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Abstract

In the model of choice, studied in this paper, the decision maker chooses the

actions non-probabilistically in each period (Sarin and Vahid, 1999; Sarin, 2000).

The action is chosen if it yields the biggest payoff according to the decision maker’s

subjective assessment. Decision maker knows nothing about the process that gen-

erates the payoffs. If the decision maker remembers only recent payoffs, she con-

verges to the maximin action. If she remembers all past payoffs, the maximal

expected payoff action is chosen. These results hold for any possible dynamics of

weights and are robust against the mistakes. The estimates of the rate of con-

vergence reveal that in some important cases the convergence to the asymptotic

behavior can take extremely long time. The model suggests simple experimental

test of the way people memorize past experiences: if any weighted procedure is

actually involved, it can possibly generate only two distinct modes of behavior.
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1 Introduction

The environments in which economic agents make decisions can be very complex. This

accounts for the tendency of the agents to simplify their decisions. I study the behavior of

a simple decision maker who does not randomize while choosing among actions. Instead,

she chooses the action with the biggest subjective assessment, which is represented by

the weighted average of the past payoffs. The decision maker has no information about

the environment apart from the payoffs she receives. I analyze the long run behavior of

the decision maker and the rate of convergence for very general weight structure.

The model of the kind was first introduced in Sarin and Vahid (1999). In this paper

the decision maker does not randomize among actions as well, but the weights given to

the past payoffs are fixed. The long run behavior of the decision maker depends on var-

ious assumptions and might be stochastic (i.e. in the long run the agent is randomizing

among several actions).

In this paper I consider a model which makes sharp predictions about the long run

behavior for all possible weight configurations. Depending on the “size” of the memory,

the decision maker can follow only two modes of behavior. Moreover, the result is robust

against the mistakes by the decision maker. This suggests an easy way to test if the

actual mechanism of memorizing payoffs in humans works in weighted average fashion.

An experimental study in Sarin and Vahid (2001) already shows that the models of this

type can explain existing data exceptionally well. The only drawback that becomes clear

is that the rate of convergence to the long run action might be tremendously low in some

cases. This can potentially create problems with testing the hypotheses.

In the model the decision maker faces the same decision problem repeatedly. In each

period she chooses an action according to her subjective assessments, which are the

weighted averages of the past payoffs. After the choice is made, the state of the world

is realized and the payoff is revealed. The decision maker has no information about the

process that generates the payoffs. After the payoff is known, she updates the subjective
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assessment of the action which generated the payoff. The subjective assessments of all

other actions stay the same. We assume that the decision maker can make mistakes

with ε probability in which case she chooses an action with non-maximal assessment.

Similar model is studied extensively in computer science literature, where it is called

ε-greedy learning procedure (Sutton and Barto, 1998). Most results in computer science,

however, are simulations that compare this learning model to others. Very close learning

model is used by Young (2007) to study the behavior in large games. When the action

sets and the number of players are very big it becomes computationally impossible

for either humans or computer agents to use learning procedures that try to take into

account the information about the game. Thus, it is important to understand how

learning models that use only payoff information behave.

The paper is organized as follows. In section 2 the model with finite memory is

formalized and the maximin result is proved. General model is introduced in section

3 as well as the long run behavior results for different cases. Section 4 deals with the

estimates of the rate of convergence. And Section 5 concludes. Proofs and definitions

can be found in the Appendix 6.

2 The Model with Finite Memory

The decision maker faces the same decision problem repeatedly. Each period she is

choosing one of the J actions from a finite set A = {a1, a2, ..., aJ}. After the action is

chosen, the state of the world ωt ∈ Ω is realized (t stands for the time period). The

set of states of the world Ω is assumed finite. Suppose that there is some probability

measure defined on Ω. For each t, ωt is identically and independently distributed in each

time period. After the state of the world is chosen decision maker receives her payoff

according to the utility function u : A × Ω → R+ (in what follows I will write ui(t) for

the payoff received by the decision maker from choosing ith action in period t). Decision
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maker does not have any information about the process that generates the payoffs (even

if it is random or not).

