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Abstract
We describe algorithm to find higher order approximations of stochastic rational
expectations models near the deterministic steady state. Using matrix representation
of function derivatives instead of tensor representation we obtain simple expressions
of matrix equations determining higher order terms.
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Keywords: perturbation method, DSGE models

1 Introduction

We describe analyze a perturbation method for computing asymptotic approximation
of solution to general stochastic rational expectations models around their steady state
described for example in Jin, Judd, (2002).

The problem we analyze can be informally written as 0 = Fy f(zi—1, ¢, X411, 061413 F),
where x; is a vector of endogenous variables, ¢; is a random shock, ¢ is a small parameter,
and E denotes expectation operator. We are looking for solution z; = R(u, o€, 0) where
uy is a state variable with dynamics given by w¢11 = P(ut, 0€141,0). This approach is more
general than specifying a priori state variables, since in general case state variables cannot
be easily determined or there may exist no solutions dependent on given state variables. The
basic idea of the perturbation method is to find asymptotic expansion of functions R and
P around known solution of simpler problem, generally around steady state. We analyze
only regular perturbation problems in which solution to the model does not qualitatively
changes when ¢ approaches 0. Many macroeconomic models can be solved using regular
perturbation methods but not all, for example models with incomplete asset markets.

The procedure of finding solution is quite standard and is based on successive differ-
entiation of function f with respect to state variable © and parameter o and then using
implicit function theorem. The method proposed by Judd is based on tensor calculus and
requires huge amount of symbolic computation in order to find matrix equations determin-
ing solution. Moreover complexity of these symbolic computations growth exponentially
with perturbation order.

In this paper we propose using matrix representation of higher order derivatives. This
allows us to find simple expressions for function derivatives and matrix equations deter-
mining solution irrespective of perturbation order. In this paper we only derive matrix
equations determining approximation of functions R and P up to any order.

The rest of the paper is organized as follows. Section 2 states the problem. Section
2 presents function differentiation rules using matrix representation of derivatives, intro-
duces generalized Kronecker products and summarize their basic properties. This section
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is based on Kowal (2007). Section 3 describe the model we analyze. In section 4 we find
conditions determining approximation of solutions R and P. In sections 5-6 we represent
these conditions as matrix equations. Finally section 8 concludes.

2 The flattered tensor calculus

Let as consider smooth functions 23 0 — X () € R™*"™, Q3 0 — Y (0) € RP*?, where
Q C R is an open set. Functions X, Y associate a m x n and p x ¢ matrix for a given vector
of parameters, = col(61,0s,...,0;). Let the differential of the function X with respect to
0 is defined as

X [ox ox ox |
69 - 601 602 e 80k

for 0X/00; € R™*" §=1,2,... k.
Proposition 2.1. The following equations hold

1. Z(aX)=aZ%

o) X Y
2 2(X+Y)=25 4 2

. BXxY)=Ex (L oY)+ X x L

where a € R and I, is a k x k dimensional identity matriz, assuming that differentials exist
and matriz dimensions coincide.

Proof. See Kowal (2007). O

Let us now turn to differentiating tensor products of matrices. Let for any matrices X,
Y, where X € R™? is a matrix with elements z;; € R for i =1,2,...,p, j = 1,2,...,q.
The Kronecker product, X ® Y is defined as

.7311Y tee xqu
XRY = : :

Tp1Y o xpgY
Let introduce the generalized Kronecker products

Definition 2.2. Let X = [X, X5,... X,,], where X; € RP*? § =1,2,... . misapxgq

matrix is a partition of p x mq dimensional matrix X. Let Y = [¥1,Y5,...Y},], where
Y, e R"™5 4 =1,2,...,nis ar X s matrix is a partition of r x ns dimensional matrix Y.
Then

XY =[XoY,...,XoY,]

[

Xory =[X;®LY,..., X, ®! Y]

X ®1 ,ma,. tn; Y = [X ®m2,..;,mg }/1’ . X ®m2 ..... mg Ynl]
[

ni ,ng, n2,

X ®m1 MayeoMs YL [ X ®1 UERRUS Xm1 ®1 M2,...,Mg y]

Mn1,Mn2,...,MNs n1,n2,...,Ns n1,Mn2,...,Ns
assuming that appropriate matrix partitions exist.

