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Abstract  
 

The important step in the design of a cellular manufacturing (CM) system is to identify the part 
families and machine groups and consequently to form manufacturing cells. The scope of this 
article is to formulate a multivariate approach based on a correlation analysis for solving cell 
formation problem. The proposed approach is carried out in three phases. In the first phase, the 
correlation matrix is used as similarity coefficient matrix. In the second phase, Principal Component 
Analysis (PCA) is applied to find the eigenvalues and eigenvectors on the correlation similarity 
matrix. A scatter plot analysis as a cluster analysis is applied to make simultaneously machine 
groups and part families while maximizing correlation between elements. In the third stage, an 
algorithm is improved to assign exceptional machines and exceptional parts using respectively 
angle measure and Euclidian distance.  

The proposed approach is also applied to the general Group Technology (GT) problem in which 
exceptional machines and part are considered. Furthermore, the proposed approach has the 
flexibility to consider the number of cells as a dependent or independent variable.  

Two numerical examples for the design of cell structures are provided in order to illustrate the 
three phases of proposed approach. The results of a comparative study based on multiple 
performance criteria show that the present approach is very effective, efficient and practical.  
 

Keywords: cellular manufacturing, cell formation, correlation matrix, Principal Component   
Analysis, exceptional machines and parts  

 

1. Introduction  

  
Increasing global competition has made many business leaders and policy makers turn their 

attention to such critical issues as productivity, quality and reducing manufacturing costs. 
Consequently, there have been major shifts in the design of manufacturing systems using innovative 
concepts. The adoption of cellular manufacturing (CM) has consistently formed a central element of 
many of these efforts and has received considerable interest from both practitioners and 
academicians. 

The cellular manufacturing system which is based on the concept of Group Technology (GT) 
philosophy aims at increasing productivity and production efficiency by reducing throughput times 
(Burgess, Morgan & Vollmann, 1993). The two fundamentals problems associated with CM are: 
part-family formation and machine-cell formation. Part-family formation is to group parts with 
similar geometric characteristics or processing requirements to take advantage of their similarities 
for the design or manufacturing purpose. Machine-cell formation is to bring dissimilar machines 
together and dedicate them to the manufacture of one or more part families.  

The problem of cell formation (CF) is to identify the part families and machine groups by 
rearranging the initial incidence matrix in a block diagonal form, with a minimum number of parts 
traveling between cells. Extensive work has been performed in the area of CF problem and 
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numerous methods have been developed. A number of researches have published review studies for 
existing CF literature (refer to Sinha & Hollier, 1984; Joines, King & Culbreth, 1996; Shambu, 
1996; Yin & Kazuhiko, 2005). The main used techniques are classification and coding systems, 
machine-component group analysis, mathematical and heuristic approaches, similarity coefficient 
based on clustering methods, graph-theoretic methods, knowledge-based and pattern recognition 
methods, fuzzy clustering methods, evolutionary approaches and neural network approaches. 

Furthermore, the CF research in the literature can be divided into three categories, according to 
the formation logic used (indicated by J. Geonwook, 1998; Wang, 2003 and others): 
(a) Grouping part families (e. g. in Kusiak, 1987) or machine cells only (e. g. in Rajamani et al, 
1990) 
(b) Forming part families and then machine cells (e. g. in Choobineh, 1988; Adenso-Diaz et al, 
2005), 
(c) Forming part families and machine cells simultaneously (e. g. in Adil et al, 1993). 

Part family grouping procedures are used for identifying groups of parts that are similar to one 
another. Some approaches focus attention on grouping machine cells only but these procedures 
often assume that part families already have been formed. Part-machine grouping procedures are for 
identifying part families and machine groups sequentially or simultaneously.  

The proposed methodology falls into the third category (i.e., forming part families and 
machines groups simultaneously). This approach consists in solving machine-part grouping 
problem, identifying exceptional machines and parts and solving CF problem mode by assigning 
theses exceptional elements. To this effect, an original technique is used proposing to use 
correlation as a new definition of similarity coefficient and to use the Principal Component Analysis 
(PCA) as a cluster method. These techniques allow the identification of part families and machine 
groups simultaneously and the identification of exceptional machines and exceptional parts.  

Most of the existing CF methods suffer from one or more drawbacks. Their major common 
drawbacks include: the inflexibility in determining the number of cells (i.e. in some methods, the 
number of cells is a dependent variable, while in others it has to be identified in advance), and the 
limited industrial application due to the unavailability of software programs supporting them. New 
cell formation approaches that overcome these limitations are clearly needed. In response to this 
need, this paper proposes a new approach based on new similarity coefficient methods for the 
manufacturing cell formation. The proposed approach attempts to: prove its feasibility and validity 
to solve a cell formation problem, perform very well in terms of a number of well known criteria, 
have the flexibility in allowing the user either to identify the required number of cells in advance, or 
consider it as a dependent variable and be supported by available commercial software programs in 
order to facilitate industrial applications. 

