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Abstract

In many models of interdependent preferences the payoffs have not only per-
sonal value but also enter the social part of the utility. This duality creates a
problem of distinguishing what influences the choice more: consumption or social
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preferences that allows for unambiguous separation of personal and social compo-
nents. I use the preferences for consumption and status as an example to show
that the axioms in the paper describe the preferences that have unique expected
utility representation with consumption and social utilities entering additively.
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1 Introduction

There is an abundance of studies in experimental economics that investigate how the

behavior of subjects is influenced by the presence of others (Andreoni, 1995; Ball, Eckel,

Grossman, and Zame, 2001; Costa-Gomes and Zauner, 2001; Fehr and Gächter, 2000).

To explain this behavior many models of utility which incorporates the characteristics

and possessions of other participants were proposed (Fehr and Schmidt, 1999; Bolton

and Ockenfels, 2000; Levine, 1998). All these models follow the same logic. An assump-

tion is made about the nature of interdependence in preferences, for example, inequality

aversion or altruism, and then some parametric functional form is proposed with an

idea to find the estimates of the parameters from the experimental data. There are

several problems with this approach. First, in many experiments different assumptions

on the nature of interdependence generate the same behavior. For example, proposing

non-zero amount in the Ultimatum game can be explained by both inequality aversion

and altruism. Second, specific functions for personal and social utility are postulated

even though under the assumption of interdependent preferences it is not clear how to

disentangle the two. In order to do it the social utility should be completely eliminated

which requires that subject is observed in complete solitude which does not seem plau-
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sible.1 Third, the models above do not clearly address how uncertainty in the payoffs

enters interdependent preferences. The necessity for such specification becomes clear

when analyzing mixed strategies in games.

The important feature of most interdependent preferences models is that the pos-

sessions of the subject that enter personal utility also play role in social part of utility.

For example, higher income is enjoyed not only because it brings more consumption

but also because it increases the social rank. This duality creates a problem: when an

experimenter observes that subject prefers more payoff to less, is it because the subject

just likes it for consumption value or just because he values social rank above all? The

truth is probably somewhere in between, in which case the question is: How big a role

do consumption and rank play in the choice?

The goal of this paper is to build a model of interdependent preferences that addresses

the issues stated above. The purpose is to: 1) understand what kind of information about

the revealed choice is needed to uniquely separate consumption part of the preferences

from the social part; 2) derive the system of axioms that would allow for such separation;

and 3) create the framework that can be conveniently used to deal with uncertainty in

payoffs of all subjects when interdependent preferences are present.

The model can be used to separate any type of social preferences from personal

ones. To illustrate how it works I consider agents who care about consumption and

social rank or status. This choice was made for several reasons. At first, many authors

including Smith (1759), Veblen (1899) and Frank (1985) considered the desire for status

as the primal incentive for economic behavior once the subsistence level of consumption is

reached. From their perspective, the behavior below the subsistence level is driven mostly

by the desire for more consumption whereas above this level status plays the primary

role. The model in this paper can help with experimental testing of this hypothesis.

1This problem is like the Heisenberg Uncertainty Principle in physics. To estimate the pure con-
sumption part of the utility, the subject should be observed choosing alone, which is impossible given
that experimenter himself can be considered one of the others.

2



At second, there is growing evidence that envy and the resulting desire for status is

an evolutionary adaptation that exists not only in humans but also in other primates

(Cummins, 2005). Recent behavioral and fMRI studies confirm this. In the fMRI

experiment, Rustichini and Vostroknutov (2006b) find activation in Orbitofrontal Cortex

and Nucleus Accumbens2 when subjects compare their winnings with winnings of others

after playing a game of skill. In a related study (Rustichini and Vostroknutov, 2006a)

we find that subjects lost nearly half of total winnings by subtracting money from those

who won more than they did after the game of skill.

I use Anscombe and Aumann (1963) framework to construct preferences that are

represented by unique3 expected utility function that is given by

U(x0, x1, ..., xT ) = f(x0) +
∑
i∈T

πiu(x0, xi)

on the certain outcomes. Here x0 is a measure of possessions of agent 0, whose preferences

are studied. (xi)i∈T are the same measures for other agents in subgroup T of some set S

of all possible others. Agent 0 cares about two things. First, x0 has some consumption

value. Second, agent 0 derives social value from x0 by comparing it to what others have.

The consumption part of the utility is represented by f(x0) whereas the status part is

the weighted sum over others. The function u(x0, x) describes the specific way agent 0

cares about his position relative to one other person and (πi)i∈T are the weights that

represent the importance or “closeness” of each other individual to agent 0. In order to

obtain uniqueness of this representation it is necessary that the preferences of agent 0

are observed in different subgroups of others.

Somewhat related construction can be found in Ok and Koçkesen (2000). In this

paper authors study the consequences of different assumptions about negatively interde-

2These areas are known to be involved in the representation of reward (Ernst, Nelson, Jazbec,
McClure, Monk, Leibenluft, Blair, and Pine, 2005; Rolls, 2004; Schultz, 2004).