Proposition 2.3. The following equations hold

1. Z(XeY)=% oYy +X o 2
o m me o) k,mi,...,mg 1,my,....ms 9
2. W(X ®7111,7 s Y) - 07{0( ®17n11,~-~7ns Y+ X ®kvn117”-~,ns 87)0/



Proof. See Kowal (2007). O

Proposition 2.4. Let « is a scalar function of 6 and X is a matriz valued function of 0,
X (0) € RPX9. Then

0 0X O

Proof. See Kowal (2007). O
Let f is a matrix valued function given by
RP >z f(z) e R™*"

and ¢ is a vector valued function Q 3 0 — g(0) € RP. We can define a function composition

Q30— f(g9(0)) = f(x)og(0) € R™*™.
Proposition 2.5. The following condition holds

0 Of (x) 99(0)
S5l @ eg(0) = | %5 0 g(0)| x (52 @ 1)
Proof. See Kowal (2007). O

We need additional properties of the generalized Kronecker products
Proposition 2.6. For any matrices A, B, C, D
(AB) @yttt (CD) = (A® C) x (B @y D)

assuming that products AB and CD, as well as Kronecker products exist.
Proof. See Kowal (2007). O
Proposition 2.7. For any matrices A, B, C

Ayl (BeO)=(Aey i B)eC
assuming that Kronecker products exist.
Proof. See Kowal (2007). O
Proposition 2.8. Let A is m x n matriz. Let B is p X ¢ matriz. Then

AL B = (In®,1,) x (B® A)

Proof. See Kowal (2007). O
Proposition 2.9. Let A is m x n matriz. Let B is p X ¢ matriz. Then

A®B= (I, ®I,) x (B® A) x (I, ®% 1))
Proof. See Kowal (2007). O
Proposition 2.10. Let A is m X n matriz. Then

I, (AR 1) = (I, ®) Iy) x (A® I,,)
Proof.
Loy (A1) = (L) A) @ I, = (I, 8} I) x (Ag L)),
= (I @ In) @Iy x (A I, @ 1)) = (I, @, Ing) X (A Iy)



3 The problem

Consider a model
0=FE f(Ty—1,%¢, T41,0€641; F) (1)

where #; is a vector of endogenous variables, ¢, € R¥ is i.i.d. random variable, o € R is a
small parameter, and E denotes expectation operator. In this way we allow for existence
terms containing expectations of functions of variables under information sets in any period.
Suppose that &* satisfies 0 = E; f(Z*,2*,%*,0, E') and suppose that we have expansion of
E.f(Zt—1,Tt,Tt41,0€41, E) in the Taylor series around %1 = &y = T441 = " and 0 = 0
up to order q. Observe that we can represent this Taylor series as

0=Ayz + Aoxyy1 + AsEyxy11 + oVe + Bixy, @ 2, + o4 (2)

after appropriate redefinition and expansion of the set of endogenous variables. The term
04 contains derivatives of the function f of order higher than q. We are looking for solution
in the form

xt = R(ug, 0€1,0) us = P(us_1,0€;,0) (3)
where u; € R" is a state variable. Additionally we require
R(0,0,0)=0 P(0,0,0) =0

We approximate functions R and P expanding these functions in asymptotic series

p
R(ug, 0€p,0) ~ ZRi X ®vt
i=1 i

P
P(ut_1,0€t,0) ~ E P; x ®wt
i=1 i

where vy = col(ug, o€, 0), wy = col(u—1,0€,0) around u — 0 and o — 0. If we are looking
for approximation of order p < g, then the term o, can be ignored.
4 Matrix equations

We can express functions R, P as

R(ut,0€,0) = R(v) o fe, (ug,0)
P(ut,0€t,0) = P(v) o fe,(us,0)

where v = col(us, o€, 0) and

Ut
fﬁt (ut? U) = O€t
o
Let g; = col(ug, o). Then
o In On71
aﬁfﬁt (ut7 U) = Ok,n €t = M(Et)
qt 01 n 1

and for any k > 0 0% /9q¢ f., (us, 0) = 0.



Let Q(ut,0€:,0) = R(ut,0€t,0) ® R(ug,0€t,0). Then Q(ug, 0er,0) = [R(v) ® R(v)] o
fe,(qr). Let S(ug,0€s11,0) = R(ugy1,0€t41,0) = R(P(ut, 0€141,0),0€:41,0). Observe that

S(ut,o€t41,0) = R(v) o g(w) o fe,, (q:) = S(w) o fe,,, (ar)
where w = col(ut, o€441,0) and
P(Ut,06t+170')

g(ut70€t+1,0) = O€t41
o

Substituting (3) to (2) yields 0 = T'(us, €, €t41, 0), where

T(Ut,ﬁt,€t+1,0') = AlR(Ut,UEt,U) + AQS(Ut,UEt+1,U) + AgEtS(Ut,UEt+1,U) + UVEt

+ B1Q(u, o€, 0) @)

Differentiating function T' m times with respect to ¢; yields

8m m
T (g, €4, €041,0) = AIWR(utvo_eta )+A26 —S(ut, 0€441,0)
t
5)
+A3Eta mS(Ut,UGH_l, )+Vm X ®M €t +Bla mQ(ut,JEt,J)

where T,,, = %T, V™ =0 for m >2and V! =[0,,,V,0,.1].

