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Abstract: The adequate representation of crop response functions is crucial for agricultural modeling and analysis. So far, the 

evaluation of such functions focused on the comparison of different functional forms. In this article, the perspective is expanded 

by also considering an alternative regression method. This is motivated by the fact that extreme climatic events can result in crop 

yield observations that cause misleading results if Least Squares regression is applied. We show that such outliers are adequately 

treated if and only if robust regression or robust diagnostics are applied. The example of simulated Swiss corn yields shows that 

the application of robust instead of Least Squares regression causes reasonable shifts in coefficient estimates and their level of 

significance, and results in higher levels of goodness of fit. Furthermore, the costs of misspecification decrease remarkably if opti-

mal input recommendations are based on results of robust regression. We therefore recommend the application of the latter 

instead of Least Squares regression for agricultural and environmental production function estimation. 

Key words: production function estimation, production function comparison, robust regression, crop response 

 

1 Introduction 
The adequate representation of production or crop yield 

functions is crucial for modeling purposes in agricultural, 

environmental and economic analyses. The discussion and 

estimation of different functional forms has therefore 

gained much attention in both general and applied agricul-

tural and environmental economics. The pertinent litera-

ture provides a variety of functional specifications to 

mathematically describe the technical relationships be-

tween the quantities of inputs employed and those of 

outputs produced [7]. Agricultural economists have de-

voted special attention to also taking natural processes 

into account in their mathematical representations of crop 

yield functions. Frequently applied are polynomial forms 

(e.g. the quadratic and the square root function) and func-

tions based on the von Liebig idea (e.g. the linear/non-

linear von Liebig and the Mitscherlich-Baule production 

function).  

Discussions on the theoretical appropriateness of different 

functional forms to agronomic problems can be found in 

Fuchs and Löthe [15], Heady and Dillon [19], Hexem and 

Heady [20], and, Keusch [27]. They primarily address the 

integration of agronomic processes into economic produc-

tion functions. However, the distinction between different 

types of production functions is often negligible. The 

analysis of Frank et al. [11] suggests that no functional form 

dominates all other forms in every situation and therefore, 

crop yield functions must be reassessed for each location.  

Various locations and functional forms have been consid-

ered so far in the literature. But, little attention has been 

given to estimate the impact of exceptional climatic 

events upon extreme variations in crop yields. This is par-

ticularly important since the estimation of a production 

function using the Ordinary Least Squares (OLS) fitting 

criterion can produce misleading results if data sets con-

tain exceptional observations. Since the OLS method is not 

able to cope with a single outlier, one climatically excep-

tional year in the data set is sufficient to cause unreliable 

coefficient estimates. This phenomenon is not exclusive to 
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agricultural and environmental issues. Rather, outliers are 

frequently observed in empirical data sets and particularly 

considered in the applied statistics and econometrics lit-

erature [16, 23].  

Reliable results are provided by OLS if and only if robust 

regression methods or robust regression diagnostics are 

applied as well. The application of these methods ensures 

the non-inclusion or the appropriate down weighting of 

outliers in the analysis. Unlike Swinton and King [48], who 

applied robust regression methods to detect influential 

observations for trend estimation within yields, the focus 

of this analysis is on the estimation of a crop production 

function applying robust regression. This contrasts the 

standard procedure of excluding extreme climatic events 

by introducing dummy variables, such as Fuchs and Schan-

zenbächer [14], Fuchs and Löthe [15], and, Khan and Akbari 

[28]. Their procedure is based on a simple classification of 

climatic conditions to a certain dummy group. However, 

detecting outliers in multivariate regression analysis is 

much harder than in simple regression cases [22]. There-

fore, classification based on informal procedures such as 

scatter plots is no longer sufficient [17]. Robust regression 

diagnostics have to be applied for outlier detection.  

The aim of this analysis is to exhibit the vulnerability of 

usually applied production function estimation methods to 

extreme climatic events. It shows that inference based on 

usually applied methods can be misleading. The adequacy 

of certain models and even the significance of coefficient 

estimates can change, if outlying observations are ade-

quately treated in the analysis. Besides relevance for crop 

production function estimation, this study is a general 

example for the efficient handling of climatic extreme 

events in environmental modeling, which cannot be at-

tained with conventional approaches.  

In this paper, the application of robust regression is com-

bined with the evaluation of three types of production 

functions. The assessment of functional forms can be 

based on the coefficient of determination [2], residual 

distribution [4] and potential misspecification costs [11, 32]. 

We devote special attention to the cost of misspecifica-

tion; that is the potential income loss that would arise from 

using OLS instead of robust regression methods or an 

improper specification of the production function.  

The remainder of this paper is organized as follows. Sec-

tions 2 and 3 provide a brief presentation of the production 

functions and the data, respectively, that are used 

throughout our analysis. In Section 4, the estimation 

methodology is briefly introduced. The estimation results 

for corn (Zea mays L.) yields in Switzerland are presented 

and discussed in Section 5. Subsequently, optimal input 

levels and the cost of misspecification are investigated in 

Section 6. Finally, the advantage of applying robust regres-

sion techniques in production function estimation is dis-

cussed in the concluding Section 7. 
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2 Three Types of  
Production Functions 

Three types of crop production functions are estimated in 

this study: two polynomial specifications (the quadratic 

and the square root function) and the Mitscherlich-Baule 

function. These functional forms are frequently used in the 

agricultural economic literature and proved to accurately 

capture the underlying relationships [3, 1, 5, 11, 14, 15, 32]. 

