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Abstract

The paper studies an evolutionary model where players from a given
population are randomly matched in pairs each period to play a co-
ordination game. At each instant, a player can choose to adopt one
of the two possible behavior rules, called the rational rule and the as-
piring rule, and then take actions prescribed by the chosen rule. The
choice between the two rules depends upon their relative performance
in the immediate past. We show that there are two stable long run
outcomes where either the rational rule becomes extinct and all play-
ers in the population achieve full efficiency, or that both the behavior
rules co-exist and there is only a partial use of efficient strategies in
the population. These findings support the use of the aspiration driven
behavior in several existing studies and also help us take a comparative
evolutionary look at the two rules in retrospect.

Keywords: Co-evolution, Aspirations, Best-response, Random matching,
Coordination games.
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1 Introduction

It is well accepted today that models of rational behavior do not fare well in
many experiments. This is perhaps because in relatively complex environ-
ments, expected payoff maximization requires either too much knowledge
about the environment or that the available information is hard to analyze.
Moreover, it is at times extremely difficult to gather information required
to form reasonable beliefs regarding the nature of the opponents with whom
a player plays a game. If one is allowed to assume that in face of such
complexities, rational behavior entails a cost of implementation, it is not
surprising why many of us at times may prefer to use more simple behavior
rules.

Various researchers have assumed alternative behavior rules, which are
simple and where players do not necessarily use best responses when deciding
about their strategies. One such approach that has gained much popularity
is the so called reinforcement or stimulus learning behavior. This approach
assumes that a player takes actions which are relatively more successful and
discard those which are not. A celebrated behavior rule that describes such
reinforcement methods is the one driven by payoff aspirations. According
to this rule, a player has a payoff aspiration and takes an action. If the
current action meets his payoff aspiration, he continues with it while if he
is disappointed (because it fails to meet his current aspiration), he experi-
ments with other available actions. There are many outstanding studies of
evolution of play where players are assumed to be aspiration driven (for an
excellent survey, see Bendor et al. [2001]; also see the section on literature
review below). All of the existing papers assume that all players involved in
the studied environments are aspiration driven. Given this, the present pa-
per asks the following question: are naive behavior rules, like the one based
on aspirations, strong enough to survive evolutionary pressures from more
efficient rules like that of expected payoff maximization if implementing such
efficient rules is not too costly?

To answer this question, we study a model where a 2 × 2 coordination
game is played infinitely many times by players living in a given population
who are randomly matched in pairs to take part in this game. There are
two behavioral rules that are available: one is the myopic expected payoff
maximizing rule (in short called the rational rule) and the other is the
aspiration based reinforcement learning rule (in short called the aspiring
rule). At any instant of time, each player is allowed to adopt one of the
two rules and take actions that the adopted rule prescribes for that instant.
Hence, those who adopt the rational rule venture into the society to gather
information regarding the likelihood of the type of the opponent they would
be matched with so that they can compute reasonable payoff expectations
for each of the two available pure strategies and use that which yields a
higher expected payoff. Gathering such information is assumed to be costly,
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no matter how small.1 On the other hand, those who adopt the aspiring
rule give up this search for costly information about their opponents and
simply adopt a population wide fixed aspiration and take actions to check
if the action taken meets this adopted aspiration. Thus at any instant of
time, the population can be divided into two groups, those who are currently
following the rational rule and those who are currently aspiring. We assume
that the difference of the average performances of these two groups of players
is publicly available. If at any instant, the average performance of one group
exceeds that of the other, then there is some (but not necessarily full) flow of
players from the low performing group into the more successful one. Time is
continuous and this process is left to go on for ever. This environment gives
rise to a two-dimensional dynamic system where we keep track of the fraction
of aspiring players in the population and the fraction of aspiring players who
play the efficient equilibrium strategy. It turns out that we are also able to
report on what rational players do. We show that the limit behavior of our
system depends crucially on whether the social aspiration level is high or low.
In case of a high social aspiration, there are only two stable rest points of the
system: the first where the rational rule gets extinct and all players follow
the aspiring rule and play the efficient equilibrium strategy, and the second
where both rules survive but all players who use the rational rule play the
inefficient equilibrium strategy while those who use the aspiring rule have a
positive fraction who play the efficient equilibrium strategy. Unlike in the
case with high aspirations, we show that with a low social aspiration, there
is no chance of a stable mixed population – the rational rule gets extinct
independent of the intial conditions.

1.1 Related Literature

Models where players use reinforcement learning rules first appear in the
mathematical psychology literature with studies by Estes [1954], Bush et al.
[1954], Bush and Mosteller [1955] and Suppes and Atkinson [1960]. The com-
puter science and engineering literature has also used such models represent-
ing various natures of automata learning as in Lakshmivarahan [1981], Naren-
dra and Mars [1983], Narendra and Thathachar [1989] and Papavassilopoulos
[1989].

This area in economics was pioneered by Simon [1955, 1957, 1959], Cross
[1973] and Nelson and Winter [1982]. The focus since then has been on re-

1We would like to mention here that if the environment involves a game with a strictly
dominant strategy, like the Prisoners’ Dilemma, then playing a best response requires
no information at all and hence the cost of implementing the rational rule should be
zero. Then, by definition of rationality, the average payoff of rational players in the given
population cannot fall below that of any other group using some other behavior rule,
and hence the rational rule will always survive. In this sense our approach makes sense
only in games without dominant strategies. As a starting point, we have analyzed the
coordination game.
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peated games (and in particular the repetition of the Prisoners’ Dilemma)
and most models typically show that players learn to coordinate on effi-
cient outcomes, which may not (or may) be strategic equilibrium points [see
for example, Bendor et al. [1994], Karandikar et al. [1998], Kim [1995]
and Pazgal [1995]]. Limited work with aspiration driven rules has been
done with a large population of players who are matched in pairs to play
2 × 2 games. Two most important works in this area are by Dixon [2000]
and Palomino and Vega-Redondo [1999]. Dixon’s framework assumes that
a continuum of players are once and for all matched in pairs to form stable
partnerships and play bilateral games (including the Prisoners’ Dilemma or
the Cournot market games). In his setup, individual players form aspira-
tions from some statistic that signals the performance of players in other
pairs (or markets). He shows that play in each pair converges to joint payoff
maximization regardless of initial conditions. Palomino and Vega-Redondo
consider a non-repeated setting where the Prisoners’ Dilemma is played by
randomly matched aspiring players with matchings taking place indepen-
dently at each instant of time (and hence their approach is evolutionary
rather than repeated and in this sense their work is closest to ours). In
their setting, aspiration of each player depends on the payoff experiences of
the entire population (and this dependence is symmetric across all players
rendering a common aspiration for each of them) and that this social aspi-
ration evolves over time. In our case as well, the aspiration level is modeled
as a social attribute though it remains fixed over time. They show that in
the long run a positive (but less than 1) fraction of the population are able
to cooperate. In view of Palomino and Vega-Redondo, Dixon’s work shows
that stability of partnership is essential for full efficiency in the long run.

There is little work addressing situations where aspiration driven players
play players of other types. An exception to this is a recent work by Roy
[forthcoming] which studies repeated interaction between a myopic best re-
spondent and an aspiring player with evolving aspiration. A class of 2 × 2
games is studied, which could either be common interest or coordination.
He shows that if the speed of adjustment of aspirations is sufficiently fast,
the two players are able to coordinate on the Pareto efficient outcome most
of the time in the long run. However the work considers that these two
players are fixed as are their behavior rules. In this sense, our work is an
extension of Roy. And this brings us to another branch of literature which
studies evolution of learning rules. Kirchkamp [1996] analyzes (through com-
puter simulations) a model where players play a sequence of changing 2× 2
games and learn rules rather than following some rule given to them exoge-
nously. Among the various rules that a player can learn include cooperative,
forgiving, tit-for-tat, grim, defective, etc. None of these are reinforcement
learning rules but are rather repeated game strategies themselves. More-
over, learning is local in the sense that players adopt rules which are more
successful within a given neighborhood of players with whom (and only with
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whom) each player interacts.2 Binmore and Samuelson [1997] study endoge-
nous learning rules in a global setting, as in ours. They view the evolutions
of actions, guided by a particular learning rule, as a process that proceeds at
a speed which is rapid compared to the evolution of the learning rule itself.
In some sense though, in their model players use a learning rule forever and
then evaluate what they obtain in this first round of infinite regress – called
the long run, and then adopt a new rule and this process goes on for infinite
rounds of these infinite regresses – called the ultra long run. Also, they
identify a learning rule with the aspiration level which it incorporates. In
our view, this is essentially a single learning rule, the aspiring rule, but with
a very slow and experimental aspiration updating mechanism. Nevertheless,
they show that this double infinity regress leads to the selection of the risk
dominant equilibrium. This in itself is a very important result.

The rest of the paper is structured as follows. In the following section we
describe in details the model. The results are stated and proved in section 3
with some proofs moved to an appendix to maintain a smooth exposition.
In section 4 we report some simulated trajectories of our dynamic system to
support some finer points of our analysis. The paper concludes in section 5.

2 The model

Consider a fixed set of individuals (or players) Ω with the cardinality of
the continuum. At each time t ∈ [0,∞) individuals in Ω are randomly
matched in pairs to play a coordination game presented in the figure 1,
where 0 < δ < σ.

H L

H σ, σ 0, 0
L 0, 0 δ, δ

Figure 1: Coordination game

At any instant of time t, the set Ω consists of two distinct sets, the set
of rational players R, and the set of aspiration driven players A. We use
a to denote the fraction (with respect to Ω) of aspiration driven players in
the population and µ to denote the fraction (with respect to A) of aspiration
driven players playing H.