Proposition 4.1. For any p > 1 and any differentiable function F : RHF+L — Rmaxnz,
where ma, N are any positive integers

P op
o F@ e fla) = | 5500 of(ar) x &)

Let Ry (v), Py(v) denotes respectively 0% /0v* R(v), 8% /ovk P(v). Proposition 4.1 implies
Proposition 4.2. For anyp > 1

opP

%ﬁmmwFWMNMMX®M@

p

We are going to find derivatives of Q(u¢, o€;, o) with respect to ¢;. Let for any p,q > 0,
Qp.q(v) = Rp(v) @ Ry(v). Then Q(uy, 06, 0) = Qo,0(v) o fe(qr). We have

Proposition 4.3. For anyp>1
or or
a7 Fop Qut, 0, 0) =[5 2Qoo(v)] © fe (gr) x Q) M(er)

P

Qo 0 Z Qip-i(v) x TY
where F(l) = F% = Intk+1, for any p > 1, Fél = Fi—&-l =0, and foranym =1, 0<p <
m+1,¢=0
F;n+1 = In+k+1 ® P;n,1 + Ap,mfp X (InJrkJrl ® P;n)
AD = Itny1gmyp D14k Lns 14kt

and A* | =0



Similarly for derivatives of the function S

Proposition 4.4. For anyp > 1

;;)S(ut70'€t+170') = [%S( ) f€r+1 qt ®M Et-‘rl
P a ,
D 5(w) = Y- [Ri(w) 0 g(w)] x A(w)

i=1

where Aj(w) = P*(w), for any p > 1, AP, (w) = Af(w) = 0, and for any m > 1,
1<p<m+1

0

Artl(w) = P*(w) @ AF_; (w) + %A’;( w)
with
0/0viP(w) 9/0vaP(w) 0/0usP(w)
P* (w) = Ok,n Ik 0
Ol,n 0 1

and any k > 1.

o=

7P*
Ok+1,n

Dok ] X Pyi1(w)

Proof. The first equation results from proposition 4.1. Observe that dg(w)/0w = P*. For
k =1 we have

3 5tw) = [Ra(v) 0 glw)] x A g(as) = [Ra(v) 0 gfw)] x Al(w)

Let the proposition holds for any 1 < p < m, where m > 1. Then

8m+1 m m+1 a
gmrio (W) = Y [Ris1(v) 0 g(w)] x (P*(w) ® AT"(w)) + Y [Rs(w) 0 g(w)] x 02 W)
=0 1=
m—+1

_ Z Am+1(w)

O

Let v is a finite sequence containing elements 0, 1, k, let || denotes empty sequence, let
[v1, V2] denotes concatenation of two sequences, let |v| denotes length of the sequence v.
Let for a function F(wq,ws,...,wy), where w; € R™ is a vector, and for a sequence v of
length p, F,(v) denotes

0 0
Fv(wo,UJl,...,’LUk) = aﬁql...aF(wo,uﬂ7...,wk)
P

where ¢; denotes variable w; if i-th element of v is i.

Proposition 4.5. Let v is a sequence of length p containing elements 0,1,..., k. Then
P
F,(wo,...,wg) = WF(U/O, cowE) X Jy



and

31’
7 Fulwo, o own) X Jy = 5P, )

wP
lvl=p
where w = col(wo, ..., wy), Jy =1, and fori=0,...,k
J[i,v] =J ® Jy
where J' is a matriz selecting variable w; fromw, given by J* = col(Ong n;y- s Inys+ -+ s Ong oy )-
Proof. Let F},, denotes a‘ifp F(w). For sequence of length 0 Fjy = F' = Fy, hence proposition
holds for p = 0. Let the proposition holds for sequences of length m < p, p > 1. Let v
denotes any sequence of length m and i takes value from {0,...,%k}. Then
0 0 0
F[i.,v]:iszi(FmXJv):( Fm)X(Ini®Jv)

Since OF,, /0w = [0F,,/0wy,...,0F,,/0w], OF,,/0w; = Fpni1 x (J'® I,m), where n =
>; ni. Hence

F[z',u] = Fm+1 X (Jz ®Inm) X (In1 & Jv) = Fm+1 X Jz & Jv

since J, = Iym X J,.