To choose an action the decision maker uses the following information. There exist

real-valued subjective assessments of the payoffs, which the decision maker attaches to

each action in A. Denote these assessments by αi(t) for ith action in period t and write

the vector of assessments as α(t) = (α1(t), α2(t), ..., αJ(t)). Each period the decision

maker chooses the action with the maximal subjective assessment. For simplicity, assume

that at any time t all the subjective assessments are different from each other. This

assumption does not create any loss of generality but helps to avoid uninteresting ties.

Subjective assessments are updated each period. The assessment for each action i at

period t is a time and action invariant function of the payoffs, received by the decision

maker after playing i in the past. These payoffs are stored in the memory. Assume

that the memory of the decision maker is finite and she remembers m values of the

payoffs received in the past from each action. Denote by mi(t) the “memory vectors”

for each action i at time t. These vectors contain the values of last m payoffs, which

where obtained from playing each action. So m′
i(t) = (ui(t1), ui(t2), ..., ui(tm)), where

t1 < t2 < ... < tm ≤ t are the periods when action i was played last m times in the past

(the prime means transposition). The memory vector for an action changes whenever

the action is played. The first (the oldest) value of the payoff in the memory vector

disappears (the decision maker forgets it), all other values in the vector move one position

leftward and new payoff takes its place in the rightmost position. For example, if the

decision maker has played action i and received some payoff ui(t) her memory for action

i changes as follows: m′
i(t + 1) = (ui(t2), ui(t3), ..., ui(tm), ui(t)), where ui(t2), ..., ui(tm)

are the m − 1 values taken from the vector mi(t). Call this transformation of memory

vector T (mi(t), ui(t)). Think of mi(0) as given for each action i and that all elements in

mi(0) are equal to one of the payoffs, say ui(0), which action i can possibly yield. Let

us then assume that αi(0) = ui(0).
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Now consider how the subjective assessments are calculated. Suppose that there

exist the constant vector of non-negative weights λ′ = (λ1, λ2, ..., λm) with the property∑m
i=1 λi = 1. The assessment of the payoff from playing ith action in period t is the

λ-weighted average of the values of previous payoffs received from playing action i. More

formally, in the end of the period t, when the decision maker obtains the payoff ui(t)

from choosing ith action, the memory and the assessments change as follows:

mi(t + 1) = T (mi(t), ui(t))

mj(t + 1) = mj(t), ∀j 6= i

αi(t + 1) = λ′mi(t + 1)

αj(t + 1) = αj(t), ∀j 6= i

Only the memory and the assessment of the action that was played changes. All other

memory vectors and assessments remain the same.

In addition, assume that the decision maker can make mistakes while choosing the

action to play. Each period she chooses the action with maximal subjective assessment

with probability 1 − ε, where ε is some small positive number. With probability ε she

makes a mistake and some other action is chosen instead. So, with probability 1− ε the

decision maker chooses her subjectively maximal action and all other actions in A are

chosen with probability ε/(J − 1) each.

Say that the decision maker has finite memory if she remembers only m values of

the payoffs received in the past (for each action). This is equivalent to saying that the

memory can be in only finite number of states. Indeed, denote the set, which contains

all possible values of the memory vector mi for action i by Mi = ×m
j=1u(i, Ω), where

u(i, Ω) is the finite set of possible payoffs from playing i. Denote the set of all possible

“memories” of the decision maker by M = M1 ×M2 × ...×MJ . Each Mi contains |Ω|m

elements and thus is a finite set. Therefore, M is a finite set as well.
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2.1 The Maximin Result

In this section I will prove the result concerning long-run properties of the model above.

In particular, I will show that in the long run the decision maker will choose the maximin

action (i.e. the action with maximal minimum payoff) almost surely. The proof will

proceed in two stages. First, the model without mistakes, i.e. with ε = 0, will be

considered and it will be shown show that it can be described as a discrete-time Markov

process with finite state space. Second, I will show that the original model with ε > 0

is a regular perturbed Markov process which converges in some sense to the case ε = 0

as ε gets small.

Call the model with ε = 0 the unperturbed system. The state of the system is

fully described by the state of the memory of the decision maker. Indeed, given some

state of the memory µ ∈ M decision maker’s subjective assessments are determined

unambiguously. So, the probabilities of getting to other states are determined without

ambiguity and depend only on the probability measure over Ω.