The outline of the paper is as follows: Section 2 describes methods manufacturing CF problem 
which use similarity coefficients approach, CF problem with exceptional machines and parts and 
performance criteria. Then the proposed approach is presented in Section 3. Afterwards, two 
numerical examples give presentation for each proposed methodology phase is shown in Section 4. 
Section 5 uses well-know CF problem from the literature and dedicated for illustrations results. 
Lastly, conclusion is made in Section 6. 

 
2. Preliminaries   
 
2.1. Similarity coefficients methods (SCM) 
 

Different similarity coefficients have been proposed by researchers in different fields. A 
similarity coefficient represents the degree of commonality between two parts or two machines. 
SCM-based methods rely on similarity measures in conjunction with clustering algorithms. It 
usually follows a prescribed set of steps:  
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Step 1:  

The initial machine-part incidence matrix is a binary matrix whose rows are machines and 
columns stand for parts. Where 1=ija , means that machine i (1….m) is necessary to process part j 
(1….p) and 0=ija , otherwise.  

Select a similarity coefficient and compute similarity values between machine (part) pairs and 
build a similarity matrix. An element in the matrix represents the sameness between two machines 
(parts). In this step a large number of research papers have used different types of similarity 
(Jaccard, Kulezynki, etc.) and dissimilarity coefficients (Hamming, Euclidean, Average Euclidean 
etc.) for determining part families or machines groups.  
McAuley, 1972 suggested the use of Jaccard’s similarity coefficient in the formation of GT cells. 
He defined a similarity coefficient between any two machines as the ratio of the number of parts 
that visit both machines to the number or parts that visit either or both machines.   
Kusiak, 1987 sought to maximize the sum of similarity coefficients defined between pairs of parts 
using a linear integer programming model and defined the similarity coefficient between two parts 
as: 

∑
=

=
m

1k
kjki

p
ij )a,δ(aS , i≠j, j = 1, 2, …., p and 0Sp

ii = , where δ is the Kronecker product function.     (1)  

A commonality score was proposed by Wei & Kern (1989). It has been introduced to 
overcome the shortcomings of the Jaccard Similarity coefficients. The definition is presented as 
follows: 
The commonality score between machine i and j is  
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p is the part number and k is the kth part in the initial incidence matrix. The commonality score not 
only recognizes the parts that require two machines for processing, but also the parts that do not 
require both machines. This is the advantage of commonality score (Yasuda & Yin, 2001). Many 
other definitions of similarity coefficient have been proposed for GT. For example in Gupta & 
Saifoddini, 1990; Genwook et al, 1998; Kitaoka et al, 1999.  

Step 2:  

Select a similarity coefficient and compute similarity values between machine (part) pairs and 
construct a similarity matrix. An element in the matrix represents the sameness between two 
machines (parts). 

Step 3:  

A clustering algorithm must transform the initial machine-part incidence matrix into the final 
matrix with structured form (blocks in diagonal). Use a clustering algorithm to process the values in 
the similarity matrix, which results in a diagram called a tree, or dendrogram, that shows the 
hierarchy of similarities among all pairs of machines (parts). Find the machine groups (part 
families) from the tree or dendrogram, check all predefined constraints such as the number of cells, 
cell size, etc. 

Cell formation can be considered as a dimension reduction problem. In fact, a large number of 
interrelated machines need to be grouped into smaller set of independent cells. Few research have 
used multivariate analysis tool in cell formation problem. Kitaoka et al, 1999 proposed a double 
centering machine matrix for similarity of machines and parts as a similarity coefficient matrix. A 
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quantification method is applied to find the eigenvalues and eigenvectors. Albadawi et al, 2005 
suggested the use of Jaccard’s similarity coefficient and proposed multivariate analysis by applying 
Principal Component Analysis for machine cells only.  

 
2.2. The CF Problem with Exceptional Machines and Parts (PEMP) 
 

Cell formation solutions often contain Exceptional Elements (EE). EE create interactions 
between two manufacturing cells. In most formation, there are usually exceptional parts and 
exceptional machines. An exceptional part can be viewed as parts that require processing on 
machines in two or more cells. An exceptional machine processes parts from two or more part 
families. These movements cause lack of segregation among the cells. This is in conflict with the 
main objective of GT which aims at independently operating cells. To effectively implement GT, a 
good clustering algorithm is needed such that the number of exceptional parts and exceptional 
machines are minimized (Cheng et al, 2001). 

 
2.3. Performance criteria  
 

The purpose of this section is to present objective criteria to evaluate the quality of clustering 
method. There are three principal criteria widely used in the literature:   
The first is called the Percentage of Exceptional elements (PE) and defined as the ratio of the 
number of exceptional elements to the number of unity elements in the incidence matrix: 

100
UE
EEPE ×=                                                                                                                                   (4) 

Where UE denotes the number of unity elements in the incidence (i.e. total number of operations in 
the data matrix). 

