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Abstract 

This paper investigates the behavior of stock returns in an emerging stock market 
namely, the Macedonian Stock Exchange, focusing on the relationship between 
returns and conditional volatility. The conditional mean follows a GARCH-M model, 
while for the conditional variance one symmetric (GARCH) and four asymmetric 
GARCH types of models (EGARCH, GJR, TARCH and PGARCH) were tested. We 
examine how accurately these GARCH models forecast volatility under various error 
distributions. Three distributions were assumed, i.e. Gaussian, Student  and 
Generalized Error Distribution. The empirical results show the following: (i) the 
Macedonian stock returns time series display stylized facts such as volatility 
clustering, high kurtosis, and low starting and slow-decaying autocorrelation function 
of squared returns; (ii) the asymmetric models show a little evidence on the existence 
of leverage effect; (iii) the estimated mean equation provide only a weak evidence on 
the existence of risk premium; (iv) the results are quite robust across different error 
distributions; and (v) GARCH models with non-Gaussian error distributions are 
superior to their counterparts estimated under normality in terms of their in-sample 
and out-of-sample forecasting accuracy.  
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1. Introduction 
Financial market volatility is a central issue to the theory and practice of asset 

pricing, asset allocation, and risk management. Though earlier financial models 

assumed volatilities to be constant, it is widely recognized among both practitioners 

and academics that volatility varies over time. This recognition initiated an extensive 

research program into the distributional and dynamic properties of stock market 

volatility. Stock volatility is simply defined as a conditional variance, or standard 

deviation of stock returns that is not directly observable. Since the optimal decision of 

investors relies on variance of returns that can change over time, it is important to 

model and forecast conditional variance. There are three ways to calculate volatility: 

using high-frequency data, implied volatility of options data and by econometric 

modeling. This paper focuses on the econometric modeling of volatility and family of 

GARCH models in particular. An excellent review of volatility forecasting can be 

found in Poon & Granger (2003). They reviewed the methodologies and empirical 

findings in more than 90 published and working papers that study forecasting 

performance of various volatility models. Xiao & Aydemir (2007) also provided a 

good overview of volatility forecasting models, highlighting the similarities and 

differences between them.  

Emerging capital markets of the countries of former Yugoslavia are becoming 

increasingly important for both institutional and individual investors. However, they 

still remain small, fragmented and underdeveloped as Müller-Jentsch (2007) 

described them. For example, the market capitalization of all Western Balkan 

countries together amounts to just over € 50 billion (equity only) in 2006, which is 

equivalent to about a third of the already small Vienna Stock Exchange. What is even 

worse is that this small amount of market capitalization is fragmented between too 

many exchanges. Some countries, such as Montenegro and Bosnia and Herzegovina 

have even two stock exchanges.  

Claessens, Djankov, & Klingebiel (2000) identify weak laws and regularities, slow 

progress on private sector development, a limited supply of institutional investors, and 

macroeconomic uncertainty as the main obstacles to stock market development in the 

eastern European countries. Rich source of information about the economic and 

political development and a basic data for each Eastern Europe and Central Asia stock 
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exchanges is the latest report of the Federation of Euro-Asian Stock Exchanges FEAS 

(2007).  

One of the newcomers into the family of Eastern European stock exchanges, the 

Macedonian Stock Exchange (hereafter MSE), was founded on September 13, 1995 

and commenced trading on March 28, 1996. The MSE was founded as a non-profit 

joint stock company with a founding capital of € 500,000. According to the Securities 

Law banks and other financial institutions are eligible founders. Currently MSE has 

17 members - 11 brokerage houses and 6 banks. After the mass privatization it 

became mandatory for a company to be listed on the MSE.  

Table 1: Summary of key indicators for the Macedonian stock exchange in 2006 

Indicator  

Number of listed companies 101 
Market capitalization (millions US$) 1,103.94 
Market capitalization/GDP ratio 17.73% 
Volume (millions US$) 397.17 
Turnover ratio (%) 35.98% 
Index  MBI-10 

Mean (in percent) 0.190 
Maximum (in percent) 4.678 
Minimum (in percent) -4.325 
Standard deviation (in percent) 1.083 
Sharpe ratio  0.176 

Source: Federation of Euro-Asian stock exchanges website (www.feas.org), annual report of 
the MSE and our calculation.  

Note: Turnover ratio is volume divided by market capitalization. Sharpe ratio is mean return 
divided by standard deviation.  

Macedonia has the smallest market capitalization among countries of former 

Yugoslavia. This is probably the main reason why Macedonia holds the last place 

among countries of former Yugoslavia when comparing its financial indicators from 

Table 1 with comparable indicators for other stock markets in the region. Stock 

market capitalization/GDP ratio measures the developedness of stock market. For 

Macedonia this ratio is equal to 17.73%, the lowest in the region in 2006. Next to 
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Macedonia is Slovenia with 38.12% while Montenegro has the market 

capitalization/GDP ratio well above 100%.  

Turnover ratio could be used to measure the efficiency of the market, but it is not a 

direct measure of efficiency. It measures the value of stock transactions relative to the 

size of the market, and is frequently used as a measure of market liquidity. According 

to this indicator Macedonia stock market is the most liquid in the region with turnover 

ratio equal to 35.98%. Among stock markets in countries of former Yugoslavia this 

ratio ranges from 4.21% (Banja Luka stock exchange) to 12.15% (Belgrade stock 

exchange) in 2006. Developed economies such as the United States and France, have 

a turnover ratio of approximately 50%, while less developed transition economies 

have a turnover ratio about 5%.  

The idea of the Sharpe ratio is to see how much additional return investor is 

receiving for the additional volatility of holding the risky asset over a risk-free asset. 

The higher value of the Sharpe ratio is the better from investor perspective. Sharpe 

ratio in 2006 for Macedonia was about 0.176, the lowest in the region. Other stock 

exchanges in the region achieved value of the Sharpe ratio over 0.2 with Croatia, i.e. 

Zagreb stock exchange being on the top of the list with the Sharpe ratio equal to 

0.236.  

Since Macedonia is going to join the European Union, understanding of its stock 

market could be of interest to international investors. Identifying and comparing 

stochastic behavior of Macedonian stock market series with behavior of stock markets 

series of the European Union members could bring valuable information to investors 

helping them to optimize their portfolios and reduce the risk involved.  

The purpose of this paper is to contribute to the debate by examining issues 

concerning the relationship between returns and volatility that have attracted 

considerable attention in other emerging markets of the Central and Eastern Europe. 

These issues have not been examined so far for the MSE, and the paper attempts to 

fill the gap by addressing the following questions:  

• What are the stylized facts characterizing the behavior of MSE stock 

returns?  
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• What has been the impact of conditional volatility on stock returns, and is 

there evidence of significant risk premium and leverage effects? 

• How robust is the relationship between returns and conditional volatility to 

the change of the model specification and assumed error distribution?  

• Which conditional volatility model outperform other models in term of in-

sample and out-of-sample forecasting accuracy? 

The remainder of the paper is structured as follows. Section 2 provides a brief 

literature review, focusing on stylized facts and volatility of emerging stock markets 

in the Central and Eastern European countries. The alternative GARCH models are 

briefly examined in Section 3. Section 4 provides data description. Empirical results 

are presented in Section 5, while Section 6 concludes with a summary of the main 

findings and implications. 

2. Literature review 

2.1 Stylized facts of the financial time series 
Since the early work of Mandelbrot (1963) and Fama (1965), researchers have 

documented empirical regularities regarding prices, returns, and volatilities of 

financial time series. Due to a large body of empirical evidence, many of the 

regularities can be considered stylized facts. The most common stylized facts are the 

following:  

1. Volatility tends to cluster. Volatility exhibits persistence that is, large 

return innovations of either sign tend to be followed by large innovations, 

or periods of high volatility with periods of high volatility and periods of 

low volatility are followed by periods of low volatility. This implies that 

volatility could be used as a predictor of volatility in the next periods. As an 

indication of volatility clustering, squared returns often have significant 

autocorrelations.  

2. Volatility is mean reverting. This characteristic means that there is a 

normal level of volatility and eventually volatility will return to that level.  
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3. Return distributions have heavy tails with narrower and higher peak. 

Having heavy tails means that extreme returns occur more frequently than 

implied by a normal distribution. Distributions with such characteristics are 

called leptokurtotic distributions.  

4. Asymmetric reaction on “good” and “bad news”. Volatility tends to 

react differently on arrival of “good” and “bad news”, i.e. positive and 

negative innovations. Black (1976) notes the tendency for negative 

innovations to generate greater volatility in future periods compared with 

positive innovations of the same magnitude, a phenomenon that he refers to 

as the “leverage effect”. 

A good volatility model should be able to capture and reproduce most, if not all of 

these stylized facts. Stylized facts of the financial time series were analyzed by, 

amongst others, Cont (2001, 2005, 2007), Guillaume et al (1997), Kirchler & Huber 

(2005), Krivoruchenko, Alessio, Frappietro & Streckert (2004), Malmsten & 

Teräsvirta (2004) and Rydberg (2000).  

2.2 Research about volatility in the countries of former Yugoslavia 
While the stock markets volatility in developed countries has been thoroughly 

investigated there is less empirical research on the stock markets volatility in 

transition economies of Eastern Europe. The main reason was a complete lack of data 

or too short stock market time series for any thoughtful analysis. The stock markets in 

Eastern European countries were established mainly in early nineties. The Western 

Balkan stock markets were established even later with reliable data for the last 4-5 

years only. The following list gives the main research topics covered as well as the 

selection of empirical studies analyzing mostly Central and East Europe stock 

markets:  

(1) Modeling and forecasting volatility in Central and Eastern European 

countries (Anatolyev, 2006; Anatolyev & Shakin, 2006; Égert & Koubaa 

2004; Grambovas, 2003; Hasan & Quayes, 2005; Kasch-Haroutounian & 

Price, 2001; Murinde & Poshakwale, 2001; Patev & Kanaryan, 2006; 

Poshakwale & Murinde, 2001; Shields, 1997a, 1997b; Shin, 2005; Sian, 

1996)  
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(2) Seasonal anomalies or calendar effects on European stock market volatility 

(Ajayi, Mehdian & Perry, 2004; Apolinario, Santana, Sales & Caro, 2006; 

Chukwuogor-Ndu, 2006; Tonchev & Kim, 2004) 

(3) Volatility transmission or spillovers between European stock markets 

(Baele, Crombez & Schoors, 2003; Dumitru, Mureşan & Mureşan, 2005; 

Égert & Kočenda, 2005; Gelos & Sahay, 2000; Inzinger & Haiss, 2006; 

Jochum, Kirchgässner & Platek, 1999; Kanas, 1998; Morana & Beltratti, 

2002; Onay, 2006; Patev & Kanaryan, 2006; Patev, Kanaryan & Lyroudi, 

2006; Scheicher, 2001; Syllignakis & Kouretas, 2006) 

(4) Efficiency of Eastern European stock markets (Harrison & Paton, 2005; 

Rockinger & Urga, 2000; Todea & Zoicaş-Ienciu, 2005)  

(5) Interaction between real sector and stock market (Cihak & Janaček, 1997).  

Empirical studies on the stock markets in Central and East Europe listed above 

were mostly based on some variation or extension to the basic ARCH (Engle, 1982) 

and GARCH models (Bollerslev, 1986).  

We reviewed 19 empirical studies on research about volatility in the countries of 

former Yugoslavia from various journals and working paper series. In general, we 

focused on papers analyzing not just volatility forecasting, but also other issues 

related to volatility of stock market indices. These papers are not necessarily using the 

same methodological framework adopted in this study. The reason for considering 

wider list of empirical papers is that with a few exceptions, research on volatility 

forecasting in the financial markets of the countries of former Yugoslavia does not 

exist. 