Definition 2.1 Denote by PM,λ,0 the discrete-time Markov process with finite state space

M , which fully describes the unperturbed system.

Proposition 2.2 In the unperturbed system the decision maker chooses only one action

asymptotically. This action is the maximin action in A (the one with maximal smallest

payoff).

Proof. Given our assumption that the assessments in period 0 are in between maximal

and minimal payoff for each action the proof of Proposition 1 in Sarin and Vahid (1999)

gives the result. �

The idea of the proof is as follows. The assessments of the payoffs from each action

can only lie in between action specific maximal and minimal payoffs. Thus, whenever

the assessment of some not maximin action falls below maximin that action is never

chosen again. With time the assessments of all actions go down. This happens since
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the decision maker switches to some other action only when the assessment of currently

played action falls below some other assessment, then the process repeats itself. As time

passes all assessments will become lower than maximin.

Now as we found the action, which is chosen by the decision maker in the unperturbed

system, let us make some statements about Markov process PM,λ,0. In the following

Proposition assume without loss of generality that the maximin action has index 1 (a1).

Also denote the minimal payoff from action ai by ui
min = minω∈Ω u(i, ω). Denote the

maximin payoff by umaxmin = max1≤i≤J ui
min.

Proposition 2.3 The Markov process PM,λ,0 has finitely many recurrent classes. All

of these recurrent classes consist only of the states in which the decision maker chooses

maximin action. The set of states in any recurrent class can be described as

CQ = {(m1, m2, ...,mJ) : m1 ∈ M1, (m2, ...,mJ) = Q}

where Q ∈ {(m2, ...,mJ) ∈ ×J
i=2Mi : λ′mi = αi < umaxmin∀i = 2, ..., J} is some constant

value of the collection of J − 1 memory vectors corresponding to not maximin actions

with the property that the assessments of these actions (also constants) are less than

maximin payoff.

Proof. See Appendix 6.1.

Now the analysis of the behavior of the model with mistakes is possible. Recall that

in each period the decision maker chooses the action with maximal subjective assessment

with probability 1− ε and any other action is chosen with probability ε/(J − 1).

It is easy to see that the behavior of the model with mistakes is described by the

Markov process similar to the model without mistakes. The difference is that from

any given state µ ∈ M the process can get to the states previously unreachable. The

probability of these events is proportional to ε. Say that the Markov process PM,λ,ε

is a perturbation of the process PM,λ,0 if the transition matrix of PM,λ,ε is slightly dis-
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torted version of the transition matrix of PM,λ,0. Suppose that PM,λ,ε fully describes the

behavior of the model with mistakes.

Definition 2.4 (Young, 1998) The perturbed Markov process PM,λ,ε is called regular

perturbed Markov process if it satisfies the following conditions:1

1. PM,λ,ε is irreducible for every ε ∈ (0, ε∗];

2. for every two states z, z′ ∈ M it is true that

lim
ε→0

PM,λ,ε
zz′ = PM,λ,0

zz′

3. if PM,λ,ε
zz′ > 0 for some ε > 0, then 0 < limε→0 PM,λ,ε

zz′ /εr(z,z′) < ∞ for some

r(z, z′) ≥ 0.

Proposition 2.5 The perturbed Markov process PM,λ,ε is a regular perturbed Markov

process.

Proof. See Appendix 6.1.

Now, according to the Theorem 3.1 of Young (1998) any regular perturbed Markov

process PM,λ,ε has unique stationary distribution µε for each ε > 0. More than that,

limε→0 µε = µ0, where µ0 is some stationary distribution of the unperturbed process

PM,λ,0. So as ε → 0 the perturbed system converges to some stationary distribution

of the unperturbed system. The stationary distribution of the unperturbed system

necessarily lies in one of the recurrent classes. Since we have shown that in all the states

inside any recurrent class the decision maker chooses maximin action, the same maximin

action will be chosen in the perturbed system with probability close to one. When ε > 0

is small enough the decision maker will “circulate” around maximin action, but still

choose it most of the time.