Let vj,... vy are distinct sequences of length p, where k is a number of sequences of
length p, let J = [Jy,,...,Ju,] and F' = [F,,,..., Fy,] ow. Then F(w) = aaij(w) x J.

The matrix J is orthogonal and square, hence B?ZJPF(w) = F(w) x J' = F,,(w) x J), +
st By (w) X Jp, = Zm:p Fy(w) x J). O

Now let v denotes any sequence containing elements 0 and 1. Let n(v), m(v) are
respectively number of zeros and nonzeros elements in the sequence v. Let element 0 in the
sequence v denotes variable u; and element 1 denotes variable o.

Equation T'(u¢, €, €,41,0) = 0 must hold for any u., €, ;41 and o. Hence we obtain a
set of equations

OZTm(O7Et76t+170) X Jv (6)

for any €, €41, any sequence v of length m and for any m which is equivalent to

0= (A1Rn(0) + B1Qm(0) + V™) x Q) M(e1) x T,
+ A25,(0) x Q) M(er11) x Jy + AsSm(0) x E{) M (et 1)} x J,

Proposition 4.6. For any sequence v of length m

Q) M(e) x Jy =My, x Q) I @ (X) Vi(er)

n(v) m(v)

with My =1 and
M[O,v] = Vb &® Mv M[l,v] = Intk+1 ®[11(v) Mv

where q(v) = n"®) x (n+k + 1)) Vy = col(I,,, 0p 1), and Vi(e;) = col(0,.1, €, 1).
Proposition 4.7. Let Ny = col(0y44.1,1), N1 = col(0y, g, I, 01,%). Then

Ru=Y ¥ mxQ«

=0 |v|=p,m(v)=i

where v is a sequence containing elements 0 and 1, H[lo] = N, H[ll] = Ni, and for any
sequence v of length p
Iyl = No ® I1F iy = M O I



5 Deterministic terms

Assume that €; = €;41 = 0. Then we obtain a sequence of problems

0= (AlRm(O)+BlQm( )+ (Ag + A3)Son( )xM x ®I EE A

m(v)

+ A38,,(0) x M, ><<®I © B{Q) Viles1)} - ®I ®®V1 )

n(v) m(v) n(v)

(7)

If v is a sequence containing only elements 1, then My &), Vi(€) = &) Intht1 X
X, g )Vl( €). Let us concern only sequences of the form [0,...,0,1,...,1], called basic
sequences. For such sequences M, = ®n( Vo ® ® Iy k+1. Matrix S;,,(0) for m =1
takes the form

1
S1(0) =) " Ri(0) x A7"(0) = Ry(0) x P*(0)
i=1

and for m > 2

m—1

Sm(O)ziRi(O)xAT(O):Rm(O)><®P*(O)+R1(O)VO><P +ZR ) x A™(0)

m
Proposition 5.1. For any basic sequence v of length m

on()
Ry (0) x Q) P*(0) x M, = oy B (0) % Q) (0/0v1P(0)) @ ® P*(0

m a1]1 n(v)

Proposition 5.1 implies that we need to know derivative of R(vy,ve,vs) with respect to
vy to find solution to (7) for sequences v containing at least one element 1.
Assume that m(v) = 0. Then equation (7) for m = 1 reduces to

0= A1 X Rl(O)Kno + (A2 + A3) X RI(O)Kno X Pl (O)KUO
and for m > 2
0= A1 R, (0) Ky, + (As + A3) Ry (0) Ky, ®P1 VKo + (A 4+ A3)R1(0)Vi x Pp(0) K,

m—1

+ B1Qm(0) x Kyy + > (Az + A3)Ri(0) x AT (0) x Koy,

=2

where K, denotes matrix selecting derivative of functions of v with respect to sequence 79
of length m containing only zeros. This is an equation with respect to R,,K,, = X and
P,K, =Y. Observe that last two terms are already known. Hence, we obtain matrix
equation

0=A41X+ (A + A3) XY, for m = 1;
0=A4:1X+ (A2 + Ag)XCl + CY + C3, for m > 2.

where C; = ®, Pi(0)K,,, Ca = (A + A3)R1(0)Vo, and C3 = B1Qun(0) K,y + 375" (Aa +
A3)Ri(0)AT(0) Ky, -



