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Abstract. Abandoning the oft-presumed common prior assumption, partitioned type spaces 

with disparate priors are studied. It is shown that in the two-player case, a unique 

fundamental pair of priors ),( 21 pp  can be identified in each type space, from whose 

properties boundaries on the possible ranges of expected values under common knowledge 

can be derived. In the limit as 1p  and 2p  approach each other, 21 ppp ==  is a common 

prior, and standard results stemming from the common prior assumption are recapitulated. 

It is further shown that this two-player fundamental pair of priors is a special case of the n-

player situation, where a representative n-tuple of fundamentally associated priors 

),...,( 10 −npp  can be selected, out of at most 1−n  such n-tuples, to play an analogous role. 

JEL Classification Numbers: C70, D82, D84. 

 

 

1. Introduction  
 

1.1 The Common Prior Assumption 

 

The common prior assumption (CPA) is, in a sense, one (mathematically rigorous) 

answer to the age-old philosophical question ‘how can reasonable and honest individuals 

come to disagree?’ The CPA, as widely adopted in much of economics, game theory and 

decision theory literature, responds to this question via what has come to be called ‘the 

Harsányi Doctrine’, namely the position that all women and men are ‘created equal’ with 

respect to probability assessments in the absence of information – hence the term 

common prior – and all differences in probabilities should therefore, in principle, be 

traced to asymmetries in information received over time. 

 

It is difficult to over-state the pervasiveness of the common prior assumption. It suffices 

in this regard to quote the words of Aumann (1987), which still hold true despite the 

years that have passed since they were written:  

 

‘Common priors are explicit or implicit in the vast majority of the differential 

information literature in economics and game theory… The assumption is 

pervasive in the enormous literature on rational expectations, trading in 

securities, bargaining under incomplete information, auctions, repeated games, 

signalling, discrimination, insurance, principal-agent, moral hazard, search, 

entry and exit, bankruptcy, what have you. Citing the relevant papers would 

                                                 
1
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make our references longer than our text. Occasionally the definitions do pay 

lip-service to the possibility of distinct priors ip ; but usually this is quickly 

abandoned, and in the theorems and examples, one returns to common priors’.  

 

The CPA is also a crucial assumption under-pinning the celebrated ‘agreeing to 

disagree’2 paper of Aumann (1976), which proves a surprising theorem showing that it is 

impossible for private information to lead to divergent beliefs under conditions of 

common knowledge. Numerous authors have since extended this result and applied it to 

interactions between agents in various situations. The typical result is a ‘no-bet’ or ‘no-

trade’ theorem (cf. Milgrom and Stokey (1982), Sebenius and Geanakopolos (1983)) – 

agents who start with common prior distributions will never agree to engage in 

speculative trade based on differences in private information that they subsequently 

receive. As soon as it becomes common knowledge that they wish to trade, their 

expectations for the value of assets in question become identical. 

 

As Nau (1995) points out ‘these results are perceived to be a problem for the theory of 

speculative markets: asymmetric information alone cannot be responsible for the 

existence of large stock exchanges… It is a point which is crucial for the understanding 

of the very complex speculative markets we see nowadays’.   

 

The disconnect between no bet/no trade theoretical models and empirical reality may be 

due to several factors, among them risk-aversion issues, bounded rationality, lack of 

common knowledge, the cost of information exchange, and errors in information 

transmission and/or reception. In this paper, however, attention will be focussed solely on 

the common prior assumption.  

 

The CPA may, and has, been challenged (cf. Gul (1998) and Nau (1995) for only two of 

many examples) for being an assumption that is far too strong to be believed to apply in 

reality as much as one might suspect given how often it is assumed in models in the 

literature. The CPA is often accompanied by a story that postulates that the current 

probabilistic beliefs of players all stem from temporal Bayesian updating conducted 

under conditions of asymmetric information – a story that may be fictional and/or 

irrelevant to the model being studied. Furthermore, it supposes that if one goes back 

sufficiently far in this historical story, there was a point in time when all the players were 

in possession of the same information and were in full agreement on a prior probability 

distribution. Philosophically, one may object there never was a primeval moment in time 

when all individuals were in exactly the same state of information – everyone receives 

different sensory data and filters it through his or her own cognitive model of the physical 

and social environment from the moment of birth.  

 

Partly in response to this chorus of objections, efforts were conducted in the 1990s to 

seek out a full characterisation of when the CPA may and may not hold in a model. These 

efforts were crowned with success, resulting in at least two different characterisations. 

                                                 
2
 It should be noted that although the result is nearly always called ‘agreeing-to-disagree’, in actual fact it 

states precisely the opposite – under common knowledge and common priors the players can not agree to 

disagree. 
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Independently, Morris (1995), Samet (1998b) and Feinberg (2000), proved one 

characterisation, in which the presence or absence of a common prior depends on the 

absence or presence of at least one bet which seems, from each player’s private 

perspective, to guarantee him or her positive expected value. In addition to this, Samet 

(1998a) defined and proved a characterisation based on the convergence of ‘infinite 

iterated expectations’. Both of these characterisations will play major roles in this paper. 

 

Since then, however, there has been very little written on the next obvious question: 

given an apparent need for the systematic study of models that do not presume common 

priors, and the existence to hand of full characterisations of the common prior situation, 

what non-trivial results can be attained in models in which the common prior assumption 

is removed as an axiom, and instead disparate priors
3
 are taken into account? This paper 

represents an attempt to begin answering this question.   

 

We are especially inspired by Morris (1995) (and Bernheim (1986) before him) in 

seeking to illustrate that it is not the case, despite what is sometimes claimed, that 

‘anything can happen’ if the common prior assumption is relaxed. To the contrary, we 

strive here to show that even with disparate priors it is possible to derive interesting 

bounding theorems under conditions of common knowledge, and indeed to place 

common priors inside a broader context, so that – in line with a ‘correspondence 

principle’ – the standard results stemming from the common prior assumption re-emerge 

in the limit as disparate priors approach common priors.  

 

An important debt is also acknowledged to Samet (1998a) and Nehring (2001), for 

theorems appealed to, methods of proofs, and ideas and inspiration in general. 

 

1.2 Summary of Results 

 

The formal treatment of the beliefs of players is usually conducted by representing those 

beliefs by use of a partitioned type space. In this model, players are assumed not to know 

everything about the world, and instead to consider a set of possible states, only one of 

which is the true state. The players are not perfectly informed, and are unsure which is 

the true state. Each player’s knowledge is represented by an information partition, which 

divides the states into a number of mutually disjoint and exhaustive subsets. If two states 

are in the same partition, the player cannot tell them apart; instead, the player has a 

probability distribution on each partition, giving the likelihood of which state in the 

partition is the true state, under the assumption that the true state is located somewhere 

within that partition.  

 

It is convenient to summarise player i’s knowledge by way of a ‘type matrix’ iM  from 

which the player’s partitions and probability distribution can easily be read. These 

matrices also have the desirable properties that player i’s expectation of a random 

                                                 
3
 The term ‘common prior’ is universally used to describe the case in which players share at least one prior 

between them. There is no such uniformity of terminology in the literature to describe the converse 

situation. That case is termed here ‘disparate priors’, but the same concept has been called ‘heterogeneous 

priors’, ‘distinct priors’, ‘unequal priors’ ‘non-common priors’ or ‘uncommon priors’ in other papers.  
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variable f is simply given by fM i
, and a prior probability distribution for player i by 

iii pMp = . Such a distribution is called a common prior if a single p satisfies 

ppM i = simultaneously for all players.   

 

The Morris-Feinberg characterisation of common priors (Morris (1995), Feinberg 

(2000)), establishes the existence of common priors via the absence of mutually 

profitable bets. Samet’s characterisation (Samet (1998a)), in contrast, shows that the 

existence of a common prior can be interpreted more directly in terms of the players’ 

beliefs as encoded in the type space and type matrices. 

 

Samet himself provides an intuitive explanation of his result in this way: imagine that 

Adam and Eve – who have both excelled in their studies at the same school of economics 

– are asked what return they expect on IBM stock. Having been exposed to different 

sources of information, we oughtn’t be surprised if the two provide different answers. But 

we can then go on to ask Eve what she thinks Adam’s answer was. Being a good 

Bayesian, she can compute the expectation of various answers and come up with Adam’s 

expected answer. Likewise, Adam can provide us with what he expects was Eve’s answer 

to that question. This process can continue, moving back and forth between Eve and 

Adam, theoretically forever. There are, in this example, two possible infinite sequences 

of alternating expectations, one that starts with Eve and one that starts with Adam. 

 

Samet calls this process ‘obtaining an iterated expectation’, and shows that there exists a 

common prior if and only if both of these sequences converge to the same limit. He 

achieves this result by representing Adam’s beliefs
4
 by a type matrix 1M  and Eve’s 

beliefs by type matrix 
2M . These then form two ‘permutation matrices’, 121

MMM =σ , 

which is intended to be used for the process of obtaining iterated expectations starting 

with Adam, and 212
MMM =σ , which does the same for the iterated expectations starting 

with Eve. It then turns out to be the case that both 
1σM and 

2σM  are ergodic Markov 

matrices, and hence by standard results in Markov chain theory, each of them has a 

unique invariant probability measure, which may be labelled respectively 
1p  and 

2p . We 

can call these ‘Samet probability measures’. It is then shown in Samet (1998a) that if 

21 pp ≠ , Adam and Eve cannot share a common prior. On the other hand, if 21 pp = , then 

not only is there a common prior, it has positively been identified – it is precisely 

21: ppp == . 

 

This is a remarkable result, made all the more remarkable by the fact that it applies 

results developed in Markov theory for the study of stochastic processes to answer a 

question that seems not to be even remotely related. But it still leaves some remaining 

questions. For one thing, as Nehring (2001) points out, the condition is ‘epistemically 

somewhat opaque. In particular, by looking at the limit, it is no longer transparent who 

does the expecting, and even what the direct object of expectation is; only some “ultimate 

                                                 
4
 For the sake of simplicity here, we will make the mild technical assumption that the entire relevant state 

space is the meet of the type spaces of Adam and Eve. 
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object of expectation” is given’. Infinite objects of contemplation are certainly not 

unknown in game theory, which pioneered the study of such infinitary statements as ‘she 

knows that I know that she knows that I know that …’. Never the less, a finitary 

characterisation of the same concept can be expected to add insight. Secondly, one might 

also ask if this characterisation can be expressed in a way that is intrinsic to the subject to 

hand, without directly referring to Markov chain concepts. Finally, Samet (1998a) shows 

that if the limits of the iterated expectations do not converge to one and the same limiting 

vector, there is no common prior, but is silent about what those limits do tell us in the 

absence of a common prior.  

