, i,j = 1,2,…, k) is strictly diagonal dominant, ie: 

for every I, then  the log-expansion 5.0>iip
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zero and satisfying )~exp(QM = . 
The generator of a time-continuous Markov chain is given by a so called Q-matrix = satisfying the 
following properties: 
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Theorem 3: The following two properties are equivalent for a matrix : KKQ ×ℜ∈
-Q satisfies properties (1),(2) and (3) 
-exp(tQ) is a stochastic matrix for every , where exp(.) denotes the matrix exponential 0≥t
 
The construction of credit curves which are compatible with table 1is presented on the following steps: 
- Step 1: Compute the log-expansion ijqQ ~~

=  of the one-year rating transition matrix M; 
- Step 2: The calibration of a generator Q-matrix  based on the log-expansion of M and a so-called 
diagonal adjustment (see Kreinin &Sidelnikova  (2001)); 
- Step 3: The approximation of the original matrix M by exp(Q), see Bluhm (2003), Bluhm & 

overbeck (2006). The error is: ( ) ( )( )( )∑
=

−=−
K

ji
ijij QmQM

1,

2
2

expexp  

- Step 4: The credit curves can be read-off from the collection of matrices ( ) 0exp ≥ttQ by looking at the 
default columns. Otherwise, we can generate default probability term structures based on the 
continuous time-homogeneous Markov chain generated by Q via: 

                              ( ) ( )( ) ( ) ( )0t    exp, , ≥= KRrowtQRtP  
Where row (R) denotes the transition matrix row corresponding to the given rating R 
 



In the present paper, we use Japanese data and then we refer to Japan Credit Rating Agency to obtain 
rating transition matrix and cumulative default rates12. We use one year rating transition matrix to 
computes either marginal or cumulative default probabilities over one or multiple time steps. Marginal 
default probabilities are computed by applying recursively the standard Markov chain over the 
different transition states.13 The one-year ratings transition matrix provided by Japan Credit Rating 
Agency is presented on table 1. Credit migration matrices are said to be diagonally dominant, meaning 
that most of the probability mass resides along the diagonal, most of the time there is no migration. 
 
 

 
               
                Table 3: One-year rating transition matrix (for period January 1995-decembre 2005) 
           
Transition matrix presented in table 3 is reduced into another smaller sub-Transition Matrix. Rating 
classes are aggregated into groups and then scales them to meet the 100% probability criteria.  

Table 4 indicates one-year ratings migration probabilities from modified Transition Matrix. For 
example, a BBB rated bond has a 3,513% probability of being downgraded to a BB+ rating by the end 
of one year. To use a ratings transition matrix to calculate the one year default probabilities, we simply 
take the default probabilities indicated in the last column and ascribe them to bonds of the 
corresponding credit ratings. For example, with this approach, we would ascribe an BBBrated bond  a 
0,083% probability of default within one year.Transition matrices can be used to compute credit 
curves over multiple horizon. This is done by transforming the transition probabilities into marginal 
default probabilities, which are then converted into survival or Hazard rates or expected default 
probabilities. Table 5 present cumulative default probabilities for each rating class. 

RATING AAA AA A BBB BB B CCC DEFAULT
AAA 95,410% 4,590% 0,000% 0,000% 0,000% 0,000% 0,000% 0,000% 
AA 1,313% 93,527% 4,423% 0,657% 0,080% 0,000% 0,000% 0,000% 
A 0,000% 2,014% 93,433% 3,159% 1,316% 0,000% 0,000% 0,079% 

BBB 0,000% 0,000% 3,750% 92,491% 3,513% 0,163% 0,000% 0,083% 
BB 0,000% 0,000% 0,000% 5,403% 77,894% 11,353% 2,427% 2,923% 
B 0,000% 0,000% 0,000% 4,124% 11,681% 61,817% 5,350% 17,028% 

CCC 0,000% 0,000% 0,000% 0,000% 0,000% 0,000% 0,000% 100,000% 
 

Table 4: Modified Transition Matrix 
 

                                                 
12 “JCR Rating Matrices and Cumulative Default Rates”, Rating Perspective, April 2006. 
13 We use The Risksvr™ calculation engine. 