6 Stochastic terms

Collecting terms containing €; and €;1 we obtain two sets of equations
- (AlRm( )+ BiQm(0) + vm) & (e)

0= AQ m ®M €t+1

for any sequence v of length m containing at least one element 1. Let v is a basic sequence.
Then

0= (AlRm( ) + B1Qn (0 +vm) RV R Vile)

n(v) m(v)
0—A2 'm ®%®®V1 6t-‘,—l
n( m(v)
Let us concern the second equation. We have
m(v)
0=>»" > A28,(0) x (R Vo @ TI) x (R In @ R) e1)
=1 |ul=m(v),m(p)=i n(v) n(v) @

where p is any sequence containing elements 0 and 1. Since this equation must hold for any
€141, we obtain a set of equations

0= > A35,(0) x (Q) Vo @ 1)) x (R) In @ R) e1) (8)

[pl=m(v),m(u)=i n(v) n(v) i

for 1 <i < m(v).

There are many terms of S,,(w) which contribute to the same derivative with respect
to o and uy, since changing of order of differentiation with respect to wy and ws contribute
to the same derivative of S(w) o f,(q:) with respect to ¢;. Equations (6) do not uniquely
determine R,,(0) and P,,(0) since R,,(0) and P, (0) contain respectively ¢ x (n + k +
1)™ and n x (n + k + )™, where ¢ is a number of endogenous variables, but there are
only ¢ x (n + 1)™ equations. We need to impose additional restrictions, which guaranties
symmetry of derivatives P,, and R,,. These restrictions can be imposed assuming that not
only conditions (8) are fulfilled but also

0= A25,(0) x (Q) Vo @ T7) x (X In @ ®et
n(v) n(v)
for 1 <14 < m(v) and any sequence p satisfying |u| = m(v), m(p) = ¢ and for any €;4;. In
this way we obtain set of matrix equations
0 = A35,,(0) x (Q) Vo @ TI™) (9)

n(v)

for any basic sequence v of length m, m(v) > 0, any sequence p satisfying |u| = m(v), and
m(p) > 0.
We need to restrict the set of matrix equations, since we do not know derivatives of

R(w) and P(w) with respect to ws.

Proposition 6.1. Consider expression

x () Vo @ 1))

n(v)



where v is a basic sequence of length m and p is a sequence of length m(v). If sequence u
contains at most p elements 0, then expression ) does not depend on deriwatives of R, (0),
P,(0) for sequences n of length m containing more than p elements 2.

Let concern set of equations of the form 0 = A5S,,(0) x €, where

= M, ><®I ®®N1

m(v)

for any sequence v of length m, m(v) > 1. This set of equations contains all equations
for sequences described by proposition 6.1 and its permutations. By the proposition 6.1
Sm(0) x 2, does not depend on derivatives of R(w) and P(w) with respect to ws. Let
is a matrix obtained by horizontally concatenating all matrices 2,,. Finally we obtain two
matrix equations for m =1

0

0=A,—R(0O)+V
dwy
d d d
= Ay— i Ap—
0 26’[1)1 R(O) X 9w, (0) + 28102 R(O)
and for m > 2
0=A1Rn(0) x Q@+ B1Q.»(0) x Q
m—1
0= A2Rpn(0) x Q) P*(0) x Q@+ A2R1(0)Vo x P (0) x @+ > A3 Ri(0) x A*(0) x
=2

Observe that  is an orthogonal matrix. Let €2 is an orthogonal matrix, such that [Q2, €] is an

invertible matrix. Then [Q, Q]! = col(Q', Q). We have R,,(0) = R, (0)[Q, Q] col (', Q) =
R (0)QQ + R,,(0)QQ. The matrix R,,(0)Q contains derivatives other than selected by the
matrix €, i.e. deterministic terms found in previous step and derivatives with respect to o,
which by the proposition 6.1 can be ignored. Let R denotes matrix of the same dimension
as R, (0) containing all found derivatives and with other derivatives set to zero. Then

0= AlX + BlQm<0) x Q

0= Ay X x Q’®P* 0)2+ Ay R1(0)Vo x Y + AR P*(0)2 + > AsRi(0) x AT(0)Q

where X = R,,,(0) x Q, Y = P,,(0) x  are matrices to find.
Now we have found all derivatives of R(w) and P(w) with respect to w; and ws.