Aspiration driven players use either the pure strategy H or the pure
strategy L – the exact behavioral assumptions are stated later in this section.
We assume that rational players are myopic and always play pure strategy

2There is a large literature on local learning models; see for example, Lindgren and
Nordahl [1994], Nowak et al. [1994], Eshel et al. [1996] and Kirchkamp [1995]. However
these works study the evolution of strategies rather than learning rules.
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best responses. Let p ∈ [0, 1] be the probability belief held by a generic
rational player for the event that in case his opponent is also a rational player
then his opponent will play the pure strategy H. Hence, the probability
beliefs held by a generic rational player that his opponent (who could either
be a rational player or an aspiring player) will play pure strategies H and
L, respectively, are Pr(H) = aµ + (1 − a)p and Pr(L) = 1 − Pr(H). Given
a, µ and p, the expected payoff of a generic rational player from playing H
and L, respectively, are

Er (H; a, µ, p) = σ [aµ+ (1− a) p] , and
Er (L; a, µ, p) = δ [1− (aµ+ (1− a) p)] .

Hence this generic rational player plays H with probability 1 whenever

σ [aµ+ (1− a) p] ≥ δ [1− (aµ+ (1− a) p)] , that is

aµ+ p (1− a) ≥ δ

σ + δ
.

Since the above inequality is true for any p ∈ [0, 1], we can conclude that
if aµ ≥ δ

σ+δ , then the above inequality is satisfied. Similarly, it is easy
to see that if aµ ≤ a − σ

σ+δ , then the reverse of the above inequality is
satisfied and this generic rational player plays L with probability 1. Hence,
given the game, in the region of (a− µ) plane where aµ ≥ δ

σ+δ , a generic
rational player always plays H while in the region of (a− µ) plane where
aµ ≤ a− σ

σ+δ , this generic rational player always plays L, independent of the
belief probability p. Now let us concentrate on the remaining region of the
(a− µ) plane with a−σ/(δ+σ) < aµ < δ/(σ+ δ) where beliefs about what
“other” rational players play do matter in deciding upon a generic rational
best response. Given a, µ and p, we impose symmetry across all rational
strategies. Hence, p is to be interpreted as the probability with which all
rational players play H. Given this, the expected payoff of a generic rational
player is given by

Er (p; a, µ, p) = σ(aµ+ (1− a)p)p+ δ(a(1− µ) + (1− a)(1− p))(1− p).

It is easy to check that for any value of p,

Er (p; a, µ, p) ≤ max {σ(1− a(1− µ)), δ(1− aµ)} .

On the other hand, notice that

Er (p; a, µ, p) =
{
σ(1− a(1− µ)) if p = 1,
δ(1− aµ) if p = 0.

We assume that in the region a−σ/(δ+σ) < aµ < δ/(σ+δ), rational players
always symmetrically choose that value of p which is efficient. By that we
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mean that all rational players play H with probability 1 if σ(1−a(1−µ)) ≥
δ(1−aµ) and otherwise play L with probability 1. Notice that whenever the
condition aµ ≥ δ

σ+δ is satisfied, so is the condition σ(1−a(1−µ)) ≥ δ(1−aµ).
Similarly, whenever the condition aµ ≤ a− σ

σ+δ is satisfied, so is the condition
σ(1− a(1− µ)) ≤ δ(1− aµ).

Choosing between these rational best responses requires on part of any
rational player to constantly update his information regarding the values of
a and µ. We assume that acquiring this information is costly, no matter
how small, and we denote this cost that each rational player has to incur as
% ∈ (0, δ).

During the whole process each player can change his behavior rule, that
is either adopt the rational rule described above or adopt the aspiring one
which we shall soon describe. This choice depends on the difference between
average payoffs of the particular types of players and the exact procedure
for this change is provided below. For the moment, notice that if % = 0, the
average payoff of rational players, by the very definition of rationality, can
never be less than the average payoff of aspiration driven players.

As the values of a and µ evolve, rational players switch between strategies
H and L, depending on which of them is currently a best reply (as defined
above). We assume that this switching process is not instantaneous – the
whole rational population does not switch at once, but that there is a fraction
of rationals that do so while the remaining are “about to do so”. This is
motivated by the fact that current actions and rules have an inertia, no
matter how small and to capture this notion of inertia, we incorporate a
strictly increasing and continuously differentiable function ξ(a, µ) on the
interval [−ε, ε], representing the probability with which a rational player
plays H, such that

ξ(a, µ)


= 0 if Er (1; a, µ, 1)−Er (0; a, µ, 0) ≤ −ε,
∈ (0, 1) if −ε <Er (1; a, µ, 1)−Er (0; a, µ, 0) < ε,
= 1 if Er (1; a, ν, 1)−Er (0; a, µ, 0) ≥ ε.

(1)

Here ε > 0 reflects the size of the area in which the rational population is
in a switching phase.3 In the remaining part of the paper we will write ξ
instead of ξ(a, µ) for convenience.

As mentioned above, the change of players’ behavior rules depends on
the difference between the average payoffs of populations different types. So,
given a, µ and ξ, the average payoff πa of the aspiration driven population

3Another interpretation of ξ(a, µ) is that the rational players play almost best-responses
in situations where the difference between the expected payoffs from H and L is positive
but insignificant. As we do not want to deal in this paper with the behavior of the system
when this rational switching between H and L occurs, we will assume that ε is some
arbitrarily small (although fixed) number. This assumption, from a technical point of
view, keeps our system smooth.
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at any instant is given by

πa(µ, a) = σµ(aµ+ (1− a)ξ) + δ(1− µ)(a(1− µ) + (1− a)(1− ξ)), (2)

while the average payoff πr of the rational population at any instant is given
by

πr(µ, a) = σξ(aµ+ (1− a)ξ) + δ(1− ξ)(a(1− µ) + (1− a)(1− ξ))− %. (3)

We assume that the difference πa(µ, a)− πr(µ, a) is publicly observed. The
probability rate at which a player changes his type is modelled by use of
a strictly increasing (on [0,+∞)) and continuously differentiable function
g(ψ) satisfying

g(ψ)
{

= 0 if ψ ≤ 0,
> 0 if ψ > 0.

(4)

From the above assumptions it follows that g′(ψ) = 0 for ψ ≤ 0. Given this
function g (·), the change in time of the fraction of aspiration driven players
is given by

ȧ = A(a, µ) = κ1

{
−g(−ψ(a, µ))a
+g(ψ(a, µ))(1− a)

}
, (5)

where κ1 > 0 is some arbitrary speed adjustment parameter and ψ(a, µ) =
πa(µ, a)− πr(µ, a).

We are now in a position to describe the behavioral assumptions on the
aspiring rule. A player who has decided to follow the aspiring rule essentially
sets a payoff aspiration equal to a given (and fixed over time) aspiration level
which is common to all players in the aspiring population. We denote this
social aspiration level as α. With this payoff aspiration, a player who is
currently following the aspiring rule takes an action, which in our game
is either H or L, and receives an individual payoff of π ∈ {0, δ, σ}. This
social aspiration α and the realization of his current payoff π gives rise to an
individual dissatisfaction level of χ = α− π. The probability rate at which
an aspiration driven player with dissatisfaction level χ, who still wishes to
follow the aspiring rule, changes his current strategy is given by a strictly
increasing (on [0,+∞)), continuously differentiable function f(χ) satisfying

f(χ)
{

= 0 if χ ≤ 0,
> 0 if χ > 0

(6)

which captures the notion that if an aspiring player is satisfied with his
current payoff (that is χ ≤ 0), and if he decides to remain an aspiring player
in the next instant, then he sticks to his current action in the next instant;
otherwise, if he still wants to remain an aspiring player, he experiments with
the other available action with a positive probability.4

4We would like to note that our results are independent of the exact nature of the
functions f(·) and g(·), as long as they satisfy our general assumptions.
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Given the probability rate f , we can now describe the change in time
of the fraction µ of aspiration driven players playing H. In doing so the
following observations/assumptions are made:

• There are three factors that affect µ, (i) the switch of actions amongst
current aspiration driven players who choose to remain aspiration
driven, (ii) the mass of current aspiration driven players who chose
to become rational and (iii) the mass of currently rational players who
choose to become aspiring.5

• In case of (i), this is entirely determined by the function f .

• We assume that those aspiring players who leave the aspiring popula-
tion are uniformly distributed over the two available current actions
H and L.

• We assume that those rational players who join the aspiring population
become aspiration driven and start out by playing H with probability
µ.

In our settings it is reasonable to consider 0 < α ≤ σ which we assume
henceforth. The above observations and assumptions lead us to the following
expression for µ̇ given by

µ̇ = M(a, µ) = κ2


−f(α)µ(a(1− µ) + (1− a)(1− ξ))
+f(α)(1− µ)(aµ+ (1− a)ξ)
+f(α− δ)(1− µ)(a(1− µ) + (1− a)(1− ξ)).

 , (7)

where κ2 > 0 is some arbitrary speed adjustment.

Remark 1. There is one important remark that must be made about our
model. It can be used only if a 6= 0, since calling µ a fraction of aspiration
driven players is not valid otherwise. However, as we shall see in the next
section, the dynamic system described by the above differential equations (5)
and (7) never reaches a state where a = 0, when started from any state
where a 6= 0. Thus we can draw valid conclusions about the phenomenon we
study using the above proposed model.

In this paper we study the two-dimensional dynamic system in the
(a− µ) plane characterized by the two equations of motion (5) and (7).
Our goal is to find stable rest points of this system and identify their basins
of attraction. This analysis is done in the following section.

5Given our function g(·), there can be no two-way flow in our model. Hence, at any
instant of time, either no one changes his current behavior rule, or that either only some
aspiring players become rational or some rational players become aspiring.
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3 The analysis

The area under consideration is Z = [0, 1] × [0, 1], with (a, µ) ∈ Z. The
behavior of rational players gives rise to a partition of Z into two areas, one
where rationals play H while the other where they play L. Let

s(a, µ) = σ(1− a(1− µ))− δ(1− aµ),

and first define the regions

MH = {(a, µ) : (a, µ) ∈M and s(a, µ) > 0},
ML = {(a, µ) : (a, µ) ∈M and s(a, µ) < 0}

and their subsets respectively as

H = {(a, µ) : (a, µ) ∈ Z and aµ > δ/(δ + σ)} and
L = {(a, µ) : (a, µ) ∈ Z and aµ < a− σ/(δ + σ)}.