The second criterion is called Grouping Efficiency (GE) and defined by Chandrasekharan & 
Rajagopalan, 1986 as follows: 

)
pmpm

EEα)(1(1
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EE-UEαGE Q
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−−+⋅=                                                                             (5) 

where ]1,0[∈α is a weighting parameter. A value of α = 0.5 is commonly used. mk and pk denote, 
respectively, the number of machines in cell k and number of parts in family k. Q is the number of 
cells. m is the total number of machines and p is the total number of parts. 
Note that when  α = 1, the Grouping Efficiency coincides with the third criterion: Machine 
Utilization (MU) which is defined as the frequency of visits to machines within cells. 
 
3. Description of the proposed approach  
 

The proposed approach consists in three phases as mentioned in figure 1.   
 

3.1. Similarity coefficient matrix  
 

The first phase consists in building a similarity matrix. The initial machine-part incidence 
matrix shown in (Eq. 6) is a binary matrix which rows are parts and columns stand for machines. 
Note that this proposed definition looks like the transpose of classical incidence matrix. 
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Where 1a ij =  if machine j is required to process part i and 0a ij = otherwise. 

jM  is a binary row vector from the matrix A: ]a,.....,a,[aM pj2j1j
A
j  

To make the initial matrix (A) more sufficiently meaningful and significant, its standardization 
is needed. Several methods of standardization are found in the literature (Schaffer & Green, 1996; 
Chaea & Wardeb, 2005 and others). In this article, the general standardization of the initial data set 
is used. It is expressed by:   

j

j
A
jB

j σ
EM

M
−

=            (7)  

Where Ej is the average of the row vector Mj    
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 1. Architecture of the proposed approach 
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Applying Huyghens- Köning Theorem yields to 2 2
j j jσ = E - E      (10) 

The proposed similarity coefficient is based on the simple correlation matrix the incidence 
matrix. The correlation matrix S is defined as follows: (Gnanadesikan, 1997) 

BB
p
1S '=            (11) 

Sij is m x m matrix which elements are given by:  1Sii =  and ∑
=

=
p

1k
jkikij bb

p
1S     (12) 

 
3.2 Cluster analysis for correlation  
 

In the second phase of the proposed approach, the machine groups and part families are 
identified by factor and graphical analysis. The objective is to find machine groups, part families 
and parts common machines using some classification scheme given by using Factor analysis 
representation of the data.  

Factor analysis is a powerful multivariate analysis tool used to analyze the interrelationships 
among a large number of variables to reduce them into a smaller set of independent variables called 
factors. Factor analysis was developed in 1904 by Spearman in a study of human ability using 
mathematical models (Rummel, 1988). Since then, most of the applications of factor analysis have 
been used in the psychological field. Recently, its applications have expanded to other fields such as 
mineralogy, economics, agriculture and engineering. Factor analysis requires having data in form of 
correlations, and uses different methods for extracting a small number of factors from a sample 
correlation matrix. These methods include: common factor analysis, principal component analysis, 
image factor analysis, and canonical factor analysis. Detailed description of PCA method can be 
found in the relevant literature such as in (Labordere, 1977); (Rummel, 1988); (Harkat, 2003) 
(Gnanadesikan, 1997). and others. 

PCA is the most widely used method. It is an investigation of the data that is largely widespread 
among users in many areas of science and industry. It is one of the most common methods used by 
data analysts to provide a condensed description. PCA is a dimension reduction technique which 
attempts to model the total variance of the original data set, via new uncorrelated variables called 
principal components. PCA consists in determining a small number of principal components that 
recover as much variability in the data as possible. These components are linear combinations of the 
original variables and account for the total variance of the original data. Thus, the study of principal 
components can be considered as putting into statistical terms the usual developments of 
eigenvalues and eigenvectors for positive semi-definite matrices. 

The eigenvector equation where the terms m21 λ.....λλ ≥≥≥  are the real, nonnegative roots of 
the determinant polynomial of degree P given as: 

>∈<=− m1,i;0I)λdet(S i                     (13) 
Let {F1, F2, ….., Fm} be corresponding eigenvectors. 
When PCA was performed on the mean centered data, a model with the first and the second 
principal components was usually obtained. This model explained PC of the variance in the data. 
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Really, the number of principal components must be determined by using a specific technique 
as cross validation, Kaiser’s criterion, reconstruction method etc.  (Harkat, 2003 ; Ledauphin et al, 
2004). In this application of ACP, the objective is clustering machines in group and parts in 
families. A binary decision is applied at each machine and part. Two principal components are 
enough to analyse correlation between elements (machines and parts).  

As example, let us consider the graphical contain two machines and five parts. The data can be 
represented by a two dimensional scatter plot (figure 2) where each machine is represented by a line 
from the origin and each part is represented by a dot located at its weight in each line (machine).  
Graphical clustering analysis is based on an angle distance measure. An angle distance measure θ, 
or normalized scalar product is used. It defined as: 

)
yx

yx
arccos(θ

i i
2
i

2
i

i ii

∑ ∑
∑=           (15) 

Where, xi and yi are the coordinates of Pi in the scatter plot. 
 