7 Other terms

Suppose that we already know derivatives of R(w) and P(w) with respect to wy, we, as
well as with respect to ws up to ¢ times, where ¢ > 0. We are going to find derivatives of
R(w) and P(w) with respect to w3 g + 1 times. Let us analyze set of equations (7). Let v
is a base sequence of length m containing elements 0 and 1. We have

TEAgSm(O)xMUx(®In®E{®V1(et+1 - R @(g)v1 )

n(v) m(v) n(v)

m(v)
-y S A38(0) x R Vo T x ®I ® E{® €}
i=1 |ul=m(v),m(pn)=1 n(v)

10



Let v is any basic sequence, such that m(v) = ¢+ 1. Then for any 1 < i < ¢+ 1 and
sequence p satisfying |u| = ¢ + 1 and m(u) = 4, we have n(u) = ¢+ 1 —i < q. Hence, by
the proposition 6.1 expression T' contains derivatives of R(w) and P(w) with respect to ws
of order at most g and value of expression T is already known.

Let us consider set of equations (7) for sequences v of length m satisfying m(v) = ¢+ 1.

Let Q) = Myx® () In @@ (o Vi(0) and let 02 = M, x (@MU) L®E{® 0 Vales1)}—
®n(v) I, ® ®m(v) Vi (0)) Let Q! and Q2 are matrices obtained by horizontally concate-

nating respectively matrices Q2 , Q2. Then we obtain equation

0=A;Rn(0)Q + (A3 + A3)R ®p* + (Ay 4 A3)R1(0)Vi x P, (0)Q
m—1
+ B1Qm(0) x Q' + A38,,(0) x Q% + > (Aa + A3)R;(0) x A7"(0) x Q'
=2

which is equivalent to

0—A1X+(A2+A3XX ®P* A2+A3)R1( )‘/iXY

m—1
+ B1Qm(0)Q" + A38, (0% + ) (Az + A3)Ri(0) x AT'(0)Q" + (A2 + A3)R(X) P*(0)Q!
=2 m

where X = R,,,(0)Q!, Y = P,,(0)Q! and other matrices are known. The matrix R denotes
matrix of the same size as R,,(0) containing all found derivatives in previous steps and with
other derivatives set to zero. This equation determines derivatives of R(w) and P(w) with
respect to wy and ws.

Let consider again the set of equations (9). We need now to find derivatives of R(w)
and P(w) with respect to wy and ws. In this state we do not know derivatives of R(w)
and P(w) with respect to w3 of order at least ¢ + 2. Using again proposition 6.1 we choose
selecting matrix as follow. Let (), ,, is defined as

Q= M, x Q) I, @ T4
n(v)
where v is any sequence of length m, m(v) > 1, and p is any sequence of length m(v),
satisfying n(u) = ¢+ 1. Then A3S,,(0) x €, , contains derivatives of R(w) and P(w)
with respect to ws of order at most ¢ + 1. Let  is a matrix obtained by horizontally
concatenating matrices €2, ,. In this way we obtain equations

0=A1R,,(0) x Q+ B1Q»(0) x Q
m—1

0= AR, ( ®P* x Q+ AyR1(0)Vo X P(0) x Q+ Y A3R;i(0) x A7M(0) x Q
=2

observe that the matrix €2 is orthogonal, thus these equations are equivalent to
0=A1X + B1Q,(0) x ©

m—1

0= A X xQ’®P* ) X Q+ ARy (0)Vo x YV + ) A3 Ri(0) x A*(0) x ©

=2
—|—A2R><®P* (0) x Q

where X = R,,,(0) x , Y = P,,(0) x Q, R is a matrix of the same size as R,,(0) containing
all found derivatives in previous steps and with other derivatives set to zero.
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Having found matrices X, Y, the ¢ + 1-th step is finished. Repeating this procedure m
times we obtain all derivatives of R(w) and P(w) with respect to ws, hence all elements of
matrices R,,(0) and P,,(0).

8 Conclusions

We have presented a method of finding asymptotic expansion of solution to stochastic
rational expectations models up to any order. We have obtained relatively simple represen-
tation of matrix equations determining solution, which allows for simple implementations.