Notice that H ⊂MH, L ⊂ML, MH ∩ML = ∅ and MH ∪ML = Z.
Morover while in MH, all players using the rational rule play H. Simi-
larly while in ML, all players using the rational rule play L. All the areas
discussed above are represented in figure 2.

Since in the neighborhood of the line s(a, µ) = 0, rational players switch
between strategies, so it will be called the switch line. The area Sε =
{(a, µ) ∈ Z : −ε ≤ s(a, µ) ≤ ε, ε > 0} where, as exemplified in (1), rational
switching takes place will be called the switch area of size ε. We will assume
that ε is as small as possible and drop the subscript ε and denote this
switching area as S. Since ε is arbitrarily small, we will ignore analysis
withing this area.

Let v : Z → R2 be the vector field defined by (5) and (7). Since v
is continously differentiable on R2 and Z is closed and bounded, so v is
Lipschitz.6 Notice that since v does not point outward on the boundary of
Z, so any trajectory starting from Z remains in Z. Moreover, since v is
Lipschitz, there exists a unique solution φv(t,x0) of the system of differential
equations (5), (7) for any initial condition x0 ∈ Z. Notice also that any
trajectory starting from initial condition (0, 0) remains on the line a = 0
until µ > (σ − %)/σ. Moreover µ > (σ − %)/σ implies ȧ > 0 and µ = 0
implies µ̇ > 0. These observations, together with the uniqueness of solutions
and the fact that our system is autonomous guarantee that every trajectory
starting from initial conditions (a, µ) where a ∈ (0, 1] never reaches a state
where a = 0. This justifies remark 1.

Our analysis will be divided into two cases – when the social aspiration
level is high, that is δ < α ≤ σ, and when it is low, that is 0 < α ≤ δ. In
both cases we will analyse the areas MH and ML separately.

6This is true on the basis of standard lemmas (see for example [Hirsch and Smale, 1974,
pp. 161,173]).
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Figure 2: Areas of different rational best responses.

3.1 High aspiration level

Throughout this section we will assume that the aspiration level is high,
that is δ < α ≤ σ.

3.1.1 The analysis with an initial condition in MH

In this section we will study the behavior of the system with initial conditions
in the regionMH where all rationals play H. Our main result for this case
is as follows

Main Result 1. Consider any coordination game such that 0 < δ < σ and
an aspiration level α ∈ (δ, σ]. Let X = [0, 1] × [δ/(δ + σ) + ε, 1] ⊃ H − S,
x ∈ X and let φv(t,x) be a solution of the system of differential equations
(5), (7). Then limt→+∞ φv(t,x) = (1, 1).

Remark 2. Notice that the size of the area X (which is within the basin
of attraction for the point (1, 1)) depends on the ratio δ/(δ + σ) < 1/2 (it
depends also on ε, but we assume it to be arbitrarily small and small enough
not to affect our results). So whenever the system enters (or starts) from
points where µ ≥ 1/2, it converges for sure to the restpoint (1, 1).
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Remark 3. It is also important to note that the result is independent of
the value of %, provided that % ∈ (0, δ). Thus no matter how small % is, as
long as it is positive, the system starting in X will converge to the restpoint
(1, 1).

If the system starts in the areaMH ⊂ Z, then the expressions for ψ and
M have the following form:

ψ(a, µ) = ψH(a, µ) = a(1− µ)2(δ + σ)− (1− µ)σ + %, (8)
M(a, µ) = MH(a, µ) = κ2(f(α− δ)a(1− µ)2 + f(α)(1− a)(1− µ)). (9)

The phase plane diagram for this situation is presented in figure 3 below.

10

1

a

µ

σδ
δ
+

σ
δσ −

AH(a,µ)=0

MH(a,µ)=0

Figure 3: Phase plane diagram when all rationals play H.

The following lemma shows that if all rational players play H, there is
only one rest point in Z which is asymptotically stable7 by proving that the
rest point is a generic saddle node (see [Hubbard and West, 1991, part II, p.
281] or theorem 2 in the appendix for the characterisation of generic saddle
nodes).

7A rest point is asymptotically stable if every trajectory that starts in the neighborhood
of the restpoint converges to it as t→ +∞. Thus an asymptotically stable rest point may
be viewed as a state of the system that is considered robust, with regard to small enough
perturbations.
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Lemma 1. Suppose the system begins in MH. Then the point (1, 1), where
the entire population consists of only aspiring players playing H, is the only
rest point and it is asymptotically stable.

Proof. It is easily seen that for any a ∈ [0, 1], if µ ∈ [0, 1) then MH(a, µ) > 0
and if µ = 1 then MH(a, µ) = 0. On the other hand ψ(a, 1) = % > 0, so
A(a, 1) > 0 for all a ∈ [1, 0) and A(1, 1) = 0. Thus (1, 1) is the only rest
point.

To study the stability of this rest point we will linearize of our system
at this point. The partial derivatives of A and MH at (1, 1) are as follows:

Aa(1, 1) = −κ1g(%), Aµ(1, 1) = 0,

MH
a (1, 1) = 0, MH

µ (1, 1) = 0.

Thus the Jacobian of the vector field v at (1, 1) is

Dv(1, 1) =
[
−κ1g(%) 0

0 0

]
. (10)

The eigenvaules of it are λ1 = −κ1g(%) < 0, λ2 = 0 and the corresponding
eigenvectors are v1 = [1, 0]T , v2 = [0, 1]T . Since one of eigenvalues is zero,
the other is nonzero and eigendirection of the zero eigenvalue is parallel to
the µ-axis, we have to check the sign of the coefficient of µ2 in the Taylor
expansion of our differential equation, that is, the sign of MH

µµ = 2f(α−δ)a.
Since it is positive, (1, 1) is a generic saddle node. This means in particular,
that since λ1 < 0, there exists unique trajectory within Z that tend to
(1, 1) tangentially to v1, which is the separatrix of the generic saddle node.
This trajectory goes along the line µ = 1 (notice that MH(a, 1) = 0 and
A(a, 1) > 0 for a ∈ [0, 1)). All other trajectories tend to (1, 1) tangentially
to the line a = 1 (forming a pony tail). Since our system is restricted to
area Z, the trajectory that emanates form (1, 1) stay outside Z, and thus
(1, 1) is an asymptotically stable rest point.

To complete the proof of Main Result 1, what remains to be shown
is that all trajectories starting from within the area H − S end up in the
rest point (1, 1). To show this we will consider a broader set X containing
H−S, and show that if the system attains a state x = (a, µ) ∈ X such that
µ ≥ δ/(δ+σ)+ε, then the system converges for sure to the rest point (1, 1).

Main Result 1. Since if all rational players play H we have M(a, µ) > 0 for
a ∈ [0, 1] and µ = δ/(δ + σ) + ε, so for any x ∈ X , φv(t,x) will stay within
X . Moreover, as A(a, 1) > 0 for a ∈ [0, 1) and (1, 1) is an asymptotically
stable rest point, so limt→+∞ φv(t,x) = (1, 1). This completes the proof of
Main result 1.

The above result confirms that in the region MH, there is only one
asymptotically stable rest point (1, 1) with a fairly large basin of attraction
that contains the set H− S and any intial condition (a, µ) with µ ≥ 1/2.
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3.1.2 The analysis with an initial condition in ML

If our system starts from any point in the region ML where all rational
players play L, the analysis shows that for any coordination game we con-
sider here and for any function f, there is an aspiration level α ∈ (δ, σ] and
cost % ∈ (0, δ) such that there exists an asymptotically stable restpoint of
the system in which a mixed population lives forever. However, the existing
aspiring population at this rest point is unstable in the sense that there is a
constant (and of equal size) switch of aspiring players between the two pure
strategies. This is stated formally below.

Main Result 2. For any coordination game with 0 < δ < σ and any
function f, there exists α ∈ (δ, σ] such that for any an aspiration level α ∈
(δ, α) there is an implementation cost % ∈ (0, δ) such that there is a rest
point xs ∈ L (or xs ∈ ML) of the system of differential equations (5), (7)
which is asymptotically stable.

If the system starts in the areaML ⊂ Z, then the expressions for ψ and
M have the following form:

ψ(a, µ) = ψL(a, µ) = aµ2(δ + σ)− µδ + %, (11)
M(a, µ) = ML(a, µ) = κ2(f(α− δ)(1− µ)(1− aµ)− f(α)µ(1− a)).(12)

The phase plane diagram for this situation is presented in figure 4
Since in the case of all rationals playing L we are only interested in

the behavior of the system within the area ML, and (a, µ) ∈ ML implies
µ < δ/(δ + σ) < 1/2 and a > (σ − δ)/σ > 0, so the only restpoints we
are interested in are the crossing points (intersections) of the curves (11)
and (12). The existence of those restpoints within the areas L andML, for
given payoffs and function f , depends on the cost % and an aspiration level
α. We will not give precise conditions that guarantee existence of crossing
points within areas L or ML here.8 Instead, the following lemma will be
sufficient for our purposes (see appendix for the proof of the lemma).

Lemma 2. For any given environment with 0 < % < δ < α ≤ σ and f , the
system of equations {

ψL(a, µ) = 0,
ML(a, µ) = 0

(13)

either has zero, or one or two solutions. In case where it has only one
solution, this solution will be denoted by xu = (au, µu). In case where it has
two solutions, they will be denoted by xu = (au, µu) and xs = (as, µs)), with
as < au and µs < µu.

8To calculate these conditions one has to solve a few quadratic equations and inequal-
ities.
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Figure 4: Phase plane diagram when all rationals play L.

Moreover, for any 0 < δ < σ and f there is an aspiration level α ∈ (δ, σ)
such that for any α ∈ (δ, α) there exist % ∈ (0, δ) and ε ∈ (0, %) such that for
any % ∈ (% − ε, %) the system of equations (13) has two distinct solutions,
both lying within the area L9.