 
 
 
 
 
 
 
 

 

 
 

Four principal situations for the classification of machines can be recovered: 
• Two neighbor machines which have a low angle distance measure, consequently they belong to 
the same cell. Examples can be illustrated in the figure 2 by (M1 and M2). 
• Two machines whose angle distance measure between them is almost 180°, this means that they 
are negatively correlated and mustn’t belong to the same cell. Examples can be illustrated in figure 
2 by (M1 and M4) and (M2 and M4). 
• Two machines whose angle distance measure between them is almost 90°. This means that they 
are independent similarly and then they don’t belong to the same cell. Examples can be illustrated 
in figure 2 by (M1 and M3) and (M3 and M4). 
• If none of these three cases above is verified, the machine which called an exceptional machine is 
affected in the next phase of the proposed approach. 

The same method is used for the classification of parts: when a part is close to a line (machine), 
it is assigned to the cell which component this machine. Examples can be illustrated in the figure 2 
by (P1 and M3) and (P2, P3, P4 and M1 M2). Otherwise, it is an exceptional part which can be 
illustrated, for example, in the figure 2 by P5. Exceptional parts are affected in the next phase of the 
proposed approach. 
 
3.3 Assign algorithm for exceptional elements    
 

The objective of the third phase is to assign exceptional parts and exceptional machines to 
preliminary cells (end of the second phase of the proposed approach in figure 1).    
In most CF problem, there are usually exceptional parts and exceptional machines. For each type of 
exceptional element, an assign algorithm is proposed. 
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Fig. 2. Illustration of the scatter plot

M1

M2
P1 

P2 

P3 
P4 

P5 

M3 

M4 



 - 8 - 

1. For the assignment of exceptional machines  

This iteration continues until all exceptional machines are assigned to form machine groups. 
Let em is the number of exceptional machines. 

For k = 1 to em do 
Step 1:  Compute angle measure for each machine (different to Mk and not an exceptional 
machines) 

ik i k i kθ = min( θ -θ , 2π- θ -θ )          (16) 

Where θi is the angle measure between Mi and the first principal component, ] ]iθ -π,π∈ .                           
Step 2: Since the objective is to group machines with minimum angle distance, Machine Mi 
which have the smallest angle distance with Mk, is assigned to the machine groups Mi  
End. 

2. For the assignment of exceptional parts  

An exceptional part can be viewed as a part that requires processing on machines in two or more 
cells. Let ep is the number of exceptional part. The clustering algorithm for exceptional part is 
shown below:  
This iteration continues until all exceptional parts are assigned to form part families. 

For k = 1 to ep do 
Step 1: Compute Euclidean distance for each part (different to Pk and not an exceptional part). 
with the exceptional part Pk   

2
ik

2
ikik )y(y)x(x)P,d(P −+−=         (17) 

Where xi and yi are the coordinates of Pi in the scatter plot (two principal components). 
Step 2: Since the objective is to group parts with minimum distance, part Pi which have the 
smallest distance, is assigned to the part families Pi  
End. 
 

4. Numerical examples 

 
4.1 Problem 1 
 

In order to explain the methodology of the proposed approach, a manufacturing system is 
considered with seven machines (labeled M1-M7) and eleven parts (labeled P1-P11). This example 
is provided by Boctor (1991). The machine-part matrix A is shown in Eq. (18).   

 

A = 
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⎥
⎥
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⎥
⎥
⎥
⎥
⎥
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⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0100001
1001000
0000100
1000000
0010001
0000110
1001000
0101000
0110001
0000110
0000011

M7M6M5M4M3M2M1

P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1

     (18) 

Applying Eq. (8, 10 and 7) to the initial machine-part given in Eq. (18) yield the standardization 
matrix B given in Eq. (19).  

For example, for machine M1 
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1
4E =  = 0.364

11
 

2
1σ = 0.36-(0.36)  = 0.481 

The member coefficient between part 1 and machine, b11 is calculated as follows  

11
1- 0.364b =  = 1.32

0.481
 

21
0- 0.364b =  = - 0.76

0.481
 

The same procedure be applied for the others elements of matrix B. 

B = 

 M 1     M 2     M 3    M 4    M 5     M 6    M 7 
P 1 1 ,3 2 1 ,6 3 -0 ,6 1 -0 ,6 1 -0 ,4 7 -0 ,6 1 -0 ,6 1
P 2 -0 ,7 6 1 ,6 3 1 ,6 3 -0 ,6 1 -0 ,4 7 -0 ,6 1 -0 ,6 1
P 3 1 ,3 2 -0 ,6 1 -0 ,6 1 -0 ,6 1 2 ,1 2 1 ,6 3 -0 ,6 1
P 4 -0 ,7 6 -0 ,6 1 -0 ,6 1 1 ,6 3 -0 ,4 7 1 ,6 3 -0 ,6 1
P 5 -0 ,7 6 -0 ,
P 6
P 7
P 8
P 9
P 1 0
P 1 1