The method presented in this paper has one important drawback. We base on second
order representation of nonlinear model, in which all terms of order higher than 2 are
represented as second order terms, for example r ® x ® z is represented as y ® x, where
y = x ® x. This simplifies equations but expands dimension of vector of endogenous
variables, hence computational cost. In the worst case dimension of vector of endogenous
variables may growth exponentially with order of perturbation. However in standard DSGE
models this is not a serious problem, since generally higher order terms depends only on
few variables. Presented method can be applied to less restrictive representations but with
cost of more complicated derivation of matrix equations.
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A Proofs of propositions

A.1 Proof of proposition 4.1

Proposition. For any p > 1 and any differentiable function F : R*TF+L — RM2X12 yhere
Mo, Ny are any positive integers
9P
dqf

O Q)] s(a) x @M@

ovP
P

(F(v) o folar) = |

Proof. For p =1 we have

G (FW) 0 1a0) = [ FO)|of.la) x (- La) = [ F@)]of.la) x M

Let the proposition holds for any 1 < p < m, where m > 1. Then

anH—l 9 am
pqpr P 0 = 5 (g P Sl x @ M (o)
o /O™
= (avm F(v)o fe(qt)) X(Lnaky1 ® @M(e))

1o}
= (%F(v) o flar)) x (a%fe@t) & Iiniriym ) X i © Q) M(©))
=

am
W fth) ®M

m—+1

A.2 Proof of proposition 4.3

Proposition. For anyp >1

oP or
quQ(Ut,UGt,U) = [%Q0,0( o fe,(qt) ®M (€r)

QO 0 Z Q'L,p z >< Fp

where Ty =T} = Lyipi1, for anyp > 1, T =Th. | =0, and for any m >1, 0 < p <
m+1,¢g>0

F;n+1 = Ihipy1 ® 1";”71 + Ap)m,p X (In+k+1 & F?)
AV = Ity1qmye itk T 14kyon
and A* | = 0.

Proof. The first equation results from proposition 4.1. For p = 1 we have

0
55 @00(v) = Ri(0) @ R(v) + R(0) @441 Ra(v) = Quo(v) + Qo Z Qp1-p(v) x T,
Let the proposition holds for any 1 < p < m, where m > 1. For any 4,5 > 0

Qw( v) = Riy1(v) © Rj(v) + Ri(v) @411 Rja(v)

1
= Qit1,j + Qi1 X Iinp14k) @np14k Lnt14r)itr = Qiv1y + Qigr1 X Aij
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Then
am-{-l

“ 8
WQO o(v Z o0 Qim—i(v) X (Inqr+1 @ T7")
i=0

(Qiﬂ,mﬂ' + Qim—it1 X Ai,m7i> XLt @)

Il
ENiNgE

1 m—+1
= Qimtr-i X Tnirkr1 @I + D Qumgr—i X Nymi X (Ingiesr @)
i=0 i=0
m—+1

m—+1
Qi,m+17i X F,»

<
Il
=3

A.3 Proof of proposition 4.6
Proposition. For any sequence v of length m
®Met x Jy =My x Q) I @ R) Vi(er)
n(v) m(v)

with M[] =1 and
M[O,v] = ‘/0 ® M’U M[l,v] = In+k+1 ®;(v) M'u
where q(v) = (W) x (n+k+ 1)'”(“), Vo = col(Ln, Ok+1,n), and Vi(e,) = col(0p 1, €, 1).

Proof. We have

@) Mee) x Jo = (M(e) x Jo,) © - @ (M(er) © Ju, )

Let m = 1. Then M(e;)Jo = Vo x I, and M (e;)J1 = Inik41 X Vi(er). Hence proposition
holds for m = 1. Let the proposition holds for any p < m, where m > 1. Then for m + 1
and any v’ = [v1,v] of length m + 1

X=Q) Mer) x Jo = M(er)Ju, @ () M(er) x )
m+1 m

= M(Et)Jvl & (Mv X ®In o2y ® Vl(et))

n(v) m(v)
If v = 0, then
X=Vo@ (Myx Q) In® @) Vile)) = (Vo Mo) x Q) In® Q) Viler))
n(v) m(v) n(v)+1 m(v)
= Mg x Q) In® Q) Viler))

n(v’) m(v)’
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If v1 =1, then

X = InirVile) ® (My x Q) In @ (X) Viler))

n(v) m(v)
Z(In+k+1®M ‘/1€t ®®I ®®Vl Et
n(v)
= (In-‘rk-i-l oY MU) X (In+k+1 ®q(v) q 'u) ® I, ® ® Vl(et))
m(v) n(v)+1
:(In+k+1® ®I®®Vl€t ®I®®V1€t
m(v’) n(v’)
O
A.4 Proof of proposition 4.7
Proposition. Let Ng = col(0p4x,1,1), N1 = col(0p k, I%,01,5). Then
P
Rnw=Y ¥ mx®a
P =0 |v|=p,m(v)=1 i
where v s a sequence containing elements 0 and 1, H[lo] = Ny, H[ll] = N, and for any

sequence v of length p

Moy = No @ 119 iy =N @I

Proof. We have Vi(e;) = Ng+ Nie = H[lo] x 1+ H[11] X €, thus proposition holds for p = 1.
Let the proposition holds for any p > 1. Then