From the above lemma we know that there are at most two restpoints
within the areaML. It turns out that the rest point xu is unstable, as stated
by the following proposition (see appendix for the proof of the proposition).

Proposition 1. The rest point xu is unstable.

The other restpoint that may exist within the area ML turns out to
be asymptotically stable. To show this we will use the method adopted
from Palomino and Vega-Redondo [1999], which is based on the following re-
sult in the theory of ordinary differential equations (see for example [Arnold,
1973, p. 198]).

Theorem 1 (Liouville’s Theorem). Let ẋ(t) = H(x(t)) be a dynamical sys-
tem defined on a certain open subset U ⊆ Rn, where H is a differentiable

9This of course means that these solutions lie within the areaML. One can also show
that that it is possible to have a solution that lie within ML, but not within L. It will
not be shown here, because it is not needed.
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vector field. If S ⊆ U has a volume V ≡
∫
S dx, then the volume V (t) of the

set S(t) = {y = x(t) : x(0) ∈ S} satisfies:

V̇ (t) =
∫
S(t)

div H(x)dx,

where the divergence of the vector field H is defined as the trace of the
Jacobian of H given by

div H(x) ≡
n∑
i=1

∂Hi(x)
∂xi

.

We now state and prove our next result.

Proposition 2. The rest point xs is an asymptotically stable rest point.

Proof. To show that xs is an asymptotically stable rest point, we will con-
struct a set S ⊆ ML such that (i) xs ∈ S (and it is the only restpoint
in S), (ii) the vector field v points inwards on the boundary of S and (iii)
div : v(x) < 0 for all x ∈ S. Under (i) – (iii), we know that for any t and
S(t) defined as in theorem 1 we will have S(t) ⊆ S, and thus div : v(x) < 0
for all x ∈ S(t). By theorem 1 this would imply that the volume of the set
S(t) is decreasing. Furthermore, by the Poincar-Bendixson theorem (see for
example Hirsch and Smale [1974] or Hubbard and West [1991]) we know that
limit sets of solutions of two dimensional differential equations either include
a rest point or are closed orbits. Since the vector field v points inwards on
the boundary of S, so any solution starting within S, remains there. Sup-
pose its limit set is a closed orbit. Then the region enclosed by this orbit
is invariant, and so is its volume. This contradicts the fact that the volume
of S(t) is decreasing10. Thus limit set of any solution starting from within
our constructed S must contain xs, and so xs must be an asymptotically
stable rest point. So to prove the proposition, what remains to be shown is
the existence of S. In what follows we will show how to construct a set S
satisfying the three properties (i) – (iii) postulated above.

First we present a fact and an observation characterizing the functions
ψL and ML in the neighborhood of (as, µs) (see appendix for the proof of
the fact).

Fact 1. In the neighbourhood of (as, µs), the partial derivatives of ψL and
ML have the following properties:

1. ψLa (a, µ) > 0 and ψLµ (a, µ) < 0,

2. ML
a (a, µ) > 0 and ML

µ (a, µ) < 0,

10This argument comes from Corchn and Mas-Colell [1996], and we used it follow-
ing Palomino and Vega-Redondo [1999].

16



3. −ψsa/ψsµ < −M s
a/M

s
µ, where ψsa, ψsµ, M s

a and M s
µ denote partial deriva-

tives of ψL and ML at (as, µs).

Observation 1. Since in the neighbourhood of (as, µs) we have ψLµ (a, µ) < 0
and ML

µ (a, µ) < 0, it follows that equations ψL(a, µ) = 0 and ML(a, µ) = 0
implicitly define the functions µ = hψ(a), µ = hM (a). Moreover, as g′ψ =
−ψLa /ψLµ > 0 and g′M = −ML

a /M
L
µ > 0, both those functions are increasing.

We also have g′ψ < g′M , as −ψLa /ψLµ < −ML
a /M

L
µ . Also, the inequalities

ψL(a, µ) < 0 and ML(a, µ) < 0 are equivalent to µ > hψ(a), µ > hM (a)
(which follows from signs of partial derivatives) (see also figure 5).

a

µ

ψL(a,µ)=0

ML(a,µ)=0

(as,µs)

ϕε
2(a,µ)=0

ϕε
1(a,µ)=0lε

2(a,µ)=0

lε
1(a,µ)=0

Figure 5: Construction of the set S.

The following three facts are important for further steps in the construc-
tion of S (see appendix for proofs of these facts). To state these facts, first
let

K1 = −
M s
µ

M s
a −M s

µ

, K2 =
Ma
µ

M s
a −M s

µ

, K = 1 + max{1,K1,K2}. (14)

Notice that K1,K2,K > 0 since M s
a > 0 and M s

µ < 0. Consider the following
curves:

ϕ1
ε(a, µ) = ML(a, µ)2 − 2κ1κ2f(α)η(ε)(a− as + µ− µs + ε) = 0,

ϕ2
ε(a, µ) = ML(a, µ)2 + 2κ1κ2f(α)η(ε)(a− as + µ− µs − ε) = 0,
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where ε > 0 and

η(ε) = max
(a,µ)∈C(Kε)

g(|ψ(a, µ)|) where

C(x) = [as − x, as + x]× [µs − x, µs + x].

Fact 2. If ε is close to 0, then η(ε) = o(ε) > 0.

Fact 3. There exists ε > 0 such that for all ε ∈ (0, ε) there is an intersection
point (a1

M (ε), µ1
M (ε)) of the curves ϕ1

ε(a, µ) = 0 and ML(a, µ) = 0 and an
intersection point (a2

M (ε), µ2
L(ε)) of the curves ϕ2

ε(a, µ) = 0 and ML(a, µ) =
0. Moreover, these intersection points have the following properties:

1. ψL(a1
M (ε), µ1

M (ε)) > 0 and −Kε < a1
M (ε) − as < 0, −Kε < µ1

M (ε) −
µs < 0, and

2. ψL(a2
M (ε), µ2

M (ε)) < 0 and 0 < a1
M (ε) − as < Kε, 0 < µ1

M (ε) − µs <
Kε.

Fact 4. There exists ε > 0 satisfying fact 3 and such that for all ε ∈ (0, ε)

1. there is an intersection point (a1
ψ(ε), µ1

ψ(ε)) of the curves ϕ1
ε(a, µ) = 0

and ψL(a, µ) = 0 such that M(a1
ψ(ε), µ1

ψ(ε)) > 0, as < a1
ψ(ε) < a1

M (ε)
and µs < µ1

ψ(ε) < µ1
M (ε);

2. if ML(a, µ) > 0, ψL(a, µ) > 0 and ϕ1
ε(a, µ) = 0, then a < as +Kε and

µ > µs −Kε;

3. there is an intersection point (a2
ψ(ε), µ2

ψ(ε)) of the curves ϕ2
ε(a, µ) = 0

and ψL(a, µ) = 0, such that M(a2
ψ(ε), µ2

ψ(ε)) < 0, a2
M (ε) < a2

ψ(ε) < as
and µ2

M (ε) < µ2
ψ(ε) < µs;

4. if ML(a, µ) < 0, ψL(a, µ) < 0 and ϕ2
ε(a, µ) = 0, then a > as−Kε and

µ < µs +Kε.

Now consider the curves

`1ε(a, µ) = (µ2
M (ε)− µ1

ψ(ε))(a− a1
ψ(ε))− (a2

M (ε)− a1
ψ(ε))(µ− µ1

ψ(ε)) = 0,

`2ε(a, µ) = (µ1
M (ε)− µ2

ψ(ε))(a− a2
ψ(ε))− (a1

M (ε)− a2
ψ(ε))(µ− µ2

ψ(ε)) = 0,

which are lines going through points (a1
ψ(ε), µ1

ψ(ε)), (a2
M (ε), µ2

M (ε)) and
(a2
ψ(ε), µ2

ψ(ε)), (a1
M (ε), µ1

M (ε)) respectively. Define the sets

S1
ε = {(a, µ) : ϕ1

ε(a, µ) ≤ 0 and A(a, µ) ≤ 0 and ML(a, µ) ≤ 0},
S2
ε = {(a, µ) : ϕ2

ε(a, µ) ≤ 0 and A(a, µ) ≥ 0 and ML(a, µ) ≥ 0},
S3
ε = {(a, µ) : `1ε(a, µ) ≤ 0 and A(a, µ) ≥ 0 and ML(a, µ) ≤ 0},
S4
ε = {(a, µ) : `2ε(a, µ) ≤ 0 and A(a, µ) ≤ 0 and ML(a, µ) ≥ 0}.
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Let Sε = S1
ε ∪S2

ε ∪S3
ε ∪S4

ε . Facts 3 – 4 guarantee that there exists ε such
that for any ε ∈ (0, ε) the set Sε is nonempty, (as, µs) ∈ Sε and Sε ⊆ C(Kε)
(refer to observation 1 and figure 5). The following lemma helps us to show
that if ε < ε, then all solutions that enter Sε must stay there (see appendix
for the proof of the lemma).

Lemma 3. Let ε be such that facts 3 – 4 hold. Then for any ε ∈ (0, ε) the
vector field v points inwards on the boundary of the set Sε.

Notice that, since Aa(as, µs) = 0 (as g(0) = 0) and Mµ(a, µ) < 0 around
(as, µs) and at (as, µs), so there is ε∗ > 0 such that Aa(a, µ) +Mµ(a, µ) < 0
for all (a, µ) ∈ C(ε∗). Thus the set S = Sε, where ε ∈ (0, ε∗) and is such
that facts 3 – 4 are satisfied, satisfies all the postulates at the beginning
of the proof of the lemma. This completes the proof that (as, µs) is an
asymptotically stable restpoint.

Now can prove Main Result 2.

Main Result 2. This is an immediate consequence of lemma 2 and proposi-
tion 2. Additionally, by proposition 1 we know that there can be at most
one stable restpoint in the area L. This completes the proof of Main Re-
sult 2.