As far as this author knows, among countries of former Yugoslavia only Slovenian 

and Croatian stock exchanges were subject to rigor analysis using the same or similar 

methodological approach adopted in this paper. They were the first stock exchanges 

set up among countries of former Yugoslavia. Thus far there has been no empirical 

study of the stochastic behavior of Bosnia and Herzegovina and Montenegro stock 

markets and only a few for Serbia and Macedonia. In the following we will briefly 

discuss and summarize the studies under review. A comprehensive overview of the 
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research about volatility in the countries of former Yugoslavia is given in the 

Appendix.  

One of the first analyses of the Croatian stock market was undertaken by Šestović 

& Latković (1998). They used the main Croatian stock market index and a few 

company’s indices to estimate GARCH(1,1) model and illustrate how this model can 

be used in volatility forecasting. Similar objectives and results were presented in 

Latković (2001, 2002) and Levaj, Kamenarić, Mišković & Mokrovčak (2005). For a 

Croatian exchange rate series Posedal (2006) found that the nonlinear GARCH 

models better describes short-run dynamics, while Anatolyev (2006) rejected 

conditional mean independence in the volatility model for Croatian stock market. 

Žiković (2006a, 2006b) successfully applied VaR methodology and historical 

simulation on the Croatian stock market indices in an effort to measure Value-at-Risk.  

Calendar effects and their impact on the conditional volatility were also subject of 

investigation for Croatian stock market. Ajayi, Mehdian & Perry (2004) did not found 

day-of-the-week effect, while Fruk (2004) rejected hypothesis of seasonal unit root in 

Croatian index. When investigating volatility transmission or spillovers between 

Croatian stock markets and other markets in the region and Europe the mixed results 

were obtained. Onay (2006) used a cointegration test, but did not found a long-run 

relationship between Croatia and other economies. However, the causality test found 

a causal flow from European indices to Croatian index. This is an opposite result to 

the result presented in Samitas, Kenourgios & Paltalidis (2006) who discovered 

equilibrium relationships, i.e. linkages between developed and stock markets in 

transitional economics (Croatia, Serbia and Macedonia) by using Markov switching 

regime regressions. There was only one more study which was using Belgrade stock 

exchange data to check whether the stylized facts exist. Miljković & Radović (2006) 

discovered the main commonly known stylized facts in the Serbian stock market data.  

Mean predictability in the volatility model for Slovenia was not detected in 

Slovenian index (Anatolyev, 2006), while Égert & Koubaa (2004) found that sum of 

parameters in a simple GARCH(1,1) for Slovenia is over 1. However, nonlinear 

GARCH models such as GJR and QGARCH reasonably well modeled Slovenian 

stock market index. Žiković (2007) shown that use of common VaR models to 

forecast VaR is not suitable for transition economies such as Slovenia.  
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Hasan & Quayes (2005) tried to identify the level of integration between Slovenian 

and European financial markets. Similarly to Croatia they discovered no long-run 

relationships between Slovenia and nine other countries considered. However, the 

impact of other stock markets or external events can’t be completely ruled out. 

Syllignakis & Kouretas (2006) identified what was the impact that the Russian crisis 

had on the stock markets in other countries (including Slovenia) by using multivariate 

version of the GARCH model, i.e. dynamic conditional correlation GARCH. They 

discovered that conditional volatility increased in case of Slovenia over two times 

during the Russian crisis.  

Calendar effects on volatility of Slovenian stock market were found. Ajayi, 

Mehdian & Perry (2004) identified day-of-the-week effect in Slovenian index 

(negative Tuesday and positive Thursday and Friday effects). The same effects were 

investigated by Tonchev & Kim (2004) who found weak evidence for the day-of-the-

week effect in mean in opposite direction, i.e. reverse effects in positive returns. By 

using GARCH model they identified calendar effects in the conditional variance such 

as January effect, monthly seasonality in variance and the reverse half-month effect. 

Finally, Deželan (2000) rejected a weak form of efficiency hypothesis for the 

Slovenian stock market.  

3. GARCH-type models 

3.1 Symmetric GARCH-in-Mean model 
The starting model used in this paper is based on an extension of the basic GARCH 

model proposed by Engle, Lilien, & Robins (1987) so that the conditional volatility 

can generate a risk premium which is part of the expected returns. An AR(2)-

GARCH(1,1)-M model is specified with the following two equations:  

Mean equation:  0 1 1 2 2t t t tr r r tφ φ φ λσ− −= + + + + ε

2
1t

,    (1) 

Variance equation:  2 2
1t tσ ω αε βσ− −= + + ,     (2) 

where  is the stock market return, and tr tε  is a Gaussian innovation with zero mean 

and a time-varying conditional variance 2
tσ . Three coefficients λ , α  and β  are non-

negative constants. The coefficient α  in the variance equation measures the reaction 
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of volatility on market movements. Higher values for this coefficient would generate 

more “spiky” diagram of returns, i.e. conditional volatility would show large reaction 

and low persistence. The coefficient β  in the variance equation measures the 

persistence of volatility. Higher values for this coefficient means that innovations to 

conditional variance will take longer to die out, i.e. conditional volatility would show 

low reaction and large persistence. Ling and McAleer (2002a) established the 

necessary and sufficient condition for the existence of the second moment of tε  for 

GARCH(1,1) model: 1α β+ < , the unconditional variance is /(1 )ω α β− −  and 

kurtosis is greater than 3 (i.e. leptokurtic distribution). 

The coefficient λ  in the mean equation measures the risk premium describing the 

nature of the relationship between stock market returns and volatility. If this 

coefficient is positive we would expect that investors are compensated with higher 

returns for taking the higher risk (volatility). If the coefficient λ  is negative that 

would mean investors are getting less than expected despite taking higher risk.  

The standard GARCH model is symmetric in its response to past innovations. 

Since good news and bad news may have different effects on the volatility we 

considered several alternative GARCH models in an attempt to capture the 

asymmetric nature of volatility responses. ARCH-type models, their specification, 

estimating and testing have been reviewed by, amongst others, Bera & Higgins 

(1993), Bollerslev, Chou & Kroner (1992), Bollerslev, Engle & Nelson (1994) and 

Palm (1996).  

3.2 Asymmetric GARCH models 
It was observed that volatility tend to increase more when the stock market index 

was decreasing than when the stock market index was increasing by the same amount. 

As discussed by Cappiello, Engle & Sheppard (2003), asymmetric volatility can be 

explained by two models: leverage effect and time-varying risk premium (volatility 

feedback). According to Black (1976) reason for such phenomenon might be that 

when the equity price falls the debt remains constant in the short term, so the 

debt/equity ratio increases. The firm became more highly leveraged and future of the 

firm becomes more uncertain. The equity price therefore becomes more volatile. An 

alternative explanation of the asymmetric volatility responses is based on the time-
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varying risk premium (Campbell and Hentschel, 1992; Wu, 2001). According to 

them, if volatility is priced, an expected increase in volatility raises the required return 

on equity, leading to an immediate stock price decline. Bekaert and Wu (2000) 

shown, when combining these two explanations in an empirical model, often the 

coefficient linking volatility to expected return is insignificant, and the sign is 

different depending on the study. Also, that the leverage effect alone does not 

adequately explain the changes in volatility after a decrease in the asset price. Finally, 

a third explanation, described as following-the-herd effect (De Goeij & Marquering, 

2004) is based on a psychological behavior. Investors might pay less attention to the 

market fundamentals during a stock market crash, and therefore sell their stocks if 

everybody else is selling. The negative relationship between stock returns and 

volatility was further discussed in Jinho, Chang-Jin & Nelson (2007).  

Since the symmetric GARCH model is unable to account for the leverage effects 

observed in stock returns, asymmetric GARCH models were proposed that enable 

conditional variance to respond asymmetrically to rises and falls in innovations.  

3.2.1 Exponential GARCH model 
An asymmetric model allows the possibility that unexpected drop in price (arrival 

of the “bad news”) has a larger impact on future volatility than an unexpected increase 

in price (arrival of the “good news”) of similar magnitude. Nelson (1991) proposed an 

exponential GARCH or EGARCH(1,1) model given by 

2 21 1
1

1 1

log logt t
t t

t t

E 1

1

t

t

ε εσ ω α β σ γ ε
σ σ σ

− −
−

−

− − −

⎡ ⎤⎛ ⎞
= + − + +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
   (3) 

where α , β  and γ  are constant parameters. It is expected that 0γ < , “good news” 

generate less volatility than “bad news”, where γ  reflects the leverage effect. When 

1tε −  is positive, i.e. there is a “good news”, the total contribution to the volatility of 

innovation is 1(1 ) tα γ ε −+ . In opposite case, when 1tε −  is negative, i.e. there is a “bad 

news”, the total contribution to the volatility of innovation is 1(1 ) tα γ ε −− . The 

EGARCH model specifies conditional variance in logarithmic form, which means that 

there is no need to impose estimation constraints in order to avoid negative variance. 

The EGARCH model is asymmetric as long as 0γ ≠ . Though Nelson (1991) 
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originally assumed that the tε  follows a Generalized Error Distribution (GED), we 

have estimated this model using three different distributions: normal, Student  and 

GED.  

t−

3.2.2 GJR model 
This model is also known as GJR model proposed by Glosten, Jagannathan & 

Runkle (1993). Variance equation in a GJR(1,1) model is given by  

2 2 2
1 1 1t t t tI 2

1tσ ω αε βσ γ ε− − −= + + + −      (4) 

where α , β  and γ  are constant parameters and tI  is an indicator dummy variable 

that takes the value 1 if 1 0tε − <  and zero otherwise. The impact of 2
tε  on the 

conditional variance 2
tσ  in this model is different when tε  is positive or negative. The 

negative innovations (“bad news”) have a higher impact than positive ones. When 

1tε −  is positive, the total contribution to the volatility of innovation is 2
1tαε − ; when 1tε −  

is negative, the total contribution to the volatility of innovation is 2
1( ) tα γ ε −+ . We 

would expect γ  to be positive, so that the “bad news” has larger impacts. In that case 

we say there is a leverage effect. The GJR(1,1) model is asymmetric as long as 0γ ≠ . 

Ling & McAleer (2002b) established the regularity condition for the existence of the 

second moment of GJR(1,1) model, which is / 2 1α β γ+ + < .  

3.2.3 Threshold GARCH model 
Another asymmetric variant of GARCH model is the threshold GARCH 

(TGARCH) model proposed by Zakoïan (1994). It is similar to the GJR, but models 

the conditional standard deviation instead of the conditional variance:  

1 1 1t t t tI 1tσ ω αε βσ γ ε− − −= + + + −      (5) 

where α , β  and γ  are constant parameters and tI  is an indicator dummy variable 

that takes the value 1 if  and zero otherwise. Similarly to GJR model when 1 0te − < 1tε −  

is positive, the total contribution to the volatility of innovation is 1tαε − ; when 1tε −  is 

negative, the total contribution to the volatility of innovation is 1( ) tα γ ε −+ . We would 
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expect γ  to be positive, so that the “bad news” has larger impacts. In that case we say 

there is a leverage effect. The TGARCH model is asymmetric as long as 0γ ≠ .  