 

Proposition 1 of this paper answers this last question by showing that, in the 2-player 

case, whether or not the iterated expectations limits converge to the same vector, the 

Samet probability measures are, under all conditions, priors. In fact, maintaining the 

notation of 
1p  and 

2p as above, 
1p  is a prior for player 1, and 

2p  is a prior for player 2.  

 

Furthermore, letting p′  be a prior for player 1 and p ′′  be a prior for player 2 (so that 

pMp ′=′
1  and pMp ′′=′′

2 ) we define the pair ),( pp ′′′  as being balanced if they satisfy 

the equations pMp ′′=′
2

 and pMp ′=′′
1

 – in a sense, Adam’s prior from this pair is 

‘fundamentally paired’ to Eve’s prior when Adam plugs in Eve’s prior into his equation 

defining a prior, and vice versa. This simply-stated definition gives us the finitary 

characterisation sought in the previous paragraph: the proof of Proposition 1 shows that 

the Samet probability measures are always a balanced pair of priors and Proposition 2 

shows that in each single-meet two-player type space, a balanced pair of probability 

measures is also a pair of Samet measures. The conclusion is that a unique balanced pair 

is guaranteed always to exist. A common prior can then be characterised as a self-

balancing pair, meaning a balanced pair ),( 21 pp  such that 21 pp = .   

 

The balanced pair ),( 21 pp , however, contains more information than just the answer to 

the question ‘does a common prior exist?’. When the priors are disparate, the vector 

21 pp −  serves as a measure of ‘how far’ the type space is from having a common prior, 

and under conditions of common knowledge it encodes implications regarding bounds on 

the range of possible expected values. This is expressed formally in propositions 3, 4 and 

5, along with the definition that players 1 and 2 having ε -separated priors with respect 

to a random variable f if their balanced pair ),( 21 pp  satisfies ε=− fpp )( 21 .  

 

In particular, writing player i’s expectation of f as fEi , proposition 3 shows that under 

the condition of ε -separated priors, if it is common knowledge at a particular state that 

11 α=fE  and 
22 α=fE , then εαα =− 21  – which is a generalisation of Aumann’s 

agreeing-to-disagree theorem, as that theorem is recapitulated in the limit as )( 21 pp −  

approaches zero. Proposition 4 goes further, showing that if the players have ε -separated 

priors with respect to f and it is common knowledge at a particular state that fEfE 21 ≥ , 

then it cannot also be the case that it is common knowledge that ε>− fEfE 21 . This is a 
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generalisation of the main ‘no-bet’ result of Sebenius and Geanakoplos (1983) as again 

that theorem is recaptured in the limit as )( 21 pp −  approaches zero.   

 

In fact, the conclusions of these celebrated theorems can hold true under certain 

conditions even when 0)( 21 >− pp . What counts is the vector-space geometric 

relationship of a random variable f with respect to the vector difference 
21 pp −   –  if f is 

perpendicular to 
21 pp − , then 0)( 21 =− fpp , and the players cannot agree to disagree 

under common knowledge. What happens when there is a common prior is that each and 

every vector f is perpendicular to 021 =− pp . Otherwise, the non-zero projection of f on 

21 pp − is crucial. From this perspective, the literature on ‘agreeing-to-disagree’ type 

results stemming from the CPA can be considered the study of the special limit case of 

type spaces in which 021 =− pp . 

 
This leads naturally to the question: how ubiquitous is the case of common priors within 

the general set of type spaces of two players? This is explored in Proposition 6. 

Somewhat surprisingly at first glance, the answer depends on the cardinalities of the 

information partitions the players. A type space is defined to be complementarily-

partitioned if the sum of the cardinalities of the partitions of player 1 and of player 2 

equals one plus the cardinality of the state space. Within the space of type spaces that are 

not complementarily-partitioned, the set of type spaces with common priors is nowhere 

dense, indicating that common priors should be extremely rare. However, amongst the 

complementarily-partitioned type spaces, this no longer holds, as examples show, and 

common priors can be much more common.  

 

The geometric relationship between random variables and the vector 
21 pp − also has 

implications regarding how ubiquitous 'mutually profitable bets' are between players. As 

shown in Proposition 7 and the discussion following it, it turns out that under disparate 

priors, there is a large cardinality of such bets, which might indicate that the various 'no 

trade/no betting' theorems that exist fail – spectacularly – to describe reality as we see it, 

simply because they assume a common prior, when in fact common priors are rare. 

 

So far in this summary we have dealt solely with the two-player case. Many of the results 
extend to the n-player case, as shown in section 4. The results on balanced priors extend 

in a particularly elegant way: Samet (1998a) shows that for each permutation of the n 

players, one can associate an invariant measure, and then derives a simple test: a common 

prior exists if and only if all the !n  measures coincide, in which case the common prior 

has been identified. In Propositions 8 and 9 in this paper, we show that the full set of !n  

vectors is not necessary, as it breaks down naturally into 1−n  n-tuples of priors, where 

each such n-tuple satisfies the conditions that it is an orbit of a certain group of 

permutations and each element of the n-tuple is a prior of a unique player. It then turns 

out to be the case that a common prior exists if and only if the elements of any single 

such n-tuple completely coincide, in which case the common prior has been identified.  
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This last point ties into a subject that has received little attention in the literature: the 

efficient calculation of a common prior, given a type space. Samet’s results indicate that 
by using numerical methods developed for calculating the invariant measures of Markov 

matrices, it is possible to calculate explicitly a common prior when such exists, but in the 

n-player case this might require as many as !n  separate calculations, a significant 

calculation burden. The results here show that this burden can be reduced appreciably, by 

cutting the number of Markov-type invariant measure calculations to one, followed by at 

most 1−n  straightforward vector-matrix multiplications. 

 

1.3 Outline of Paper 

 

The broad outline of the paper includes preliminary definitions and results in section 2; 

the two-player case is explored in section 3, and section 4 is devoted to the n-player case. 

Proofs appear in the body of the paper, except for a couple of observations and lemma, 

whose proofs are relegated to the appendix, when it was felt that the full details of the 
proofs would do more to hinder than help the flow of ideas. 

 

 

2. Preliminary Definitions and Results 
 

Formally, a type space for a set of players },...,1{ nI =  is a tuple Iiii tI ∈∏Ω ),(,, , where 

Ω  is a finite set, whose elements are called states. iΠ  is a partition of Ω  for each Ii∈ . 

Subsets of Ω  are events. For each Ω∈ω , )(ωiΠ  is the element of the partition iΠ  

which contains ω . For each i, it  is a function Ω∆→Ω:it , which associates with each 

state ω  the type of i at ω , a probability distribution over Ω . The type function it  for 

each i must satisfy two conditions: for each Ω∈ω , 1))()(( =Π ωω iit ; and for each 

)(ωω iΠ∈′ ,  )()( ωω ii tt =′ .   

 

It will be assumed here, without further comment, that for each i and ω , 0}))({( >ωωit  – 

mainly because then the results of Samet (1998a) can be freely adduced. An enquiry 

along similar lines to that conducted here without this assumption is possible in principle, 

but doing so would require replacing the notion of common knowledge with that of 

common 1-belief (as defined in Moderer and Samet (1989)) and the notion of the meet by 

events E which are minimal non-empty events for which E is the common 1-belief in E. 

 

Given a state space Ω  and a set of players I, ),( IT Ω  will stand for the set of all possible 

type spaces Iiii tI ∈∏Ω ),(,, . When the cardinality of I is fixed and understood, )(ΩT  

can stand for ),( IT Ω .   

 

In the sequel a fixed type-space ),(),(,, ITtI Iiii Ω∈∏Ω ∈  will often be assumed as 

given. When varying considerations, such as whether I contains two players or n players, 

are relevant, they will be explicitly stated . 
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The meet of Iii ∈Π )( is the partition Π  of Ω which is the finest among all partitions that 

are coarser than iΠ  for each i.  

 

Given a state Ω∈ω , an event A is common knowledge at ω if and only if A contains the 

member of the meet Π  that contains ω . Equivalently, A is common knowledge if A is 

the union of all the elements of Π  contained in A.   

 

The vector space ΩR  will play a prominent role in this research. Given a vector Ω∈Rv  

and a real number α , ),( αvH  will denote the hyperplane defined by α=vx , and 

similarly ),( αvH +  denotes the open half-space defined by α>vx  and ),( αvH −  the open 

half-space defined by α<vx .  

 

Following standard conventions (see for example Gale (1960, page 43)), depending on 

the context, 0 will sometimes be understood to mean the origin in ΩR , i.e. the vector 

)0,...,0,0,0( . Given a vector )( jv ξ= , 0  >v  means 0≥jξ for all j. 0>v  means 0>jξ for 

all j, and 0≥v  means 0≥jξ  for all j but 0≠v . If Ω∈Rwv, , wv   > , wv >  and wv ≥  

respectively stand for 0  >−wv , 0>−wv  and 0≥−wv . 

 

Probability measures on Ω  will be considered row vectors in ΩR . Random variables (i.e. 

real-valued functions on Ω ) and the column vectors in ΩR  corresponding to them will 

frequently be used interchangeably here. For a probability measure p and random 

variable f, the expectation of f with respect to p is the vector dot product 

∑=
ω

ωω )()( fppf . The special random variable A1  for an event A is the characteristic 

function getting the value 1 if A∈ω  and 0, and given a probability measure p, the 

probability of event A under the measure p is the expectation of A1 with respect to p, i.e. 

)()()(1)(1 Apppp
AAA === ∑∑ ∈ωω

ωωω . 

 

For a given type space define for each player i the type matrix iM  in 
2ΩR , by 

}))({(),( ωωωω ′=′
ii tM , which is a Markov matrix representing it  as if were a 

Markovian transition function.  