Being aware that corn yields are driven by numerous fac-

tors, we restrict our analysis to two crucial input factors: 

nitrogen fertilizer and irrigation water. Together with the 

concentration on three functional forms, this restriction 

serves the sake of clarity in our investigation. It is focused 

on the estimation methodology, rather than aimed at 

providing an approximation of the most appropriate form 

with an extended set of output determining factors.  

The quadratic form, shown in equation (Eq. 1), consists of 

an additive composition of the input factors, their squared 

values, and an additional interaction term. The latter clari-

fies whether the input factors are independent of each 

other or not. The quadratic production function for a given 

crop is formally defined as follows: 

  
Y =

0
+

1
N +

2
W +

3
N

2
+

4
W

2
+

5
N W  (1) 

Y denotes corn yield per area, N the amount of inorganic 

nitrogen applied, and W irrigation water applied. The i’s 

are parameters that must satisfy the subsequent condi-

tions in order to ensure decreasing marginal productivity of 

each input factor:  1
,

2
> 0  and  3

,
4
< 0 . Furthermore, if 

 5
> 0  the two input factors are complementary. They are 

competitive if  5
< 0 , while  5

= 0  indicates independence 

of the two input factors.  

The square root function (Eq. 2) is very similar to the quad-

ratic form but produces different shapes of the curves. The 

square root form is defined as follows: 

  
Y =

0
+

1
N

1/ 2
+

2
W

1/ 2
+

3
N +

4
W +

5
(N W )

1/ 2  (2) 

To ensure decreasing marginal productivity of each input 

factor, the above given conditions for the parameters have 

to be satisfied here as well. Furthermore, the interpreta-
tion of the parameter 

5
 is identical.  

The Mitscherlich-Baule function (Eq. 3) is, according to Frank 

et al. [11] and Llewelyn and Featherstone [32], the most 

appropriate production function for corn yields. It allows for 

a growth plateau – i.e., maximum yield – which follows 

from the von Liebig approach to production functions (see 

Paris [37] for historical notes). Moreover, the Mitscherlich-

Baule function is characterized by continuously positive 

marginal productivities of the input factors. It does not 

exhibit negative marginal productivities, as the above 

polynomial forms. Formally, the Mitscherlich-Baule func-

tion is given by  

  
Y =

1
(1 exp(

2
(

3
+ N ))) (1 exp(

4
(

5
+W )))  (3) 

with 
 1

 representing the growth plateau, and 
 3

 and 
 5

 

the natural factor endowments, respectively. These natu-
ral factors include nitrogen in the soil (

 3

) and water en-

dowments (
 5

) such as soil moisture. The coefficients 
 2

 

and 
 4

 describe the influence of the corresponding input 

factors on the yield. Unlike the classical von Liebig produc-

tion function, the Mitscherlich-Baule function allows for 

factor substitution. It is not linear limitational in the input 

factors as the von Liebig function, i.e. the isoquants are not 

right-angled.  

In each of the three production functions, the elasticity of 

substitution between the two input factors is by definition 

different from zero and not constant. These characteristics 

and the property of decreasing marginal productivity are 

important criteria of production functions in describing 

agricultural factor-yield relationships [27].  
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3 Data 
Our analysis is based on corn yield data provided by the 

Agroscope Reckenholz-Tänikon Research Station ART in 

Zurich. The data is generated by the deterministic crop 

yield simulation model CropSyst [45, 46]. The model is 

calibrated to field trials [8, 9, 53] and sample data [10]. The 

comparability of simulated and observed yields is re-

stricted because the simulations do not account for yield 

reducing events such as hail, disease and insect infesta-

tion. Details about the model setting and calibration used 

in this study are presented in Torriani et al. [49].  

CropSyst is driven by weather data from six different loca-

tions on the Swiss Plateau for the years 1981 – 2003, as 

provided by the Swiss Federal Office of Meteorology and 

Climate (MeteoSwiss). The six locations are Berne-

Liebefeld (46°56’ N, 7°25’ E), Lucerne (47°02’ N, 8°18’ E), 

Payerne (46°49’ N, 6°57’ E), Taenikon (47°29’ N, 8°54’ E), 

Wynau (47°15’ N, 7°47’ E) and Zurich (47°23’ N, 8°34’ E). 

These weather stations are located at elevation levels 

between 422 and 565 meter above sea level.  

Compared to an approach with one single location, the use 

of observations from six different weather stations broad-

ens the database and allows us to represent a large pro-

portion of the entire Swiss corn producing acreage. This is 

important, since the data base is partly truncated by miss-

ing values. No weather data of 1981 is available for the 

stations Lucerne, Payerne, Taenikon and Wynau. Further-

more, there are missing values for the year 1984 in Berne, 

Taenikon and Wynau, as well as for 1987 in Taenikon.  

Apart from agricultural inputs, the model is particularly 

driven by daily values of radiation, rainfall, wind-speed, 

temperature, and air moisture. Additional information 

requested by CropSyst concerns the atmospheric CO2 con-

centration. Recorded values for the period 1981-2003, rang-

ing from 339ppm to 379ppm [43], are considered in the 

CropSyst simulations.  