3.2.4 Power GARCH model 
Ding, Granger & Engle (1993) proposed a class of models which encompasses a 

few other GARCH models. This class of models is called Power GARCH (PGARCH) 

models. Variance equation in PGARCH(1,1) is given by  

1 1( )t t t 1t
δ δ δσ ω α ε γε βσ− −= + + + −      (6) 

where α , β  and γ  are constant parameters and 0δ > , and 1γ < . Parameter δ  

could be fixed in the PGARCH models before estimation. Usually choices for this 

parameter are 1δ =  (then the PGARCH model is robust to outliers) and 2δ = . 

Coefficient δ   plays the role of a Box-Cox power transformation of the conditional 

standard deviation process. The PGARCH model embeds GARCH, GJR and a few 

other ARCH-type models. For example, when 2δ = , and 0γ = , PGARCH reduces to 

a GARCH model. When 2δ =  PGARCH reduces to a GJR model. When 1δ =  

PGARCH reduces to a TGARCH model. 

3.3 Alternative conditional distributions and estimation 
To completely specify a GARCH-type model an assumption about the error 

distribution tε  should be made. As it was mentioned before, it is more appropriate to 

assume that the errors have a heavy tailed distribution rather than Gaussian 

distribution. Beside the Gaussian conditional distribution of the error term tε  two 

alternative non-Gaussian distributions are considered: Student t−  distribution and 

generalised error distribution (GED).  

Standardized Student  distribution for t− /t tz tε σ= , standardized errors can be 

expressed as  

1
2 2

1
12( | )

( 2
12

2

t

t

f z
z

ν

ν

ν
νπ ν

ν

+

+⎛ ⎞Γ⎜ ⎟
⎝ ⎠=

⎛ ⎞− )Γ ⎛ ⎞⎜ ⎟ +⎝ ⎠ ⎜ ⎟−⎝ ⎠

     (7) 

where )Γ(⋅  is the gamma function, and 2ν >  is the shape parameter.  
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Generalized error distribution was suggested to be used in GARCH models by 

Nelson (1991). It can be expressed as 

( 1) /

1( | ) exp
2 (1/ ) 2

t
t

zf z
ν

ν ν
ν ν

νν
λ ν λ+

⎛ ⎞
⎜ ⎟= −
⎜ ⎟⋅ Γ ⎝ ⎠

( )
( )

, 
1/ 2( 2/ )2 1/

3 /

ν

ν

ν
λ

ν

−⎡ ⎤Γ
=   (8) ⎢ ⎥

Γ⎢ ⎥⎣ ⎦

where ν  is a positive shape parameter governing the thickness of the tail behaviour of 

the distribution. For 1ν =  GED reduces to the double exponential distribution 

(Laplace distribution). For 2ν =  GED reduces to the standard normal distribution and 

for ν → ∞  to the uniform distribution.  

Now that the specification of a GARCH-type model is complete we can estimate 

the model. Quasi maximum likelihood estimation, method proposed by Bollerslev & 

Wooldridge (1992) and Berndt-Hall-Hall-Hausman (BHHH) iterative algorithm that 

is recommended by Bollerslev (1986) provide consistent estimation of the GARCH 

parameters even when the true density function of the errors is non-Gaussian. This 

estimation method is built-in EViews 5.1, the package which was used for calculation.  

4. Data 
The data used in the paper are the daily closing market index MBI-10 from MSE. 

The Macedonian stock exchange index (MBI-10) - Makedonski Berzanski Indeks (in 

Macedonian) started on 4 January 2005. This index is capitalization-weighted index 

consisting of up to 10 shares listed on the official market of the MSE at least 20 days 

before the revision of the index. Shares of individual companies to be included in the 

MBI-10 index, must satisfy several standard requirements set by the MSE authority. 

These standard requirements are related to the following: (i) market capitalization 

(contributing 30% to the MBI-10 index); (ii) daily average turnover of a particular 

share (20%); (iii) average number of transactions with a particular share (10%); (iv) 

relative liquidity of the share (20%) and (v) relation between the number of days a 

particular share was traded and the total number of trading days on the official market 

(20%).  

Before introducing MBI-10 index, another index (MBI) was in use, started on 31 

October 2001. However, MBI index was a non-weighted price index, based on five 

most liquid shares only. Due to the methodological differences between these two 
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indices we decided not to use MBI index. Therefore we based our analysis on the 

MBI-10 index only.  

The data are obtained from the MSE website. The period is from 4/1/2005 to 

21/9/2007, with 632 observations. However, 605 observations (4/1/2005 to 

14/8/2007) were effectively used to calculate returns summary statistics and for 

estimation of GARCH models. The last 27 observations were left for examination of 

the out-of-sample forecasting accuracy.  

Throughout this paper, stock market returns are defined as continuously 

compounded or log returns (hereafter returns) at time t , , calculated as follows: tr

1log( / ) ln lnt t t tr P P P 1tP− −= = − ,    (9) 

where  and  are the closing market index of MBI-10 at days t  and , 

respectively.  

tP 1tP− 1−t

5. Results 

5.1 Stylized facts of the MBI-10 returns 
The plots of the daily MBI-10 index and returns are given in Figure 1. Visual 

inspection of MBI-10 returns shows that the mean returns are constant but the 

variances change over time around some ‘normal’ level, with large (small) changes 

tending to be followed by large (small) changes of either sign, i.e. volatility tends to 

cluster. Periods of high volatility can be distinguished from low volatility periods. It 

seems that the MBI-10 returns comply with the first and second stylized facts listed in 

Section 2. Formal tests of GARCH effects for MBI-10 returns are given in the next 

section, where it is shown that such time-varying effects are indeed evident in the 

returns series. Therefore it seems appropriate to model MBI-10 returns by using 

Bollerslev’s (1986) GARCH models.  

Figure 2 (left) plots a histogram of returns and a Gaussian density whose mean and 

variance match sample estimates. It shows that numerous returns are above four 

standard deviations, which is highly unlikely in the Gaussian distribution. The 

financial time series with such histogram are said to be with heavy tails. The 
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distribution of the MBI-10 returns is characterized not only by heavy tails, but also by 

a high peakedness at the center, which is the third stylized fact from Section 2.  

  

Figure 1: Daily MBI-10 index and daily returns 

A quantile-quantile (QQ) plot is a graphical tool for checking whether two 

distributions are of the same type. Since the QQ plot plots quantiles of two 

distributions, if they are of the same type, the plot should be linear. In this case we are 

checking whether the empirical distribution of MBI-10 standardized returns and the 

hypothesized Gaussian distribution are of the same type. The QQ plot in Figure 2 

(right) shows clearly that the distribution tails of the MBI-10 are heavier than the tails 

of the Gaussian distribution. Looking at the tails of this Q-Q plot we can see 

substantial deviation from the 45 degree line indicating deviation from a Gaussian 

distribution (the third stylized fact). A detailed description of how to interpret QQ 

plots in financial applications can be found in Kuczmarski & Rosenbaum (1999). 

Figure 2: Normalized return distribution and the Gaussian QQ plot 
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Since the conditional volatility is not directly observable the absolute or squared 

returns are used instead. In Figure 3 both absolute and squared MBI-10 returns are 

shown with their autocorrelation functions. First, both time series plots have “spiky” 

look demonstrating variation in conditional volatility. When using squared returns, 

extreme returns contribute more to the conditional volatility, dominating the time 

series plot. Second, slow decay of autocorrelation in absolute and squared returns is 

evident from the autocorrelation plots. This is sometimes interpreted as a sign of long-

range dependence.  

 

 

Figure 3: Absolute and squared returns and their autocorrelation functions 

5.2 Descriptive statistics and preliminary findings 
The main summary statistics and a few tests for the MBI-10 returns are presented 

in Table 2. The mean daily return of the MBI-10 series is 0.356%. The standard 

deviation of the daily returns is 1.556% which is equivalent to an annualized volatility 

of 29.73%. The series also exhibits a positive skewness of 0.47 and an excess kurtosis 
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of 4.75, indicating that the returns are not normally distributed. The Jarque-Bera 

statistic of 597, much greater than any critical value at conventional confidence levels, 

thus rejecting the null hypothesis of normally distributed returns. These findings are 

consistent with previous discussion related to the histogram of returns and QQ plot. 

The summary statistics and the Jarque-Bera test confirm that the MBI-10 daily returns 

have thick tails and the non-Gaussian distribution.  

Table 2: Summary statistics and diagnostic checks on MBI-10 returns 

Mean (in percent) 0.356 
Standard deviation (in percent) 1.556 
Minimum value (in percent) -7.130 
Maximum value (in percent) 8.090 
Skewness 0.470 
Excess kurtosis 4.750 
Jarque-Bera test statistic 597.0a

Number of observations 605 
(10)LB  301.6a

2 (10)LB  216.0a

Asymmetric GARCH autocorrelation 0.342 
Asymmetric GARCH  (1)LB 71.110a

ADF − test (constant, no trend) -5.520a

ADF − test (constant, trend) -5.510a

ERS  test (constant, no trend) TP 0.075a

ERS  test (constant, trend) TP 0.259a

 
Note: a Denotes significance at the 1% level. Jarque-Bera test statistic tests hypotheses 0 :H  

returns normally distributed, 1 :H  returns not normally distributed.  and 

 are Ljung-Box statistics for 10 lags, calculated for returns and squared returns 

respectively.  statistic tests hypotheses 

(10)LB
2 (10)LB

2 (10)LB 0 :H  volatility clustering, 1 :H  no 
volatility clustering. Ljung-Box statistic for the asymmetric GARCH autocorrelation 
tests hypotheses 0 :H  no leverage effect, 1 :H  leverage effect. Augmented Dickey-
Fuller (ADF) t test where the lag lengths in the ADF equations were set to 10. Elliot, 
Rothenberg and Stock (ERS) point optimal unit root test 

−

TP . Both unit root tests test 

hypotheses 0 :H  unit root, 1 :H  no unit root (stationary).  

The Ljung-Box statistics  and  for the returns and squared returns 

series respectively, are highly significant. Therefore, we reject the hypothesis that 

there is no autocorrelation in the level of returns and squared returns. The  test 

result could be interpreted as an indicator of the Macedonian stock market 

information inefficiency since there is a strong chance that investors could use 

(10)LB 2 (10)LB

(10)LB
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historical data to earn above average gains by purchasing and selling stocks. The 

 test result suggests significant autocorrelation in the squared returns series. 

In other words, the GARCH effect, i.e. time-varying second moment has been 

detected in the MBI-10 returns series. Thus the use of GARCH-type models for the 

conditional variance is justified.  

2 (10)LB

As a very simple test of the leverage effect in the MBI-10 returns series the 

asymmetric GARCH test was used. This test is a Ljung-Box-type test based on the 

asymmetric GARCH autocorrelation, which is the first-order autocorrelation 

coefficient between lagged returns and current squared returns. Since the asymmetric 

GARCH autocorrelation is equal to 0.342 and highly significant, the hypothesis of no 

leverage effect has been rejected. This situation is typical for all emerging markets. 

As the Macedonian stock market is still developing, significant autocorrelation could 

be caused by nonsynchrounous trading. This is one of the possible explanations, yet 

another one could be the asymmetric price adjustment. In the next section the 

existence of the leverage effect is further tested.  

The last four statistics in Table 2 are used to test stationarity of the MBI-10 returns 

series. Stationarity is an important characteristic for time series data. If returns series 

are found to be nonstationary, it will be necessary to use first differences before we 

proceed further estimating the GARCH models.  