We end this section with the following remark.

Remark 4 (The aspiring population in an eternal flux). Consider the
asymptotically stable rest point in the region ML which we have discov-
ered above. Since it is a rest point, ȧ = 0. In our environment, this means
that there is no player in the population who switches behavior rules at this
rest point. Moreover, at this point we have that 0 < µ < 1 and therefore
some aspiring players play H while others play L. Also, since this rest point
is in the region ML, we know that all players using the rational rule play
L. Hence, given that the level of the social aspiration of the aspiring popu-
lation is between δ and σ, it must be that some aspiring players are satisfied
with their current strategy, while some are not. Those who are not must
be switching their strategies. In spite of that, since µ̇ = 0, the size of the
aspiring players who move from L to H must be the same as the size who
move from H to L at each instant of time. It seems therefore that this stable
restpoint puts the aspiring population in a rather confused individual state
or an eternal flux (as observed in Palomino and Vega-Redondo, though in
the Prisoners’ Dilemma games) – although they do not give up the aspiring
rule, they are unable to settle on a single pure strategy. Computer simula-
tions (see section 4) reveal that such a confused state has a fairly large basin
of attraction (which includes the set S we have constructed above) within
the region ML.
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3.2 Low aspiration level

Throughout this section we will assume that the aspiration level is low, that
is 0 < α ≤ δ. In this case an expression for µ̇ simplifies to the following:

µ̇ = M(a, µ) = κ2f(α)(1− a)(ξ − µ). (15)

As the following analysis will show, with low social aspirations, the relatively
costly rational rule (no matter how small its associated cost may be) has no
chance of survival in the long run.

3.2.1 The analysis with an initial condition in MH

Similar to the high aspiration case we will first study the behavior of the
system with initial conditions in the regionMH where all rationals play H.
Unlike in the case of high aspiration, there is no asymptotically stable rest
point when the aspiration level is low. This is because M(a, µ) = 0 for a = 1,
so all points lying within the set {(1, µ) : δ/(δ+σ) < µ ≤ 1} are rest points.
The following analysis and simulations show the existence of asymptotically
stable sets (in forms of intervals contained in the set {(1, µ) : 0 ≤ µ ≤ 1}).

Main Result 3. Consider any coordination game such that 0 < δ < σ and
an aspiration level α ∈ (0, δ]. Let X = [0, 1] × [δ/(δ + σ) + ε, 1] ⊃ H − S,
x ∈ X and let φv(t,x) be a solution of the system of differential equations
(5), (7). Then limt→+∞ φv(t,x) = (1, µ∗), where µ∗ ∈ [δ/(δ + σ) + ε, 1].

Moreover if % ∈ (0, σ2/(4(δ + σ))), then for x = (a, µ) ∈ X such that
a < 1 and µ > µ1 we have µ∗ ≥ µ2, where

µ1 =
δ

δ + σ
+
σ −

√
σ2 − 4%(δ + σ)
2(δ + σ)

, µ2 =
δ

δ + σ
+
σ +

√
σ2 − 4%(δ + σ)
2(δ + σ)

.

Proof. Obviously we have MH(a, µ) = 0 iff a = 1 or µ = 1. Moreover
MH(a, µ) ≥ 0 and ψH(a, 1) = % for a ∈ [0, 1), so AH(a, 1) > 0 for µ ∈ [0, 1).
It also holds that AH(1, µ) = 0 for a = 1 (cf. proof of lemma 1).

This shows that all points (1, µ∗) such that µ∗ > δ/(δ + σ) are the only
rest points within the areaMH. Since there are no cycles in the area X (as
MH(a, µ) ≥ 0 for all (a, µ) ∈ X and whenever MH(a, µ) = 0 it holds that
AH(a, µ) = 0) and all trajectories starting within X will remain there, so
by Poincar-Bendixson theorem we have limt→+∞ φv(t,x) = (1, µ∗).

For the second part of the theorem, let us consider the crossing points
of lines ψH(a, µ) = 0 and MH(a, µ) = 0. To find them it is enough to solve
the quadratic equation

ψH(1, µ) = µ2(δ + σ)− µ(2δ + σ) + δ + % = 0.

The discriminant of the equation is ∆ = σ2 − 4%(δ + σ). It is clear that
∆ ≥ 0 for % ≤ σ2/(4(δ + σ)) and that ∆ ≤ σ2. If % < σ2/(4(δ + σ)) the
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equation has two solutions

µ1 =
δ

δ + σ
+
σ −

√
σ2 − 4%(δ + σ)
2(δ + σ)

, µ2 =
δ

δ + σ
+
σ +

√
σ2 − 4%(δ + σ)
2(δ + σ)

.

Moreover ψH(1, µ) < 0 iff µ ∈ (µ1, µ2) so the set of points satisfying the
inequality ψH(a, µ) < 0 contains the set of points (1, µ), where µ ∈ (µ1, µ2).
Thus no trajectory starting from points (a0, µ0) ∈ X , such that a0 < 1 will
reach a rest point in this set. So any trajectory starting from any point
(a0, µ0) ∈ Y = [0, 1] × [µ1, 1] ⊂ X , such that a < 1 and µ > µ1 will remain
in Y (as the vector field points inwards on its boundary, everywhere apart
from points where it vanishes) and will reach the rest point (1, µ∗) such that
µ∗ > µ2.

Remark 5. Observe that µ2 → 1 and µ1 → δ/(δ + σ) as % → 0. Thus
the smaller % we take, the bigger the area Y from where all trajectories
approach restpoints of the form (1, µ∗). In particular, if % is small enough,
the population starting from the state where less than a half of aspiration
driven players play H will reach the state where most of them play H and
there are no rationals.

3.2.2 The analysis with an initial condition in ML

In case of initial conditions within ML, the fraction of aspiration driven
players playing H decreases continually over time and we are able to show
that if the trajectory stays within ML, it will reach the rest point (1, µ),
where µ ∈ [0, δ/(δ + σ) + ε].

Main Result 4. Consider any coordination game such that 0 < δ < σ and
an aspiration level α ∈ (0, δ]. Any trajectory that starts in the are ML and
remains there reaches the rest point (1, µ∗), where µ∗ < δ/(δ + σ).

Proof. Obviously we have ML(a, µ) = 0 iff a = 1 or µ = 0. Moreover
ML(a, µ) ≤ 0 and ψL(a, 0) = % for a ∈ [0, 1), so AL(a, 0) > 0 for a ∈ [0, 1).
It also holds that AL(1, µ) = 0.

This shows that all points (1, µ∗) such that µ∗ < δ/(δ + σ) are the only
rest points within the areaML. Since there are no cycles in the areaML (as
ML(a, µ) ≤ 0 for all (a, µ) ∈ML and whenever ML(a, µ) = 0 it holds that
AL(a, µ) = 0), so for any trajectory starting withinML that remains there,
by the Poincar-Bendixson theorem, we have limt→+∞ φv(t,x) = (1, µ∗).

Remark 6. The result above is a conditional statement, and we cannot say
more without studying the behavior in the switching region, where we cannot
exclude cyclic behavior. However simulations show that there are scenarios
in which most of the trajectories starting within ML and remaining there
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converge to the rest point (1, µ∗). Moreover, the set of trajectories that
remain in the ML area is non empty, as any trajectory starting from the
point (a, 0) that is within ML remains there and reaches (0, 0) point (as
ML(a, 0) = 0).

4 Simulations

In this section we will demonstrate how the system under consideration
behaves in four different scenarios – two with high aspiration levels and two
with low aspiration levels.

Figure 6: α = 2.7, % = 1.0.

Our analytical results show that any qualitatively different behavior of
the system depends neither on the payoffs of the game nor on the probability
functions affecting willingness of individuals to change the rule or the action,
but on the aspiration level α and the cost of rationality %. Thus in scenarios
considered in this section we fix the game to the one with δ = 2 and σ = 5
and we also fix the speed adjustment parameters to κ1 = κ2 = 1. We
also consider the probability functions of the form f(x) = dx2, g(x) =
b(x2 − cx3). Parameters d, b and c are chosen to satisfy the conditions
f(σ) = 1, g(σ − %) = 1 and g′(x) > 0 for x ∈ (0, σ − %] (notice that σ is the
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maximal value for α and σ − % is the maximal absolute difference between
average payoffs of rational and aspiration driven populations).11

Figure 7: α = 2.15, % = 0.1.

Since the value of d depends only on the game, it will be fixed to d = 0.04.
The value of c depends on the cost of rationality and will be calculated
separately for each scenario using the same formula c = 2.0/(3.1(σ − %)).
The value of b depends on the value of c and will be calculated using the
formula b = 1.0/((σ − %)2 − c(σ − %)3).

In the first scenario we demonstrate the behavior of the system when
the aspiration level and the cost of rationality are high enough to prevent
the existence of rest points in the ML area. As we can see in the figure 6
the fraction of aspiration driven players playing H increases constantly until
the system reaches the only rest point (1, 1).

In the second scenario we demonstrate the behavior of the system when
the aspiration level is above δ, but close to it and the cost of rationality is
small enough to enforce the existence of rest points in the ML area. We
can see in figure 7 that in this scenario most of the areaML is the basin of

11The function f satisfies all the requirements given in the description of the model.
In case of g this requirement is not satisfied (since the proposed function is not strictly
increasing on [0,+∞)). However, it is enough in practice that the function be strictly
increasing on [0, σ − %] and we guarantee that.
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Figure 8: α = 1.8, % = 0.12.

attraction of the stable rest point xs. So most of the initial conditions lying
within the ML region remain there and lead to a stable population where
rational and aspiration driven players coexist.

In the last two scenarios we demonstrate the behavior of the system
when the aspiration level is low. In both cases we fix it to the same value
and show how the behavior of the system depends on the cost of rationality.
In figure 8 we can see that if % is small then almost all trajectories starting
within MH end up in the state where rationals die out and the fraction
of aspiration driven players playing H is close to 1. Moreover almost all
trajectories starting withinML end up in the state where rationals die out
and the fraction of aspiration driven players playing H is close to 0.