 

For each random variable f on Ω , the expectation of player i of that random variable, 

when viewed as a function of the state, is again a random variable fEi  given by 

∑ Ω∈′
′′=

ω
ωωωω }))({()()( ii tffE , which can more simply be written as a vector dot-

product for each Ω∈ω : ftfE ii ⋅= )()( ωω . Given the definition of iM , fEfM ii = , 

and in this paper the notation fM i  and fEi will therefore often be used interchangeably 

to mean the same thing.  
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The conditional expectation of a random variable f, conditional on an event A, is also 

definable as just another random variable in this context, as follows:   

 









=

≠′′′
=

∑
Ω∈′

0))((                                                              0

0))((        }))({()()(1
))((

1

))(|(

At

Attf
AtAfE

i

iiA

ii

ω

ωωωωω
ωω ω  

 

If it is the case that for a given event Y , random variable f and real-number α , 

αω =)(fEi  uniformly for all Y∈ω , then α=)|( YfEi can be written unambiguously, 

without the necessity of specifying the particular states. From the definitions, it follows 

that for each iY Π∈  )|( YfEi is uniform over all states.  

 

Observation. Given any 1≥k  and type matrix 
iM , i

k

i MM = . 

 

The proof of the observation appears in the appendix. 

 

Corollary. For any 1≥k , random variable f, and Ii∈ , fEfE i

k

i = . � 

 

Given an event A and regarding A1  as a column vector, AiM 1 is another column vector 

which can be regarded as the random variable such that 

 

∑
∈′

=′=
A

iiAi AttM
ω

ωωωω ))((}))({()(1  

 

Given a type space, one can ask whether the space might have come to exist, in its 

current state, from a space with no information at all, by the players acquiring new 

information over time and updating their beliefs in a Bayesian manner. Each player’s 

possible initial belief on the no-information primeval space is called a prior. In general, 

given player i’s current type, there will not be a single prior from which the player could 

have arrived at the current state from the (hypothetical) primeval past – there will be a set 

of possible priors. A main question is then whether or not the agents have a common 

prior, meaning a possible initial identical belief that implies the differences in probability 

assessments currently seen amongst the players can be attributed solely to asymmetric 

information received over time.  

 

More formally, a prior for Ii∈  at state ω  is a probability measure Ω∆∈p  such that for 

each event A ))(())(|( AtAp ii ωω =Π , whenever the conditional probability measure is 

defined. A probability measure is a prior for i, without the local specification, if it is a 

prior for i at each and every state ω  . 

 

Given a particular player i, each type of that player, )(ωit , is a prior at ω . In fact, the set 

of all priors for player i can be identified with the convex hull of all of i’s types (cf. 

Samet (1998b)). 
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The vector dot-product equation ))(()()1( AtpMp iAi ωω
ω∑ Ω∈

=  establishes that a 

probability measure p on Ω  is a prior for i iff it is an invariant probability measure for 

iM , i.e. ppM i = . A common prior, therefore, is a single p such that simultaneously for 

all players i, ppM i = . 

 

For a fixed Π∈Q  and for each i, the restriction of the type-matrix 
iM to Q, denoted by 

Q

iM , is defined by 

 





∉

∈′
=′

Q

Qt
M

iQ

i ω

ωωω
ωω

                    0

    }))({(
),(  

 

 

For any random variable random variable f on Ω , fEQ

i
 is defined as fM Q

i
regarded as a 

random variable.  

 

Given the n type matrices defined by a type space, for any permutation σ of I write  

 

)()1( nMMM σσσ L=  

 

and for any random variable f, 

 

fEEfE n)()1( σσσ L=  

 

The iterated expectation of f with respect to σ  is the sequence ∞
=1))(( k

k fEσ . 

 

The definition of QMσ  is the obvious one 

 
Q

n

QQ MMM )()1( σσσ L=  

 

 

Samet (1998a) includes the following result, which will be crucial for the sequel:  

 

Theorem (Samet). For each Π∈Q  and Ii∈ , Q

i
Mσ  is ergodic and therefore has a unique 

invariant probability measure Q

i
pσ . The ergodicity  of this matrix then further implies that 

the iterated expectation of any random variable f with respect to 
iσ , given by 

fM kQ

k i
)(lim σ∞→ , converges at every state to fpQ

iσ  within each Q – in words, the iterated 

expectations are common knowledge and uniform in each state. On each Π∈Q , the 
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players have a common prior if and only if for all Iji ∈, , QQ

ji
pp σσ = – hence there exists 

at most one common prior on Q.  

 

The following theorem, which appears as Lemma 3 in Nehring (2001), will also be 

needed: 

 

Theorem (Nehring).  Define ][ f , for any random variable f, to be the smallest linear 

subspace L of ΩR  containing f with the property that LgEi ∈ whenever Lg∈ , for any 

player i and random variable g. Then given any finite sequence ),...,,( 21 Kiii  of elements 

in I, with 2≥K , and any random variable f, there exist random variables Iiig ∈}{ in ][ f  

such that 

 

)()(... 121 iii

Ii

iiii gEgEfEfEEE
KKK

−=− ∑
∈

−
 

 

 

3. Two Players 
 

3.1 Identifying the Priors 

 

Throughout this section, the fixed type space Iiii tI ∈∏Ω ),(,,  will be assumed to satisfy 

the constraint that the cardinality of I is equal to 2, and the players will be labelled player 

1 and player 2. Because this labelling is arbitrary, some of the results will be worded as 

applying to player 1 with respect to player 2 in certain symmetrical situations, with the 

understanding that the symmetry immediately implies that they apply just as well to 

player 2 with respect to player 1. 

 

When there are two players, there are only two possible permutations of the set of players 

– which will be labelled here )1,2(1 =σ  and =2σ  identity – and hence two permutation 

matrices 121
MMM =σ and 212

MMM =σ . For each Π∈Q , QM
1σ and QM

2σ  each have a 

unique invariant probability measure, respectively Qp
1σ  and Qp

2σ . We will call Qp
1σ  and 

Qp
2σ the Samet probability measures of the type space with respect to Q. 

 

It will be assumed, temporarily, that }{Ω=Π , so that there is no need to specify Π∈Q , 

and we can write  
i

pσ  in place of Q

i
pσ , etc., easing the notational burden in formulae and 

proofs. The more general case of multiple elements of the meet will be returned to later.  

 

Note that in what follows there is no assumption that 
21 σσ pp = – in other words, we are 

explicitly permitting the possibility of disparate priors. 

 

Proposition 1. 
1σp  is a prior for player 1, and 

2σp  is a prior for player 2.  
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Proof. By definition of invariant probability measure, 
1111 12 σσσσ pMMpMp == . 

Multiplying on the right by 2M , this leads to 2212 11
MpMMMp σσ = . Rewriting this as 

2212 11
))(( MpMMMp σσ =  makes clear that 21

Mpσ  is an invariant probability measure of 

221 σMMM = . But as 
2σM is ergodic, it has a unique such invariant probability measure, 

which we already labelled as 
2σp , leading to the conclusion that 

21 2 σσ pMp = . 

 

We can now run the following series of calculations. First multiply on the right by 
2M : 

 

222 21
MpMMp σσ =  

 

But from an earlier observation, 2

2

2 MM = , so 

 

22 21
MpMp σσ =  

 

We started this chain of calculations with 
21 2 σσ pMp = , so we conclude that 

 

222
Mpp σσ =  

 

In other words, the unique Samet probability measure of 
2σM , 

2σp , is also an invariant 

measure of 2M , hence a prior for player 2. By entirely symmetric considerations, we can 

just as readily conclude that the unique Samet probability measure of 
1σM , 

1σp , is an 

invariant measure of 1M , i.e. 111
Mpp σσ = , hence a prior for player 1.  � 

 

Note: The previous result can also be understood within the context of the derivation of  

fp
iσ  through the infinite process fM k

k i
)(lim σ∞→ , for an arbitrary random variable f, as 

follows. Set fMg 2= . Consider the column vector which is uniformly gp
2σ . This is 

equal to gM k

k )(lim
2σ∞→ . But the sequence 

 

,...,
222
gMMgMs σσσ=  

 

can be re-written as 

 

,...)(,)( 22121221 fMMMMMfMMMs =  

 

and again as 

 

,...)(,)( 22121221 fMMMMMfMMMs =  
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or 

 

,..., 212121 fMMMMfMMs =  

 

so that fMgMs k

k

k

kk )(lim)(limlim
22 σσ ∞→∞→∞→ == . But this in turn means that 

fpgp
22 σσ = , or fpfMp

22 2 σσ = . As f was selected arbitrarily, it may be concluded that 

22 2 σσ pMp = . A symmetric argument yields 
11 1 σσ pMp = . 

 

Notation. We will henceforth label the Samet probability measures of the permutation 

matrices, 
1σp and 

2σp , more simply as 
1p  and 

2p , for ease of notation. As just shown, 

1p  and 
2p  are guaranteed to be priors, every type space has a unique pair of such priors, 

and they satisfy the equations 
111 pMp = , 

222 pMp = , 
221 pMp =  and 

112 pMp = . 

 

3.2 Balanced Pairing 

 

The previous proposition showed that the Samet probability measures of the permutation 

matrices satisfy certain equations involving the type matrices. These equations, it turns 

out, characterise these measures, so that we can use them for a definition more intrinsic to 

the study of type-spaces that avoids the appeal to concepts from Markov chain theory 

(even though we will still lean on results from that theory for existence and uniqueness) . 

 

Definition. Given a pair of type matrices 
1M  and 

2M , a pair of probability measures 

),( 21 pp  are a balanced pair if they satisfy the equations 
221 pMp =  and 

112 pMp = .  

 

Proposition 2. For each single-meet two-player type space, there exists a unique 

balanced pair of probability measures ),( 21 pp , and this pair is a pair of priors, so that in 

addition 111 pMp =  and 222 pMp = . The existence of a common prior is equivalent to the 

existence of a self-balanced prior, meaning a balanced pair ),( 21 pp  such that 21 pp = . 

 

Proof.  Suppose that a balanced pair ),( 21 pp  exists. Then 221212 pMpMMp == . Hence 

2p  is an invariant probability measure of the ergodic Markov matrix 
2σM , and therefore 

unique and equal to one of the Samet probability measures.  

 

The respective conclusion for 1p  is arrived at by entirely symmetric argumentation. Such 

a balanced pairing must always exist, by a previous proposition, because the Markov 

matrices 
1σM and 

2σM are guaranteed to have invariant probability measures. 