This paper uses the two unit root tests to test the stationary of the MBI-10 return 

series: ADF test proposed by Said & Dickey (1984) and point optimal unit root test 

proposed by Elliot, Rothenberg & Stock (1996). Two versions of these tests we 

applied: with constant and with constant and trend. The test results for the MBI-10 

returns series are given in Table 2. The both tests strongly reject the hypothesis of 

nonstationarity. However, despite the unit root test results that the MBI-10 returns 

series should be considered stationary, returns display a degree of time dependence, 

the Ljung-Box statistic for the returns series is highly significant. (10)LB

5.3 Test of asymmetry 
To investigate further the existence of leverage effect, the symmetrical GARCH 

model will be estimated. The joint test for asymmetry as proposed in Engle & Ng 

(1993) will be conducted on the residuals from a symmetric GARCH(1,1) model. If 
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the symmetric GARCH(1,1) model is a sufficient model for the returns then the 

residuals from such model will not display any sign bias, negative size bias or positive 

size bias. Then it would not be justifiable to use an asymmetric conditional volatility 

model. Otherwise the asymmetric GARCH models described above would be 

estimated. The specification of the test for asymmetry is as follow:  

Sign bias:   2
0 1 1t te b b S tν−

−= + +                (10) 

Negative sign bias:  2
0 1 1 1t t te b b S e tν−

− −= + +                (11) 

Positive sign bias:  2
0 1 1 1t t te b b S e tν+

− −= + +                (12) 

Joint test:   2
0 1 1 2 1 1 3 1 1t t t t t t te b b S b S e b S e ν− − +

− − − − −= + + + +             (13) 

where  is an indicator dummy variable that takes the value 1 if  and zero 

otherwise and .  

1tS −
− 1 0te − <

1 11t tS S+ −
− −= −

All  statistics in t Table 3 refer to the coefficient  in the first three regressions, 

while the joint test refers to the coefficients ( ) in the last regression.  

1b

1 2 3,  ,  b b b

Table 3: Test of asymmetry 

Model Sign bias 
test t −

Negative size 
bias t − test 

Positive size 
bias t − test 

Joint test 
test F −

GARCH Normal -1.8571 
(0.064) 

1.8677 
(0.062) 

0.6005 
(0.548) 

1.3101 
(0.2701) 

GARCH-M Normal -1.6415 
(0.101) 

0.5851 
(0.559) 

0.7257 
(0.468) 

1.0952 
(0.351) 

GARCH Student  t− -1.7191 
(0.086) 

2.1038 
(0.036) 

0.5702 
(0.569) 

1.1641 
(0.323) 

GARCH-M Student  t− -1.6175 
(0.106) 

1.1424 
(0.254) 

0.6271 
(0.531) 

0.9143 
(0.434) 

GARCH GED -1.7535 
(0.080) 

2.0135 
(0.045) 

0.5465 
(0.585) 

1.2020 
(0.308) 

GARCH-M GED -1.6882 
(0.092) 

0.7979 
(0.425) 

0.6215 
(0.535) 

1.1056 
(0.346) 

 
Note: Numbers in parentheses are the p − values, i.e. marginal significance levels.  

Results for the joint test for asymmetry provided in Table 3 show a weak evidence 

for existence of asymmetry in the MBI-10 returns that remained after estimating the 

symmetric GARCH(1,1) models. Based on residuals from the GARCH(1,1) models 
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the joint test for asymmetry detected the sign bias and negative size bias effects. 

However, when the GARCH(1,1)-M models were estimated only the weak evidence 

for the sign bias effects was found in residuals. These results are robust when the 

same model was estimated using one of the three error distributions: Gaussian, 

Student  and GED distribution. Overall, the joint test provides a weak support for 

using asymmetric models in the specification of the variance equation for modelling 

of the MBI-10 returns.  

t−

5.4 Estimated GARCH models 
Before starting the analysis of volatility forecasting models performance, estimated 

GARCH-type models are discussed. Preliminary investigation identified AR(2)-

GARCH(1,1)-M model as an appropriate model to start with. This investigation and 

lag length selection was based on the Akaike and Schwarz information criteria (AIC 

and SIC respectively), significance of the model parameters and the post estimation 

tests such as Ljung-Box test for model residuals and squared residuals. Table 4 to 

Table 6 present the estimation results for the mean and variance equations. As it was 

shown before in Table 2), according to the Ljung-Box test the MBI-10 returns are 

autocorrelated. The pattern of autocorrelation coefficients of the MBI-10 returns and 

their significance suggests that they follow an autoregressive process of order 2, i.e. 

AR(2) process. Therefore the mean equation includes two past return values. These 

two terms should capture the linear process in the return series. The two AR(2) 

coefficients are significant at the conventional significance level in all estimated 

models. Additional term with coefficient λ  in the mean equation (1) describes 

relationship between returns and their volatility. The coefficient λ  (risk premium) is 

significant at the 5% or 10% level in all estimated models, though with the opposite 

sign than expected. The only exceptions are GARCH(1,1)-M, GJR(1,1)-M and 

PGARCH(1,1)-M models with assumed Student t−  distribution. However, this result 

is not quite unusual as shown by Glosten, Jagannathan & Runkle (1993). They 

provided a brief overview of the conflicting results in the literature and then explained 

why both positive and negative relationship between returns and volatility would be 

consistent with theory. One of the reasons why the risk premium coefficient is 

negative could lay in a different reaction of returns on arrival of “bad” and “good 

news”. That was partially confirmed with our results. All asymmetric models in Table 
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4 to Table 6 have larger and more significant coefficient λ  than the same coefficient 

in the symmetric GARCH(1,1)-M model.  

In the variance equation the first three coefficients: ω  (constant), α  (ARCH 

effect) and β  (GARCH effect) are highly significant at the conventional significance 

level and with expected sign. The sizes of the estimated parameters α  and β  in the 

GARCH-type models determine the short-run dynamics of the volatility. The sum of 

estimated α  and β  is generally less than 1. The only exception are the 

EGARCH(1,1)-M models where both α  and β  parameters are overestimated. For 

other models estimated parameter α  belongs to (0.2, 0.3) interval and β  to (0.72, 

0.75) interval. These values for parameters α  and β  are consistent with the results 

obtained for other financial markets (Alexander, 2001). In case of GJR(1,1)-M model 

with non-Gaussian distributions sum of estimated parameters α β+  is slightly over 1. 

However, the regularity condition for the existence of the second moment of GJR(1,1) 

model is not the same as for GARCH(1,1) model. According to Ling & McAleer 

(2002b) the regularity condition is / 2 1α β γ+ + < , and it is satisfied for all three 

estimated GJR(1,1)-M models. Namely, for the GJR(1,1)-M model with Gaussian 

distribution we have / 2 0.9318α β γ+ + = , for Student  distribution t−

/ 2 0.9646α β γ+ + =  and for GED: / 2 0.9457α β γ+ + = .  

Typically for GARCH models for returns data, α β+  is close to 1, which implies 

that innovation to the conditional variance will be highly persistent indicating that 

large changes in returns tend to be followed by large changes and small changes tend 

to be followed by small changes. This confirms that volatility clustering is observed in 

the Macedonian MBI-10 index. 

The coefficient γ  (leverage effect) is significant at the 5% or 10% level in most 

asymmetric models with assumed non-Gaussian distribution. However, in contrast to 

the results found for most other markets, the leverage effect term has unexpected 

negative sign in case of the GJR, TGARCH and PGARCH models and positive in the 

EGARCH model. The positive innovations would imply a higher next period 

conditional variance than negative innovations of the same sign, indicating that the 
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existence of leverage effect is not observed in returns of the Macedonian stock market 

index.  

The shape parameters in both non-Gaussian distributions, i.e. degree of freedom in 

case of Student  distribution is about 5.5 and GED parameter in case of Generalized 

Error Distribution is about 1.35 and are highly significant. This justify using non-

Gaussian distribution when modeling volatility of the Macedonian returns.  

t−

Ljung-Box test was used to check for any remaining autocorrelations in 

standardized and squared standardized residuals from the estimated variance equation. 

If the variance equation is specified correctly, two statistics  and  

should not be significant. Indeed, they are not significant at the conventional 

significance level. Remaining ARCH effects were not been detected in the 

standardized residuals.  

(10)LB 2 (10)LB

Table 4 to Table 6 clearly show that standardized residuals from all estimated 

models are not normally distributed. These results are consistent with the findings of 

other authors (e.g. Poon & Granger, 2003, 2005) that GARCH-type models are not 

quite successful in capturing the heavy tails in the stock market returns. Models that 

take into account higher moments and extreme events models would be probably 

more successful.  

Generally, model selection criteria such as AIC and SIC and log likelihood identify 

GARCH-type models with non-Gaussian distribution as more appropriate for 

modeling the Macedonian stock market index volatility in comparison to the same 

class of models, but with Gaussian distribution. Among these models one model 

clearly stands out, GJR(1,1)-M with Student t−  distribution.  

To check the robustness of the results obtained, different initial values for the 

BHHH iterative algorithm were used. The results of these exercises are not presented 

here, but the BHHH iterative algorithm converged after slightly different number of 

iteration to the same estimated GARCH models.  

 

22 



 

Table 4: Estimated GARCH models with Gaussian distribution 

Parameter GARCH EGARCH GJR TGARCH PGARCH 

Mean equation      

0φ  (constant) 0.4273a

(3.670) 
0.4815a

(4.587) 
0.4924a

(4.187) 
0.5290a

(4.842) 
0.4930a

(4.236) 
1φ  (AR(1)) 0.5795a

(13.737) 
0.5959a

(13.193) 
0.5941a

(13.234) 
0.6249a

(12.902) 
0.5995a

(13.090) 
2φ  (AR(2)) -0.0805c

(-1.678) 
-0.0817 
(-1.599) 

-0.0807c

(-1.673) 
-0.0830c

(-1.641) 
-0.0791c

(-1.617) 
λ  (risk premium) -0.2946c

(-1.873) 
-0.3519b

(-2.359) 
-0.3346b

(-2.021) 
-0.4176a

(-2.747) 
-0.3522b

(-2.155) 

Variance equation      

ω  (constant) 0.0905b

(2.522) 
-0.2878a

(-4.780) 
0.0939b

(2.492) 
0.1122a

(3.363) 
0.1022a

(2.756) 
α  (ARCH effect) 0.2077a

(3.851) 
0.3917a

(4.877) 
0.2434a

(3.090) 
0.1975a

(4.239) 
0.1986a

(3.540) 
β  (GARCH effect) 0.7363a

(12.000) 
0.9032a

(26.365) 
0.7444a

(11.540) 
0.7457a

(13.724) 
0.7413a

(11.760) 
γ  (leverage effect)  0.0680 

(1.018) 
-0.1121 
(-0.970) 

-0.2672 
(-1.167) 

-0.1826 
(-0.933) 

δ  (power 
parameter) 

  1.6131b

(2.221) 

AIC  2.9475 2.9450 2.9435 2.9446 2.9464 
SIC  2.9986 3.0034 3.0019 3.0030 3.0121 

log L−  881.685 879.914 879.463 879.806 879.343 
Skewness 0.1882 0.0034 0.1234 -0.0158 0.0707 
Excess kurtosis 5.1182 5.1762 5.2195 5.2814 5.1992 

(10)LB   9.9445 
(0.269) 

9.0786 
(0.336) 

8.6460
(0.373)

7.7846 
(0.455) 

8.3798 
(0.397) 

2 (10)LB   4.9406 
(0.764) 

3.8397 
(0.871) 

5.9165
(0.657)

6.4424 
(0.598) 

5.9029 
(0.658) 

 
Note: a Denotes significance at the 1% level, b at 5% level, and c at 10% level. Numbers in 

parentheses below coefficient estimates are the Bollerslev-Wooldridge (1992) robust 
statistics. AR(1) and AR(2) denote the own one- and two-period lagged returns, 

respectively. AIC, SIC and –logL are Akaike information criteria, Schwarz information 
criteria and negative log likelihood respectively.  and  are the Ljung-
Box statistics for the model standardized and squared standardized residuals using 10 
lags, respectively. Numbers in parentheses below the Ljung-Box statistics are the 

values, i.e. marginal significance levels. 