The simulation and subsequent data analysis are re-

stricted to one uniform type of soil for all locations (charac-

terized by texture with 38% clay, 36% silt, 26% sand and soil 

organic matter content at 2.6% weight in the top soil layer 

(5 cm) and 2.0% in lower soil layers [49]), one type of irriga-

tion (possible from day one after sowing to harvesting, 

never exceeding field capacity) and one type of fertilizer 

(inorganic nitrogen fertilizer). This approach avoids distor-

tions due to non-uniform soil and management properties.  

To generate a comprehensive data set, one simulation is 

conducted without application of fertilizer and irrigation for 

each location and each year. Furthermore, to enhance the 

variability in the corn yields, additional combinations of 

irrigation and fertilizer are applied randomly. Nitrogen 

fertilizer applications range from 0 to 320 kg/ha and irriga-

tion water from 0 to 340 mm respectively. This leads to 212 

different levels of nitrogen application to the plants and 60 

different levels of irrigation. 

The resulting dataset consists of 527 observations with 

different corn yields. Assuming a dry matter content of 

85%, average yields for three different ranges of irrigation 

and fertilizer application, respectively, are shown in Table 1. 

This rough approximation of the average corn yields re-

veals a global yield maximum for   76 N 150  and 

  71 W 140 . Simulated corn yields decrease if the 

amounts of irrigated water or applied fertilizer deviate 

from those input ranges. 
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Table 1: Average simulated corn yields 1981–2003 

 Applied nitrogen in kg/ha 

 0–75 76–150 151–320 

0–75 6 955 8 872 8 521 
76–140 7 293 9 717 9 100 

Applied 
irrigation 
water in 
mm 141–340 7 275 8 814 9 158 

Source: CropSyst simulations 

Furthermore, starting from zero inputs, Table 1 indicates a 

stronger response of the corn yield to increases in nitrogen 

fertilization than to the amount of irrigation water. An 

increase of irrigation water induces small changes of simu-

lated corn yield, only. In contrast, enhanced nitrogen appli-

cation increases the crop yield remarkably. Low water 

limitation in the Swiss Plateau may be the reason for this 

phenomenon, since precipitation is usually sufficient to 

ensure good crop yields.  
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4 Estimation  
Methodology 

The estimation of the above production functions for Swiss 

corn yield data requires multivariate regression analysis. 

To this end, the methods of Least Squares and robust 

regression are applied. The Least Squares (LS) criterion 

selects the coefficient vector, which minimizes the sum of 

squared residuals. This estimation is conducted with the 

MODEL procedure of the SAS statistical package [41]. The 

vulnerability of this method to outlying observations has 

been demonstrated in various studies [18, 23, 39].  

Outlying observations deviate from the (quasi) linear rela-

tionship described by the majority of the data. They can 

have a large influence on estimation results. In the case of 

OLS estimation, one outlier can be sufficient to move the 

coefficient estimates arbitrarily far away from the actual 

underlying values. To overcome this vulnerability to out-

liers, various approaches to robust regression analysis 

have been proposed [18, 23, 39]. The main idea of robust 

regression is to give little weight to outlying observations in 

order to isolate the true underlying relationship. The fur-

ther away an observation is from the true relationship, the 

smaller is the corresponding weight of contribution to the 

regression analysis. The identification of the true relation-

ship is a non-trivial challenge, in particular, if the situation 

exceeds the simple regression case. 

In this context, the notation “true relationship” is restricted 

to an econometrical interpretation, while the excluded 

observations can be of particular interest from a scientific 

point of view. However, the inclusion of outliers in the 

analysis does not allow trustful regression inference. By 

contrast, separated analyses of outliers and inliers can 

lead to an information gain.  

In this study, Reweighted Least Squares (RLS) regression is 

applied for the estimation of eqns. (1) and (2), using the 

ROBUSTREG procedure in the SAS statistical package. RLS 

is a weighted LS regression, which is based on an analysis 

of Least Trimmed Squares (LTS) residuals that gives zero 

weights to observations identified as outliers. If the robust 

estimated standardized residual exceeds the cutoff value 

of 2.5 [24], an indicator function generates a weight of zero 

for this particular observation. For a detailed description of 

the RLS method, see Rousseeuw and Leroy [39].  

The nonlinear eqn. (3) is estimated using the NLIN proce-

dure in the SAS software package. The solution of nonlin-

ear problems requires iterative approaches, such as the 

Levenberg-Marquardt algorithm [33, 35, 42]. Robust regres-

sion is implemented in this case by using Iterative 

Reweighted Least Squares (IRLS). In contrast to the case 

above, the weights are generated by M-estimation using 

Tukey’s biweight [18, 21, 47]. Using IRLS, the weights are re-

estimated at every stage of the iteration process until 

convergence. Unlike the RLS regression, M-estimation 

using Tukey’s biweight combines hard and soft rejection of 

outlying observations: very large residuals are given zero 

weights and for the remaining observations soft rejection 

applies. Continuous weights between zero and one are 

given to the observations. The larger a residual, the smal-

ler is the weight of the corresponding observation within 

the subsequent iteration step. That is, influential observa-

tions are down-weighted or given zero weights as in RLS.  