1In what follows PM,λ,ε
zz′ means the probability of transition from state z to the state z′.
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3 General Model

In this section I consider the case when the memory of the decision maker is infinite.

This will be the only difference of the model in this section from the model with finite

memory. In each period the decision maker chooses the action with maximal assessment.

At the same time the decision maker can make mistakes and choose some different action

instead. There are three different modes of behavior which can emerge when the memory

is infinite. Difference arises because of the way of formation of weights λi in the infinity.

All the assumptions of the model with finite memory remain the same, only the

assessments updating rule changes. Here I do not assume that before choosing an action

for the first time the decision maker has already infinite number of payoff experiences.

Instead, suppose that in the beginning the decision maker has some given vector of

assessments α(0) = (α1(0), ..., αJ(0)), with each component being between the minimum

and the maximum possible payoff from each action. After receiving the payoff from

playing action ai the decision maker updates her assessments in the following way:

αi(t) = λ′tm
∞
i (t)

αj(t) = αj(t− 1) ∀j 6= i

Here λt = (λtt, λt(t−1), ..., λt0)
′ denotes the column vector of length t + 1 of the weights

attached to the payoff just received and the payoffs from playing the same action in the

past. The column vector m∞
i (t) of length t + 1 contains the payoff just received in the

period t, all the payoffs received by the decision maker from playing action ai in the

past, and the value of αi(0):

m∞
i (t) = (αi(0), ui(1), ui(2), ..., ui(t))

′.

As before assume that the decision maker finds weighted average of the payoffs, so
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∑t
i=0 λti = 1 ∀t ∈ N. As time passes the vectors become longer as more and more

payoffs are put to the memory of the decision maker. There are no assumptions on the

particular way of evolution of weights as more payoffs are received. The only restriction

is that there is some procedure, the same for all actions, which generates the weights

each period.2

Now as the model is described, let us define the three different ways the weights λ

can behave in infinity. Consider the triangular array of weights

1

λ11 λ10

λ22 λ21 λ20

...

λtt λt(t−1) . . . λt0

...

where
∑t

i=0 λti = 1, ∀t ∈ N.

In each period t the most recent payoff received by the decision maker is given the

weight λt0. The oldest payoff (αi(0)) is given the weight λtt. Consider three types of

arrays.

Case I. This case is close to the finite memory model as no conditions are imposed on

weights to stay bounded away from zero. For any triangular array of weights λ define a

2As time passes the memory of the decision maker for different actions will contain different number
of payoffs. The assumption means that whenever the number of payoffs for two different actions in any
point in time is the same, the weighted average is calculated using the same weights.
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function Nλ : N× R → N by

Nλ(n, δ) = min{k :
k∑

i=0

λni ≥ 1− δ}

Say that the triangular array of weights λ belongs to Case I whenever

∀δ > 0 Nλ(·, δ) is bounded

Case II. In this case the decision maker takes into account infinitely many past payoffs.

As t → ∞ all the weights approach zero, however the weight does not “escape” to

infinity.

Definition 3.1 (No Escape Condition) The triangular array of weights λ satisfies

No Escape Condition whenever

∀k ∈ N lim
t→∞

λtk = 0

The array of weights belongs to Case II if No Escape Condition is satisfied and

lim
t→∞

max
k≤t

λtk = 0.

Case III. In this case the weight “escapes” to infinity. Any array of weights which does

not satisfy No Escape Condition belongs to Case III.

3.1 Long Run Behavior in the General Model

In this section I prove results concerning long run behavior of the decision maker as

the number of periods played grows to infinity. Depending on the way the weights are

formed, the decision maker’s behavior differs in the long run.
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Proposition 3.2 In the model with no mistakes and Case I weights as t → ∞ the

decision maker converges to the maximin action.

Proof. See Appendix 6.1.

It can be easily seen that when we introduce mistakes to the model with Case I

weights we still get robust convergence to maximin action (in the sense of Section 2.1).

In the special case when the array of weights converges row-wise to some element of the

space `1 we can get as good approximation of infinite memory by finite memory models

as we desire since the convergence to maximin result holds for any finite memory model.3

If the array of weights does not converge in `1 we still can approximate by finding the

finite sequence of weights (λ1, ..., λn) with the function N(n, δ) “close” to the function

of the array as n →∞.