t −

(10)LB 2 (10)LB

p −
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Table 5: Estimated GARCH models with Student t−  distribution  

Parameter GARCH EGARCH GJR TGARCH PGARCH 

Mean equation      

0φ  (constant) 0.3478a

(3.584) 
0.3760a

(4.319) 
0.3809a

(4.011)
0.3879a

(4.123) 
0.3790a

(4.002) 
1φ  (AR(1)) 0.5782a

(13.158) 
0.5912a

(13.564) 
0.5868a

(13.523)
0.5990a

(14.078) 
0.5835a

(13.462) 
2φ  (AR(2)) -0.0894b

(-2.099) 
-0.0821c

(-1.903) 
-0.0895b

(-2.068)
-0.0810c

(-1.887) 
-0.0903b

(-2.104) 
λ  (risk premium) -0.2090 

(-1.495) 
-0.2402c

(-1.861) 
-0.2186
(-1.543)

-0.2640c

(-1.829) 
-0.2109 
(-1.494) 

Variance equation     

ω  (constant) 0.0705a

(2.726) 
-0.3059a

(-5.878) 
0.0732a

(2.884)
0.1044a

(3.333) 
0.0652a

(2.714) 
α  (ARCH effect) 0.2377a

(4.003) 
0.4143a

(5.679) 
0.2946a

(3.759)
0.2344a

(4.887) 
0.2041a

(3.252) 
β  (GARCH effect) 0.7372a

(15.031) 
0.9204a

(37.430) 
0.7391a

(15.609)
0.7279a

(14.488) 
0.7391a

(14.216) 
γ  (leverage effect)  0.0756c

(1.799) 
-0.1383c

(-1.710)
-0.2657b

(-2.303) 
-0.1327 
(-1.495) 

δ  (power parameter)    2.3585a

(2.928) 
t  degree of freedom 5.5202a

(4.456) 
5.5617a

(4.269) 
5.5577a

(4.423)
5.5515a

(4.242) 
5.5739a

(2.928) 

AIC  2.8823 2.8852 2.8801 2.8854 2.8830 
SIC  2.9407 2.9509 2.9458 2.9511 2.9560 

log L−  861.004 860.877 859.353 860.958 859.231 
Skewness 0.2071 0.0223 0.1115 -0.0425 0.1602 
Excess kurtosis 5.3346 5.3337 5.4725 5.3559 5.5147 

(10)LB   10.4250 
(0.236) 

8.2186 
(0.412) 

9.1289
(0.332)

8.0817 
(0.426) 

9.6196 
(0.293) 

2 (10)LB   4.8844 
(0.770) 

4.1718 
(0.841) 

5.4341
(0.710)

5.4912 
(0.704) 

5.3821 
(0.716) 

 
Note: a Denotes significance at the 1% level, b at 5% level, and c at 10% level. Numbers in 

parentheses below coefficient estimates are the Bollerslev-Wooldridge (1992) robust 
statistics. AR(1) and AR(2) denote the own one- and two-period lagged returns, 

respectively. AIC, SIC and –logL are Akaike information criteria, Schwarz information 
criteria and negative log likelihood respectively.  and  are the Ljung-
Box statistics for the model standardized and squared standardized residuals using 10 
lags, respectively. Numbers in parentheses below the Ljung-Box statistics are the 

values, i.e. marginal significance levels. 

t −

(10)LB 2 (10)LB

p −
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Table 6: Estimated GARCH models with GED distribution  

Parameter GARCH EGARCH GJR TGARCH PGARCH 

Mean equation      

0φ  (constant) 0.3748a

(3.705) 
0.4268a

(4.567) 
0.4143a

(4.148)
0.4497a

(4.500) 
0.4149a

(4.148) 
1φ  (AR(1)) 0.5885a

(13.510) 
0.6085a

(14.203) 
0.6009a

(14.056)
0.6200a

(15.022) 
0.6016a

(14.057) 
2φ  (AR(2)) -0.0939b

(-2.230) 
-0.0925b

(-2.208) 
-0.0927b

(-2.186)
-0.0953b

(-2.305) 
-0.0927b

(-2.178) 
λ  (risk premium) -0.2542c

(-1.702) 
-0.3293b

(-2.352) 
-0.2829c

(-1.848)
-0.3686b

(-2.371) 
-0.2847c

(-1.852) 

Variance equation     

ω  (constant) 0.0779a

(2.841) 
-0.2999a

(-5.795) 
0.0794a

(3.065)
0.1060a

(3.391) 
0.0806a

(3.054) 
α  (ARCH effect) 0.2203a

(4.086) 
0.4009a

(5.611) 
0.2598a

(3.945)
0.2059a

(4.984) 
0.1967a

(3.851) 
β  (GARCH effect) 0.7371a

(14.855) 
0.9079a

(34.270) 
0.7462a

(16.316)
0.7429a

(15.380) 
0.7457a

(15.199) 
γ  (leverage effect)  0.0728c

(1.853) 
-0.1206c

(-1.774)
-0.2699b

(-2.400) 
-0.1589c

(-1.749) 
δ  (power parameter)    1.9568a

(3.092) 
GED parameter 1.3481a

(13.929) 
1.3548a

(13.684) 
1.3550a

(13.803)
1.3553a

(13.559) 
1.3553a

(13.672) 

AIC  2.8983 2.8985 2.8962 2.8983 2.8994 
SIC  2.9567 2.9642 2.9619 2.9640 2.9724 

log L−  865.822 864.894 864.190 864.848 864.166 
Skewness 0.1922 -0.0072 0.1129 -0.0354 0.1066 
Excess kurtosis 5.2405 5.2721 5.3668 5.3646 5.3625 

(10)LB   9.6914 
(0.287) 

7.9660 
(0.437) 

8.1703
(0.417)

7.8623 
(0.447) 

8.1175 
(0.422) 

2 (10)LB   4.8643 
(0.772) 

3.8380 
(0.871) 

5.7217
(0.678)

6.3101 
(0.613) 

5.7259 
(0.678) 

 
Note: a Denotes significance at the 1% level, b at 5% level, and c at 10% level. Numbers in 

parentheses below coefficient estimates are the Bollerslev-Wooldridge (1992) robust 
statistics. AR(1) and AR(2) denote the own one- and two-period lagged returns, 

respectively. AIC, SIC and –logL are Akaike information criteria, Schwarz information 
criteria and negative log likelihood respectively.  and  are the Ljung-
Box statistics for the model standardized and squared standardized residuals using 10 
lags, respectively. Numbers in parentheses below the Ljung-Box statistics are the 

values, i.e. marginal significance levels. 

t −

(10)LB 2 (10)LB

p −
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Figure 4: News impact curves for GARCH-M and GJR-M models 

News impact curve introduced by Pagan & Schwert (1990) provides graphical 

representation of the degree of asymmetry of volatility. The news impact curve is 

drawn by using estimated variance equation and successive values of innovations to 

find out what the corresponding values of conditional variance derived from the 

model would be. The two curves on Figure 4 are drawn by using the estimated 

variance equation for GARCH(1,1)-M and GJR(1,1)-M models assuming Student t−  

distribution. As can be seen from Figure 4 the GARCH(1,1)-M news impact curve is 

symmetric about zero. The other news impact curve is asymmetric with positive 

innovations having more impact on future volatility than negative of the same 

magnitude. As discussed before, this is a bit unusual result, since a positive sign of the 

γ  coefficient (leverage effect) was expected. However, the level of asymmetry is not 

high, i.e. these two curves are moving close to each other.  

5.5 Forecasting accuracy  
To see how the models fit past data in-sample forecasts have been generated. 

Although the paper focuses on the conditional variance and not on the returns 

themselves, for illustrative purposes, Figure 5 shows MBI-10 returns and in-sample 

forecasts based on the GJR(1,1)-M model with assumed Student t−  distribution, i. e. 
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the mean equation of the GJR(1,1)-M model. Variation in the daily MBI-10 return 

series are captured well. However, the extreme values in MBI-10 returns are not 

reproduced quite accurately.  

 

Figure 5: In-sample returns forecasts with GJR-M Student  model t−

Figure 6 shows the behavior of the realized volatility and in-sample static forecast 

based on the GJR(1,1)-M model with assumed Student t−  distribution. Since the 

actual volatility is unobserved the different estimators were used in empirical studies, 

usually based on the higher frequency data with intra-day intervals or daily high/low 

returns. However, for MBI-10 index only the closing values were available and 

therefore the squared return series was used as a proxy for the realized volatility. The 

graph provides an indication on the GJR(1,1)-M model ability to track variation in 

realized volatility. Obviously the largest spikes in the realized volatility are not 

captured well. To model these peaks in the realized volatility above some high 

threshold the extreme values modeling approach would be probably more appropriate.  
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Figure 6: In-sample volatility forecasts with GJR-M Student  model t−

The forecasting performance of each model is evaluated both in-sample and out-of-

sample by using three symmetric and two asymmetric measures. Three standard 

symmetric measures, i.e. loss functions used to evaluate in-sample and out-of-sample 

forecasting accuracy are: the root mean square error ( ), the mean absolute error 

(

RMSE

MAE ) and the Theil inequality coefficient (TIC ). The  is defined by  RMSE

2 2

1

1 ˆ(
T

t t
t

RMSE
T

σ σ
=

= −∑ 2) ,              (14) 

where 2ˆ tσ  is the one-step-ahead volatility forecast, 2
tσ  is the actual volatility and T  is 

a number of forecasts. The MAE  is defined by:  

2 2

1

1 ˆ
T

t t
t

MAE
T

σ σ
=

= −∑                (15) 

The TIC  is defined by:  

2 2 2

1

2 2 2 2

1 1

1 ˆ( )

1 1ˆ( ) ( )

T

t t
t

T T

t t
t t

TTIC

T T

σ σ

σ σ

=

= =

−
=

∑

∑ ∑
             (16) 
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The Theil inequality coefficient is the scaled measure that always lies between zero 

and one, where zero indicates a perfect fit.  

Two asymmetric measures proposed by Brailsford & Faff (1996) are based on the 

mean mixed error ( MME ) statistics and are defined as:  

2 2 2 2

1 1

1 ˆ ˆ( )
O U

t t t t
t t

MME U
T

σ σ σ σ
= =

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦
∑ ∑              (17) 

2 2 2 2

1 1

1 ˆ ˆ( )
O U

t t t t
t t

MME O
T

σ σ σ σ
= =

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦
∑ ∑

O 2 2ˆ t t

             (18) 

where  and U  is the number of over (σ σ> 2 2ˆ t t) and under prediction (σ σ<

( )

) 

respectively. MME O ( ) penalizes more heavily the over predictions and MME U

t

 

penalizes more heavily the under predictions. The main reason for introducing 

asymmetric measures is that investors do not give equal importance to over- and 

under-prediction of volatility. For example, in the pricing of options, while over-

prediction is undesirable for buyers, under-prediction is undesirable for sellers.  

Table 7 reports the value and ranking of all fifteen competing models under RMSE, 

MAE, TIC, MME(U) and MME(O) for in-sample of the MBI-10 volatility forecasts. 

Similarly Table 8 reports value of the five forecasting accuracy criteria and ranking of 

all fifteen competing models for out-of-sample of the MBI-10 volatility forecasts. 