6 1 -0 ,6 1 1 ,6 3 -0 ,4 7 -0 ,6 1 1 ,6 3
-0 ,7 6 1 ,6 3 1 ,6 3 -0 ,6 1 -0 ,4 7 -0 ,6 1 -0 ,6 1
1 ,3 2 -0 ,6 1 -0 ,6 1 -0 ,6 1 2 ,1 2 -0 ,6 1 -0 ,6 1
-0 ,7 6 -0 ,6 1 -0 ,6 1 -0 ,6 1 -0 ,4 7 -0 ,6 1 1 ,6 3
-0 ,7 6 -0 ,6 1 1 ,6 3 -0 ,6 1 -0 ,4 7 -0 ,6 1 -0 ,6 1
-0 ,7 6 -0 ,6 1 -0 ,6 1 1 ,6 3 -0 ,4 7 -0 ,6 1 1 ,6 3
1 ,3 2 -0 ,6 1 -0 ,6 1 -0 ,6 1 -0 ,4 7 1 ,6 3 -0 ,6 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

     (19) 

The similarity matrix S is show in Eq. 20 

S = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1,00-0,38-0,290,54  -0,38-0,380,46-

1,00   0,24  0,08  -0,38-0,380,39 

1,00  -0,29-0,29-0,290,62 

1,00  -0,38-0,380,46-

1,00  0,54  0,46-

1,00  0,04-
1,00 

M7  M6     M5       M4   M3   M2    M1   

M7
M6
M5

4M
M3
M2
M1

     (20) 

The second phase consists in applying a cluster analysis for correlation which is based on 
PCA method. The computed eigenvalues for the matrix given in E.q 19 are listed and sorted in a 
descending order in table 1.  
 

Table 1 
Eigenvalues and associated percentage of variance   

Components Eigenvalues  % of total variance  Cumulative % 
1 2.53 36.11  36.11 
2 2.35 33.54  69.65 
3 0.92 13.17  82.83 
4 0.61  8.77  91.59 
5 0.38  5.46  97.05 
6 0.16  2.27  99.32 
7 0.05  0.68 100.00 
Sum total 7.00 (must be equal to m ) 100  

 

 
The use of graphical analysis is based on a two dimensional scatter plot where each machine is 

represented by a line from the origin and each part is represented by a dot .The scatter plot indicates 
the relationship between machine and other machine, between machine and part and between part 
and other part.  There should be high correlation among machines strongly associated with the same 
cell, and low correlation among machines that are associated with different cells. 
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Four principal situations for the classification of machines can be recovered: 
• Two neighbor machines which have a low angle distance measure. Consequently they belong 
to the same cell. Examples can be illustrated in the figure 3 by (M4 and M7) and (M1 and M5). 
• Two machines which the angle distance measure between them is almost 180°. This means 
that they are negatively correlated and not must be belong to the same cell. 
• Two machines which the angle distance measure between them is almost 90°. This means 
that they independent, then they don’t also belong to the same cell. Examples can be illustrated 
in figure 3 by (M1 and M3) and (M4 and M6). 
• If no one of the three cases above is verified, the machine isn’t affected to any cell. This 
means that it is an exceptional machine.  
 

 
 
 

 

 

 

 

 

 

 

 

 
 

Applying the second phase of the proposed approach to these data sets yields the result shown in 
figure 3. We obtained the following results:    
- The best grouping for the seven machines is to group them into tree cells: cell 1 consists of 
machines 2 and 3; cell 2 consists of machines 1, 5 and 6; while cell 3 consists of machines 4 and 7.   
 

 

 

 

 

 

 

 
 

- No exceptional Machines is identified  
- Parts 1 and 4 were identified as exceptional parts.  
The preliminary cell design is shown in Eq 21. 

To complete the cell formation, the parts 1 and 4 need to be allocated to the machines cells by 
applying the cluster algorithm which it is the purpose of the third stage. 
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Fig. 3. Graphical illustration of the scatter plot

  M2 M3 M1 M5 M6 M4 M7
P2 1 1     
P6 1 1      
P9 0 1      
P3   1 1 1  
P7   1 1 0   
P11   1 0 1   
P5      1 1
P8      0 1 
P10      1 1 
P1 1  1    
P4     1 1  

(21)
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Table 2 
Coordinates of each part in the scatter plot  

Parts Fist component : xi Second component : yi Assigned cell 
P1  0.62 1.28 Exceptional part  
P2 -1.11 2.34 Cell 1 
P3  3.04 -0.51 Cell 2 
P4 -0.03 -1.49 Exceptional part 
P5 -1.72 -1.97 Cell 3 
P6 -1.11 2.40 Cell 1 
P7  2.17 -0.05 Cell 2 
P8 -1.09 -0.91 Cell 3 
P9 -0.82 1.21 Cell 1 
P10 -1.72 -1.97 Cell 3 
P11  1.78 -0.37 Cell 2 

 
For each exceptional part, the problem consists to find a part k that minimizes the Euclidian 

distance between the exceptional parts.   
d(P1, P9) = Min { d(P1, Pk); k = 1, 2, 3, …..9; k ≠ 1 and 4} 
d(P4, P8) = Min { d(P4, Pk); k = 1, 2, 3, …..9; k ≠ 1 and 4} 
Therefore P1 and P9 are in the same cell 1. P4 and P8 are in the same cell 3. 
The results of final cell formation problem are shown in Eq. 22 which confirms that parts 1 and 4 
are exceptional parts. 
 