 

 
RATING 1 2 3 4 5 6 7 8 

AAA 0,000% 0,000% 0,000% 0,001% 0,004% 0,009% 0,017% 0,030%
AA 0,000% 0,006% 0,024% 0,058% 0,113% 0,193% 0,299% 0,435%
A 0,079% 0,194% 0,395% 0,691% 1,078% 1,551% 2,099% 2,715%

BBB 0,083% 0,294% 0,753% 1,449% 2,353% 3,428% 4,637% 5,950%
BB 2,923% 9,565% 16,591% 23,316% 29,446% 34,891% 39,659% 43,805%
B 17,028% 33,249% 44,061% 51,585% 57,050% 61,181% 64,416% 67,022%

CCC 100,000% 100,000% 100,000% 100,000% 100,000% 100,000% 100,000% 100,000%
 

Table 5: Cumulative Default Probabilities 
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Figure 3: Calibrated curves ( ) 0tR,tP ≥  

 
Figure 1 shows a chart of our credit curves just constructed from rating transition matrix obtained from 
Japan Credit Rating Agency. We notice that credit curves assigned to non-investment grade14  have a 
tendency to slow-down their growth, because conditional on having survived for some time the 
chances for further survival get better. However, for investment grade ratings (AAA, AA, A), we 
notice the opposite effect. After the calibration of the credit curves, we can obtain the cumulative 
default probabilities for any names over any time interval [0,t]. Then, we can define the marginal 
distribution of default times. 
 
We can construct a default probability curve from given default swap rates.  Such a method is often 
called bootstrapping15. As we know, the price of single name credit default swap can be affected by 
marginal probability of default. Hull(2002) mentioned that the credit default swap market is so liquid 
that we can use the credit default swap spread data to calibrate the default intensity. According to 
Choudhury (2006), historical evidence suggests that the credit default swap market can anticipate 
rating downgrades. Take the example of El Paso Corporation16, the cost of five-year CDS protection 
more than doubled between September 12 and September 23, 2002 from 575 basis points to 1250 
basis points. Two month later, El Paso Corporation was downgraded from Baa3 to B2. Then, we can 
construct a default probability curve from default swap rates. Galiani (2003) provide a practical 
application for extracting the term structure of instantaneous default probabilities. In the corporate 
                                                 
14 Ratings between BB and Default are called speculative grade or high yield
15 Bootstrapping, iteratively stepping through market quotes to determine the underlying curve, is widely used as 
the standard method of estimating interest rate curves. 
16 El Paso Corporation provides natural gas and related energy products in a safe, efficient, and dependable 
manner. It is one of North America’s largest independent natural gas producers. 

http://www.vernimmen.com/html/glossaire/definition_speculative_grade.html
http://www.vernimmen.net/html/glossaire/definition_high_yield.html


CDS market, trading has been concentrated largely in the five-year maturity contract. In our case, we 
have only five year credit default swap rates. Then, we can’t estimate the instantaneous default 
probabilities from CDS market data. 
 