According to the forecasting accuracy criteria used, there is consistency to choose 

among the models in case of in-sample forecasting. Within the GARCH-type models, 

the ranking of any forecasting model varies depending upon the choice of error 

distribution. Under the three distributions, the performance of GARCH and EGARCH 

models is not as good as that of GJR and PGARCH models. The Student −  

distribution seems a little more accurate than the other two distributions. In Table 7 

for in-sample forecasts, asymmetric models with non-Gaussian distributions, the 

Student  distribution in particular, are ranked higher than the other estimated 

models. The GJR(1,1)-M model with the Student

t−

t−  distribution is the highest ranked 

model according to RMSE, TIC and MME(U) criteria. However, it is difficult to 

choose between this and other models considered. Note that the maximum superior 

performance of GJR(1,1)-M model compared to other models according to the three 

symmetric criteria is between 1.8% (MAE) and 8.9% (TIC) only. 



Table 7: Evaluation of the in-sample volatility forecasts 

RMSE MAE TIC MME(O) MME(U) 
Model 

Actual Relative Rank Actual Relative Rank Actual Relative Rank Actual Relative Rank Actual Relative Rank 

GARCH Normal 5.814 0.998 14 2.311 0.982 3 0.607 0.985 13 1.267 0.930 1 2.225 0.995 13 
EGARCH Normal 5.826 1.000 15 2.325 0.988 13 0.617 1.000 15 1.278 0.938 3 2.236 1.000 15 
GJR Normal 5.702 0.979 7 2.321 0.986 9 0.582 0.944 9 1.316 0.966 7 2.201 0.984 9 
TGARCH Normal 5.740 0.985 9 2.353 1.000 15 0.581 0.942 8 1.362 1.000 15 2.201 0.985 10 
PGARCH Normal 5.702 0.979 6 2.321 0.986 11 0.580 0.941 7 1.322 0.970 10 2.195 0.982 7 
GARCH Student 5.749 0.987 10 2.315 0.984 7 0.588 0.953 10 1.300 0.954 6 2.199 0.983 8 
EGARCH Student 5.769 0.990 11 2.322 0.987 12 0.603 0.977 12 1.296 0.951 5 2.216 0.991 12 
GJR Student 5.617 0.964 1 2.311 0.982 2 0.562 0.911 1 1.337 0.981 12 2.164 0.968 1 
TGARCH Student 5.664 0.972 3 2.317 0.985 8 0.568 0.922 3 1.340 0.984 13 2.169 0.970 3 
PGARCH Student 5.623 0.965 2 2.314 0.983 5 0.564 0.914 2 1.336 0.980 11 2.168 0.970 2 
GARCH GED 5.791 0.994 12 2.308 0.981 1 0.601 0.974 11 1.273 0.935 2 2.213 0.990 11 
EGARCH GED 5.805 0.996 13 2.321 0.986 10 0.612 0.992 14 1.280 0.940 4 2.227 0.996 14 
GJR GED 5.678 0.975 5 2.314 0.983 6 0.576 0.934 5 1.318 0.968 8 2.187 0.978 5 
TGARCH GED 5.718 0.982 8 2.335 0.992 14 0.578 0.937 6 1.345 0.988 14 2.188 0.979 6 
PGARCH GED 5.676 0.974 4 2.314 0.983 4 0.576 0.933 4 1.319 0.968 9 2.186 0.978 4 

 
Note: Actual is the calculated measure. Relative is the ratio between the actual measure of a model and that of the worst performing model. The 

best performing model has a rank 1.  
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Table 8: Evaluation of the out-of-sample volatility forecasts 

RMSE MAE TIC MME(O) MME(U) 
Model 

Actual Relative Rank Actual Relative Rank Actual Relative Rank Actual Relative Rank Actual Relative Rank 

GARCH Normal 4.012 1.000 15 2.190 0.982 9 0.569 1.000 15 1.260 0.898 4 2.163 0.991 13 
EGARCH Normal 3.858 0.961 5 2.172 0.974 5 0.532 0.935 6 1.305 0.930 9 2.120 0.971 6 
GJR Normal 3.922 0.978 12 2.143 0.962 1 0.548 0.963 12 1.252 0.893 3 2.096 0.960 1 
TGARCH Normal 3.822 0.952 2 2.223 0.997 13 0.514 0.902 1 1.403 1.000 15 2.116 0.969 5 
PGARCH Normal 3.889 0.969 7 2.164 0.971 4 0.538 0.945 8 1.289 0.919 7 2.114 0.969 4 
GARCH Student 4.001 0.997 13 2.225 0.998 14 0.557 0.978 13 1.311 0.934 11 2.182 1.000 15 
EGARCH Student 3.870 0.965 6 2.191 0.983 10 0.531 0.933 5 1.321 0.942 12 2.138 0.980 11 
GJR Student 3.896 0.971 8 2.177 0.977 8 0.534 0.939 7 1.292 0.921 8 2.137 0.979 10 
TGARCH Student 3.811 0.950 1 2.229 1.000 15 0.514 0.903 2 1.390 0.991 14 2.146 0.983 12 
PGARCH Student 3.914 0.975 10 2.174 0.975 7 0.539 0.947 9 1.286 0.917 6 2.132 0.977 9 
GARCH GED 4.011 1.000 14 2.200 0.987 11 0.566 0.995 14 1.269 0.905 5 2.171 0.995 14 
EGARCH GED 3.852 0.960 4 2.173 0.975 6 0.531 0.933 4 1.309 0.933 10 2.122 0.972 7 
GJR GED 3.917 0.976 11 2.147 0.963 2 0.545 0.957 11 1.248 0.889 1 2.111 0.967 2 
TGARCH GED 3.823 0.953 3 2.217 0.995 12 0.517 0.908 3 1.384 0.986 13 2.129 0.975 8 
PGARCH GED 3.913 0.975 9 2.149 0.964 3 0.544 0.956 10 1.251 0.891 2 2.111 0.967 3 
 
Note: Actual is the calculated measure. Relative is the ratio between the actual measure of a model and that of the worst performing model. The 

best performing model has a rank 1.  
 



Generally, the relative differences between forecasting performances of the 

GARCH-type models are quite small. The largest relative differences between the 

best and the worst models, based on TIC criteria, are 8.9% (in-sample) and 9.8% (out-

of-sample) respectively.  

When comparing models based on asymmetric accuracy criteria, MME(U) and 

MME(O), the results differ significantly. While MME(U) criteria, which penalizes 

under-prediction, gives ranking that matches ranking based on RMSE, MAE and TIC 

criteria, MME(O) gives almost inverse ranking with symmetric GARCH and 

EGARCH models performing better than other models considered.  

In case of out-of-sample forecasts (Table 8), the performance of these models tends 

to be rather mixed and quite different from the in-sample results. The only clear 

pattern in Table 8 or conclusion which can be drawn is that of superiority of 

asymmetric GARCH models: TGARCH model favoured by RMSE and TIC and GJR 

model favoured by MAE, MME(O) and MME(U) criteria. It should be noted that out-

of-sample evaluation was based on a rather small sample and therefore results in 

Table 8 should be taken cautiously and not as a definite answer about forecasting 

performance of these models.  

6. Conclusion 
Stock prices volatility is an important factor in portfolio selection, asset pricing, 

value-at-risk and option pricing where it is used as a measure of risk. The practical 

aspect of the risk management and the development in econometric modeling of 

conditional variance, ARCH-type models in particular, attracted attention both 

academics and practitioners in the last two decades to the problems of modeling and 

volatility forecasting.  

We used a stock market index from Macedonia, a country not previously 

considered in the volatility literature, to answer four questions raised in the 

Introduction section. Based on the results presented, the following can be concluded:  

1. The stylized facts listed in the Section 2.1 were also identified in the MBI-

10 returns by using formal statistical tests and graphs of the MBI-10 

returns, corresponding functions and estimated GARCH-type models. 
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Typically for estimated GARCH-type models based on the returns data, the 

sum of the ARCH and GARCH coefficients is close to unity. This implies 

that innovations in the conditional variance will be highly persistent 

indicating that large changes in returns tend to be followed by large 

changes and small changes tend to be followed by small changes, which 

means that volatility clustering is observed in the Macedonian financial 

returns series. 

2. To address the question about the impact conditional variance might have 

on stock returns several univariate GARCH-in-mean-type models were 

specified: a symmetric GARCH model and four asymmetric models 

(EGARCH, GJR, TGARCH and PGARCH). The parameter describing the 

conditional variance, i.e. conditional standard deviation in the mean 

equation, measuring the risk premium effect, is statistically weakly 

significant across all models. However, the sign of the risk premium 

parameter is negative. The implication is that increase in volatility would 

decrease returns, which is an unexpected result, but could be theoretically 

justified. Engle & Ng (1993) test of asymmetry provided a weak evidence 

of asymmetric behavior of the conditional variance. To explore this further 

and see whether this asymmetric behavior could be attributed to the 

leverage effect a set of asymmetric GARCH-type models were considered. 

Estimated models in Table 4 - Table 6 show weakly significant leverage 

effect parameter only in case of non-Gaussian distributions. The 

implication of the negative sign in case of the leverage effect parameter is 

that “bad news” would decrease volatility, while the “good news” would 

increase volatility indicating that the existence of leverage effect is not 

observed in the Macedonian returns. These two rather unusual results 

related to the risk premium and leverage effects, i.e. anomalies in stock 

market behavior could be expected in the early period of emerging stock 

markets such as the Macedonian stock market.  

3. The estimated models in Table 4 - Table 6 clearly show that the results 

related to the relationship between returns and conditional volatility can be 
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regarded as quite robust across the models and alternative error 

distributions. 

4. According to the in-sample statistics and out-of-sample forecasts the results 

in Table 7 and Table 8 indicate, that the forecasting performance of 

asymmetric GARCH models (GJR and TGARCH in particular) is better 

than symmetric GARCH models, but with little gain. The models with 

heavy-tailed asymmetric distributions such as the Student  distribution 

rank better than models with other distributions, but again the difference is 

small. Depending on the accuracy criteria used, the relative differences are 

between minimum of 2% (MAE criteria in case of the in-sample forecasts) 

to maximum of 9.8% (TIC criteria in case of out-of-sample forecasts). 

Although we cannot find one model that performs best under all the 

criteria, we can argue that the AR(2)-GJR(1,1)-M model coupled with a 

Student

t−

t−  distribution performs very well with the MBI-10 returns.  

This study is subject to certain reservations. At the same time these reservations 

outline directions for future researches that could be investigated to improve the 

modeling and volatility forecasts of the Macedonian stock market returns. First, the 

time series of returns is quite short. Longer time series would allow estimation with 

greater precision, estimation of the GARCH-type models for sub-periods or using of 

the “rolling windows”. That would check the stability of estimated relationship 

between returns and volatility and how it evolves through time. Second, only 

symmetric Gaussian and non-Gaussian distributions were used. Assuming an 

asymmetric non-Gaussian error distribution, such as an asymmetric Student  or 

GED distributions, would increase flexibility in modeling of the conditional variance. 

Third, squared returns were used as a proxy for the realized volatility. The “true 

volatility” could be better estimated by selecting shorter time intervals, i.e. by using 

intra-day trading data or minimal and maximal values of returns when such data 

become available.  

t−

7. References 
Ajayi, R. A., Mehdian, S., & Perry, M. J. (2004). The day-of-the-week effect in stock 

returns - Further evidence from Eastern European emerging markets. 
Emerging Markets Finance and Trade, 40(4), 53-62.  

34 



Alexander, C. (2001). Market models: A guide to financial data analysis. New York, 
NY: John Wiley & Sons. 