Proposition 3.3 In the model with mistakes and Case II weights the decision maker

asymptotically plays the action with maximal expected payoff with probability 1− ε.

Proof. See Appendix 6.1.

In Case III nothing specific can be said about the long run behavior of the deci-

sion maker since asymptotically she puts positive weights only on the payoffs received

infinitely long time ago. Depending on the realizations of payoffs anything can happen.

However, this case can still have some meaning to it. For example, if the decision

maker has very strong “first impression”: after playing some action for the first time

she remembers only the first payoff and never changes her assessment afterwards. This

behavior corresponds to the array of weights with

λnn = 1 ∀n ∈ N and λnk = 0 ∀k < n

3`1 is the space of all infinite real sequences (x1, x2, ...) with the norm
∑∞

i=1 |xi|.
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4 Rate of Convergence

In this subsection I will state the results concerning the rate of convergence to maximin

in the finite memory model and to maximal expected payoff in Case II model.

4.1 Finite Memory Model

It seems intuitively true that bigger memory slows down the convergence to maximin.

Recall the proof of Proposition 2.2. There it was stated that if the decision maker

chooses non-maximin action then in finite number of steps, the subjective assessment of

this action would fall to some level below the value of maximin payoff. The subsequent

occurrence of m lowest payoffs, for example, is enough. If m is very large, then the

subjective assessment will be an average of a big number of random variables and it will

take longer for it to fall lower than the maximin payoff. Thus, as m grows it will take

longer and longer for the decision maker to switch to the maximin action.

I find an estimate of the minimum number of periods needed for the decision maker

to converge to maximin action. Say that the decision maker has converged to maximin

action once the subjective assessments of all non-maximin actions become less then the

value of maximin payoff for the first time. This means that “the convergence takes

place” whenever the decision maker chooses maximin action not erroneously. Of course,

since the decision maker makes mistakes, it can happen that she will switch to some non-

maximin action in the future. However, since the assessments of all other non-maximin

actions will still be less than the value of maximin payoff, the decision maker will switch

back to the maximin relatively quickly (especially if the number of actions is big).

Denote by Fi the distribution function of the subjective assessment αi, which is

a weighted average of m discrete random variables. Without loss of generality let us

assume that maximin action is the action a1 with corresponding subjective assessment

α1.
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Consider the sequence of periods tj1, t
j
2, ... when action aj is chosen. We can treat the

values of the subjective assessment αj in periods tj1, t
j
2, ... as a sequence of independent

realizations of random variable with distribution function Fj.
4 Each period the action

aj is chosen the probability that the subjective assessment of this action will become less

than umaxmin equals to Pj = Fj(umaxmin). Simple calculation shows that the expected

number of periods needed for the subjective assessment αj to become less than umaxmin

is
∞∑
i=1

iPj(1− Pj)
i−1 =

1

Pj

.

Let us think about the sequences of periods when each action is played as a separate

sequence. We need to find the minimum expected time needed for all non-maximin

assessments to become less than umaxmin. The expected number of periods, which is

necessary for this, is the sum of the expected number of periods for each action:

N =
J∑

i=2

1

Pi

=
J∑

i=2

1

Fi(umaxmin)

here we use our assumption that the maximin action has index 1.

In general, N depends on 1) distributions of all ui except the distribution of maximin

action; 2) the value of umaxmin; 3) number of actions J ; 4) length of memory m (Fi

depend on length of memory, the longer is the memory, the smaller is the variance of

the distributions). It is straightforward that N is an increasing function of m and J and

a decreasing function of umaxmin.