 

If there is a common prior p, then by definition simultaneously ppM =2  and ppM =1 , 

and we have trivially identified the unique balanced pair, ),( pp , hence p is self-

balanced. On the other hand, if the two elements of the balanced pair coincide, a common 

prior has been identified, simply because the elements of the pair are priors. � 
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One perspective on balanced pairs is the following: start with the set of priors of player 1, 

i.e. the set { }11111 | qMqqP == , and the corresponding set of priors of player 2, 

{ }22222 | qMqqP == . Define a mapping 
21: PP →ξ  by 

211)( Mqq =ξ   –  to see that this is 

well-defined on the range, simply note that 21221 )( MqMMq =  because 2M  is 

idempotent. Similarly define 12: PP →η  by 122 )( Mqq =η .  

 

So every prior 1q  of player 1 has a ‘ξ -mate’ )( 1qξ , and every prior 2q  of player 2 has an 

‘η -mate’ )( 2qη . The question is: when is a prior the η -mate of its own ξ -mate? To 

answer this, define 
11: PP →ηξ  and 

22: PP →ξη . The last proposition implies that the 

mapping ηξ  has a unique fixed point 1p , so that )( 12 pp ξ=  satisfies 112 pMp = . This 

also identifies 2p  as the unique fixed point of ξη , and the balanced pair is then ),( 21 pp . 

 

As 
1M  and 

2M are varied, the corresponding balanced pair ),( 21 pp  varies as well. The 

vector 
21 pp − , as a function of 

1M  and 
2M , can serve as a rough measure of ‘how far’ 

the type space is from having a common prior, given that a common prior exists if and 

only if 021 =− pp . Under conditions of common knowledge, the identity of the vector 

21 pp − has implications regarding bounds on the range of possible expected values, as 

discussed after considerations of a couple of examples.  
 

3.3 Examples 

 

Example. In this example, },,,{ 4321 ωωωω=Ω , }2,1{=I , }}{},,,{{ 43211 ωωωω=Π , 

}},}{,{{ 43212 ωωωω=Π , }},,,{{ 4321 ωωωω=Π .  

 

The type matrices are 

 























=

1     0      0      0 

0   
3

1   
3

1   
3

1

0   
3

1   
3

1   
3

1

0   
3

1   
3

1   
3

1

1M  

 

 

























=

2
1    

2
1    0       0 

2
1    

2
1    0       0 

0       0    
2

1    
2

1

0       0    
2

1    
2

1

2M  
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The permutation matrices are 

 

























==

2
1   

6
1   

6
1   

6
1 

2
1    

6
1   

6
1   

6
1

0     
3

1   
3

1   
3

1

0     
3

1   
3

1   
3

1

121
MMMσ  

 

























==

2
1    

2
1     0      0 

6
1    

6
1   

3
1   

3
1

6
1    

6
1   

3
1   

3
1

6
1    

6
1   

3
1   

3
1

212
MMMσ  

 

 

The balanced priors are the self-balanced [ ]25.0  , 25.0   ,25.0   ,25.0: 21 === ppp , hence 

this vector is also the unique common prior in this example. A quick calculation indicates 

that indeed ppM =1  and ppM =2 . 

 

Example. In this example, },,,{ 4321 ωωωω=Ω , }2,1{=I , }},}{,{{ 43211 ωωωω=Π , 

}},}{,{{ 42312 ωωωω=Π , }},,,{{ 4321 ωωωω=Π . 

 

The type matrices are 

 

























=

4
1     

4
3     0       0 

4
1     

4
3     0       0 

0        0     
2

1    
2

1

0        0     
2

1    
2

1

1M  

 

























=

3
1    0     

3
2      0 

0     
3

2     0     
3

1

   
3

1    0     
3

2      0 

0     
3

2     0     
3

1

2M  
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The permutation matrices are 

 

























==

12
1   

4
1   

3
1   

3
1 

6
1    

2
1   

6
1   

6
1

12
1   

4
1   

3
1   

3
1

6
1    

2
1   

6
1   

6
1

121
MMMσ  

 

























==

12
1    

2
1   

6
1   

4
1 

12
1    

2
1   

6
1   

4
1

6
1    

3
1   

3
1   

6
1

6
1    

3
1   

3
1   

6
1

121
MMMσ  

 

The balanced priors are  

 






=
990

135
 ,   

495

243
  ,  

4950

1125
  ,  

4950

1125
1p  

 






=
33

4
  ,  

33

14
  ,  

33

8
  ,  

33

7
 2p  

 

Again, straight-forward vector calculations show that the equations 
111 pMp = , 

222 pMp = , 
221 pMp =  and 

112 pMp =  are satisfied, as expected. 

 

3.4 Common Knowledge and Disparate Priors 

 

We can now relax the assumption that }{Ω=Π , and consider the general case in which 

the meet contains several elements. There are now (at most) two balanced priors on each 

element Q of the meet, Qp1  and Qp2 . We can also trivially assign balanced priors to each 

state, in the sense that given a state Ω∈ω  the associated balanced priors can be defined 

by )(: ωω Q

ii pp = , where )(ωQ  is the element of the meet containing ω . 

 

Proposition 3. In a 2-player type space, given a random variable f and a state *ω , if 

εωω =− fpp ji )(
**

, then if it is common knowledge at *ω  that player 1’s expectation of f 

is 1α  and player 2’s expectation of f is 2α , then εαα =− 21 . 
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Proof. As defined above, ftfE ii )()( ωω = . Under the assumption of mutual common 

knowledge, the valuations 
11 )( αω =fE  and 

22 )( αω =fE  hold uniformly for all 

)( *ωω Π∈ .   

 

Consider the expression )(
*

fEfEp jii −ω
. As it was assumed that 11 )( αω =fE  and 

22 )( αω =fE  uniformly, the vector fEfE ji −  is uniformly 21 αα − . By definition, 

every prior is a probability measure, and hence ∑ =
ω

ω ω 1)(
*

ip , so that )(
*

fEfEp jii −ω  

2121 )(
*

ααωαα
ω

ω −=−= ∑ ip .  

 

But )(
*

fEfEp jii −ω  is equal to fMpfMp jiii

** ωω − , which by above results is given 

by fppfpfp jiji )(
**** ωωωω −=− .    � 

 

This result can be understood from elementary considerations of the balanced priors as 

Samet invariant probability measures on the permutation matrices, as calculated in the 

infinite limit of iterated expectations. If it is common knowledge that player 1’s 

expectation of f is 
1α , then the infinite sequence ,...,, 121121 fMMMfMMfM  is 

constantly uniformly 1α , hence trivially is uniformly 1α  in the limit. A similar statement 

holds if player 2’s expectation of f is 2α , with respect to the sequence 

,...,, 212212 fMMMfMMfM . It is therefore not surprising that under full common 

knowledge, fpp )(
**

21

ωω −  turns out to be the same as 21 αα − . 

 

Note that this implies that the possible spread of expected values under common 

knowledge depends on the vector geometry of the random variable f with respect to the 

vector 
**

21

ωω pp − . If f is perpendicular to 
**

21

ωω pp − , then 0)(
**

21 =− fpp ωω , and the 

players cannot agree to disagree under common knowledge – which is exactly what 

happens when there is a common prior, because then 0
**

21 =− ωω pp  and each and every 

vector is perpendicular to 0. In other cases, the non-zero projection of f on 
**

21

ωω pp − is 

crucial. (Note that the vector 
**

21

ωω pp −  itself has constraints on its possible values: 

0)()(
**

21 =−∑ Ω∈ω
ωω ωω pp , because ∑ Ω∈

=
ω

ω ω 1)(
*

1p  and ∑ Ω∈
=

ω
ω ω 1)(

*

2p .) 

 

Proposition 3 thus naturally motivates the following definition: 

 

Definition: In a 2-player type space with balanced priors ω
1

p  and ω
2

p  at a state ω , for 

each random variable f , players 1 and 2 will be termed to have ε -separated priors with 
respect to f at ω  if εωω =− fpp

ji
)( . 
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As a corollary of the proof of the last proposition we can get a yet stronger result, attained 

by weakening the insistence that the common-knowledge expectations of the two players 

be given by precise values 
1α  and 

2α , and assuming only common knowledge of the fact 

that one player has greater expectations than the other player.  

 

Proposition 4. In a 2-player type space, if the players have ε -separated priors with 

respect to random variable f at state *ω , and if it is common knowledge at *ω  that 

fEfE 21 ≥ , then it cannot also be the case that it is common knowledge that 

ε>− fEfE 21 . Similarly, it cannot be the case that it is common knowledge that 

ε<− fEfE 21 . Thus, either εωω =− )()( 21 fEfE  for all )( ∗Π∈ ωω , or there is at least 

one )(1

∗Π∈ ωω  with εωω >− )()( 1211 fEfE  and at least one )(2

∗Π∈ ωω  such that 

εωω <− )()( 2221 fEfE . 

 

Proof. If at *ω  it is common knowledge that fEfE 21 ≥  and ε>− fEfE 21 , then  

εωωω
ω

ωω >−=− ∑ )]()()[()( 211211

**

fEfEpfEfEp , because the latter expression is a 

weighted average of elements, each of which is strictly greater than ε . But as in the 

above proof, )( 211

*

fEfEp −ω  – which must be greater than or equal to zero by the 

assumption of common knowledge that fEfE 21 ≥  – is by previous results equal to 

fMpfMp 2111

** ωω − , which is εωωωω =−=− fppfpfp )(
****

2121
, the last equality 

following from the assumption of ε -separated priors with respect to f. This is a 

contradiction. 

 

Similarly, if it is common knowledge that fEfE 21 ≥ and ε<− fEfE 21
, we derive a 

contradiction to the assumption that εωω =− fpp )(
**

21 .   � 

 

It can readily be seen that this proposition implies the previous one – if it is common 

knowledge that player 1’s expectation of f is uniformly 1α  and player 2’s expectation of f 

is uniformly 2α , where 21 αα >  without loss of generality, then the assumption of  ε -

separation with respect to f implies that 
21 αα −  can be neither less than or greater than ε  

– hence it is precisely ε . 

 

In the special case that f is perpendicular to )(
**

21

ωω pp − , the proposition states that if it is 

common knowledge that fEfE 21 ≥ , then it cannot also be the case that it is common 

knowledge that 021 >− fEfE , hence fEfE 21 =  and in this case there can be no 

agreement on disagreement. 