Besides the most important property of giving trustworthy 

coefficient estimates, robust regression provides detailed 

insight in the structure of the data. Observations identified 

as outliers reveal their origin and can exhibit inappropri-

ateness of the employed model structure. Above all, the 

interpretation of outliers is indispensable. It should take 

not only statistical but mainly reasons from the subject 

matter science into account [17]. With regard to the func-
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tional relationship between nitrogen application, irrigation 

and corn yields, we particularly expect climatic conditions 

to be influential. For instance, the amount of rainfall can 

influence droughts or moisture built up, and thus indirectly 

restrict yield levels. Furthermore, the plants are expected 

to respond specifically to management under certain cli-

matic conditions. The response to irrigation and fertiliza-

tion changes under high and low water stress situations, 

respectively. Therefore, exceptional climatic years are 

supposed to have an extraordinary influence on plant’s 

response to irrigation and fertilization. This has not ade-

quately been taken into account so far. In the studies of 

Fuchs and Schanzenbächer [14], Fuchs and Löthe [15], and, 

Khan and Akbari [28], for instance, the influence of climate 

is filtered by the inclusion of dummy variables. The large 

number of observations and the three dimensionality of 

the problem hamper a simple allocation to a certain group 

of dummies. Robust regression diagnostics, as described 

above, should be applied instead.  

A further problem in estimating crop yields arises from the 

influence of the rates of nitrogen fertilizer application and 

irrigation upon the variance of the regression residuals, 

which causes heteroscedasticity [26, 30, 38]. Therefore, all 

estimated equations presented in this paper are corrected 

for heteroscedasticity using feasible generalized least 

squares regression [25].  
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5 Results and Discussion 
In this section an outlier interpretation is provided, and 

estimation results are presented and discussed. As de-

scribed above, the analysis of observations indicated as 

outliers is of particular relevance to exhibit the data struc-

ture. For simplicity and better interpretability, solely outliers 

are presented here that are indicated by the method of 

RLS for the estimation of the two polynomial forms.  

About seven to eight percent of the 527 observations are 

indicated as outliers. Most observations in this set of out-

liers are identified in the years 1983, 1991 and 2003. High 

temperatures and low precipitation in the relevant seed-

ing-to-harvest period characterize these years. The reason 

for the identification of outliers in these years is twofold. 

On the one hand, the dependent variable (yield) is affected 

and some input levels do not result in typical yields. On the 

other hand, the relationship between independent and 

dependent variables is affected by different reactions to 

input levels in situations where one of the inputs is a limit-

ing factor. The example of different reactions to irrigation 

under different precipitation levels underlines this argu-

ment and the fact that rainfall is an important determinant 

for the corn yield [34]. Observed precipitation in the seed-

ing-to-harvest period and simulated corn yields with zero 

fertilization and irrigation are plotted in Graph 1 for the 

station in Zurich and the years 1981 to 2003. The obvious 

relationship between yield and precipitation levels results 

in significant correlation coefficients of 0.7 (Pearson) and 

0.55 (Spearman), respectively. 

Table 2 and Table 3 present the estimation results for the 

quadratic and the square root production functions, re-

spectively. It shows that each estimation coefficient has 

the correct (i.e. the expected) sign. However, the results 

for the example of Swiss corn differ from Llewelyn and 

Featherstone’s [32] results for Western Kansas. Interest-

ingly, in each of the four estimated polynomial functions, 
the coefficient 

5
. (Applied Nitrogen* Irrigation Water) is 

not significantly different from zero (see Table 2 and 3). 

This reveals mutual independence of the two input factors 

irrigation water and nitrogen fertilizer in Swiss corn pro-

duction. Rainfall is sufficient to ensure nitrogen uptake in 

normal years.  
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Source: CropSyst simulations and MeteoSwiss weather data. 

Figure 1: Simulated corn yields and precipitation in 
Zurich 1981– 2003 

Lower water limitation in the Swiss Plateau than in West-

ern Kansas, where corn is frequently irrigated [36], is the 

reason for this difference. Even if summer precipitation 

would be lower in the next decades [12, 13], the results 

obtained for Western Kansas might not provide a prospect 

for future Swiss corn production, but indicate directions for 

future adaptation. Irrigation might become more impor-

tant.  
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Table 2: Coefficient estimates for the quadratic 
production function 

 Estimation Method 

Variable OLS RLS 

Intercept 6638.265 (165.05)** 6661.421 (179.24)** 

N 25.64327 (17.62)** 27.55239 (22.71)** 
W 6.046902 (5.62)** 5.578582 (5.75)** 

N2 -0.07104 (12.22)** -0.07236 (14.94)** 
W2 -0.01797 (3.87)** -0.0162 (3.88)** 

NW 0.007766 (1.51) 0.00373 (0.89) 
adj. R2 0.5680 0.7065 

Note: Statistics in parentheses are t statistics  
(**) – indicates significance at the 1% level 
(*) – indicates significance at the 5% level  

Table 3: Coefficient estimates for the square root 
production function 

 Estimation Method 

Variable OLS RLS 

Intercept 6589.997 (155.02)** 6601.924 (162.13)** 

N1/2 297.1821 (12.42)** 313.0936 (16.34)** 
W1/2 75.09137 (4.26)** 67.1385 (4.17)** 

N -11.2156 (6.88)** -10.544 (8.15)** 
W -3.03419 (2.40)* -2.49922 (2.17)* 

(NW)1/2 1.46442 (1.43) 0.364377 (0.45) 
adj. R2 0.5834 0.7330 

Note: Statistics in parentheses are t statistics  
(**) – indicates significance at the 1% level 
(*) – indicates significance at the 5% level  