6. Determination of recovery rates 
  
Market participants on correlation dependent credit derivatives should not just evaluate default 
probabilities and correlations but also assess recovery if default occurs. The relationship between 
recovery rates and default rates has been neglected in pricing basket credit derivatives models, as most 
of them focused adopted static loss assumptions, treating the recovery rate as a constant parameter. 
Jarrow (2001) presents a new methodology for for implicit estimation of a liquidity premium, the 
recovery rate, and the  default probabilities using debt and equity prices. Recovery rates and default 
probability are correlated and depend on the state of the economy. Merrick (2001) introduces a joint 
implied parameter approach to sovereign bond pricing to extract market assumptions about both the 
expected recovery ratio and the default probability term structure by applying a consistent valuation 
framework to a cross-section of market prices on outstanding bond issues. Navarro (2005) applies the 
model presented by Merrick Jr. (2001) to estimate both the default recovery rates and the implied 
default probabilities of the Argentinean Sovereign Bonds during the crisis which took place in 
December 2001. Sironi et al (2002) shown that recovery rates and default rates are negatively related: 
higher default rates are associated with lower recovery rates and lower default rates are correlated with 
higher recovery rates. Moody’s Special Comment (2003) shows that recovery rates may be impacted 
by quality and type of assets, life of assets and their ability to continue generating revenues. Recovery 
rates also vary from industry to industry. Guha (2002) examined a unique dataset of defaulted bond 
prices of predominantly US-based issuers who at the time of the initial default event had several 
publicly traded bonds outstanding. The author find that the amount recovered in default follows a 
recovery face value form. Altman et al (2003) presents a detailed review of the recovery rate, more 
specifically, its relationship with the probability of default of an obligor. Altman et al (2005) analyzes 
the association between default and recovery rates on credit assets and seeks to empirically explain 
this critical relationship. We examine recovery rates on corporate bond defaults over the period 1982–
2002. They explain recovery rates by specifying rather straightforward linear, logarithmic, and logistic 
regression models. They find that bond default rates can explain about 51% of the variation in the 
annual recovery rate with the level of default rates (with the linear model) and 60% with the 
logarithmic relationship. Andritzky (2004) calculates implied recovery rates and implied default 
probabilities in a risk neutral setting for Argentine US-Dollar Eurobonds during the Argentine crisis 
from 2000 to 2002. Pan & Singleton (2006) explore the nature of default arrival and recovery implicit 
in the term structures of sovereign CDS spreads. They show in CDS markets where recovery is a 
fraction of face value and can be separately identified through the information contained in the term 
structure of CDS spreads. Bakshi et al (2006) explains how risk-neutral recovery rates are related to 
the density of the physical recovery, and counterparty risk aversion. They derive defaultable coupon 
bond prices under broad recovery specifications: the bondholders recover a fraction of the face value 
of the bond, a fraction of the present value of face and a fraction proportional to the pre-default market 
value. Schneider et al (2007) analyse the recovery value of the reference asset in a credit event and its 
determinants. In a regression analysis, they observe that 30% of the variance in the loss given default 
is explained by rating and industry. Significant negative coefficients for the Industrials and Oil & Gas 
sectors support the intuition that obligors with substantial tangible assets are expected to recover more 
in default. 
 
In our paper, we work with average bond recovery rates by year prior to default as reported by 
Moody’s special comment (2007) because the lack of information’s from Japan Credit Rating Agency. 



 

RATING (JCR) RATING 
(Moody’s) 

Recovery rates  
(5 years prior to 

default) 
AAA Aaa 74.1% 
AA Aa 41.6% 
A A 48.4% 

BBB Baa 43.9% 
BB Ba 44.2% 
B B 42.3% 

CCC CCC 34.7 

 
 
 
 
 
 
 
 

 
 
 

Table 6: Average bond recovery rates by year prior to default 1982-2006. 
 
 
7. Computing Times to Default 
 
In this section, we present some mathematical background for modelling joint default times. We 
assume a probability space { }( )ΡℑℑΩ ≥ ,,, 0tt , whereΩ is the underlying probability space containing all 
possible events over a finite time horizon. ℑ  is a σ -field representing the collection of all events. 

 is a filtration that carries information with times and { } 0tt ≥ℑ Ρ  is a probability measure17. The pricing 
is assumed under no arbitrage and then, Ρ  is risk-neutral measure. 
Default time iτ for each obligor should be a random variable and the event of default should 
be known for everybody at any times because we assume a perfect market with a free flow of 
information

{ ni ,...,1= }

18. Default is a stopping time τ  with respect to the filtration:{ } 0  , ≥∀ℑ⊂< tt tτ . Let 
( ) ( )ttF ≤Ρ= τ  be the distribution function and ( )tf is the density function of stopping time, the hazard 

rate of h τ  or intensity process is defined such that we have for the probability of default until time (t 
+ ) given survival till t is given by:  t∆

                                         ( ) ( )
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t
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   (7.1) 

 
With ( )tdtttdF >+≤<= ττ ,  , ( ) ( ) ( )tStPtF =>=− τ1 is called the survival function that gives the 
probability that a security will attain age t .the hazard rate function gives the instantaneous default 
probability for a security that has attained age t .The marginal survival distributions  is assumed 
to be smooth and strictly decreasing, this can be written as: 

( )ii tS
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( )∫−

−=

t

i dssh

ii etF 01

( ).ih is the default intensity process for entity i. The default times iτ are defined:  
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17 According to Bielecki et al (2005), the probability space is endowed with a filtration , where the 
filtration H carries information about evolutions of credit events, such as changes in credit ratings of perspective 
credit names and F is some reference filtration. 

FH ∨=ℑ

18 Friewald (2004) presents two well-known algorithms to simulate default time: the compensator method and 
the inverse-CDF method. 



Where iθ has an exponential distribution with unit intensity19. 
 