 

We can also consider a case intermediate between the two previous propositions, in 

which the expectation of only one player is by common knowledge uniformly a precise 

value, and ask what implications that has on the values of the expectation of the other 

player. 
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Proposition 5. In a 2-player type space, if the players have ε -separated priors with 

respect to random variable f at state *ω , and if αω =
∗

fEp i1
 for one of the indexes i and 

some number α , then it must be the case that for ij ≠ , 
)(

| ∗Π ω
fE j , as a vector, is located 

either in the hyperplane ),( 1 εαω +
∗

pH  or the hyperplane ),( 1 εαω −
∗

pH . In particular, if 

it is common knowledge at *ω  that β=fEi  for some number β , and fEfE ij ≥ , then 

),( 11 εβωω +∈
∗∗

ppHfE j .   

 

Proof. Again, we work with )(
*

1 fEfEp ij −ω . By assumption of ε -separated priors, this 

is equal to ε± . But it is also equal to fEpfEp ij

**

11

ωω − . The assumption that 

αω =
∗

fEp i1  then implies that εαω ±=fEp j

*

1 , which is the same as saying  
)(

| ∗Π ω
fE j is 

located either in ),( 1 εαω +
∗

pH  or ),( 1 εαω −
∗

pH . The special case of common 

knowledge that β=fEi  implies that βωω ∗∗

= 11 pfEp i , and hence fEfE ij ≥  implies 

)( 1 εβω +∈
∗

pHfE j .   � 

 

3.5 Common Priors as the Limiting Case of Disparate Priors 

 

With respect to the above propositions, the sharpest results are obtained in the special 

case in which
**

21

ωω pp = :  

 

• If 
**

21

ωω pp = and Af 1= , 01)(
**

=− Aji pp ωω  for all A, hence by Proposition 3 under 

common knowledge the players can never agree to disagree on the probability of 

the occurrence of an event, and we recapitulate the theorem of Aumann (1976).  

 

• If 
**

21

ωω pp = and it is common knowledge at *ω  that α≥fE1
 and α≤fE2

, then 

since 0)(
**

=− fpp ji

ωω , Proposition 4 implies that 021 =− fEfE , hence 

α== fEfE 21
, recapitulating the main ‘no-bet’ result of Sebenius and 

Geanakoplos (1983).  

 

But the condition 
**

21

ωω pp =  is equivalent to the existence of a common prior over 

)( *ωΠ , hence the propositions may be considered generalisations of these well-known 

CPA agreeing-to-disagree results. 

 

As stated in the introduction to this paper, the CPA has often been criticised in the past, 

especially when the CPA leans on a supposed ‘dynamic story’ – the view that players 

assessing differing expectations of events do so solely because of differences in the 

private information they possess respectively, because in some hypothetical past they 
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shared a common prior, with their current beliefs posterior to a, perhaps distant, past of 

shared probabilities. Gul (1998) argues that ‘since there never was a prior stage, the prior 

distribution is meaningless’.    

 

Aumann (1998)5, in reply, essentially restates the position of Aumann (1987), which 

includes the assertion that ‘people with different information may legitimately entertain 

different probabilities, but there is no rational basis for people who have always been fed 

precisely the same information to do so’. In the zeal to highlight ‘differences in 

information’ as the sole bearer of distinction, Aumann (1998) postulates that ‘if … the 

beliefs at an “actual” prior stage are different and not commonly known, then there must 

be differential information already at that stage’, and then argues that analysis must 

proceed to a further earlier stage until all differences in information have been purged and 

a common primeval prior can be identified. He is even willing to go so far as to say ‘if 

one sets forth all relevant information in sufficient detail, then in principle, there should 

be no room for differing probabilities. When we say all relevant information, we mean 

all: the schools the players attended, their childhood experiences, even their genes (which 

indirectly reflect the experience of previous generations).’  

 

The results of this paper shed further light on matters at the heart of the Gul-Aumann 

debate. The players – or any observers for that matter – need no more information than 

knowledge of the type space itself – i.e. the tuple ),(),,(, 2211 tt ∏∏Ω  – in the present, in 

order to identify all the elements of the meet }|{ Π∈QQ  and the corresponding set of 

type matrices },|{ Π∈∈ QIiM Q

i . Simple matrix multiplication then yields the 

permutation matrices QM
1σ and QM

2σ . 

 

Obtaining the balanced priors },|{ Π∈∈ QIipQ

i  is then a matter of calculating the 

invariant probability measures of the permutation matrices. Numerical methods for doing 

so, either in some cases using direct methods with exact results, or in others using 

iterative methods converging up to a ‘reasonable’ tolerance, are the subject of active 

research (see for example Stewart (1994)). (The computational burden becomes even 

lighter when one considers the fact that it necessary at each Q to calculate only one of the 

Samet probability measures – say, Qp1
 – and then the other can be obtained by the 

computationally simpler method of direct matrix multiplication, given that 212 Mpp = .) 

 

In principle, therefore, there is a computationally efficient and well-defined algorithmic 

procedure for going from the type space to the full set of balanced priors. With these 

latter to hand, the analysis locally at any state Ω∈ω  can proceed in one of two ways. 

 

                                                 
5
 Aumann (1998) also includes a formalisation of an argument in favour of the CPA that runs essentially 

along the following lines: Beliefs are based on information. If all information is removed, all that is left is 

an empty shell. Since there is no reason to distinguish between empty shells, individuals must start with 

common priors. Bernheim (1986) terms such an argument for common priors ‘assuming the conclusion’. 
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i) If ωω
21 pp =  there is a common prior. One may in this case embrace the 

Harsányi doctrine and assert that ‘differences in probabilities solely express 

differences in information’. A (possibly fictional) historical account of prior 

stages, in which differences in information led to disparate information 

partition refinements and differential probability assessments based on 

Bayesian updating against the common prior, may be adduced. Even if one 

chooses not to resort to conjuring the past, the existence of a common prior 

justifies quoting any of the large number of agreeing-to-disagree type results 

under common knowledge that have been proved since the seminal work of 

Aumann (1976). 

 

ii) If ωω
21 pp ≠ , there can be no common prior. One may again suppose a 

(possibly fictional) historical account of prior stages but in this case, in a kind 

of reversal of the Harsányi doctrine, in the primeval past the players begin 

unequal, with a fundamental disagreement regarding the ‘true’ prior, one 

player believing ω
1p  and the other ω

2p . As asymmetric information is obtained 

over time by the players, their information partitions diverge, along with their 

respective probability assessments under Bayesian updating from their 

different priors, so that both differential information and subjective 

probability differences contribute to the divergences. Even if one chooses not 

to resort to conjuring the past, in this case the players are fully justified in 

agreeing-to-disagree. Consideration of fpp ji )( ωω − , for any random variable, 

indicates how far apart the players can be when agreeing-to-disagree under 

common knowledge with respect to f, as proved in the above propositions. 

 

In summary, it is the set of vectors }|{ Π∈− Qpp Q

j

Q

i  that contains the information for 

the above-derived bounds on expected values under conditions of common knowledge. 

Since the values of }|{ Π∈− Qpp Q

j

Q

i  can be derived from the type space, it follows that 

one needs no more than knowledge of the tuple ),(),,(, 2211 tt ∏∏Ω  for these results. 

From this perspective, the entire corpus of literature on agreeing-to-disagree type results, 

such as ‘no-bet’, ‘no-trade’, etc., stemming from the CPA is the study of the special ‘limit 

case’ of a particular subset of the set of all type spaces ),(),,(, 2211 tt ∏∏Ω  – namely, the 

set of type spaces from which it can be deduced that the vectors }|{ Π∈− Qpp Q

j

Q

i  are 

uniformly zero.  

 

3.6 The Rareness and Ubiquity of Common Priors  

 

The next obvious question is: how ‘special’ is a common prior situation within the space 

of all type spaces? If one were to select a random sampling of type spaces, should one 

expect common priors to be ubiquitous or rare?  

 

Fixing the state space Ω , let )(ΩT  denote the set of all type spaces of two players over 

Ω  sharing a single-element meet. (The loss of generality for the sake of simplicity is 
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tolerable as extending the proofs in this section to the case of multiple-element meets is 

straight-forward). Because I and Ω  are fixed here, an element )(Ω∈Tτ  is completely 

determined by its associated partitions, which we can label τ,1Π  and τ,2Π , along with the 

associated type functions, τ,1t and τ,2t . 

 

Next, let )()(: 11 Ω→Ω MTα  be the mapping of )(ΩT  to )(1 ΩM , the set of all type 

matrices of player 1, with )()(: 22 Ω→Ω MTα  playing the same role for player 2. Let 

)()()(: 21 Ω×Ω→Ω MMTα  stand for the bijective mapping taking each element 

)(Ω∈Tτ  to ))(),(( 21 τατα . The space )()( 21 Ω×Ω MM  can be considered a sub-space of 
22 ΩΩ ×RR , with the latter endowed with the standard topology of vector spaces over the 

reals, hence the space )()( 21 Ω×Ω MM  naturally inherits a sub-space topology. As α is a 

bijection, we can give )(ΩT  the topology that makes α  a topological isomorphism. 

 

Let  ΩΩΩΩ ×⊂∆×∆→Ω×Ω RRMM )()(: 21β  be the mapping that takes each element of 

the space )()( 21 Ω×Ω MM  to the unique corresponding pair of balanced priors. Let the 

mapping γ  be further defined by Ω∈− Rpppp 2121 ),(: aγ  for each pair of balanced 

priors ),( 21 pp . 

 

Lemma. The mapping αβγξ oo= is continuous. 

 

The proof of this lemma appears in the appendix. 

 

 

Definition. A type space τ  in )(ΩT  will be said to be complementarily-partitioned if the 

cardinalities of its associated partitions, τ,1Π  and τ,2Π , satisfy 1,1,1 +Ω=Π+Π ττ .  

 

Notation. The set of non-complementarily-partitioned type spaces within )(ΩT  will be 

labelled )(ΩT . Denote further the sub-space of )(ΩT  consisting of type spaces that 

share a common-prior between them by )(ΩC . 

 

Proposition 6. )(ΩC  is nowhere dense in )(ΩT . 

 

Proof. This is proved in two steps. 

 

1. )(ΩC  has empty interior: Let τ  be an arbitrary element in )(ΩC , with common prior 

p. Let τ,1Π=m  and τ,2Π=n . Using the earlier defined mapping α , ),()( 21 MM=τα , a 

pair of type matrices. Associated with 
1M  is Ω∆∈mppp 1

2

1

1

1 ,...,, , where each jp1
 is a 

distinct row in 1M corresponding to one of the partitions in τ,1Π , and similarly associated 

with 
2M  is Ω∆∈nppp 2

2

2

1

2 ,...,, . We can now form the convex hulls ),...,,( 1

2

1

1

1

mpppX  and 



With
drawn by t

he a
uthor

 23 

),...,,( 2

2

2

1

2

npppX , of dimensions 1−m  and 1−n , respectively, such that p is the unique 

point of intersection of these two convex polytopes, which are constrained to be within 
Ω∆ , a polytope of dimension 1−Ω .  