 

 

 

 

 

 

 
4.2 Numerical example involving exceptional machines and parts (11 x 22)  

The problem is represented by a matrix which shown in Eq. 23. This problem is adopted to 
demonstrate the effectiveness of the proposed approach. It is a frequently cited in the literature GT 
problem which involving exceptional machines and exceptional parts (Chan & Milner, 1982; Cheng 
& all, 2001). Figure 4 shows the result of applying approach. 
Applying the proposed approach to these data sets yields the result shown in figure 4. The following 
results are obtained:    
-The best grouping for the seven machines is to group them into tree cells: cell 1 consists of 
machines 1, 4 and 5, cell 2 consists of machines 2, 3 and 6, while cell 3 consists of machines 7, 9 
and 11.  

- Machines 8 and 10 were identified as exceptional machines. Besides exceptional machine, the 
graphical analysis identifies easily exceptional parts 6 and 11. These elements were removed from 
the initial matrix. The removal of exceptional machines and exceptional parts allows the matrix 
presented in Eq. 24 to decompose. 
 

  M2 M3 M1 M5 M6 M4 M7
P1 1 0 1    
P2 1 1      
P6 1 1      
P9 0 1      
P3   1 1 1  
P7   1 1 0   
P11   1 0 1   
P4     1 1 0
P5      1 1 
P8      0 1 
P10      1 1 

 

(22)



 - 12 - 

Eq. 23 
The part-machine incidence matrix for (11 x 22) 
problem  

  M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 
P1 1   1 1     1  
P2 1   1 1     1  
P3 1   1 1     1  
P4       1  1  1 
P5  1 1   1  1  1  
P6   1    1 1    
P7     1     1  
P8  1    1    1  
P9       1 1 1  1 
P10        1   1 
P11 1 1  1      1  
P12  1 1   1  1  1  
P13   1     1    
P14       1 1 1   
P15 1   1 1     1  
P16 1   1 1     1  
P17       1  1  1 
P18       1 1 1 1 1 
P19  1 1   1  1    
P20 1   1 1   1    
P21 1   1 1       
P22 1   1 1        

Fig. 4 
Graphical illustration of the scatter plot for 
(11x22) problem 

Scatter plot (F1 and F2 ) PC = 72,63 %
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Table 3 
Angle measure for each machine compared with the first principal component 

Machines Cos2 θ  Cos θ θ ]-π, π]  Assigned cell (phase 2) 
M1 0.868 0.93 -0.37 Cell 1
M2 0.033 0.18  1.75 Cell 2
M3 0.175 0.42 2.00 Cell 2
M4 0.862 0.93 -0.38 Cell 1
M5 0.807 0.90 -0.45 Cell 1
M6 0.084 0.29 1.87 Cell 2
M7 0.580 0.76 -2.43 Cell 3
M8 0.995 1.00 -3.07 Exceptional Machine 
M9 0.590 0.77 -2.45 Cell 3
M10 0.620 0.79 0.66 Exceptional Machine 
M11 0.615 0.78 -2.47 Cell 3

 

 

θ (M8, M7) = Min {θ(M8, Mk); k = 1, 2, 3…, 11; k ≠ 8 and 10} 
θ (M10, M1) = Min {θ(M10, Mk); k = 1, 2, 3…, 11; k ≠  8 and 10} 
Therefore M8 and M7 are in the same cell 3.  
And M10 and M1 are in the same cell 1. 

Chan & Milner (1982) and Cheng C. H.  & all (2001) give the same result of general GT 
problem which involving exceptional parts and exceptional machines as presented in Eq. 24. 
However, the proposed approach beyond this result.  

The third phase allow final cell formation problem to do the best assign of those exceptional 
machines and exceptional parts. Applying this additional phase to the solution under consideration 
yields the final cell design in Eq. 25 with 3 cells.   
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Eq. 24 Solution of  PEPM for (11 x 22) problem  
  M1 M4 M5 M2 M3 M6 M7 M9 M11 M8 M10 

P1 1 1 1        1 
P2 1 1 1        1 
P3 1 1 1        1 
P15 1 1 1        1 
P16 1 1 1        1 
P20 1 1 1       1  
P21 1 1 1         
P22 1 1 1         
P7 0 0 1        1 
P5    1 1 1    1 1 
P8    1 0 1     1 
P12    1 1 1    1 1 
P19    1 1 1    1  
P13    0 1 0    1  
P4       1 1 1   
P9       1 1 1 1  
P10       0 0 1 1  
P14       1 1 0 1  
P17       1 1 1   
P18       1 1 1 1 1 
P11 1 1 0 1       1 
P6     1  1 0 0 1   