 
After the calibration of the credit curves, we can obtain the cumulative default probabilities for any 
names over any time interval [0,t]. Then, we can define the marginal distribution of default times. 
Given a credit curve , of an asset or obligor with a Rating R up to a given time period t, there 
exists a unique default times distribution for R-rated obligors. 

( ) 0, ≥tRtP

Effects regarding correlation are particularly strong for some of the most recent innovations in credit 
markets, namely single-tranche CDOs and basket default swap. We use the index i to refer to the i-th 
obligor. The rating assigned to an obligor i will be denoted by ( )iR  and assume a portfolio of n 
obligors. Consequently, the joint distribution of default times iτ : 

                                     ( ) ( ) ( )( )nnRRn ttPttF ≤≤= ττ ,...,,..., 111                                                  (7.5) 
The joint survival time distribution is given by: 

                                    ( ) ( ) ( )( )nnRRn ttPttS >>= ττ ,...,,..., 111                                                   (7.6) 
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For deterministic intensities, this framework converges to Li (2000) model20 .The times of default iτ  
are defined as the first time the default countdown processes: 

( )
⎟
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⎜
⎜
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i dssh

i et 0

)(

:λ reach the level of the trigger variables : iU
                                                                     ( ){ }iii Utt ≤≥= λτ :0inf:  (7.8) 
 
The choice of a dependence structure between default times drives the prices of basket default swaps 
and CDO tranches. Copulas functions allow us to separate the problem of modelling the default times 
into two parts: first, the specification of the marginal distribution functions and second, the choice of a 
suitable copula which describes the dependence structure between the default times. Then, the 
marginal distributions together with the choice of a suitable copula are sufficient to specify the full 
joint distribution of the default times. 
The benefits for using copulas to modelling joint default times:  
- Maintains input correlation matrix reasonably well.  
- Distribution-free approach.  
- Can be employed in simulation procedures.  
- Allows for various dependence structures (including tail dependence).  
- Generates an exact joint distribution.  
 
To simulate the joint default times for the five names, we present the following steps: 
 
Step 1: simulate N-dimensional vector of correlated uniform random variates from a copula 
( or ) as described in Annex 1. The correlation matrix and the appropriate number of degrees of 
freedom are estimated from § 2.2. 

ΣC Σν,C

                                                 
19 The exponential distribution is used to model Poisson processes, which are situations in which an object 
initially in state A can change to state B with constant probability per unit time λ. The time at which the state 
actually changes is described by an exponential random variable with parameter λ. 
20 Li (2000) presents a simple and computationally inexpensive algorithm for simulating correlated defaults. His 
methodology builds on the implicit assumption that the multivariate distribution of default times and the 
multivariate distribution of asset returns share the same dependence structure, which he assumes to be Gaussian 
and is therefore fully characterised by a correlation matrix. 
 



Step 2: Translate the corresponding uniform variates into default time for each obligors. The default 
dates can now be derived from the uniform random variates. They are given by : ( )

λ
τ i

i
uLn

−= . 

 
 
8. Pricing under Monte Carlo simulations 
 
We have an example of basket credit default swap with five names of different rating and industry 
sector. We try to price the 5 year basket credit default swaps. The default event is triggered by the nth 
default in the basket. The seller of the basket credit default swap will face the default payment upon 
the nth default, and the buyer will pay the spread price until nth default or until maturity T. Let 
( ) denote the default order. The fair spread of the basket default swap is given by 
equation (2.5). It is not easy to get the distribution of 

54321 ,,,, τττττ

nτ so that it is difficult to calculate the 
expectations in all the legs. Monte Carlo simulation can be used to get the fair spread of the nth basket 
default swap. 
 
Pricing a nth to default basket default swap under Gaussian and t-student copula using Monte Carlo 
simulations can be presented as the following steps: 
 
Step 1: simulate N-dimensional vector of correlated uniform random variates from the corresponding 
copula with respect to correlation matrix and hazard rates 
Step 2: Translate the corresponding uniform variates into default time for each obligors. 
Step 3: Sort the credits with respect to their default time iτ and determine the nth default time  For 
first to default swap, we find the first default time . 

.nτ

ii

* min τ=τ

Step 4: Based on specific realization of Determine the present value of the premium leg . nτ [ ]nPLE
Step 5: Determine the present value of the default leg [ ]nDLE . 
Step 6: Repeat all steps above until the required number of scenarios has been simulated and the 
sample average fair spread of the nth to default basket swap as described in the equation (2.5). 
 