3Up to a positive affine transformation
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pendent preferences. In their model agents have preferences only over certain outcomes

and all other agents have the same “closeness” weight. In comparison, I do not assume

that the interdependence is necessarily negative, preferences are constructed over lot-

teries and the “closeness” weights can be different. Ok and Koçkesen (2000) approach,

however, gives results that are hard to obtain in my framework. Their axioms allow

for the utility representation to depend on various aggregate possessions of others, like

average income. In my model this possibility depends on the observable subgroups of

others.

This paper is organized as follows. In part 2 I use the status example to talk about

some conceptual problems with the separability of social and personal parts of the prefer-

ences. In particular, it is argued why the additive functional form above is the appropri-

ate way to model interdependency. Part 3 starts with the description of the framework

and the issue of how to model uncertainty. In parts 4 and 5 the axioms and represen-

tation theorems are given for the two different uncertainty models. Part 6 concludes.

Proofs of the theorems and lemmata can be found in parts 7 and 8.

2 Separability of Status and Consumption

People choose to buy some goods purely for consumption purposes, for example cheap

food. Other things are chosen for purely status reasons, for example the choice between

going through some highly unpleasant initiation ritual in a fraternity and not doing so.

However, most goods are chosen for both reasons at once. A good example is cars.

People like cars because they are convenient. However, it can hardly be denied that

certain cars are produced and bought for status reasons as well (Hummer limousines).

When one wants to model the preferences involving status, it is, thus, important to

have consumption and status parts intertwined. How should these parts be represented?

Naturally, the consumption part of the preferences should be independent of anything
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related to others. It should depend only on the possessions of an agent himself. Let us

then denote consumption utility by Uc(x0). Status preferences should depend on what

others have as well as on the possessions of the agent himself. This is an important point

if we want to be consistent with the possible evolutionary explanations of status. People

care about others’ possessions only relative to their own. This implies that status utility

should be represented by a function Us(x0, others) which is not additively separable.4

Now we can write the utility as

U(x0, others) = Uc(x0) + Us(x0, others).

I think of consumption and status as completely independent reasons that drive the

behavior. That is why Uc and Us are summed.

Here is a problem. Choose any function g(x0) and redefine the utility as

U(x0, others) = g(x0) + Ūs(x0, others)

where Ūs(x0, others) = Us(x0, others) + Uc(x0) − g(x0). It is clear that Ūs is still not

additively separable. But then any function g can be the utility for consumption!5 This

shows that, given intuitive restrictions on Us and Uc, it is impossible in principle to

separate status from consumption in a unique way if we observe preferences with an

unchanging group of people. One way out of this is to assume that we can observe the

choice of the agent when he cares separately about different subgroups of others. By

comparing observations from different subgroups it is possible to disentangle consump-

tion from status in a unique way.

To illustrate the intuition consider college students who choose whether or not to go

through a fraternity initiation ritual (for example, staying without sleep for three days).

4For otherwise we are back to the case of non-relative status.

5This trick can be performed even when consumption and status are not additive.
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When this choice is made, the students are among their peers and fraternity members.

If the only thing we observed was that the ritual is chosen by many students, we would

not be able to understand if students do it because they like it or because they care

about the position in the fraternity. However, it is clear that they would prefer not to

stay without sleep for so long while spending time with their families on Christmas. This

shows that their preferences over going through the initiation are purely status related:

their choice depends on the subgroup. To the contrary, if the students prefer, say, double

cheeseburgers over Big Macs, they will choose them regardless of the current subgroup

they are in (fraternity or family): their choice does not depend on the subgroup which

means that the choice is driven by consumption. These stories are on the extremes,

however, the same principle can be applied to any choice.

To separate consumption and status we need to observe preferences in more than one

subgroup. However, there is another problem. Consider the example with the fraternity,

the family and the ritual. Suppose that these two subgroups are disjoint. Then there are

two possible explanations of the behavior. First situation: the student cares a lot about

the fraternity members, who respect him for having no sleep, cares very little about

the family members,6 and dislikes having no sleep. In this case he will choose to go

through the initiation ritual while in the fraternity and not do it while at home. Second

situation: the student cares very little about the fraternity members, cares a lot about

the family members and loves having no sleep. In addition, having more sleep increases

his status among the family members. The behavior in this case will be exactly the same

as in the first situation, however, the explanations of the behavior are the opposites of

each other. One way to avoid this ambiguity is to assume monotonicity in personal

utility by postulating that the student does not like to have no sleep. However, I find

such assumptions undesirable as they prevent us from investigating other possibilities.

Another way is to try to observe the behavior in subgroups which intersect. In our

6Status-wise.
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example, this could be the requirement that the student has a brother who is in the

fraternity. So, the brother belongs to both subgroups. If such observations are possible,

then no additional assumptions on the personal utility are needed.

To summarize: the model constructed below give rise to the utility over consumption

and status that enter additively. This is necessary assumption if one thinks about

consumption and status as independent reasons for behavior. In order to uniquely

identify the utility it is necessary to observe the behavior in different subgroups of

others. Moreover, these groups should not be disjoint.