Moreover, the coefficients of determination are remarka-

bly higher if RLS is used compared to OLS estimations. If 

exceptional observations are omitted in the analysis, the 

linear pattern formed by the remaining observations ex-

plains more of the variation in corn yields. We are aware of 

the fact that truncating the undesired observations is not a 

remedy for each estimation task. In particular, following 

sufficient truncation, many distributions are “normal” in 

the middle [50]. But in our opinion, extraordinary hot and 

dry years demand for a separately estimated production 

function. Only these specific years and the related yields 

should then be included in the analysis for climatically 

extreme years. If water is, unlike in normal years in the 

Swiss Plateau, a limiting factor for the plants, the yield 

response to irrigation water is expected to be much higher 

than usual. Furthermore, the plants’ response to nitrogen 

also highly depends on water availability as nitrogen is 

taken up by the roots in a water solution [31]. Under dry 

climatic conditions, the interaction between fertilizer and 

irrigation water is expected to be more significant than 

currently. Unfortunately, the regression analysis fails to 

provide valuable results due to a lack of sufficient observa-

tions in the available dataset.  

Table 4: Coefficient estimates for the Mitscherlich-
Baule production function 

 Estimation Method 

Variable LS (Levenberg-
Marquardt)  

IRLS (Levenberg-
Marquardt) 

1
 9180.6 (95.14)** 9410.3 (87.7)** 

 2

 0.0288 (5.72)** 0.0266 (7.38)** 

 3

 50.6952 (5.96)** 48.3036 (7.75)** 

 4

 0.0598 (1.22) 0.0304 (2.95)** 

 5

 45.1410 (1.24) 71.2249 (3.10)** 

adj. R2 0.736 0.809 

Note: Statistics in parentheses are t statistics  
(**) – indicates significance at the 1% level 
(*) – indicates significance at the 5% level  

In Table 4, the Mitscherlich-Baule production function 

estimates are presented. The Mitscherlich-Baule function 

using OLS estimation reaches higher goodness of fit than 

the OLS estimates of the quadratic and square root forms, 

again with coefficient estimates showing the expected 

signs. The two coefficient estimates for irrigation water 
and water endowment (

 4

 and 
 5

) are not significantly 

different from zero at the level of five percent.  

The Mitscherlich-Baule production function estimation 

based on robust regression (IRLS) explains more of the 

variation in corn yields than all other functions. In contrast 
to the OLS estimation, the coefficients 

4
 and 

5
 are 

significant at the one percent level if robust regression is 
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used. Besides the change in the level of significance for 

5
, the coefficient estimate increased remarkably if ro-

bust regression is applied. Because mainly dry years are 

excluded or down-weighted, the soil moisture endowment 

is higher for the remaining observations.  

Generally concluded, the use of robust regression methods 

leads to an increase of the goodness of fit for each of the 

analyzed production functions. Furthermore, levels of sig-

nificance alter in a reasonable direction if robust regres-

sion methods are employed. In particular, modeling be-

comes more precise as coefficient estimates tend to have 

higher levels of significance. Therefore, the use of robust 

regression methods in yield production functions estima-

tion is highly recommended. However, the decision on the 

most appropriate functional form can not exclusively be 

based on statistical measures, such as the goodness of fit. 

Hence, conclusions on the appropriateness of functional 

forms can be drawn if and only if the misspecification costs 

are also calculated and interpreted, such as in the subse-

quent section.  
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6 Optimal Input  
Levels and Costs of 
Misspecification 

The knowledge of production functions is crucial for mod-

eling purposes and economic analyses that are concerned 

with optimal resource allocation. This usually involves an 

assessment of optimal input and output levels, which is 

generally determined through maximization of a suitably 

defined profit function. For the purpose of our analysis, this 

is given by the subsequent definition 

( , )
Corn Nitrogen Irrigation

P f W N P N P W=   (4) 

where the net return (or profit) per hectare  is equal to 

the gross return (crop price PCorn times corn yield f(W,N), 

minus total nitrogen costs (nitrogen price PNitrogen times 

amount of nitrogen applied N) and total irrigation costs 

(irrigation price PIrrigation times amount of irrigation water 

W). For simplicity, other costs are assumed to be constant 

and therefore irrelevant for calculating the profit maximiz-

ing input combination, which follows from maximizing the 

profit function (Eq. 4). In this case, the optimal input levels 

are determined through the following first-order condi-

tions: 

( )*
( , ) /

Nitrogen Corn
P P f W N N=   

and  

( )*
( , ) /

Irrigation Corn
P P f N W W=   (5) 

Where   N *  and *
W  are the profit maximizing input levels 

of nitrogen application and irrigation respectively. In other 

words, efficiency in production requires employment and 

remuneration of all production factors according to their 

value marginal product. This is satisfied if, for each input 

factor, the input price equals the product of the crop price 

and the factor’s marginal productivity.  