QRVile) = No+ Ny @ (> > ng®et)

p+1 =0 |v|=p,m(v)=i
p
=> Y (No®IP)x ®et+z Yo em)x Qe
=0 |v|=p,m(v)=i i=0 |v|=p,m(v)=i i+l
= Y mrxQRea+ Yoo M xRe
o] =p,m(v)=0 0 vl =p,m(v)=p+1 pr1
p
+ Z( POEER LSS H’[ﬁ]) x Qe
=1 |v|=p,m(v)=i |lv|=p,m(v)=i—1 i
p+1

:Z Z H;Z—’_l X®€t

=0 |v|=p+1,m(v)=1

A.5 Proof of proposition 5.1

Proposition. For any basic sequence v of length m
an(v)
x Q) P*(0) x M, =

WRMU)(O) Q) (9/0v1P(0)) @ K) P*(0

n(v) m(v)
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Proof. Let n denotes any sequence of length m containing elements 0, 1, 2, where element
0 denotes variable wy, element 1 denotes variable ws and element 2 denotes variable ws.
Then Rny(0) = 32,2, 24(0) x J. Observe that &), P*(0) x My = @,y P*(0)Vo ®
Q) P7(0) and P*(0)Vo = col(9/0v1P(0),0p,,01,n). Let n = [ir, ... inew),m2]. We
have J, = J" @ --- ®@ J"®) @ J,,. Hence J) x @,, P*(0) x M, = (J")'P*(0)Vp ® --- ®
(Jin@) P*(0)Vo @ (J}, % &1n(0) P7(0)). Observe that (J*)' P*(0)Vy # 0 iff i = 0. Hence

J:? X®mp*(0) X Mv #01&21 = :in(v) =0 and

x Q) P(0) x My = > Ry(0)x J; x Q) PVy@ (X) P(0)

m Inl=m n(v) m(v)
an(v) , .

= Z WRHQ (0) ®(3/8U1P J X ® P
Iz l=m(v) OV1 n(v) m(v)
an(v) , .

- W( > Ry, (0)75,) x @R)(09/0v1P(0)) @ (Q) P*(

1 [naf=m(v) n(v) m(w)

8n(v) .

= 7 Bn(w) (0) x Q) (0/0v:1P(0) @ () P*(
81}1 n(v) m(v)

A.6 Proof of proposition 6.1
Proposition. Consider expression
x (Q Vo @ I ))
n(v)

where v is a basic sequence of length m and p is a sequence of length m(v). If sequence u
contains at most p elements 0, then expression @) does not depend on derivatives of R, (0),
P,(0) for sequences n of length m containing more than p elements 2.

Proof. We have

x Q) P*(0) x Q) Vo @ I

n(v)

onw)
81}1 n(v) m(v
o)
- Z — iy Fona (0) X ®(5/501P ® (Jy, x ® P*(0) x IT"))
n2[=m(v) 8’1}1 n(v) m(v)

where 72 is any sequence containing elements 0, 1,2. If m(v) = 0, then T' does not depend
on derivatives of R(w) with respect to ws. Let m(v) > 0. Let u = [p1,..., ()]s 12 =
M- Nmw))- Then T =37~y Ty, where

an(v)
Ty, = WRW (0) x Q)(0/0v1P(0) @ Q1 @ -+ @ Q..
1 n(v)

where Q; = (J") P*(0)N,,. Suppose that p; = 0. Then (J?)'P*(0)Ny = 1 and T may
depend on derivatives of R(w) with respect to ws. We have also (J2)"P*(0) Ny = 0. Suppose
that there are at most p elements of p equal 0 but at least p + 1 elements of 7, equal 2,
such that 75, does not vanish. Then there must exist index 4, such that n; = 2 and p; = 0.
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But then @; = 0, and T, = 0. Hence and T" does not depend on derivatives of R(w) with
respect to ws of order higher than p.

Observe that Vy = J is a matrix selecting vector w; from vector w = col(wy, wa, w3)
and N; = J! is a matrix selecting vector ws from w. Hence ®n(v) ®H,T(U) = Jy, where nn =
[0, 0,71, - s Nnu)], where m; = 2if p; = 0, and m; = 1if p; = 1, and P, (0) @, ®HZI<U) =
P,,(0) x J,;, does not contain derivatives with respect to ws of order higher than p. Rest of

terms of S,,(0) are constant matrices. O
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