Figure 9 shows the behavior of the system with a higher cost of rational-
ity. One can observe that there are trajectories starting within MH which
end up in the state where all rationals die out and the fraction of aspiration
driven players playing H is relatively small. We can also see that most of the
trajectories starting within ML remain there, but reach states of various
levels of fractions of players playing H. A careful look at the line a = 1
reveals the existence of stable and unstable sections. For example, for µ
very low, very high and around 1/2, there are stable sections while in the
remaining ranges of µ, the sections are unstable.
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Figure 9: α = 1.8, % = 0.8.

5 Concluding Remarks

In this paper we study an evolutionary model of equilibrium and behavior-
rule selection. We have kept the analysis as simple and tractable as possible
by restricting attention to the simplest possible class of games where playing
best response requires a rational player to gather information, the cost of
which we assumed to be positive no matter how small. Players could avoid
this small implementation cost of rationality by adopting an alternative and
simple behavior rule, which we call the aspiring rule, which incorporates a
fixed and common aspiration across all players who adopt this rule. We
show that there are two stable long run outcomes where either the relatively
costly rational rule becomes extinct and (if aspiration level is high enough)
all players in the population achieve full efficiency, or that both the behav-
ior rules co-exist and there is only a partial use of efficient strategies in the
population. These findings rationalize the use of the aspiration driven be-
havior in several existing studies in the literature and also helps us take a
comparative evolutionary look at the two rules in retrospect.

Our next goal is to allow for the social aspiration level to evolve as in
Palomino and Vega-Redondo, which is a hard problem in our case since it
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involves dynamic systems in dimensions higher than 2. We reserve this issue
for future research.
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A Appendix

Theorem 2. Suppose that an autonomous differential equation x′ = f(x)
has a rest point x0 = (x0, y0), its linearization has eigenvalues 0, λ, the x-
axis is the eigendirection for the eigenvalue 0, the y-axis is the eigendirection
for the eigenvalue λ and that

first nondegeneracy condition 0 is a simple eigenvalue of the lineariza-
tion, the other eigenvalue λ is nonzero,

second nondegeneracy condition the coefficient p2,0 of x2 in the Taylor
expansion of x′ is nonzero.

Assume further that λ < 0 and p2,0 > 0. Then there exist unique trajecto-
ries which tend to x0 tangentially to the line of eigenvectors with eigenvalue
λ from both sides. Moreover,

(i). these trajectories, together with x0, form a smooth curve called the
separatrix of the saddle node;

(ii). all trajectories to the left of this separatrix tend to 0 tangentially to
the line of eigenvectors with eigenvalue 0, forming a pony tail; and

(iii). there is a unique exceptional trajectory to the right of this separatrix
which emanates from x0, also tangentially to the to the line of eigen-
vectors with eigenvalue 0.

Lemma 2. It will be convenient to make the following substitutions:

d := f(α)/(f(α− δ) + f(α)), τ := σ/δ, υ := %/δ. (16)

Then the system of equations (13) takes the following form:{
aµ2(1 + τ)− µ+ υ = 0,
(1− µ)(1− aµ)− d(1− d)µ(1− a) = 0

(17)

where τ > 1, 0 < υ < 1 and 1/2 < d < 1.
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Notice that the line µ = 0 is an asymptote of both curves defined by the
above equations, and so the following analysis will be conducted for µ 6= 0.
By solving for a from these two equations we get

a = µ− υ
µ2(τ + 1)

a = µ− (1− d)
µ(2d− 1 + µ(1− d))

(18)

Comparing the right side (for µ 6= 0) we get the following quadratic equation:

µ2(d+ τ) + µ(d(τ − υ − 1)− τ + υ) + υ(2d− 1) = 0. (19)

Thus the system of equations (13) has zero, one or two solutions.
The discriminant of equation (19) is

∆ = υ2(1− d)2 − 2υ(d2(τ + 1) + (2d− 1)(τ + d)) + (τ(1− d) + d)2. (20)

Solving the inequality ∆ ≥ 0 for υ we get

υ1 =
d2(τ + 1) + (2d− 1)(τ + d)−

√
Γ

(1− d)2
,

υ2 =
d2(τ + 1) + (2d− 1)(τ + d) +

√
Γ

(1− d)2
,

where Γ = 4d2(d + τ)(τ + 1)(2d − 1) > 0 for any τ > 1 and 1/2 < d < 1.
Notice also that

√
(Γ ) < d2(τ + 1) + (2d− 1)(τ +d), as 4(1−d)2((τ(1−d) +

d)2) > 0 and d2(τ + 1) + (2d − 1)(τ + d) > 0. Moreover d2(τ + 1) + (2d −
1)(τ + d) > (1− d)2(τ + 1), since d2 > (1− d)2. Hence we can conclude that
∆ ≥ 0 for υ ≤ υ1 and υ ≥ υ2, where 0 ≤ υ1 < υ2 and υ2 > τ + 1. Because
we restrict ourselves to 0 < υ < 1, the condition reduces to υ ≤ υ1.

To show that it is always possible to have one or two solutions within
the area L we will first show that there is always some d ∈ (1/2, 1) such that
υ1 < 1. This inequality (under our assumptions) reduces to

(d− 1)2(d2(τ − 2
√
τ + 1)(τ + 2

√
τ + 1)− 2dτ(τ + 1) + (τ + 1)2) < 0

and further to

(d− 1)2
(
d− τ + 1

τ + 2
√
τ + 1

)(
d− τ + 1

τ − 2
√
τ + 1

)
< 0, if τ 6= 2

√
τ + 1

and
(d− 1)2 (τ + 1) (2dτ − τ − 1) > 0, if τ = 2

√
τ + 1.

Let

d∗1 =
τ + 1

τ + 2
√
τ + 1

=
1
2

+
(
√
τ + 1− 1))2

2(τ + 2
√
τ + 1)

< 1,

d∗2 =
τ + 1

τ − 2
√
τ + 1

.
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It is easy to see that if τ − 2
√

(τ + 1) 6= 0 then either d∗2 < 0 or d∗2 > 1,
depending on sign of τ − 2

√
(τ + 1). Thus for d ∈ (0, 1), υ1 < 1 if d > d∗1.

So by making d big enough one can always make sure that it is possible to
choose υ = υ∗ ∈ (0, 1) such that system of equations (13) has exactly one
solution.

After the substitution

A := d+ τ, B := d(υ + τ), C := υ(2d− 1), (21)

the equation (19) takes the form

µ2A+ µ(B −A− C) + C = 0, (22)

where A > 3/2, B > 1/2 and 0 < C < 1. The discriminant of the above
equation is ∆ = (A− (B − C))2 − 4AC and the solutions are

µs = µ∗ −
√

∆
2A

, µu = µ∗ +
√

∆
2A

, (23)

where
µ∗ =

A− (B − C)
2A

.

Since A > B (as A − B = d(1 − υ) + τ(1 − d)), so A − (B − C) > 0. Also
B > C (as B − C = d(τ − υ) + υ). Moreover

√
(∆) < A − (B − C). Thus

0 < µs ≤ µ∗ ≤ µu < 1− (B − C)/2A < 1.
Let q : R+ → R be a function such that

q(µ) =
µ− (1− d)

µ(2d− 1 + µ(1− d))
.

It can be easily checked that for d ∈ (1/2, 1), q is strictly increasing, so for
as = q(µs), au = q(µu) and µs < µu we have as < au.

To see if it is possible that {xu,xs} ∈ L we will first look for conditions
on µ for which (q(µ), µ) ∈ L, that is such that

q(µ)µ < q(µ)− σ/(δ + σ). (24)

The inequality (24) simplifies to

µ2((2− d)τ + 1)− µ((1− d)(3τ + 1) + 1) + (1− d)(τ + 1) < 0, (25)

with the discriminant

Γ = d2(5τ2 + 2τ + 1)− 2dτ(3τ + 1) + τ2.

So for the inequality (24) to have two solutions it must be true that d < dL1
or d > dL2 where

dL1 =
τ(3τ + 1− 2

√
τ(τ + 1))

5τ2 + 2τ + 1
,

dL2 =
τ(3τ + 1 + 2

√
τ(τ + 1))

5τ2 + 2τ + 1
= 1−

(τ +
√
τ(τ + 1))2 + 1

5τ2 + 2τ + 1
.
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It is easy to see that dL1 < 1/2 and dL2 < 1, so for the values of d we consider,
the condition for Γ > 0 reduces to d ∈ (max(d∗2, d

L
2 ), 1).

The inequality (24) is satisfied if µ ∈ (µL1 , µ
L
2 ), where

µL1 =
(1− d)(3τ + 1) + 1−

√
Γ

2(1 + τ(2− d))
, µL2 =

(1− d)(3τ + 1) + 1 +
√

Γ
2(1 + τ(2− d))

Since (µL1 , µ
L
2 )→ [0, 1/(τ + 1)] and µ∗ → 1/(2(τ + 1)) when d→ 1, so there

is d ∈ (max(d∗2, d
L
2 ), 1) and υ such that µ∗ ∈ (µL1 , µ

L
2 ). Moreover there is

ε > 0 such that for all υ ∈ (υ − ε, υ), µs < µu and (µs, µu) ⊆ (µL1 , µ
L
2 ).

Thus there is α ∈ (δ, σ) (for having d big enough one can take α close to
δ) such that for any α ∈ (δ, α) there is % and ε ∈ (0, %) such that for any
% ∈ (%− ε, %) the system of equations (13) has two distinct solutions xs, xu

such that {xs,xu} ⊆ L.

Proposition 1. The linearization of the system of differential equations (5),
(7) at xu has one zero eigenvalue, so we cannot simply use it to reason
about properties of this restpoint. However we can study a linearization of
the modified system of differential equations

ȧ = ψL(a, µ),

µ̇ = ML(a, µ),
(26)

to reason about stability of the rest point (notice that one can view the
system of linear differential equations (5), (7) as a perturbed system (26)
where the perturbation preserves the signs of ȧ and µ̇). We first prove the
following fact.