In the further analysis, we set the corn price equal to CHF 

0.642 kg-1, the average annual value for the period 1981-

2003 in Switzerland [44]. We assume a constant nitrogen 

price of CHF 1.6 kg-1 (extrapolated from ammonium nitrate 

27.5 to pure nitrogen) at the 1993 level [29], and an esti-

mated price for irrigation water of CHF 0.06 m-3. The latter 

is based on the following assumptions. Since charges and 

fees for ground and surface water withdrawal in Switzer-

land are regulated at cantonal or municipal levels, we 

consider the situation in the Canton of Zurich where about 

CHF 0.01 is charged as variable costs for the withdrawal of 

one cubic meter surface water [6]. In addition, energy 

costs are about CHF 0.05 per cubic meter of irrigation 

water if electric power is used (assuming a standard pump 

and electricity costs for the canton of Zurich). Other water 

related costs are assumed to be constant in the short run. 

Thus, to get one mm of additional water, a farmer has to 

pay an irrigation price of CHF 0.60 per hectare. Using these 

data, the optimal input levels are calculated according to 

equation (5) and represented in Table 5. 
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Table 5: Optimal input levels, yield, and maximum net return 

Functional Form-
Estimation Method 

Optimal amount of 
Nitrogen applied 

(kg/ha) 

Optimal amount of 
irrigation Water ap-

plied (mm) 

Optimal yield 
(kg/ha) 

Maximum net re-
turn (CHF/ha) 

     

Quadratic-OLS 172.8 179.6 9695 5840.32 

Square Root-OLS 131.3 133.9 9180 5602.82 
Mitscherlich-Baule-OLS 111.2 61.3 9078 5613.55 
     

Quadratic-RLS 177.4 163.8 9859 5947.68 
Square Root-RLS 147.7 108.6 9324 5684.56 

Mitscherlich-Baule-IRLS 124.9 116.7 9286 5691.51 

 

 

It shows that all optimal input levels are within the range 

of the simulation data. The lowest input use is recom-

mended by the Mitscherlich-Baule (OLS) function, with 61.3 

mm of irrigation water and 111.2 kg/ha of nitrogen. This 

goes along with the lowest yield (9078 kg/ha) and an 

estimated net revenue of 5613.55 CHF/ha. In contrast, the 

robust estimated quadratic function shows the highest 

yield (9859 kg/ha) and nitrogen use (177.4 kg/ha) and the 

highest profit (5947.68 CHF/ha), while the quadratic OLS 

function implies the highest optimal amount of irrigation 

water with 176.9 mm. 

Our estimates for optimal input use are very low compared 

to those of Llewelyn and Featherstone [32] for Western 
Kansas that are in the following ranges: *

238.5 305.3N< <  

and *
513 873W< < . This is mainly a consequence of the 

higher precipitation in Switzerland, and thus the substan-

tially smaller amounts of irrigation water required on the 

Swiss Plateau. But the general results about the functional 

forms remain the same as in other studies. As in Ackello-

Ogutu et al. [1], the polynomial functions recommend hig-

her fertilizer use than the Mitscherlich-Baule functions. The 

quadratic form, in particular, results in a higher optimal use 

of nitrogen than all other functions. This is not surprising, 

since Anderson and Nelson [3] already gave evidence for 

the overestimation of optimal nitrogen amounts by the 

quadratic form.  

Furthermore, the results in Table 5 show that the robust 

versions of production function estimates systematically 

lead to higher profit maximizing yields and higher profits 

than their non-robust counterparts. Moreover, for each 

functional form, the optimal amount of nitrogen fertilizer 

application increases if robust regression results are taken 

instead of OLS results. And, except for the case of the 

Mitscherlich-Baule function, robust regression leads to the 

expected adjustment towards lower use of irrigation wa-

ter in the profit-maximizing situation. All in all, the use of 

robust estimation narrows the range of optimal input 

levels across the different functional forms.  

For the final evaluation of production functions and esti-

mation methods, we employ the concept of the relative 

costs of misspecification. Those are defined as the de-

crease in net return if optimal input levels of an incorrect 

function are used instead of those of the real underlying 

production function. The basic idea of this concept is to 

minimize the potential loss of a misspecification of the 

production function. Usually, the focus is on the potential 

loss due to the wrong functional form. In the following, we 

also consider the costs of applying the improper estima-

tion technique. 
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Table 6: Relative Costs of Misspecification 

 Cost of using optimal input levels based on: 

When the true 
function is: 

Quadratic-
OLS 

Square Root-OLS Mitscherlich-
Baule-OLS 

Quadratic-
RLS 

Square 
Root-RLS 

Mitscherlich-
Baule-IRLS 

Quadratic-OLS 0 93.01 297.88 4.23 77.85 135.18 

Square Root-OLS 30.61 0 39.83 32.13 8.41 2.01 
Mitscherlich-
Baule-OLS 

113.22 41.38 0 109.97 41.86 27.34 

Quadratic-RLS 3.77 104.65 296.39 0 68.59 145.23 
Square Root-RLS 7.18 27.08 35.49 8.45 0 23.14 

Mitscherlich – 
Baule-IRLS 57.52 54.08 3.11 51.85 9.86 0 

 

Table 6 shows the relative costs of misspecification. The 

nine cells in the upper left-hand corner correspond to the 

traditional approach where only functional forms esti-

mated with OLS are compared. If for instance the quad-

ratic function would be the true underlying form, the use of 

the square root function induces a cost of misspecification 

of CHF 93.01. This increases to CHF 297.88 for the Mitscher-

lich-Baule function. The latter exhibits the highest costs of 

misspecification, while the square root function is the most 

appropriate if the misspecification-cost criterion is em-

ployed. The square root function is similar to the quadratic 

form, but flatter in its surface and comes therefore closer 

to the plateau approach of the Mitscherlich-Baule specifi-

cation [1, 19]. Optimal input recommendations based on 

the square root function are correspondingly situated 

between those of the other two approaches we consid-

ered here.  