4In reality the realizations of the subjective assessment are not independent, since the components
of one realization are present in the next realization. However, for our purposes this fact is not very
significant, since we are looking for expected minimum number of periods needed for convergence. If we
take into account this correlation between subsequent realizations the time of convergence will become
only longer.
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4.2 Case II Model

Another approach is used here to estimate the number of periods needed for convergence

to maximal expected payoff. Denote by Vi the variance of the random variable u(i, ·), by

Ei its expectation and let σi =
√

Vi. Without loss of generality assume that action 1 has

the biggest maximal payoff. Let ∆i = E1 − Ei. I am interested in how the variance of

the assessments behaves. Notice that given any assessment which was updated t times

the variance of the assessment satisfies

Vi min
k

λtk ≤ Var[αi(t)] = Vi

t∑
j=0

λ2
tj ≤ Vi max

k
λtk

Denote by σit the standard deviation of assessment αi after t updates, then

√
Vi mink λtk ≤ σit ≤

√
Vi maxk λtk

The question now is what is the number n of updates such that for some κ the

intervals [Ei, Ei + κσin] and [E1 − κσ1n, E1] do not intersect. The intuition is that if

these two intervals are disjoint then the assessment i is less than assessment 1 with

probability at least 1 − 1/κ2 (Chebyshev’s inequality). Clearly the minimal number of

updates solves

κ(σ1n + σin) = ∆i

Suppose that n∗i solves this equation for each i. Then the number of updates needed

for the assessments of all actions to be less than the assessment of action 1 with proba-

bility 1− 1/κ2 is

N = max
i>1

n∗i +
J∑

i=2

n∗i .

The maxi>1 n∗i term is needed as action 1 should be chosen enough times as well.

It is not easy to explicitly find n∗i in general, however we can find an estimate of N
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which involves only mink λnk and maxk λnk by using the inequality above. True n∗i lies

in between the solutions to

κ
√

maxk λnk(σ1 + σi) = ∆i

κ
√

mink λnk(σ1 + σi) = ∆i

Suppose that nU
i solves the first equation and nL

i the second. Then

NL = max
i>1

nL
i +

J∑
i=2

nL
i ≤ N ≤ max

i>1
nU

i +
J∑

i=2

nU
i = NU .

For example, assume that mink λnk = 1/nµ where 0 < µ ≤ 1 then the minimal number

of periods needed for the action 1 to be played with probability 1− 1/κ2 is

max
i>1

(κ(σ1 + σi)

∆i

)2/µ

+
J∑

i=2

(κ(σ1 + σi)

∆i

)2/µ

One can see that the rate of convergence can be tremendously low if µ is small (say,

µ = 0.1). This means that if the decision maker uses the weights that go to zero not

too fast, but still fast enough for the assessments to converge to expectation, then we

should not expect to see the maximal expectation action to be chosen.

5 Conclusion

Economic agents tend to simplify their decisions when facing very complex environment.

The model in this paper studies the behavior of a simple decision maker, who does not

possess any information about the process that generates payoffs. The decision maker

simplifies her choice by choosing actions non-probabilistically.

The results differ depending on the weights the decision maker attaches to the past

payoffs. If she cares only about recent payoffs then the maximin action is chosen in the
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long run. This result holds even if we introduce mistakes into the model. If the decision

maker cares about payoffs received long time ago then she converges to the maximal

expected payoff action. In the maximin case, the rate of convergence to the long run

behavior depends on the number of actions, length of the memory and the process that

generates the payoffs. In the maximal expectation case, the rate of convergence depends

on how fast the biggest weight goes to zero. Remarkably, this rate can be very low in

some cases when the weights decrease slow enough.

The model can be extended in several ways. At first, the technique used to prove

the convergence result in the general model can be applied almost without changes to

the case of infinite state space Ω. The only condition that matters is bounded support

of the distributions of payoffs. At second, it could be interesting to investigate the case

when the action space is big and the decision maker experiments only in the vicinity of

the action she plays. At third, one might check how this model performs in games (see

Huck and Sarin (2004); Young (2007)).