Fact 5. The linearization of the system of differential equations (26) at xu

has two nonzero eigenvalues of opposite signs, that is, xu is a saddle node
of the system.

Proof. Partial derivatives of ψL and ML at (au, µu) are as follows:

ψua = ψLa (a, µ)|(au,µu) = [µ2(δ + σ)]|(au,µu),

ψuµ = ψLµ (a, µ)|(au,µu) = [2aµ(δ + σ)− δ]|(au,µu),

Mu
a = ML

a (a, µ)|(au,µu) = [κ2µ(f(α)− f(α− δ)(1− µ))]|(au,µu),

Mu
µ = ML

µ (a, µ)|(au,µu)

= [−κ2(f(α− δ)(a(1− µ) + 1− aµ) + f(α)(1− a))]|(au,µu).

(27)

The characteristic polynomial of the Jacobian of the vector field v at (au, µu)
is

λ2 − (ψua +Mu
µ )λ− (Mu

aψ
u
µ − ψuaMu

µ ), (28)
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with the discriminant ∆ = (ψua −Mu
µ )2 + 4Mu

aψ
u
µ. It is obvious that ψua > 0,

Mu
a > 0 and Mu

µ < 0. We will show that ∆ > 0, by showing that ψuµ ≥ 0.
Consider the equation

aµ2(δ + σ)− µδ + % = 0,

satisfied by (au, µu). Solving it with respect to µ we get that

µu ≥
δ

2au(δ + σ)

(notice that by lemma 2, if there are two solutions to this equation, µu is
the bigger one). This immediately leads to conclusion that ψuµ ≥ 0.

Since Mu
aψ

u
µ−ψuaMu

µ > 0, so
√

(∆) > |ψua +Mu
µ |. Thus the characteristic

polynomial has two real and distinct solutions λ1 < 0 < λ2.

The rest of the proof of proposition 1 below is based on the proof of
theorem 8.3.2 from [Hubbard and West, 1991, part II, pp 155–159], stating
that if a rest point is a saddle node of a linearization then it is a saddle
node.

To analyze the system we will first move the point (au, µu) to the origin
and change the basis to eigenbasis of the linearization matrix of (26). After
this transformation, the system of equations (26) becomes

ẋ = λ1x+ P (x, y),
ẏ = λ2y +Q(x, y),

(29)

where λ1 and λ2 are eigenvalues of the linearization of (26), P and Q are
polynomials starting with at least quadratic terms from the expansion of ψL

and ML into a Taylor polynomial, and a and µ of the original system are
changed to x and y, for clarity.

Similarly, the system of differential equations (5), (7) is transformed to

ẋ = Ã(x, y),
ẏ = λ2y +Q(x, y), (30)

where

Ã(x, y) = κ1((1− c(x, y))g(λ1x+ P (x, y))− c(x, y)g(λ1x+ P (x, y))),

where c(x, y) = αx+ βy + au is a after an affine transformation. Obviously
in the neighborhood of (0, 0), Ã(x, y) and λ1x + P (x, y) have exactly the
same sign (as it is in the case of A and ψ).
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Following the proof from Hubbard and West [1991] we turn the system of
differential equations (29) into first order equations, first for y as a function
of x, and then for x as a function of y :

dy
dx

= ϕ1(x, y) =
λ2y +Q(x, y)
λ1x+ P (x, y)

, (31)

dx
dy

= ϕ2(x, y) =
λ1x+ P (x, y)
λ2y +Q(x, y)

. (32)

We do the same with the system of differential equations (30) :

dy
dx

= ϕ̃1(x, y) =
λ2y +Q(x, y)

Ã(x, y)
, (33)

dx
dy

= ϕ̃2(x, y) =
Ã(x, y)

λ2y +Q(x, y)
. (34)

The equations (31) and (33) will be considered only within areas where
λ1x+ P (x, y) 6= 0 (and also Ã(x, y) 6= 0). The equations (32) and (34)
will be considered only within areas where λ2y + Q(x, y) 6= 0. Under these
assumptions all those differential equations satisfy Lipschitz condition, since
the right hand sides are differentiable.

From Hubbard and West [1991] we observe that trajectories of solutions
to the system (29) follow the graphs of solutions to the first order differential
equations (31) and (32) (with time going backwards or forward, depending
on the sign of λ1 and λ2, cf. Hubbard and West [1991]).

Similarly trajectories of solutions to the system (30) follow the graph
of solutions to the first order differential equations (33) and (34) as in the
neighborhood of (0, 0), λ1x has the dominating effect on Ã(x, y) and g is
strictly increasing.

In the analysis of the behaviour of solutions of equations (33) and (34)
we will need the following notions and theorems from [Hubbard and West,
1991, part II, pp 511–515] (in what follows, I denotes an open or closed
interval, possibly unbounded from either side).

Definition 1 (Lower fence). For the differential equation x′ = f(t, x), we
call a continuous and continuously differentiable function α(x) a lower fence
if α′(t) ≤ f(t, α(t)) for all t ∈ I.

Definition 2 (Upper fence). For the differential equation x′ = f(t, x), we
call a continuous and continuously differentiable function β(t) an upper fence
if f(t, β(t)) ≤ β′(t) for all t ∈ I.

Definition 3 (Antifunnel). 12 If, for the differential equation x′ = f(t, x),
over some t-interval I, α(t) is a lower fence and β(t) in an upper fence and

12There is an analogical notion to this defined for x “going backward”, called backward
antifunnel.
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if α(t) > β(t), then the set of points (t, x) for t ∈ I with α(t) ≥ x ≥ β(t) is
called an antifunnel.

Theorem 3 (Antifunnel Theorem; Existence). 13 Let α(t) and β(t), α(t) ≤
β(t), be two fences defined for t ∈ [a, b), where b might be infinite, that
bound an antifunnel for the differential equation x′ = f(t, x). Furthermore,
let f(t, x) satisfy Lipschitz condition in the antifunnel. Then there exists a
solution x = u(t) that remains in the antifunnel for all t ∈ [a, b) where u(t)
is defined.

Suppose that λ1 > 0. We will consider the system of differential equa-
tions (33) for x < 0 and we will show that there exist at least one solution
u(x) of the system (33) that approaches point (0, 0) as x increases, and
moreover, that it is tangent to the x-axis.

Consider the two areas defined as follows

L1(ε, γ) = {(x, y) : −ε < x < 0 and − γx2 < y < γx2}
L2(ε) = {(x, y) : −ε < x < 0 and x < y < −x}.

We will show that there exist ε > 0 and γ > 0 such that L1(ε, γ) and L2(ε)
are both backward antifunnels for the equation (33).

The equation λ1x+P (x, y) = 0 implicitly defines a curve tangent to the
y-axis (which, in the neighborhood of (0, 0), is exactly the same as the curve
defined by Ã = 0). Thus there exist ε > 0 and γ > 0 such that Ã(x, y) 6= 0
and λ1x+ P (x, y) 6= 0 within areas L1(ε, γ) and L2(ε).

First we will show that y(x) = γx2 is a lower fence. Notice that

ϕ1(x, y) =
λ2y +Q(x, y)
λ1x+ P (x, y)

=
λ2y +Q(x, y)

λ1x

 1

1− P (x,y)
(−λ1)x


=
(
λ2y

λ1x
+
Q(x, y)
λ1x

)(
1 +

P (x, y)
(−λ1)x

+
(
P (x, y)
(−λ1)x

)2

+ · · ·

)
.

Take y(x) = γx2. If Q(x, y) does not have a term in x2, then for suffi-
ciently small ε the first term in the first parentheses dominates the second.
Otherwise both terms are linear in x. In that case, since the coefficient of x2

in Q(x, y) is independent of γ, we can take γ sufficiently large such that for
ε sufficiently small the first term will dominate the second. Then the sign
of ϕ1(x, γx2) depends on the sign of λ1/(λ2x), so ϕ1(x, γx2) > 0 and thus
ϕ̃1(x, γx2) > 0.

Since (γx2)′ = 2γx < 0 for x < 0, so for sufficiently small ε, −ε < x < 0,
and for γ sufficiently large, γx2 is a lower fence for ϕ1(x, y). Similarly it can
be shown that for −ε < x < 0, ε sufficiently small, and for γ sufficiently

13An analogical theorem holds for backward antifunnels.
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large ϕ̃1(x,−γx2) < 0, so, since (−γx2)′ = −2γx > 0 for x < 0, −γx2 is an
upper fence for ϕ1(x, y). Thus L1(ε, γ) is an antifunnel for ϕ1(x, y).

The proof that there is an ε such that L2(ε) is an antifunnel goes along
the same lines and is easier. This is because the first term in the first
parentheses is a constant and the second term is at most linear in x, and so
it is dominated by the first term.

Thus, by theorem 3, for x < 0 there is a solution to the linear differ-
ential equation (33) such that it remains in the antifunnels L1 and L2 and
approaches (0, 0). Moreover it does so tangentially to the x-axis, as it re-
mains in the antifunnel L1. Since x(t) decreases as t increases (cf. (29), (30))
so this means that there are solutions to (29) leaving (0, 0) tangentially to
the direction of eigenvector of λ1.

One can show similar result for x > 0 analogically, using backward anti-
funnels being analogues for L1 and L2. Moreover, using (34) one can show
that there are trajectories approaching (0, 0) tangentially to eigenvector of
eigenvalue λ2, defining antifunnels that are regions complementary to those
for equation (33) (cf. Hubbard and West [1991]).

If λ1 < 0, one can show that there are trajectories leaving (0, 0) tangen-
tially to eigenvector of eigenvalue λ2 < 0, and its proof is analogical to that
above, again relying on the fact that Ã(x, y) has, in the neighborhood of
(0, 0), exactly the same sign as λ1x+ P (x, y). Thus we have shown that xu

is an unstable rest point. This ends the proof of proposition 1.