Table 6 further reveals that, in most cases, the use of ro-

bust estimation methods results in lower costs of mis-

specification than the standard OLS approach, and that the 

square root specification performs better under this crite-

rion than the other functional forms. This becomes obvious 

when comparing the top left-hand cells with the bottom 

right-hand ones, as well as from the comparison of the 

misspecification costs in the different lines of Table 6. Only 

in the cases where the square root specifications are as-

sumed to be the true underlying functions does the quad-

ratic OLS estimation show slightly lower costs of mis-

specification than its RLS counterpart. Furthermore, square 

root function estimation with OLS leads to a marginally 

lower decrease of the net profit than its robust counterpart 

if the Mitscherlich-Baule-OLS is assumed to be the underly-

ing function.  

Altogether, this supports the suggestion that the RLS esti-

mation of the square root function is the best approxima-

tion of the real underlying crop response relationship. 

These findings further support the application of robust 

regression methods, besides the previously made recom-

mendation from an econometrical point of view. 
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7 Summary and  
Conclusions 

Simulated corn yield data for the Swiss Plateau are used 

for the estimation of crop production functions, with par-

ticular consideration of yield response to nitrogen fertilizer 

and irrigation water application. Three functional forms 

are considered: the quadratic, the square root, and the 

Mitscherlich-Baule function. In addition, the treatment of 

exceptional climatic events is investigated, and robust 

regression methods are used. 

Observed yield data provide insufficient estimation possi-

bilities due to a lack of variation within the data. In con-

trast, biophysical simulation generates an enlarged data 

base compared with field observations. For the present 

study, we used simulated corn yield data of the CropSyst 

model, which is widely used and validated (see Stöckle et 

al. [46] for a review of studies using CropSyst).  

In the existing literature, several comparisons of corn yield 

production functions recommend flexible forms containing 

a growth plateau, such as the Mitscherlich-Baule function. 

In contrast, we found the square root function to be the 

most appropriate form to represent corn production in 

Switzerland. Furthermore, exceptional climatic events, 

such as the summer drought in 2003, prove to be the ma-

jor source of misleading results if the Ordinary Least 

Squares criterion is used to estimate production function 

coefficients. Robust regression methods are recom-

mended instead. 

Since the yield response to irrigation water is expected to 

be much higher in years with extraordinary high water 

stress, it seems reasonable to analyze those years sepa-

rately. In particular, it shows that the inclusion of those 

years in the OLS estimation of production functions can 

affect both the goodness of fit and the significance of 

coefficient estimates. An increase in the explained vari-

ance of the Swiss corn yield turns out for all functional 

forms if robust regression is employed. Furthermore, coef-

ficient estimates and their level of significance change in 

reasonable directions. Thus, our investigation shows that, 

besides the functional form, the estimation method is 

important for production function comparisons. Further-

more, robust regression is a valuable tool for other agricul-

tural and environmental modeling problems that face 

extreme climatic variability in data.  

This conclusion is further supported by a comparison of the 

relative costs of misspecification. Using RLS instead of OLS 

generally results in lower costs of misspecification. Irre-

spective of the true underlying functional form, optimal 

input levels based on robust estimated functions reduce 

the maximum costs of misspecification compared to the 

counterparts estimated with OLS. We therefore recom-

mend the application of robust regression methods for 

production function estimation. 
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 Appendix – Estimation 
techniques 

Ordinary Least Squares. The general linear model is given 

by:  

y X u= + +  (A1) 

Where Y is the regressand vector, X is the regressor ma-
trix,  an intercept,  the coefficient vector and u  an 

error term vector. The Least Squares criterion selects the 

coefficient vector, which minimizes the sum of squared 

residuals: 

2

ˆ

1

n

i

i

Min u

=

 (A2) 

Thus, the vector of coefficient estimates, ˆ , is given by: 

1ˆ ( ' ) 'X X X Y=  (A3) 

Following the Gauss-Markov theorem, Ordinary Least 

Squares (OLS) is the most efficient regression technique, 

i.e. provides the coefficient estimates with the smallest 

variance [25]. 

Robustness. An outlier is an observation that deviates from 

the relationship described by the majority of data. OLS 

cannot cope with a single outlier. The breakdown point 

concept is used to quantify robustness properties of an 

estimator. It is defined as the smallest amount of arbitrary 

(outlier) contamination, which can carry an estimator over 

all bounds [24]. The estimator becomes unreliable beyond 

this borderline. OLS possesses the lowest possible break-

down point of 1/n1. Thus, one outlier can be sufficient to 

arbitrarily change OLS estimates [39]. A hypothetical ex-

ample for OLS estimation in presence of outliers is given in 

Figure A1. 

 
1 n denotes the number of observations, in our analysis n=527.  