Eq. 25 Final Solution with  3 cells for (11 x 22) 
problem  

  M1 M4 M5 M10 M2 M3 M6 M7 M9 M11 M8 
P1 1 1 1 1        
P2 1 1 1 1        
P3 1 1 1 1        
P15 1 1 1 1        
P16 1 1 1 1        
P20 1 1 1 0       1 
P21 1 1 1 0        
P22 1 1 1 0        
P7 0 0 1 1        
P11 1 1 0 1 1       
P5    1 1 1 1    1 
P8    1 1 0 1     
P12    1 1 1 1    1 
P19     1 1 1    1 
P13     0 1 0    1 
P4        1 1 1 0 
P9        1 1 1 1 
P10        0 0 1 1 
P14        1 1 0 1 
P17        1 1 1 0 
P18    1    1 1 1 1 
P6      1  1 0 0 1  

 

 
5. Computational results  
 

Based on six well-know incidence matrices published in the literature, the performance of the 
proposed approach has been evaluated using the multiple performance criteria discussed in Section 
2.3. Table 4 summarizes the special features and the sources of these data sets.  
 

Table 4 
Test cell formation problems  

No. Size (machines x parts) N cells References 
1 5 x 7  2 Waghodekar & Sahu, 1984 
2 7 x 11 (example 1) 3 Boctor,1991 
3 8 x 20 3 Chandrasekharan & Rajagopalan, 1986 

4 11 x 22  (example 2) 3 *Chan & Milner, 1982 
5 14 x 24 4 King, 1980 

6 16 x 43 5 
*King  & Nakornchai,1982  
(introduced by Burbidge en 1973) 

*Literature problem involving exceptional machines and exceptional parts (PEMP) 

Applying the proposed approach to these data sets yields to solutions shown in Eq 26 – 29    
 
Problem 1 (5 x 7) 
 
The result of applying the proposed approach to the problem 1 shown in figure 5, Eq. 26 and Eq. 27 
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Eq. 26 Solution of  PEPM for (5 x 7) problem 
 

M2 M4 M5 M3 M1 
P3 1 1 1   
P5 1 0 1   
P6 0 1 1   
P7 1 1 
P2    1 1 
P4 1 1 1 
P1 1 1 0  

Fig. 5 
Graphical illustration of the scatter plot for (5x7) 
problem 

Scatter plot (axis F1 and F2)
 PC= 85,63 %)
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P1 and P4 are exceptional parts 

Eq. 27 Solution with 2 cells for (5 x 7) problem 
M2 M4 M5 M3 M1 

P3 1 1 1   
P5 1 0 1   
P6 0 1 1   
P1 1 1 0 
P2    1 1 
P4 1 1 1 
P7 1 1  

 
Problem 6 (16 x 43) 

This example consist is a practical engineering situation. A 16-machines and 43-part 
problem (King & Nakornchai, 1982) is considered. 
 
  Fig 7.a Graphical illustration in scatter plot without 
exceptional machines for (16 x 43) problem 

Scatter plot ( F1 and  F2) PC =  42,38 %
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Fig 7.b 
Graphical illustration of machines in scatter 
plot 

Machines (axis F1 and F2) PC= 37,74 %)
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The result of applying the proposed approach to the problem 6 is shown in figure 7.a, figure 
7.b, Eq. 28 and Eq. 29. Parts 2, 7 and 9 are exceptional parts and machine 6 and 8 are exceptional 
machines. The solution is shown in table 13. This matrix is identical to that given by Chan & Milner 
(1982) and by Cheng C. H. & all (2001). Chan & Milner (1982) require the user to visually examine 
the immediate matrix and to manually identify exceptional machines and exceptional parts. Cheng 
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C. H.  & all (2001) proposes heuristic branching rules which mathematical algorithm must be 
programmed to identity exceptional machines and exceptional parts. The proposed procedure 
approach is completely based on graphical analysis that requires only a factor analysis available on 
most statistical packages including XLSTAT, S-PLUS, SPSS and authors.  
 

Eq. 28 Solution PEMP 
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P4 0 0 1 0          0 0
P10 0 1 1 1          0 0
P18 0 0 1 1          0 0
P28 0 1 1 0          0 1
P32 0 1 1 1           1 0 
P37 1 1 1 1          1 1
P38 0 1 1 1          0 1
P40 0 1 1 0          1 0
P42 1 1 1 1           1 0 
P34     1 0        1 0
P35     1 1        0 0
P36     1 0        0 0
P6     0 1         1 0 

P17     1 1         1 0 
P3       1 0 1     0 1

P11       0 1 0     0 1
P20       1 0 0     0 1
P22       0 1 0      0 0 
P24       1 1 1     0 1
P27       1 1 0     0 1
P30       1 1 0     0 0
P13          1 1   1 0
P25          1 1   0 0
P1          1 1   1 1