Fact 1 of Proposition 2. To show that ψLµ (a, µ) < 0, consider the equation

aµ2(δ + σ)− µδ + % = 0,

with (as, µs) being its solution. Solving it with respect to µ we get that

µs <
δ

2as(δ + σ)
,

(notice that here we assume that there are two solutions to this equality).
Thus in the neighborhood of (as, µs) ψLµ (a, µ) < 0.

The rest of the claims in parts 1 and 2 follow directly from the expressions
for partial derivatives (cf. (27)).

For part 3 we first transform the inequality to the following form

ψsaM
s
µ − ψsµM s

a > 0,

and further (for µs > 0) to

−asµs(τ + 1)(2d− 1)− µs(d+ τ) + (2d− 1) > 0,

(where d and τ are as in (16). Since as and µs satisfy (18), so this inequality
is equivalent to

−(µs − υ)(2d− 1)
µs

− µs(d+ τ) + (2d− 1) > 0,
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which reduces to
C

µs
− µsA > 0,

(where A and C are as in (21). Using the expression for (23) and facts that
µs > 0 and A > 0, the inequality can be transformed into

4AC − (A− (B − C)−
√

(A− (B − C))2 − 4AC)2 > 0.

Since the left side of the inequality is equal to 2(A− (B −C))
√

((A− (B −
C))2−4AC), which is positive, as µs > 0, so the inequality is satisfied. This
completes the proof.

Fact 2 of Proposition 2. Since in the neighborhood of (as, µs) we have ψLa (a, µ) >
0 and ψLµ (a, µ) < 0 and g is strictly increasing for positive arguments, if ε is
near 0 then we have

max
(a,µ)∈C(Kε)

g(|ψ(a, µ)|) = g(max{−ψ(as−Kε, µs+Kε), ψ(as−Kε, µs−Kε)}),

One can easily check that

max{−ψ(as −Kε, µs +Kε), ψ(as −Kε, µsµs −Kε)} = Lε+ o(ε),

where L > 0 is some constant. On the other hand expanding g in Taylor
polynomials around 0 we get

g(x) = g(0) + g′(0)x+ o(x) = o(x).

Thus if ε is close to 0,

g(max{−ψ(0, µs + ε), ψ(1, µs − ε)}) = o(ε) > 0

since g(x) > 0 for x > 0 and so η(ε) = o(ε) > 0.

Fact 3 of Proposition 2. From ML(a, µ) = 0 and ϕ1
ε(a, µ) = 0 we have that

a1
M (ε)−as+µ1

M (ε)−µs = −ε. Expanding ML(a, µ) in a Taylor polynomial
around (as, µs) we get

ML(a, µ) = M s
a(a− as) +M s

µ(µ− µs) + o(a− as) + o(µ− µs).

Since a1
M (ε) − as, µ1

M (ε) − µs → 0 as ε → 0, so using an expansion of
ML in a Taylor polynomial around (as, µs), for ε close to 0 we get

M s
a(a1

M (ε)− as) +M s
µ(µ1

M (ε)− µs) + o(a1
M (ε)− as) + o(µ1

M (ε)− µs) =

(M s
a −M s

µ)(a1
M (ε)− as) +M s

µ(a1
M (ε)− as + µ1

M (ε)− µs)
+ o(a1

M (ε)− as + µ1
M (ε)− µs)) =

(M s
a −M s

µ)(a1
M (ε)− as)−M s

µε+ o(ε) = 0.

34



From this (and by a similar method for µ1
M (ε)− µs) we get

a1
M (ε)− as =

M s
µ

M s
a −M s

µ

ε+ o(ε) > −Kε,

µ1
M (ε)− µs = −

Ma
µ

M s
a −M s

µ

ε+ o(ε) > −Kε,

for ε small enough (cf. (14)).
Similarly for ϕ2

ε(a, µ) = 0 we obtain

a2
M (ε)− as = −

M s
µ

M s
a −M s

µ

ε+ o(ε) < Kε,

µ2
M (ε)− µs =

Ma
µ

M s
a −M s

µ

ε+ o(ε) < Kε.

for ε small enough.
By observation 1 we have ψL(a1

M (ε), µ1
M (ε)) > 0 and ψL(a2

M (ε), µ2
M (ε)) <

0 (see also figure 5).

Fact 4 of Proposition 2. Throughout the entire proof we will assume that
any considered ε is small enough to satisfy fact 3. Let M > 0 and a <
as +Kε, µ < µs +Kε. Since ϕ1

ε(a, µ) ≤ 0, we have that

ML(a, µ) <
√

2κ1κ2f(α)(2K + 1)η(ε)ε. (35)

Let d(ε) =
√

(2κ1κ2f(α)(2K + 1)η(ε)ε). Since η(ε) = o(ε), we have d(ε) =
o(ε). Therefore,

lim
ε→0

√
2κ1κ2f(α)(2K + 1)η(ε)ε

ε
= lim

ε→0

√
2κ1κ2f(α)(2K + 1)η(ε)

ε
= 0.

Consider the curve ML(a, µ) = d(ε). Notice that for ε close to 0 there is
an intersection point (a0(ε), µ0(ε)) of that curve and the curve ψL(a, µ) = 0
such that (a0(ε), µ0(ε)) → (as, µs) when ε → 0 (this follows from observa-
tion 1). Using an expansion of ML in a Taylor polynomial around (as, µs),
for ε close to 0 and from the fact that

M s
a(a0(ε)− as) +M s

µ(µ0(ε)− µs) + o(a0(ε)− as) + o(µ0(ε)− µs) = d(ε),

we get
M s
a

M s
µ

(a0(ε)− as) + µ0(ε)− µs =
d(ε)
M s
µ

+ o(d(ε)). (36)
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Moreover, using the expansion of ψL(a, µ) in a Taylor polynomial around
(as, µs) we get

ψsa(a0(ε)− as) + ψsµ(µ0(ε)− µs) + o(a0(ε)− as) + o(µ0(ε)− µs) =(
ψsa −

ψsµM
s
a

M s
µ

)
(a0(ε)− as) + ψsµ

(
M s
a

M s
µ

(a0(ε)− as) + µ0(ε)− µs
)

+ o

(
M s
a

M s
µ

(a0(ε)− as) + µ0(ε)− µs
)

=(
ψsa −

ψsµM
s
a

M s
µ

)
(a0(ε)− as) +

ψsµ
M s
µ

d(ε) + o(d(ε)) = 0.

Thus (and by similar method for µ0(ε)) we have

a0(ε)− as = −
ψsµ

ψsaM
s
µ − ψsµM s

a

d(ε) + o(d(ε)) < Kε,

µ0(ε)− µs =
ψsa

ψsaM
s
µ − ψsµM s

a

d(ε) + o(d(ε)) < Kε,

for ε close to 0, as d(ε) = o(ε) (notice that by fact 1 ψsaM
s
µ − ψsµM s

a > 0).
Suppose that ε is such that a0(ε) − as < Kε and µ0 − as(ε) < Kε.

Consider the function c(a) = ϕ1
ε(a, hψ(a)). Since c(as) < 0, c(a0(ε)) > 0

and c is continous, there must be a1
ψ(ε) < a0(ε) such that c(a1

ψ(ε)) = 0.
From this it follows that µ1

ψ(ε) = hψ(a1
ψ(ε)) < µ0(ε). Thus for ε sufficiently

small the intersection point (a1
ψ(ε), µ1

ψ(ε)) exists and a1
ψ(ε) − as < Kε and

µ1
ψ(ε)− µs < Kε.

For point 2, suppose that M(a, µ) > 0 and ψL(a, µ) > 0. From the
analysis above we know that, for (a, µ) ∈ C(Kε), ϕ1

ε(a, µ) = 0 implies a <
a0(ε) (notice that equation M(a, µ) = d(ε) implicitly defines the function
µ = hM2(a), which is strictly increasing). Moreover, from ϕ1

ε = 0 we get
µ− µ0 ≥ −(a0(ε)− as)− ε ≥ −Kε.

Points 3 and 4 can be shown similarly.

Lemma 3 of Proposition 2. To check that the vector field v points inwards
we will compare the direction of the vector field and the slope of the tangent
to the boundary along all four parts of the boundary. That is we have to
check whther

Fa(a, µ)A0(a, µ) + Fµ(a, µ)ML(a, µ) < 0 (37)

is true along the entire boundary F (a, µ) = 0.
If ML(a, µ) ≥ 0 and A0(a, µ) ≥ 0, the corresponding part of the bound-

ary is the curve ϕ1
ε(a, µ) = 0 and we have

2A0MLML
a − ε2A+ 2[ML]2ML

µ − 2MLκ1κ2f(α)η(K, ε) =

2ML(A0ML
a − κ1κ2f(α)η(ε))− ε2A+ 2[ML]2ML

µ < 0,
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since

ML
a (a, µ) = κ2µ(f(α)− f(α− δ)(1− µ)) < κ2f(α),

ML
µ (a, µ) = −κ2(f(α− δ)(a(1− µ) + 1− aµ) + f(α)(1− a)) < 0,

A(a, µ) = κ1(1− a)g(ψL(a, µ)) < η(ε),

for all ε ∈ (0, ε).
Similarly it can be shown that condition (37) holds for ML(a, µ) ≤ 0

and A0(a, µ) ≤ 0, when the corresponding part of the boundary is the curve
ϕ2
ε(a, µ) = 0.

If ML(a, µ) ≥ 0 and A0(a, µ) ≤ 0 the correspoding part of the boundary
is the line `1ε(a, µ) = 0 and we have

(µ2
M (ε)− µ1

ψ(ε))A− (a2
M (ε)− a1

ψ(ε))M < 0,

since, by fact 4, µ2
M (ε) > µ1

ψ(ε) and a2
M (ε) > a1

ψ(ε).
Similarly it can be shown that condition (37) holds for ML(a, µ) ≤ 0

and A(a, µ) ≥ 0, when the corresponding part of the boundary is the curve
`2ε(a, µ) = 0.
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