6 Appendix

6.1 Proofs

Proof of Proposition 2.3. The recurrent class of the Markov process is a set of

the states, which satisfy two properties: 1) any pair of states in the recurrent class

communicate; and 2) none of the states outside the recurrent class can be accessed

from any of the states inside it. To prove property 1 of this statement notice that once

the decision maker chooses maximin strategy and αi < umaxmin for all i = 2, ..., J she

chooses only it forever after. This means that, after it happens, the memories (and

the assessments) of all not maximin actions are not updated anymore and are constant

forever (this constant is denoted Q in the Proposition). However, the decision maker

continues to choose maximin action and so its memory vector is changing all the time.
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Given that all other memory vectors are constant, it is easy to see that the decision maker

can reach any state of the maximin memory vector. 2m steps is enough to reach any

memory configuration from any other. Any of these 2m steps has positive probability

of occurrence. Thus any set of states described in the Proposition satisfies property

1. Property 2 follows from the proof of the Proposition 2.2. So we conclude that any

set of states of the form stated in the Proposition constitutes a recurrent class of the

Markov process PM,λ,0 and all of these recurrent classes consist only of the states in

which the decision maker chooses maximin action. There is no other set of states, which

do not belong to some of the recurrent classes described in the Proposition, and, at the

same time, constitute a recurrent class. This again directly follows from the proof of the

Proposition 2.2. �

Proof of Proposition 2.5. We first prove that PM,λ,ε is irreducible. It is enough

to show that any two states z, z′ ∈ M communicate. Consider any two such states z

and z′. There exists a sequence of mistakes together with particular states of the world

occurring at each transition such that with positive probability the system will move

from state z to z′. It is easy to imagine such sequence which gradually makes the same

all memory vectors in z and z′. Now we show that conditions 2 and 3 of Definition 2.4

are satisfied. Indeed, in all possible perturbations in the transition matrix, ε enters as a

linear term cε where c is some constant. This is enough for condition 2 to be true. For

the same reason the condition 3 is satisfied when r(z, z′) = 1 for any z and z′ such that

PM,λ,0
zz′ = 0 and when r(z, z′) = 0 for any z and z′ such that PM,λ,0

zz′ > 0 .�

Proof of Proposition 3.2. Given the definition of the Case I array of weights we can

be sure that for any given δ > 0 we can find a number nδ such that

∀t ∈ N
nδ∑
i=1

λti ≥ 1− δ.
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Since all ui
min are different, this guarantees that there exists δ small enough for any

assessment to fall below umaxmin with positive probability (nδ occurrences of ui
min will

suffice). Now we get the result by placing this instead of the analogous argument in

Proposition 1 of Sarin and Vahid (1999). �

Proof of Proposition 3.3. Let us show that the assessments of all actions converge

to the expected value of payoffs. Consider some action i and time periods t1, t2, ... when

this action is played (t1 < t2 < ...). We are interested in the behavior of the assessment

αi(tn) as n → ∞ (since the decision maker makes mistakes we can be sure that any

action is played infinitely often). For each update period tn we know that

αi(tn) = λnnαi(0) + λn(n−1)u(i, ωt1) + ... + λn0u(i, ωtn)

where u(i, ωt) is the realization of the payoff in period t. To prove the statement use the

theorem from Fristedt and Gray (1997) (Theorem 25, p.311).5 First we show that the

assumptions of the theorem are satisfied and then explicitly find the limiting distribution

of αi(t).

Consider the triangular array of random variables:

αi(0)

λ11αi(0) λ10u(i, ωt1)

λ22αi(0) λ21u(i, ωt1) λ20u(i, ωt2)

...

λnnαi(0) λn(n−1)u(i, ωt1) . . . λn0u(i, ωtn)

...

5See Appendix 6.2
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This array is row-wise independent.6 Indeed, each time the decision maker plays ai

she receives independent realization of u(i, ·). Moreover this array is uniformly asymptot-

ically negligible: this is easy to see since, by the definition of Case II weights, for any fixed

δ > 0 we can always find the row of weights small enough for supk P [|λnku(i, ωtn−k
)| >

δ] = 0 to be true for some n and any row that follows. This is the consequence of the

fact that u(i, ·) can take on values in only bounded interval of R+.

Now let us verify the conditions of the theorem. We claim that the Lévy measure

ν(x,∞] = 0, ∀x > 0 satisfies the first condition. For any x > 0 we can find n big enough

so that for all k ≤ n we have P [λnku(i, ωtn−k
) > x] = 0, hence the probability measure

corresponding to any random variable λ`ku(i, ωt`−k
) where ` ≥ n and k ≤ ` is zero on

the interval [x,∞). Thus, the limit of sums of these measures in each row is zero.