The fair prices of the basket default swap as described in § 2.1 under Gaussian an t-student Copula and 
Monte Carlo simulation are presented as follows: 
 
 

Fair price 
(Gaussian copula) 

 
Fair price 

(t-student copula 

First to default First to default 

327.6322 286.1316 
                                            
                     Table 7: Fair spread of first to default swap under Monte Carlo simulation 
 
 
The higher the quality of the obligors the less likely are the defaults, then, a basket of high quality 
credit will be cheaper than a basket of low quality credit.We notice that the premium computed under 
Gaussian and t-student copulas are different. Burtschell et al (2005) find that Gaussian and t-student 
copulas lead to quite similar premium for first to default swap when they change the number of names 
in the basket. Similarly, the differences are minor when they change the rank of default 
 
 
 



9. Pricing under Importance sampling 
 
Variance reduction has always been a central issue in Monte Carlo experiments. Importance sampling 
is a variance reduction technique that can be used in the Monte Carlo simulation. The idea behind 
Importance sampling is that certain values of the input random variables in a simulation have more 
impact on the parameter being estimated than others. If these "important" values are emphasized by 
sampling more frequently, then the estimator variance can be reduced. In the Monte Carlo simulation 
procedures, a path will only result in a default payoff if the n th default occurs before the maturity. 
 
Joshi & Kainth (2004) apply importance sampling to the pricing of nth to default credit swaps within 
the Li model and obtain stable and sizeable speed ups. They show that Monte Carlo simulations in the 
Li model can be slow to converge and present procedures for accelerating the computation of prices 
and sensitivities to hazard rates. Glasserman &Li (2007) develop importance sampling (IS) procedures 
for rare-event simulation for credit risk measurement. They focus on the normal copula model 
originally associated with J.P. Morgan’s CreditMetrics system. Dependence between obligors is 
captured through a multivariate normal vector of latent variables; a particular obligor defaults if its 
associated latent variable crosses some threshold. Glassserman &Juneja (2006) have considered the 
problem of simultaneous estimation of the probabilities of multiple rare events. Successful 
applications of importance sampling for rare event simulation typically focus on the probability of a 
single rare event. As a way of demonstrating the effectiveness of an importance sampling technique, 
the probability of interest is often embedded in a sequence of probabilities decreasing to zero. They 
shows that Importance sampling based on exponential twisting produces asymptotically efficient 
estimates of rare event probabilities in a wide range of problems. Abid & Naifar (2007) argue the 
choice of copula and the choice of procedures for rare-event simulation govern the pricing of basket 
credit derivatives. They present copulas based simulations procedures for basket credit derivatives 
under Monte Carlo and Importance Sampling simulations. 
 
 

Fair price 
(Gaussian copula) 

 
Fair price 

(t-student copula 

First to default First to default 

316.1415 312.7362 
 
               Table 8: Fair spread of first to default swap under importance sampling simulation 
 
 
We notice that the spread of first to default swap change with the structure of dependency and the 
simulation techniques. Then, the choice of copula and the choice of procedures for rare-event 
simulation govern, also, the pricing of basket credit derivatives. 
 
 
 
10. Conclusion 
 
The creation, calibration and pricing of basket credit derivatives raise many technical questions and 
issues:  How to obtain a realistic migration matrix? How we can calibrate credit curve and recovery 
rate for each obligor? What simulation procedures used for rare-event simulation?. 
In this paper, we present a methodology for price calibration of basket default swap from Japanese 
market data. A fundamental part of the pricing framework is the estimation of default probabilities, 
recovery rate and the structure of dependency. We present a copula based simulation procedure for 
pricing basket default swap and we calibrate parameters from market data. We refer to Japan Credit 

http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Estimator


Rating Agency to obtain rating transition matrix and cumulative default rates. We consider using 
Gaussian copula and t-student copula and study their impact on basket credit derivative prices. We 
will present an application of the Canonical Maximum Likelihood Method (CML) for calibrating t-
student copula. The basic problem of using simulation is that defaults are rare events, and a large 
number of simulation paths are usually required to achieve a sufficient sampling of the probability 
space. Subsequently, the choice of copula and the choice of procedures for rare-event simulation 
govern the pricing of basket credit derivatives. After the calibration of the parameters, we estimate the 
fair price of first to default swap under Monte Carlo an importance sampling simulations and Gaussian 
and student copulas. 
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