 

The assumption that )(Ω∈Tτ , and therefore not complementarily-partitioned, means 

that Ω<−+− 11 nm . This, plus the fact that the convex hulls intersect solely at a single 

point, implies that an arbitrarily small deformation of one or the other can pull them apart 

from the point of intersection – in the terminology of differential topology, all such 

intersections are non-transversal (cf. Guillemin and Pollack (1974)).  

 

In the specific context here, this translates into the possibility of finding a type matrix 

1M ′  with associated mppp 1

2

1

1

1 ,...,, ′′′  such that 1M ′  is within an arbitrarily small ε -ball of 

1M , and such that the convex hull ),...,,( 1

2

1

1

1

mpppX ′′′  has no intersection with 

),...,,( 2

2

2

1

2

npppX . Then ),( 21

1 MM ′=′ −ατ  is a type-space within ε  of τ , and )(Ω∉′ Cτ . 

 

2. )(ΩC  is closed: )(ΩC  can be defined as 
)(

1 |)0( Ω
−

T
ξ , where αβγξ oo=  is 

continuous, by the above lemma. It is therefore a closed set. 

 

This suffices to show that )(ΩC  is nowhere dense in )(ΩT .   � 

 

The restriction to non-complementarily-partitioned type spaces is necessary for the above 

proof to work. The heart of the proof is essentially the claim that given a pair of type 

matrices 21,MM  that share a common prior, one of them can be ‘perturbed’ by an 

arbitrarily small ε  into another type matrix such that the new pair does not have a 

common prior. But it is a theorem of differential topology that transverse sub-manifolds 

of complementary dimension intersect in 0-manifolds – i.e. isolated points. The following 

examples illustrate the implications this has for the question of the ubiquity of common 

priors.  

 

Example. Let }3,2,1{=Ω , and let the type space τ be defined by }3{},2,1{,1 =Π τ  , 

}3,2{},1{,2 =Π τ , with 2/1)1(,1 =τt , 2/1)2(,1 =τt , 1)3(,1 =τt  and 1)1(,2 =τt , 3/1)2(,2 =τt , 

3/2)3(,2 =τt . The corresponding type matrices are 

 



















=

1      0      0 

0    
2

1   
2

1

0    
2

1   
2

1

1M  
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=

3
2   

3
1   0

3
2   

3
1   0

0      0     1

2M  

 

which share the common prior (1/4,1/4,1/2). 

 

But there is no perturbation of the matrices which will lead to a situation of disparate 

priors. In fact, given any arbitrary type functions 1t and 2t , such that 

 

















=

1        0       0  

0    )2(  )1(

0    )2(  )1(

11

11

1 tt

tt

M  

 

















=

)3(  )2(   0

)3(  )2(   0

0       0      1

32

322

tt

ttM  

 

are type matrices, 1M and 2M will have a common prior between them. Geometrically, 

this is an example of transversally intersecting one-dimensional lines in a two-

dimensional space. 

 

Example. Let }5,4,3,2,1{=Ω , and let the type space τ be defined by }5,4,3{},2,1{,1 =Π τ , 

}3,2{},5{},4{},1{,2 =Π τ , with 2/1)1(,1 =τt , 2/1)2(,1 =τt , 2/1)3(,1 =τt , 4/1)4(,1 =τt , 

4/1)5(,1 =τt  and 1)1(,2 =τt , 1)4(,2 =τt , 1)5(,2 =τt , 4/1)2(,2 =τt , 4/3)3(,2 =τt . The 

corresponding type matrices  

 

 

4
1   

4
1   

2
1    0      0

4
1   

4
1   

2
1    0      0

4
1   

4
1   

2
1    0      0 

0       0     0    
2

1   
2

1

0       0     0    
2

1   
2

1

1





























=M  
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1       0       0      0     0

0       1       0      0     0

0       0     
4

3    
4

1   0

0       0     
4

3    
4

1   0

0       0      0       0     1

2



























=M  

 

share the common prior (0.125, 0.125, 0.375, 0.1875, 0.1875). 

 

There is no perturbation of these matrices that will lead to a situation of disparate priors. 

Geometrically, this is an example of a 1-dimensional polytope transversally intersecting a 

3-dimensional polytope inside a 4-dimensional space. 

 

It is easy to conjure up examples of such complementarily-partitioned type-spaces in any 

dimension. A trivial but instructive example in n-dimensions is  

 

 

1       ...    1   1

.

.

.

1       ...    1   1

1       ...    1   1

1





























=

nnn

nnn

nnn

M  

 

 

1       ...    0   0

.

.

.

0       ...    1   0

0       ...    0   1

2



























=M  

 

Here, 1M  is associated with a single point, whilst 2M  is associated with the entire 1−n  

dimensional polytope n∆ . An intersection – meaning a common prior – is inevitable in 

such a situation.  

 

3.7 Betting and Disparate Priors  
 

As previously noted, the main characterisation of common priors in the literature is the 

Morris-Feinberg theorem that states there is no common prior in a type space if and only 
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if there is at least one random variable t with respect to which the players can agree to 

take opposite sides of a bet.  

 

More formally, the players fail to bet on t at some state ω if it is not common knowledge 

at ω  that player 1’s expectation of t is positive, 01 >tE , and player 2’s expectation of 

t− is also positive, 0)(2 >−tE . If the players do not fail to bet on t, then t is a mutually 

acceptable bet. There is no betting amongst the players at ω if they fail to bet on any 

random variable t. Sebenius and Geanakoplos (1983) established that if there is a 

common prior, the players will never bet under common knowledge. Morris (1995) and 

Feinberg (2000), independently, proved the converse – if there is no common prior, the 

players can always identify a random variable t which is mutually acceptable. 

 

Given the amount of information that the balanced priors 1p  and 2p of a type space bear 

with respect to common knowledge and common priors, it is natural, in light of the 

Morris-Feinberg theorem, to enquire whether knowledge of the balanced priors can also 

provide information about mutually acceptable bets between the players. In order to study 

this matter, we lean on Nehring’s Theorem, mentioned above, which in its two-

dimensional version reduces to the following: recalling the definition of the permutation 

matrices 121
MMM =σ and 212

MMM =σ , given 
1σM , any integer j and any random 

variable f on Ω , there exist random variables 1g  and 2g  in the linear space ][ f  such that  

)()()()( 2221111112
gMgMgMgMfMfM j −+−=−σ , and a similar statement, mutatis 

mutandis, holds for 
2σM . 

 

Proposition 7. In a 2-player type space, given a random variable f and a state *ω , if 

0)(
**

≠− fpp ji

ωω , there exists a mutually acceptable bet λ  such that ][ f∈λ . 

 

Proof. Suppose without loss of generality that 0)(
**

12 >− fpp ωω  and 0)(
**

21 <− fpp ωω . 

Consider the expression )()( 12
fMfM j −σ . Letting the integer j grow without bound, 

)()(lim 12
fMfM j

j −∞→ σ  is equal to a vector whose elements are uniformly equal to 

)( 12 fMfp −
∗ω . But fpfpfMfp

∗∗∗

−=− ωωω
1212 )( , and it was already assumed that this 

last expression is greater than 0 – in other words, 0)()(lim 12
>−∞→ fMfM j

j σ , as a 

vector inequality. 

 

This in turn implies, because the state space Ω  is finite, that for some finite k, 

)()( 12
fMfM k −σ  is uniformly greater than 0. By Nehring’s Theorem, then, there exist 

random variables 1g  and 2g  in ][ f  such that 

 

0)()()()( 2221111112
>−+−=− gMgMgMgMfMfM k

σ  
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But for either i, 0)( =−=− iiiiiiii gMgMgMgM , hence 0)( 2221 >− gMgM . Therefore, 

by setting  )( 2221 gMg −=λ  ,  011 >λM  and 012 =λM . 

 

Next, since 0)(
**

21 <− fpp ωω , 0))((
**

21 >−− fpp ωω , and by reasoning similar to the above 

we can arrive at random variables 1h  and 2h  in ][ f  such that for some finite n,  

 

0)()()()( 2122121221
>−+−=− hMhMhMhMfMfM n

σ  

 

from which it follows that, setting )( 2122 hMh −=λ , 022 >λM  and 021 =λM . 

 

Finally, setting 21 λλλ −= , λ  by construction satisfies the condition that player 1’s 

expectation of it is positive, 01 >λE  while player 2’s expectation of λ−  is also positive, 

0)(2 >−λE .  � 

 

This last proposition has at least two interesting implications.  

 

Firstly, imagine two individuals who insist on finding a bet they can conduct between 

themselves. They can write down their type matrices and calculate their balanced priors. 

If the balanced priors are equal, they have a common prior and by the Sebenius-

Geanakoplos theorem they can stop right there – they will not be able to find any random 

variable on which to bet. If the priors are disparate, at state *ω , all they need do is 

identify a function f such that 0)(
**

≠− fpp ji

ωω , and then follow the iterative steps 

appearing in Nehring (2001) and the procedure in the above proof to calculate 

(admittedly not necessarily in a computationally efficient manner) a mutually acceptable 

bet λ .  

 

Secondly, from this we see that in situations of lack of common priors, the Morris-

Feinberg result holds rather strongly – there are a very large cardinality of mutually 

acceptable bets. To be more precise, start with the observation that the players needn’t 

work terribly hard to find a function f such that 0)(
**

≠− fpp ji

ωω . Denote by Z the set of 

random variables g such that 0)(
**

=− gpp ji

ωω . As 0
**

≠− ωω
ji pp , Z is a hyper-plane in 

ΩR  – and so is a set of dimension less than Ω  and therefore of Lebesgue measure zero 

in ΩR . In other words, chances are that by selecting a random f in ΩR , the players can 

apply the above procedure to find a mutually acceptable bet. Even if not, suppose they 

have selected an arbitrary Zg∈ . For each 10 <≤α , the vector given by 

))(1(
** ωωαα ji ppgh −−+=  satisfies 0)(

**

≠− hpp ji

ωω  – and now again the procedure can 

be followed to find a mutually acceptable bet.  