Denote by Qi
nk the distribution of λnku(i, ωtn−k

) and consider the integral

∫
(0,δ]

x Qi
nk(dx)

Since limn→∞ λnk = 0 there exists n big enough so that Qi
nk[δ,∞) = 0. Therefore for all

` ≥ n ∫
(0,δ]

x Qi
`k(dx) = λ`kE[u(i, ·)]

and ∑̀
k=1

∫
(0,δ]

x Qi
`k(dx) = E[u(i, ·)]

So second condition of the theorem is clearly satisfied:

lim
δ↘0

lim sup
n→∞

n∑
k=1

∫
(0,δ]

x Qi
nk(dx) = lim

δ↘0
lim inf
n→∞

n∑
k=1

∫
(0,δ]

x Qi
nk(dx) = E[u(i, ·)]

Now theorem tells us that the assessment converges to the random variable which

corresponds to the pair (E[u(i, ·)], 0) via the Lévy-Khinchin Representation Theorem.

6For the definitions of the terms used in this proof see Appendix 6.2.
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This random variable has moment generating function exp(−E[u(i, ·)]) which obviously

corresponds to delta distribution at E[u(i, ·)]. This finishes the proof of the statement

above.

In the model the decision maker makes mistakes, so all the actions are played in-

finitely often. Therefore, as it was shown, assessments of all actions converge to the

expected value. Since the decision maker chooses the action with the maximal assess-

ment, she will eventually choose the one with maximal expected payoff. �

6.2 Triangular array problem

Consider the triangular array of random variables7

X11

X22 X21

X33 X32 X31

...

Xnn Xn(n−1) . . . Xn1

...

For each n the vector (Xnk : k = 1, ..., n) is independent. So call such an array row-wise

independent.

Definition 6.1 (uan arrays) Triangular array which satisfies

lim
n→∞

sup
k

P [|Xnk| > δ] = 0 for all δ > 0

7The material in this subsection is taken from Fristedt and Gray (1997). See also Loève (1978)
(p.329) for analogous result.
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is called uniformly asymptotically negligible.

How do the row sums Sn =
∑n

k=1 Xnk which come from the uan arrays behave? The

following theorems characterize this.

A measure ν on (0,∞) is a Lévy measure for R+ if

∫
(0,∞)

min{y, 1}ν(dy) < ∞

Theorem 6.2 (Lévy-Khinchin Representation for R+) The pair (ξ, ν) where ξ ∈

R+ and ν is a Lévy measure for R+ corresponds to a unique infinitely divisible distribu-

tion with moment generating function given by exp(−θ(v)) where

θ(v) = ξv +

∫
(0,∞)

(1− e−vy)ν(dy)

If X1 and X2 are random variables with distributions Q1 and Q2 let Q1 ∗ Q2 mean

the distribution of X1 + X2 and
∑

i Qi be the sum of distributions as measures, so that

Q1 + Q2 is a measure that can take on values up to 2.

Theorem 6.3 (Fristedt, Theorem 25, p.311) Let (Qnk : 1 ≤ k ≤ n, n = 1, 2, ...) be

a uan triangular array of distributions on R+. For each n, let

Qn = Qn1 ∗Qn2 ∗ ... ∗Qnn

In order that the sequence (Qn : n = 1, 2, ...) converge to a distribution on R+ it is

necessary and sufficient that there exist a nonnegative number ξ and a Lévy measure ν

for R+ satisfying the following two conditions:

ν[x,∞) = lim
n→∞

n∑
k=1

Qnk[x,∞) if 0 < x and ν{x} = 0
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ξ = lim
δ↘0

lim sup
n→∞

n∑
k=1

∫
(0,δ]

x Qnk(dx)

= lim
δ↘0

lim inf
n→∞

n∑
k=1

∫
(0,δ]

x Qnk(dx)

In case these conditions are satisfied, the sequence (Qn : n = 1, 2, ...) converges to

the infinitely divisible distribution on R+ corresponding to (ξ, ν) via the Lévy-Khinchin

Representation Theorem for R+.
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