Anatolyev, S. (2006). Nonparametric retrospection and monitoring of predictability of 
financial returns. Centre for Economic and Financial Research at New 
Economic School, Moscow.  

Anatolyev, S., & Shakin, D. (2006). Trade intensity in the Russian stock market: 
Dynamics, distribution and determinants. Centre for Economic and Financial 
Research at New Economic School, Moscow. 

Apolinario, R. M. C., Santana, O. M., Sales, L. J., & Caro, A. R. (2006). Day of the 
week effect on European stock markets. International Research Journal of 
Finance and Economics, (2), 53-70.  

Baele, L., Crombez J., & Schoors, K. (2003). Are Eastern European equity markets 
integrated? Evidence from a regime-switching shock spillover model. 
Working Paper, Ghent University. 

Bekaert, G., & Wu, C. (2000). Asymmetric volatility and risk in equity markets. 
Review of Financial Studies, 13(1), 1-42. 

Bera, A. K., & Higgins, M. L. (1993). ARCH models: Properties, estimation, and 
testing. Journal of Economic Surveys, 7(4), 305-366.  

Black, F. (1976). Studies in stock price volatility changes. Proceedings of the 1976 
Business Meeting of the Business and Economics Statistics Section, American 
Statistical Association, 177-181.  

Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. 
Journal of Econometrics, 31, 307-327. 

Bollerslev, T., & Wooldridge, J. M. (1992). Quasi-maximum likelihood estimation 
and inference in dynamic models with time-varying covariances. Econometric 
Review, 11, 143-172. 

Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH modelling in finance, a 
review of the theory and empirical evidence. Journal of Econometrics, 52, 5–
59.  

Bollerslev, T., Engle, R., & Nelson, D. (1994). ARCH models. In R.F. Engle and D. 
MacFadden (Eds.), Handbook of Econometrics, IV, Amsterdam: Elsevier. 

Brailsford, T. J., & Faff, R. W. (1996). An evaluation of volatility forecasting 
techniques. Journal of Banking & Finance, 20(3), 419-438.  

Campbell, J. Y., & Hentschel, L. (1992). No news is good news: An asymmetric 
model of changing volatility in stock returns. Journal of Financial Economics, 
31, 281-318.  

Cappiello, L., Engle, R. F., & Sheppard, K. (2003). Asymmetric dynamics in the 
correlations of global equity and bond returns. ECB Working Paper No. 204. 

Chukwuogor-Ndu, C. (2006). Stock market returns analysis, day-of-the-week effect, 
volatility of returns: Evidence from European financial markets 1997-2004. 
International Research Journal of Finance and Economics (1), 112-124. 

35 



Cihak, M., & Janaček, K. (1997). Stock-market volatility and real processes in the 
Czech economy. Eastern European Economics: A Journal of Translations, 35, 
6-34.  

Claessens, S., Djankov, S., & Klingebiel, D. (2000). Stock markets in transition 
economies. Financial Sector Discussion Paper No. 5. The World Bank. 

Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical 
issues. Quantitative Finance, 1(1), 1-14. 

Cont, R. (2005). Long range dependence in financial markets. In J. Lévy-Véhel & E. 
Lutton (Eds.), Fractals in engineering: New trends in theory and applications 
(pp. 159-180): Springer. 

Cont, R. (2007). Volatility clustering in financial markets: Empirical facts and agent-
based models. In G. Teyssière & A. P. Kirman (Eds.), Long Memory in 
Economics (pp. 289-310): Springer. 

De Goeij, P., & Marquering, W. (2004). Modelling the conditional covariance 
between stock and bond returns: A multivariate GARCH approach. Journal of 
Financial Econometrics, 2(4), 531-564.  

Deželan, S. (2000). Efficiency of the Slovenian capital market. Economic and 
Business Review, 2, 61-83.  

Ding, Z., Granger, C. W. J., & Engle, R. F. (1993). A long memory property of stock 
market returns and a new model. Journal of Empirical Finance, 1, 83-106. 

Dumitru, A.-M., Mureşan, A., & Mureşan, V. (2005). The long and short run 
interdependences between the Romanian equity market and other European 
equity markets. In S. Poloucek & D. Stavarek (Eds.), Future of Banking after 
the Year 2000 in the World and in the Czech Republic (Vol. X – Finance and 
Banking, pp. 592-611): Karvina: Silesian University. 

Égert, B., & Kočenda, E. (2005). Contagion across and integration of Central Eastern 
European stock markets: Evidence from intraday data. William Davidson 
Institute Working Paper Number 798.  

Égert, B., & Koubaa, Y. (2004). Modelling stock returns in the G-7 and in selected 
CEE economics: A non-linear GARCH approach. William Davidson Institute 
Working Paper Number 603.  

Elliot, G., Rothenberg, T. J., & Stock, J. H. (1996). Efficient tests for an 
autoregressive unit root. Econometrica, 64, 813-836. 

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of 
the variance of United Kingdom inflation. Econometrica, 50(4), 987-1007.  

Engle, R. F., & Ng, V., K. (1993). Measuring and testing the impact of news on 
volatility. Journal of Finance, 48(5), 1749-1778. 

Engle, R. F., Lilien, D. M., & Robins, R. P. (1987). Estimating time varying risk 
premia in the term-structure: The ARCH-M model. Econometrica, 55(2), 391-
407. 

Fama, E. F. (1965). The behaviour of stock market prices. Journal of Business, 38, 
34–105. 

36 



FEAS. (2007). Semi annual report - April 2007. Federation of Euro-Asian Stock 
Exchanges. 

Fruk, M. (2004). Sezonalnost prinosa dionica na Zagrebačkoj burzi. Finansijska 
Teorija i Praksa, 28(4), 435-444. 

Gelos, G., & Sahay R. (2000). Financial market spillovers in transition economies. 
Economics of Transition, 91, 53–86.  

Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the 
expected value and the volatility of the nominal excess return on stocks. Journal 
of Finance, 48(5), 1779–1801.  

Grambovas, C. A. (2003). Exchange rate volatility and equity markets. Eastern 
European Economics, 41(5), 24-48. 

Guillaume, D. M., Dacorogna, M. M., Davé, R. R., Müller, U. A., Olsen, R. B., & 
Pictet, O. V. (1997). From the birds eye view to the microscope: A survey of 
new stylized facts of the intraday foreign exchange markets. Finance and 
Stochastics, 1(2), 95-131.  

Harrison, B., & Paton, D. (2005). Transition, the evolution of stock market efficiency 
and entry into EU: The case of Romania. Economics of Planning, 37(3-4), 203-
223.  

Hasan, T., & Quayes, S. (2005). An empirical analysis of stock prices in the 
transitional countries of Europe, Russia and the United States. Unpublished 
paper.  

Inzinger, D., & Haiss, P. (2006). Integration of European stock markets: A review and 
extension of quantity-based measures. EI Working Paper No. 74. EuropaInstitut 
- University of Economics and Business Administration Vienna. 

Jinho, B., Chang-Jin, K., & Nelson, C. R. (2007). Why are stock returns and volatility 
negatively correlated? Journal of Empirical Finance, 14(1), 41-58. 

Jochum, C., Kirchgässner, G., & Platek, M. (1999). A long-run relationship between 
Eastern European stock markets? Cointegration and the 1997/98 crisis in 
emerging markets. Weltwirtschaftliches Archiv, 135(3), 454-479. 

Kanas, A. (1998). Volatility spillovers across equity markets: European evidence. 
Applied Financial Economics, 8, 245-256. 

Kasch-Haroutounian, M., & Price, S. (2001). Volatility in the transition markets of 
Central Europe. Applied Financial Economics, 11, 93-105.  

Kirchler, M., & Huber, J. (2005). Testing for stylized facts in experimental financial 
markets (pp. 22): Department of Finance, University of Innsbruck. 

Krivoruchenko, M. I., Alessio, E., Frappietro, V., & Streckert, L. J. (2004). Modeling 
stylized facts for financial time series. Physica A, 344(1/2), 263-266. 

Kuczmarski, J., & Rosenbaum, P. (1999). Quantile plots, partial orders and financial 
risk. The American Statistician, 53(3), 239-246.  

Latković, M. (2001). Nesinhrono trgovanje i proračun sistematskog rizika. Hagena. 
Unpublished paper.  

Latković, M. (2002). Risk management: Identification, measurement and control. 
Finansijska Teorija i Praksa, 26(2), 463-477. (in Croatian) 

37 



Levaj, L., Kamenarić, T., Mišković, J., & Mokrovčak, I. (2005). Metode obrade 
signala u ekonomiji. Fakultet Elektrotehnike i Računarstva, Sveučilište 
Zagreb. 

Ling, S., & McAleer, M. (2002a). Necessary and sufficient moment conditions for the 
GARCH(r,s) and asymmetric power GARCH(r,s) models. Econometric 
Theory, 18, 722-729. 

Ling, S., & McAleer, M. (2002b). Stationarity and the existence of moments of a 
family of GARCH processes. Journal of Econometrics, 106, 109-117. 

Malmsten, H., & Teräsvirta, T. (2004). Stylized facts of financial time series and three 
popluar models of volatility. SSE/EFI Working Paper Series in Economics and 
Finance No. 563, Department of Economic Statistics, Stockholm School of 
Economics. 

Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of 
Business, 36, 394–419. 

Miljković, V., & Radović, O. (2006). Stylized facts of asset returns: Case of BELEX. 
Facta Univertitatis Series: Economics and Organization, 3(2), 189 - 201. 

Morana, C., & Beltratti, A. (2002). The effects of the introduction of the euro on the 
volatility of the European stock markets. Journal of Banking & Finance, 
26(10), 2047-2064. 

Müller-Jentsch, D. (2007). Financial sector restructuring and regional integration in 
the Western Balkans. Office for South East Europe, European Commission - 
World Bank.  

Murinde, V., & Poshakwale, S. (2001). Volatility in the emerging stock markets in 
Central and Eastern Europe: Evidence on Croatia, Czech Republic, Hungary, 
Poland, Russia and Slovakia. European Research Studies, 4(3-4), 73-101. 

Nelson, D. B. (1991). Conditional heteroscedasticity in asset returns: a new approach. 
Econometrica, 59, 347–370. 

Onay, C. (2006). A co-integration analysis approach to European Union integration: 
The case of acceding and candidate countries. European Integration Online 
Papers, 10(7). 

Pagan, A. R., & Schwert, G. W. (1990). Alternative models for conditional stock 
volatilities. Journal of Econometrics, 45, 267-290. 

Palm, F. C. (1996). GARCH models of volatility. In G. S. Maddala & C. R. Rao 
(Eds.), Handbook of statistics (Vol. 14, pp. 209-240): Elsevier Science.  

Patev, P., & Kanaryan, N. (2006). Modelling and forecasting the volatility of the 
Central European stock market. In S. Motamen-Samadian (Ed.), Economic 
transition in Central and Eastern Europe (pp. 194-215): Palgrave, Macmillan. 

Patev, P., Kanaryan, N., & Lyroudi, K. (2006). Stock market crises and portfolio 
diversification in Central and Eastern Europe. Managerial Finance, 32(5), 
415-432 

Poon, S-H., & Granger, C. W. J. (2003). Forecasting volatility in financial markets: A 
review. Journal of Economic Literature, 41(2), 478-539.  

38 



Poon, S-H., & Granger, C. W. J. (2005). Practical issues in forecasting volatility. 
Financial Analyst Journal, 61(1), 45-56.  

Posedel, P. (2006). Analysis of the exchange rate and pricing foreign currency options 
on the Croatian market: The NGARCH model as an alternative to the Black-
Scholes model. Financial Theory and Practice, 30(4), 347-368. 