Figure A1: OLS and RLS estimation for a contaminated 
data set 

 
Note: Black dots indicate outlying observations. 

Least Trimmed Squares. The method of Least Trimmed 

Squares (LTS) is a high-breakdown regression technique, 

i.e. it can possess the highest possible breakdown point of 

. Thus, LTS coefficient estimates are reliable up to an 

arbitrary contamination of fifty percent of the data. Based 

on the idea of trimming the largest residuals the LTS fitting 

criterion is defined as follows: 

2

ˆ

1 :

( )

h

i i n

Min r

=

 (A4) 

2

( )
( )

i
r  are the ascending ordered squared (robust) residu-

als and h is the so-called trimming constant. In our analy-

sis, [ ](3 1) / 4h n p= + +  is employed2 [40]3. The computa-

tion of LTS coefficients is neither explicit (such as for OLS) 

nor iterative, but follows an algorithm described in 

Rousseeuw and Leroy [39]. Because the efficiency of LTS 

estimation is low, LTS results allow not for trustful infer-

 
2 p denotes the number of coefficients that are estimated.  

3 Note: This choice of h yields in a smaller breakdown point than  
(for our model with p=5 and n=527: 25.0 ). 
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ence [39]. Thus, LTS estimation is only used as a data ana-

lytic tool for outlier identification. An observation is identi-

fied as an outlier if the absolute standardized robust resid-

ual ( ˆ/
i
r ) exceeds the cutoff value of 2.5 [24]. Where 

i
r  

is the (robust) LTS residual and ˆ  is the (robust) LTS scale 

estimate [39]. 

Reweighted Least Squares. To provide both robust and effi-

cient coefficient estimates, Reweighted Least Squares 

(RLS) regression is applied [39]. RLS regression is a 

weighted least squares regression with coefficient esti-

mate being defined as follows: 

( )
1

' 'ˆ
RLS

X WX X WY=  (A5) 

The diagonal elements of the weighting matrix 

( { }
1
, ,

n
W diag w w= … ) are generated by an indicator func-

tion, IOutlier: 

2.5
ˆ

i

i Outlier

r
w I=

 (A6) 

The indicator function generates weights of zero for ob-

servations that are identified as outliers and weights of 

one otherwise. RLS combines robustness and efficiency 

properties of LTS and OLS estimation, respectively. There-

fore, this regression technique is highly suitable to ensure 

efficient estimation in presence but also in absence of 

outliers4. RLS regression is applied for coefficient estima-

tion of the quasi linear functional forms (square root and 

quadratic).  

 
4 Due to these properties, RLS is chosen in our analysis in favor of 
other robust regression techniques (see Hampel et al. [18], for 
details). 

Iteratively Reweighted Least Squares. Because LTS regres-

sion is not suitable for nonlinear problems, Iteratively 

Reweighted Least Squares (IRLS) regression is applied to 

estimate coefficients of the Mitscherlich-Baule function. A 

nonlinear model is, in general, defined as uXfY += ),( . 

The functional part ),(Xf  is nonlinear with respect to 

the unknown parameters 
i
. In IRLS regression, residuals 

are robustly weighted at each step of iteration until con-

vergence. Tukey’s biweight [18] is applied as weighting 

procedure and weights are generated as follows (follow-

ing Hogg [21]): 

2 2
ˆ ˆ(1 ( / ) ) , /

ˆ0, /

i i

i

i

r c r c
w

r c

=

>

 (A7) 

i
r  is the (robust) IRLS residual and ˆ  the (robust) scale 

estimate and c a tuning constant. We employ the MAD 

(Median of absolute deviations from the median) for ro-

bust scale estimation and set the tuning constant to 5.0 

(following Hogg [21]).  

In contrast to LTS, IRLS is no high breakdown estimation 

technique. In order to validate results, we conduct sensitiv-

ity analysis of crucial factors such as starting values and 

tuning constant. The iterative least squares estimation 

uses the Levenberg-Marquardt algorithm (see Marquardt 

[33] and Moré [35] for details). Because coefficient esti-

mates are highly correlated in our analysis, this algorithm 

ensures stable estimation compared with the Gauss-

Newton algorithm [42].  
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Heteroscedasticity. Both nitrogen fertilizer application and 

irrigation cause heteroscedasticity [26]. Thus, the variance 

of the regression residuals is not constant for all residuals 

(i.e. IuVar
2

)( ), but is as follows:  

=
2

)(uVar  (A8) 

Where Var(u) is the variance of residuals and I is the iden-

tity matrix. Furthermore,  is a positive definite matrix 

and is determined by the causal factors of heteroscedas-

ticity (in this analysis: nitrogen and irrigation). Coefficient 

estimates remain unbiased and consistent but fail to be 

efficient if residuals reveal heteroscedasticity. If the resid-

ual variance is, for instance, proportional to a single input 

factor (Xi), ii X1

2
= , it follows that { }

1
, ,

i in
diag X X= …  

[25]. Feasible generalized least squares (FGLS) regression 

has to be employed to ensure efficient estimation. The 

FGLS coefficient estimate is defined as follows: 

1 1 1ˆ ( ' ) '
FGLS

X X X Y=  (A9) 

The White and the Breusch-Pagan test are used to test for 

heteroscedasticity [25]. All RLS and IRLS estimations in this 

study are corrected for heteroscedasticity.  
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