 

Given this, it might not be surprising to discover a great deal of bets being concluded 

under conditions of disparate priors. 
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4. N Players 
 

4.1  Balanced Priors 

 

In this section, the cardinality of I, the set of players in the type space Iiii tI ∈∏Ω ),(,, , 

will be any finite number n. The number of type matrices is obviously also n, labelled 

1M through nM . 

 

With n players, there are !n  different permutations. For each permutation σ , there is an 

associated permutation matrix )()2()1( ... nMMMM σσσσ = . Given Π∈Q , each QMσ  is 

ergodic and has a unique Samet invariant probability measure labelled Qpσ . Permutations 

will be assumed to operate on these invariant probability measures by way of 
QQ pp µσσµ = for any permutation µ .  

 

For notational simplicity, we will again assume temporarily that }{Ω=Π . 

 

Notation: Certain subsets of nΣ , the set of all permutations on n objects, will be of 

special interest. For each Ij∈ , the set of all permutations σ  such that jn =)(σ  will be 

labelled jL→Σ , and a typical element in it will be written jj LL →→ Σ∈σ . Similarly, the set 

of all permutations σ  such that j=)1(σ  will be labelled →Σ
Lj , and a typical element in 

it will be written →→ Σ∈
LL jjσ . The set of invariant probability measures }{

j
p

L→σ  

associated with the permutation matrices }{
j

M
L→σ  such that jj LL →→ Σ∈σ  will be 

denoted jL→Ψ , and →Ψ
Lj denotes the obvious equivalent for elements of →Σ

Lj . Note the 

following cardinalities: )!1( −=Σ=Σ →→ njj LL
, whilst for the probability measures we 

have an upper bound on distinct cardinalities, )!1( −≥Ψ→ njL
 and )!1( −≥Ψ → njL

 . 

 

One particular permutation will be important enough here to be singled out: define η  to 

be the permutation defined by: 

 










−− 1    ...    1  ...   2   1   

       ...           ...   3   2   1

nin

ni
 

 

Clearly, for any →→ Σ∈
LL jjσ , jj LL →→ Σ∈ησ . 

 

Proposition 8.  For each permutation σ , σσσ pMp n =)(  and )1()1( σησσσ L→Ψ∈= pMp . 
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Proof. Select an arbitrary j and an arbitrary →Ψ∈
→ LL jj

pσ . By definition, jj =→ )1(Lσ  

and 
→→→

=
LLL jjj

pMp σσσ .  

 

Write out 
→Lj

Mσ  as kj MM ... , where )(nk j →= Lσ . Follow this by multiplying both sides 

of  
→→→

=
LLL jjj

pMp σσσ  on the right by jM . We are thus lead to the equation 

jjkj MpMMMp
jj →→

=
LL σσ ... . Rewriting this as jjkj MpMMMp

jj →→
=

LL σσ ))(...( , or 

equally well as jj MpMMp
jjj →→→

=
LLL σησσ )( , indicates that jMp

j →Lσ  is the unique Samet 

invariant probability measure of 
→Lj

Mησ . But the Samet probability measure of 
→Lj

Mησ  

already has a label, 
→Lj

pησ , so in particular 

 

→→
=

LL jj
pMp j ησσ  

 

Now, jj LL →→ Σ∈ησ , so that jj
p LL →Ψ∈

→ησ , which in other words (recalling that 

jj =→ )1(
L

σ ) means 

 

jjj
Mp

LLL →Ψ∈
→→ )1(σσ  

 

We can now run the following series of calculations, based on 
→→

=
LL jj

pMp j ησσ . First 

multiply on the right by 
jM : 

 

jjj MpMMp
jj →→

=
LL ησσ  

 

But jj MM =2
, so 

jj MpMp
jj →→

=
LL ησσ  

 

We started this chain of calculations with 
→→

=
LL jj

pMp j ησσ , so we conclude that 

 

jMpp
jj →→

=
LL ησησ  

 

In other words, the Samet invariant probability measure of 
→Lj

Mησ , 
→Lj

pησ , is also an 

invariant measure of jM , hence a prior for player j.  

 

Since by definition jn =)(ησ , the set }{
→Lj

pση  as →Ljσ  ranges over all elements of 

→Σ
Lj

 , is just 
jL→Ψ , and hence 

jj
pMp j LL →→

= σσ for all 
jj

p
LL →Ψ∈

→σ . As j was selected 

arbitrarily, it follows that for any permutation σ , σσσ pMp n =)( , and the proof is 

complete.  � 
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Corollory.  Each element of the set jL→Ψ  is a prior for player j.  � 

 

Given the corollary, we can call, for each j, the set of jL→Ψ  the set of balanced priors for 

player j, and we might as well label it jj L→Ψ≡Ψ . There are n such sets, 1Ψ  through nΨ , 

each of which is of cardinality at most )!1( −n , for a total of !n  balanced priors. We can 

label the totality of the balanced priors, U Ii i∈
Ψ , by Ψ . 

 

As the proof shows, the type matrices IiiM ∈}{  play the following roles here: for each j, 

jM acts, by way of the action jpM , as a mapping of all of →Ψ
Lj  to all of jj Ψ≡Ψ→L

; in 

addition, for each ji ≠ , it maps one element in each iΨ  to an element in jΨ ; and it maps 

each element in jΨ  to itself. 

 

The n-player version of Proposition 5 of Samet (1998a) follows readily: if there is a 

common prior p, then for any two permutations σ and σ ′ , ppMpM == ′σσ , and all the 

balanced priors are equal by definition. In the other direction, if all the balanced priors 

coincide, a common prior has been identified, simply because the balanced priors are 

priors. 

 

4.2 Orbits of Priors 

 

It would seem from the previous section that a priori one may need to calculate all the !n  

Samet probability measures in order to answer the question ‘is there a common prior’ for 

a given n-player type space. This is quite a calculational burden, given the n-fold matrix 

multiplication needed for working out each matrix σM , and then the effort required for 

working out the invariant probabilities of these Markov matrices. Fortunately, it is 

possible to prove a theorem that indicates an easier way. 

 

Definition. For any Ψ∈σp , the orbit of σp under the action of the permutation η  – i.e., 

the n-element set },...,,{ 110 −nppp , where for each }1,...,0{ −∈ ni , ση pp i

i = – will be 

termed an orbit of balanced priors, or just an orbit of priors for short. 

 

Lemma. The set of balanced priors Ψ can be partitioned into 1−n  distinct orbits of 

priors. Each such orbit contains exactly one representative from each element of Ijj ∈Ψ }{ .  

 

Proof.  That the orbits of priors partition the space Ψ  into 1−n  distinct subsets follows 

from standard results in the theory of group actions and orbits.   

 

Next, select an arbitrary σp  and consider its orbit },...,,{ 110 −nppp . From the previous 

result that ηµµµ pMp =)1(
 for any permutation µ , we can immediately conclude that for 



With
drawn by t

he a
uthor

 31 

each i , )(1 iii Mpp σ=+ . One the other hand, as ση i  is the permutation associated with ip , 

we can also write 
)1()1(1 σησηση iii Mppi Ψ∈=+ , and therefore as i  goes from 0 to 1−n , each 

ip  is located in a different set of balanced priors. But the set }1,...,0{)1(
}{ −∈Ψ niiση

 is nothing 

other than Ijj ∈Ψ }{ , and we conclude that each orbit of priors contains exactly one 

representative from each element of Ijj ∈Ψ }{ .  � 

 

Proposition 9. A type space Iiii tI ∈∏Ω ),(,,  has a common prior if and only if each 

orbit of priors },...,,{ 110 −nppp  satisfies 120 ... −=== nppp . 

 

Proof. If there is a common prior, then all the elements of Ψ  coincide, hence trivially all 

the elements of each orbit of priors coincide. 

 

In the other direction, suppose that an arbitrary orbit of priors },...,,{ 110 −= npppO  

satisfies 
120 ... −=== nppp . By the lemma, each Opi ∈  is located within a distinct 

element of the set Ijj ∈Ψ }{ . But each such jΨ  is a set of priors for player j. We have 

therefore identified a common prior for the type space.  � 

 

This proposition considerably reduces the informational and calculational burden for 

establishing the existence of a common prior for a given type space. For one thing, the set 

of all balanced priors Ψ  contains !n  elements; each orbit of priors consists of n elements. 

Secondly, the algorithm for identifying a common prior is now reduced to selecting an 

arbitrary permutation σ , forming the permutation matrix σM , calculating its invariant 

Samet probability measure σp , and then iteratively forming the orbit of priors 

},...,,{ 110 −nppp  by setting σpp =0 and )(1 iii Mpp σ=+ . If for some i, ii pp ≠+1 , it can be 

concluded that the type space does not have a common prior. If on the other hand 

120 ... −=== nppp , not only have we established that there is a common prior p, we have 

precisely identified it. It follows that the study of type spaces with common priors is the 

study of type spaces all of whose orbits of priors are uniformly equal. 

 

Since any orbit of priors contains all the information needed to ascertain whether or not 

there is a common prior, we can select one arbitrarily to serve as the representative orbit 

of priors },...,,{ 110 −nppp  for a particular type space.  

 

Note that though the orbits of balanced priors contain information regarding the existence 

or non-existence of common priors shared between all n players in a type space, they do 

not tell us anything about common priors amongst proper subsets of the set of all players. 

There are well-know examples of type spaces that have no common priors but in which 

every pair of players share a common prior between them. 
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Finally, note that when the type space consists of only two players, there is only one 

possible orbit of priors, which is the entire 2-element space of balanced priors },{
21 σσ pp , 

and we recapitulate the results of the previous section in the case of two players. 

 

4.3 Characterising Balanced Priors 

 

Just as in the 2-player case it is possible to provide a definition of balanced priors that is 

intrinsic to type spaces and does not make reference to Markov chain concepts.  

 

Definition. Given an n-player type space, the elements of an n-tuple of probability 

measures },...,,{ 110 −nppp  will be termed balanced if there exists a mapping 

In →− }1,...,0{:µ such that for 1−< nj , )(1 jjj Mpp µ=+ , and )1(10 −−= nn Mpp µ .  