Poshakwale, S., & Murinde, V. (2001). Modelling the volatility in East European 
emerging stock markets: evidence in Hungary and Poland. Applied Financial 
Economics, 11 No. 4, 445-456. 

Rockinger, M., & Urga, G. (2000). The evolution of stock markets in transition 
economies. Journal of Comparative Economics, 28(3), 456-472.  

Rydberg, T. H. (2000). Realistic statistical modelling of financial data. International 
Statistical Review, 68(3), 233-258. 

Said, S. E., & Dickey, D. (1984). Testing for unit roots in autoregressive moving-
average models with unknown order. Biometrika, 71, 599-607.  

Samitas, A., Kenourgios, D., & Paltalidis, N. (2006). Short and long run parametric 
dynamics in the Balkans stock markets. International Journal of Business, 
Management and Economics, 2(8), 5-20. 

Scheicher, M. (2001). The comovements of stock markets in Hungary, Poland and the 
Czech Republic. International Journal of Finance and Economics, 6, No.1, 
27-39. 

Shields, K. K. (1997a). Stock return volatility on emerging Eastern European markets. 
Manchester School of Economic and Social Studies, 65; Suppl., 118-138. 

Shields, K. K. (1997b). Threshold modelling of stock return volatility on Eastern 
European markets. Economics of Planning, 30(2-3), 107-125.  

Shin, J. (2005). Stock returns and volatility in emerging stock market. International 
Journal of Business and Economics, 4(1), 31-43. 

Sian, K. K. (1996). Threshold modelling of stock return volatility on East European 
markets. Leicester: Faculty of Social Sciences Department of Economics 
University of Leicester.  

Syllignakis, M. N., & Kouretas, G. P. (2006). Long and short-run linkages in CEE 
stock markets: Implications for portfolio diversification and stock market 
integration. Unpublished paper 

Šestović, D., & Latković, M. (1998). Modeliranje volatilnosti vrijednosnica na 
Zagrebačkoj burzi. Ekonomski pregled, 49(4-5), 292-303.  

Todea, A., & Zoicaş-Ienciu, A. (2005). Random and non-random walks in the 
Romanian stock market. In S. Poloucek & D. Stavarek (Eds.), Future of 
Banking after the Year 2000 in the World and in the Czech Republic (Vol. X – 
Finance and Banking, pp. 634-646): Karvina: Silesian University. 

Tonchev, D., & Kim, T.-H. (2004). Calendar effects in Eastern European financial 
markets: Evidence from the Czech Republic, Slovakia and Slovenia. Applied 
Financial Economics, 14, 1035-1043. 

Wu, C. (2001). The determinants of asymmetric volatility. Review of Financial 
Studies, 14(3), 521-547.  

39 



40 

Xiao, L., & Aydemir, A. (2007). Volatility modelling and forecasting in finance. In J. 
Knight & S. Satchell (Eds.), Forecasting volatility in the financial markets (3 
ed., pp. 1-45). 

Zakoïan, J.-M. (1994). Threshold heteroskedastic models. Journal of Economic 
Dynamics Control, 18, 931–955.  

Žiković, S. (2006a). Applying hybrid approach to calculating VaR in Croatia. Paper 
presented at the International Conference of the Faculty of Economics in 
Sarajevo: From Transition to Sustainable Development: The Path to European 
Integration, Sarajevo, Bosnia and Herzegovina. 

Žiković, S. (2006b). Implications of measuring VaR using historical simulation; An 
example of Zagreb Stock Exchange index – CROBEX. In J. Roufagalas (Ed.), 
Resource allocation and institutions: Explorations in economics, finance and 
law (pp. 367-389). Athens: Athens Institute for Education and Research. 

Žiković, S. (2007). Measuring market risk in EU new member states. Paper presented 
at the 13th Dubrovnik Economic Conference, Dubrovnik, Croatia. 

 

 



Appendix: Summary of the volatility research (countries of former Yugoslavia) 

Author Country (Index) Data period & 
frequency 

Method/Model 
used Main findings 

Žiković (2007) Slovenia (SBI-20) 1-Jan-00 – 31-Dec-
05; daily 

ARMA-GARCH and 
bootstrapping, 

Semi-parametric approach to forecasting VaR was developed. 
It was confirmed that common VaR models that are widely 
used in mature markets, such as historical simulation, 
variance-covariance model and RiskMetrics system are not 
well suited to transitional capital markets. 

Anatolyev (2006) Croatia (CROBEX), 
Slovenia (SBI) 

Jan-97 – Jan-05; 
weekly 

Nonparametric 
retrospective and 
monitoring tests 

For analysis of predictability of stock market indexes two 
nonparametric test were constructed. In case of Slovenia 
neither retrospective nor monitoring tests detected mean 
predictability. In case of Croatia retrospective tests strongly 
reject conditional mean independence.  

Miljković & 
Radović (2006) 

Serbia (BELEX-15, 
BELEXfm, A2007) 

4-Oct-05 – 20-Nov-
06 (BELEX-15)  
1-Sep-05 – 20-Nov-
06 (BELEXfm) 
10-Jan-05 – 20-
Nov-06 (A2007) 

Descriptive statistics 
and ARCH-type of 
tests 

Paper illustrates some of the stylized facts identified in the 
financial time series. Three stock indices from the Belgrade 
stock exchange were used for illustration.  

Onay (2006). Croatia (CROBEX) 27-Oct-00 – 26-
Aug-05; weekly 

Engle and Granger 
and Johansen 
cointegration tests; 
Granger causality test 

While the results of Johansen test suggest non-cointegration, 
Engle-Granger tests reveal a causal flow from European 
indices to Croatian index.  

Posedel (2006) Croatia (local currency 
vs. Euro) 

2-Jan-01 – 30-Dec-
05; daily 

Nonlinear-in-mean 
asymmetric GARCH 

NGARCH model was used for option pricing. This model 
better describes short-run dynamics of the currency series.  

Samitas, Croatia (CROBEX), Jan-00 – Apr-06; Markov switching Possible linkages between the Balkans and developed markets 

41 



Author Country (Index) Data period & 
frequency 

Method/Model 
used Main findings 

Kenourgios & 
Paltalidis (2006) 

Serbia (BELEX), 
Macedonia (MBI-10) 

daily  regime regression were tested. The Balkans markets display equilibrium relations 
with their mature counterparts (US, UK, & Germany), 
supporting the hypothesis that there are interdependencies 
between emerging and developed stock markets. 

Syllignakis & 
Kouretas (2006) 

Slovenia (SBI) 1-Jan-95 – 25-Dec-
05; daily and 
weekly  

Markov switching 
ARCH-L, dynamic 
conditional 
correlation DCC-
GARCH  

DCC-GARCH(1,1) model reveals a sharp decline in the 
intensity of the co-movements between Slovenia and Germany 
stock market after the Russian crisis. Markov switching 
ARCH-L model was used to study for structural breaks in 
volatility. It is revealed that the conditional volatility has 
increased over 200% during the Russian crisis.  

Žiković (2006a). Croatia (CROBEX, 
VIN) 

4-Jan-00 – 4-Jan-06 VaR methodology, 
hybrid approach and 
historical simulation 

Kupiec test and out-of-sample forecasting accuracy have been 
evaluated for two Croatian stock market indexes. Hybrid 
approach outperformed historical simulation models.  

Žiković (2006b) Croatia (CROBEX) 7-Apr-03 – 7-Apr-
05; daily 

VaR methodology 
and historical 
simulation 

Acceptance of measuring VaR with historical simulation in 
Croatian financial market was tested. Only models were the 
historical simulation using 50 and 175 days observation period 
demonstrated good performance.  

Hasan & Quayes 
(2005) 

Slovenia(SBI) 95 - 02; weekly Standard correlation 
coefficients and 
Johansen’s 
cointegration tests 

The objective of the study was to estimate the level of 
integration between the financial markets in nine transitional 
economies of Europe, Russia and that of the United States. It 
was shown that none of these markets are either correlated or 
have any long run relationship with the financial markets in the 
US. Furthermore, Slovenia does not have any long-term 
relationship with any of the other nine.  

Levaj, Kamenarić, 
Mišković & 

Croatia (stock prices 
for Podravka 

2-Jan-01 – 10-May-
05; daily 

GARCH(1,1) Estimation of the GARCH(1,1) model for the company’s stock 
data was used to illustrate use of the GARCH-type models in 
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Author Country (Index) Data period & 
frequency 

Method/Model 
used Main findings 

Mokrovčak (2005) company) forecasting volatility.  

Ajayi, Mehdian & 
Perry (2004) 

Croatia (CROBEX), 
Slovenia (SBI-20) 

20-Jul-99 - 6-Sep-
02 (Croatia), 1-Sep-
94 - 6-Sep-02 
(Slovenia); daily  

OLS regression with 
daily dummy 
variables 

There are statistically significant day-of-the-week effects in 
the stock returns in the case of Slovenia, which has a negative 
Tuesday effect and positive Thursday and Friday effects. 

Égert & Koubaa 
(2004) 

Slovenia (SBI) 2-Jan-94 – 2-Jul-02; 
daily 

GARCH, QGARCH, 
LSTGARCH, GJR, 
ESTGARCH 

In case of GARCH model for Slovenia 1α β+ >  was 
obtained. Other tests also identified inadequacy of GARCH 
model for Slovene index. GJR and QGARCH models 
reasonably well modeled SBI index.  

Fruk (2004) Croatia (CROBEX) Apr-97 – Mar-04; 
monthly 

Hylleberg, Engle, 
Granger & Yoo 
seasonality test 

Hylleberg, Engle, Granger & Yoo seasonality test was applied 
to the stock returns. Hypothesis of seasonal unit root in 
CROBEX was rejected.  

Tonchev & Kim 
(2004) 

Slovenia (SBI-20, SBI-
20NT) 

4-Jul-00 – 18-Jun-
03; daily 

The OLS regression 
with daily dummy 
variables and 
GARCH models 

The calendar effects in mean stock returns studied by the OLS 
regression with dummy variables identified weak evidence for 
the day of the week effect in mean in Slovenia, but in the 
opposite direction (reverse effects in positive returns). On the 
other hand, GARCH models with dummies, were employed 
for testing for calendar effects in the conditional variance of 
returns. They identified the January effect for Slovenia, some 
weak evidence for monthly seasonality in variance and the 
reverse half-month effect.  

Latković (2002) Croatia (CROBEX) 1-Jan-97 – 1-Oct-
01; daily 

GARCH(1,1) The main issues and methodology of the risk management are 
discussed. GARCH(1,1) model was used to illustrate risk 
calculation on the Croatian capital market.  

Latković (2001) Croatia (CROBEX and 1-Sep-97 – 30-Dec- CAPM model CAPM model was used as a framework for analysis and 

43 



Author Country (Index) Data period & 
frequency 

Method/Model 
used Main findings 

12 different companies 
indices) 

00; daily calculating betas.  

Deželan (2000) Slovenia (SBI and 
LB13) 

3-Jan-94 – 5-Mar-
98; daily 

Runs test, variance 
ratio test and market 
model 

The hypothesis of a weak form of efficiency of the Slovenian 
stock market was rejected.  

Šestović & 
Latković (1998) 

Croatia (CROBEX, 
PLI-AA, ZAB-O) 

3-Sep-96 – 31-Dec-
97; daily 

GARCH(1,1) For the Zagreb stock exchange index CROBEX, estimated 
GARCH(1,1) model gives α β+  close to 1. For the Pliva 
Company index (PLI-AA) and the Zagreb Bank index (ZAB-
O) α β+  is well below 1.  

 

44 