P12          1 0   1 1
P26          1 0    0 0 
P39          1 0   1 0
P31          1 0   0 1
P5            1 1 1 0 0

P14            1 1 1 1 0 
P19            1 1 1 1 1 
P21            1 1 1 0 1
P23            1 1 0 1 1
P29            1 1 0 0 0 
P43            0 1 1 1 1 
P41            0 1 1 0 1
P8            0 1 0 1 1

P15            0 0 0 1 1
P16            0 1 0 0 0 
P33            0 1 1 1 0
P2 0 1 1 1  1        1 1
P7 0 0 0 1 1         1 0
P9       1     1 1 0 0 1  

Eq .29 Solution with 5 cells  
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P2 0 1 1 1 1 1    1
P4 0 0 1 0      

P10 0 1 1 1      
P18 0 0 1 1      
P28 0 1 1 0     1        
P32 0 1 1 1    1         
P37 1 1 1 1 1 1    
P38 0 1 1 1  1    
P40 0 1 1 0    1         
P42 1 1 1 1    1         
P5 1 1 1 0 0    

P14 1 1 1 1 0    
P19 1 1 1 1 1    
P21     1 1 1 0 1        
P23 1 1 0 1 1    
P9 1 1 0 0 1 1   

P29 1 1 0 0 0    
P43     0 1 1 1 1        
P41 0 1 1 0 1    
P8 0 1 0 1 1    

P15 0 0 0 1 1    
P16     0 1 0 0 0        
P31 0 0 0 0 1    1
P33 0 1 1 1 0    
P3  1 1 0 1 

P11         1 0 1 0     
P20         1 1 0 0     
P22   0 1 0 
P24  1 1 1 1 
P27         1 1 1 0     
P30          1 1 0     
P34 1     1 0
P35      1 1
P36      1 0
P6        1     0 1   
P7 1 1     1 0

P17 1     1 1
P13 1     1 1
P25               1 1
P1 1 1    1 1

P12 1 1    1 0
P26      1 0

 

 

Table 5 
Summary of proposed approach results and the best-known results 

Proposed approach results Best-known results  
No. Size  N 

cell PE MU GE PE MU GE Recent Reference 
1 5 x 7 2 12.50 82.35 85.61 12.5 82.35 85.61 Wang, 2003 
2 7 x 11 3 09.52 76.00 86.10 09.52 76.00 86.10 Stawowy, 2006 
3 8 x 20 3 14.80 100.00 95.80 14.80 100.00 95.80 Albadawi & all, 2005 
4 11 x 22 3 14.10 80.72 86.90    Cheng C. H.  & all, 2001 
5 14 x 24 4 03.28 68.60 83.90 03.30 68.60 83.60 Wang, 2003 
6 16 x 43 5 22.22 63.22 79.00 23.01 64.23 79.40 Chan, F.T.S & all, 2005 
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Chan & Milner (1982) and Cheng C. H.  & all (2001) give the same result of general GT 
problem which involving exceptional parts and exceptional machines which presented in Eq. 28. 
However, the proposed approach beyond this result. The third phase allow final cell formation 
problem to do the best assign of those exceptional machines and exceptional parts. Applying this 
additional phase to the solution under consideration yields the final cell design in Eq. 29 with 5 
cells.  

Table 5 summarizes the results of comparative study and the best-known results in the recent 
literature. Basically, the results of CF problem are the same as those found in recent literature such 
as Cheng C. H.  & all, 2001; Wang, 2003; Albadawi & all, 2005. These recent researches were 
compared with former methods like rank order clustering (ROC, King 1980), direct clustering 
algorithm (DCA, Chan & Milner 1982), bond energy algorithm (BEA, McCormick & all 1972), 
single linkage clustering (SLC, McAuley 1972), GRAFICS method (Srinivasan & all 1990) and 
others. These recent researches demonstrated to be better in comparative studies. Therefore, it could 
be said that the proposed approach is valid. It is more flexible and able to get correlation 
information between each machine and part. 

 
6. Final conclusion  
 

In this paper, a new approach is presented for part-family and machine-cell formation. The main 
aim of this article is to formulate a correlation analysis model to generate optimal machine cells and 
part families in GT problems. The correlation matrix for similarity machine and part is used as 
similarity coefficient matrix. Principal Components Analysis (PCA) method is applied to find the 
optimal machine and part elements. Exceptional machines and parts are easily assigned to cells 
using cluster algorithm. 

The proposed method is a logical and systematic approach to the design of cellular 
manufacturing systems which makes it easily portable into practice, is that it uses PCA, which are 
available in many commercial software packages and it can be performed on most statistical 
packages including SAS (1985), SPAD (1995), SPSS (1999), S-PLUS, XLSTAT, and others. 

 Computational experiences show that the proposed approach does not require long computing 
times and gives the same solution than which proposed in recent literature. Although the present 
approach focuses on the compactness of formation solution only, it can readily accommodate other 
manufacturing information such as production volume, sequence and alternative routings. 
Extending the proposed approach to this direction is our interesting research perspective. 
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