 

It is clear that given an n-tuple of balanced probability measures },...,,{ 110 −nppp , for 

each j, jjnjjj pMMMMMp =−−+ )1()0()1()1()( ...... µµµµµ , hence they are all Samet probability 

measures. This insight leads to a straight-forward proof, which we omit here, that any n-

tuple of balanced probability measures is an orbit of balanced priors, and hence there are 

between one to 1−n  distinct such tuples in any n-player type space.  

 

 

4.4 Mutually Acceptable Bets 

 

In the n-player case, a set of random variables 
Iiit ∈}{  is a feasible bet if ∑ ∈

=
Ii it 0)(ω  for 

all Ω∈ω . The players fail to bet on a feasible bet Iiit ∈}{  at some state ω  if it is not 

common knowledge at ω  that each player’s expectation iitE  of his own bet t is positive, 

i.e. 0>iitE . A mutually acceptable bet is a feasible bet Iiit ∈}{  which does satisfy the 

condition that 0>iitE  for all players. There is no betting amongst the players at ω if they 

fail to bet on any feasible Iiit ∈}{ . 

 

The n-player Morris-Feinberg theorem then states there is no common prior in a type 

space if and only if there is a mutually acceptable bet Iiit ∈}{ .  

 

Given Proposition 9, it is natural to enquire whether it is possible to derive the conclusion 

of the Morris-Feinberg theorem directly from consideration of orbits of priors. With the 

assistance of ideas from Nehring (2001), it turns out that this is true. 

 

Proposition 10. If the elements of any orbit of priors at a state *ω  in a type space 

Iiii tI ∈∏Ω ),(,,  fail to be uniformly equal, then there exists a mutually acceptable bet. 

 

Proof. Let },...,,{
***

110

ωωω
−nppp  be an arbitrary orbit of priors such that for some l, 

**

1

ωω
+≠ ll pp . Let lσ  be the permutation associated with 

*ω
lp , with )1(lj σ= , so that 
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** ωω
σ lpp l ≡ , and label the permutation associated with 

*

1

ω
+lp  by ll ησσ =+1 , so that 

**

1 1

ωω
σ +≡+ lpp l . By previous results, 

)1(1

***

ll MpMpp jll σ
ω
σ

ωω ≡=+ . Next, select a random 

variable f such that 01 >−
∗

+

∗

fpfp ll

ω
σ

ω
σ

 – that such can be found is guaranteed by the fact 

that 
**

1

ωω
+≠ ll pp . 

 

Consider the expression )()( fMfM j

k
l −

σ
. Letting the integer k grow without bound, 

)()(lim fMfM j

k

k l −∞→ σ
 is equal to a vector whose elements are uniformly equal to 

)( fMfp jl −
∗ω

σ
. But fpfpfMfp lll j

∗

+

∗∗

−=− ω
σ

ω
σ

ω
σ 1)( , and it was already assumed that this 

last expression is greater than 0 – in other words, 0)()(lim >−∞→ fMfM j

k

k lσ
, as a 

vector inequality. 

 

This in turn implies, because the state space Ω  is finite, that for some finite k, 

0)()( >− fMfM j

k
lσ

 is uniformly greater than 0. Because the k-fold concatenation of 

))(),...,1(( nll σσ  is a finite sequence of elements of I, whose initial element is jl =)1(σ , 

by Nehring’s Theorem there exist random variables 
Iiig ∈}{ 1 , in ][ f  such that 

 

0)()()( 11 >−=− ∑
∈

iii

Ii

jj

k gMgMfMfM lσ
 

 

Setting, for each ji ≠ , )( 111

iiii gMg −−=λ , and )( 111

iiIi ij gMg −=∑ ∈
λ , it is clear that 

01 =∑ ∈Ii iλ , and that for ji ≠ , 01 =iiE λ , but 01 >jjE λ . 

 

Now, since 0)()( >− fMfM j

k
lσ

, it follows from the properties of type matrices that for 

each 1>t , 0)()(
)(

>− fMfMM j

k

t ll σσ
. But then again we can apply Nehring’s 

Theorem, each time for a finite sequent of elements of I whose initial element is )(tlσ , to 

obtain 
Ii

t

ig ∈}{ , in ][ f  such that, following the same recipe as above, we can define for 

each )(ti lσ≠ , )( t

ii

t

i

t

i gMg −−=λ , and )(
)(

t

iiIi

t

i

t

t
gMgl −=∑ ∈σ

λ . Clearly, 0=∑ ∈Ii

t

iλ , 

and for ji ≠ , 0=t

iiE λ , but 0
)()(
>t

tt llE
σσ

λ . 

 

Finally, setting ∑ ∈
=

It

t

ii λλ , we have 0=∑ ∈Ii iλ , and 0>iiE λ for all i.  � 

 

As with the analogous proposition presented in the previous section, this result indicates 

there is no lack of mutually acceptable bets in situations of disparate priors. Individuals 

who wish to engage in betting should have no problem identifying an endless number of 

feasible bets of the form Iiit ∈}{  they would all accept – even though they are aware that 

∑ ∈
=

Ii it 0)(ω  in all states. As pointed out in Feinberg (2000), each such mutually 
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acceptable bet is analogous to the existence of n securities such that if the players are 

risk-neutral and have the same utility functions then at every state of the world the sum of 

what they are willing to pay for the securities is always greater than the total worth of the 

securities. 

 

Example. In this example, },,{ 321 ωωω=Ω , }3,2,1{=I , }}}{,{{ 3211 ωωω=Π , 

}}}{,{{ 2312 ωωω=Π , }},{},{{ 3213 ωωω=Π , }},,{{ 321 ωωω=Π . 

 

The type matrices are 

 



















=

1       0       0 

  0     
2

1    
2

1

0     
2

1    
2

1

1M  

 



















=

2
1     0     

2
1

  0       1        0

2
1     0     

2
1

2M  

 





















=

  
3

2     
3

1      0

 
3

2     
3

1      0

0        0        1

3M  

 

 

There are two orbits of priors, given (to eight decimal places) by: 

 

[ 0.30769231  , 0.23076923  , 0.46153846] 

[ 0.38461538  , 0.23076923  , 0.38461538] 

[ 0.30769231  , 0.30769231  , 0.38461538] 

 

and 

 

[ 0.28571429  , 0.28571429  , 0.42857143] 

[ 0.35714286  , 0.28571429  , 0.35714286] 

[ 0.35714286  , 0.21428571  , 0.42857143] 

 

and it can be concluded from cursory inspection of either orbit that there is no common 

prior in this type space. 
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5. Appendix – Remaining Proofs 
 

Observation. Given any 1≥k  and type matrix iM , i

k

i MM = . 

  

Proof. Recall that by assumption, for each Ω∈ω , 1))()(( =Π ωω iit , and for each 

)(ωω iΠ∈′ ,  )()( ωω ii tt =′ .  

 

Label the states of Ω  as sωω ,...,1 , and select arbitrarily ml ωω , . Then 

}))({(),( mlimli tM ωωωω =  and by the definition of matrix multiplication 

 

∑
=

=
s

j

mjijlimli ttM
1

2 })])({(})][)({([),( ωωωωωω  

 

We can immediately note that for all j such that )( lij ωω Π∉ , 0}))({( =jlit ωω , so that for 

the sake of working out the sum in the above equation we may restrict attention only to 

those j such that )( lij ωω Π∈ .  We will accordingly write 

 

∑
′

=

=
s

j

mjijlimli ttM
1

2 })])({(})][)({([),( ωωωωωω  

 

with s′ indicating that the sum is only over those j such that )( lij ωω Π∈ . 

 

Suppose first that )( lim ωω Π∈ . Then by assumption, as j varies, )()( liji tt ωω =  so that 

}))({( mjit ωω  is a fixed value, equal to }))({( mlit ωω . This fixed value can be pulled out 

of the sum, leading to the equation  

 

∑
′

=

=
s

j

jlimlimli ttM
1

2 }))({(}))({(),( ωωωωωω  

 

But because by assumption 1))()(( =Π ωω iit , we can write 1}))({(
1

=∑
′

=

s

j

jlit ωω , hence 

),(}))({(),(2

mlimlimli MtM ωωωωωω == . 

 

 Next suppose that )( lim ωω Π∉  so that 0),( =mliM ωω . As j varies over those j such that 

)( lij ωω Π∈ , 0}))({( =mjit ωω . This fixed value can again be pulled out of the sum, 

leading immediately to the conclusion that ),(0),(2

mlimli MM ωωωω == . 

 

The general result, for k

iM , follows by straightforward k-fold iteration of this result. � 
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Lemma (to Proposition 6). The mapping αβγξ oo= is continuous. 

 

Proof. The mapping β  maps elements of a real vector space to elements of a real vector 

space. Hence to establish its continuity we can rely on the Heine definition of continuity 

and consider an arbitrary sequence ),...,(),...,,(),,( 21

2

2

2

1

1

2

1

1

jj MMMMMM , of elements of 

)()( 21 Ω×Ω MM  , and the associated sequence ),...,(),...,,(),,( 21

2

2

2

1

1

2

1

1

jj MMMMMM βββ . 

Suppose that ),(),(lim 0

2

0

121 MMMM jj

j =∞→ . 

 

For each 1≥k , define the infinite sequence ,...)(,...,)(,)(
111

21 kjkk MMM σσσ  and the 

sequence ,...)(,...,)(,)(
222

21 kjkk MMM σσσ , where jjj MMM 121
=σ  and jjj MMM 212

=σ . Then 

kkj

j MM )()(lim 0

11 σσ =∞→  and kkj

j MM )()(lim 0

22 σσ =∞→ , where 0

1

0

2

0

1
MMM =σ  and 

0

2

0

1

0

2
MMM =σ . But for each j, kj

k M )(lim
1σ∞→ approaches a probability matrix jA each of 

whose rows is a probability vector jp
1σ that is one of the balanced priors associated with 

the pair ),( 21

jj MM , and kj

k M )(lim
2σ∞→  gives a matrix each of whose rows is the other 

balanced prior. Then kj

kj M )(limlim
1σ∞→∞→  approaches a probability matrix each of 

whose rows is one of the balanced priors associated with the matrices ),( 0

2

0

1 MM , and the 

same holds for kj

kj M )(limlim
2σ∞→∞→ . Hence ),(),(lim 0

2

0

121 MMMM jj

j ββ =∞→ , and we 

have proved that β  is continuous. 

 

The mapping 
2121 ),(: pppp −aγ is clearly continuous, as is α , being by definition a 

topological isomorphism. Hence αβγξ oo= is continuous.  � 
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