3 The Model

The world consists of agent 0 and a finite set S of other agents with |S| > 1. We are

interested in modeling the preferences of agent 0. Agent 0 and any other agent i ∈ S

have the measures of social status x0, x
i ∈ X. The measures can be some aggregates

that are calculated from the possessions or some qualities of the agents, depending on

the social group of interest. For example, it can be the money value of all the goods

that the agents have. The crucial assumption is that x0 plays dual role of bringing not

only consumption but also status utility.

Think of S as a “big” set of all people that agent 0 can possibly care about. This

can be, for example, people of the same profession, like all economists, or any other big

social group. It is realistic to assume that at any given time agent 0 does not take into

consideration everybody in S, but only some subset T ⊆ S. Agent 0 knows statuses

of people in T , but not those in S \T . Also, everybody in T have information about

the status of agent 0. It is possible that at some point agent 0 will be considering

different subset of agents, say R ⊆ S. This can happen, for example, if agent 0 moves

to a different city, which makes the information about his choices unavailable to the old

subgroup and information about the old subgroup unavailable to agent 0.

7



For the model to be testable, it is necessary to have as few constraints on the sub-

groups observed as possible. For example, the model that requires that the choices in

any subgroup should be observed can be hardly tested (it is impossible to see the behav-

ior of an economist in any imaginable subgroup of other economists). As it was pointed

out in the section 2, in order to have unique description of the behavior it is necessary

to have intersecting subgroups. This suggests the following definition.

Definition 1. Say that the collection of observed subgroups C ⊆ 2S is connected if

{∅} /∈ C, |C| > 1, ∪C = S, and for all T, R ∈ C there exist C1, ..., Ck ∈ C such that

T ∩ C1 6= ∅, Ci ∩ Ci+1 6= ∅, Ck ∩R 6= ∅ where i = 1..k − 1.

The first three requirements say that 1) we do not observe the behavior of agent 0 in

complete solitude (the presence of observer himself makes it impossible); 2) there is more

than one subgroup (for otherwise we cannot uniquely separate status and consumption);

3) subgroups cover all other agents (if not, then remove unobserved agents from S) and

4) any two subgroups can be “connected” by the sequence of intersecting subgroups

(otherwise we would have “disconnected” collections of subgroups again making unique

identification impossible, see section 2).

3.1 Models of Uncertainty

Throughout the paper I assume that agent 0 has some unique way of caring about his

status relative to the status of any other person. The intuition is the following. Fix

some T ∈ C. Agent 0 encounters people from the subgroup T all the time. On meeting

i ∈ T , agent 0 observes some outcome (x0, x) ∈ X2 (or lottery), which represents what

agent 0 and the person i have. Agent 0 does not have a prior over the probabilities of

meeting others in T , all he knows is that he will meet somebody. This situation can

be conveniently modeled in the “horse lotteries” framework of Anscombe and Aumann
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(1963). The question however remains: What is the dependency between the outcome

that agent 0 gets and the identities of other agents? There are several intuitive ways of

defining it.

Let ∆(X2) be the set of all simple lotteries7 over the pairs of statuses (x0, x) ∈ X2.

Following Anscombe and Aumann (1963), let

HT := {h : T → ∆(X2)}

be the set of all horse lotteries. Here hi = h(i) is the assignment of a lottery over

agent 0’s and agent i’s statuses. Notice that agent 0’s status, measured by the marginal

lottery over x0 derived from any hi, depends on the identity of the other agent. This

interpretation can have a meaning in the situations where agent 0’s possessions and

status somehow depend on the characteristics of the person he meets.

It is natural, however, to think of agent 0’s outcome as independent of others. This

simply means that agent 0 compares some possessions or qualities of his to the posses-

sions or qualities of others, who cannot change the possessions of agent 0. Let µ0(hi)

denote the marginal distribution of x0 for any lottery in ∆(X2). Consider the set of

horse lotteries

FT := {h ∈ HT : ∀i, j ∈ T µ0(hi) = µ0(hj)}. (3.1)

Each element of FT is an assignment of the distribution over x0 to agent 0 and some

distributions of statuses to all other agents. The distribution over x0 does not depend

on the identity of others. Agent 0 gets a lottery µ0(hi), which is the same for all i ∈ T .

7Lotteries with finite support.
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4 The Space HT

4.1 Axioms

Choose any connected collection C ⊆ 2S of subgroups (see Definition 1) and let

A :=
⋃
T∈C

HT

be the set of all lotteries in HT in all available subsets of other agents. Consider prefer-

ence relation < over A with ∼ and � being its symmetric and asymmetric parts.

For T ∈ C and h ∈ HT write h = (hR, h−R)T to emphasize the lotteries corresponding

to agents in R ⊆ T . For ` ∈ ∆(X2) and x0, x ∈ X write `T or (x0, x)T for the horse

lottery that assigns lottery ` (or (x0, x)) to agent 0 and any other agent in T .

Define a mixture of two horse lotteries h, z ∈ HT with the same domain T to be

αh + (1− α)z = (αhi + (1− α)zi)i∈T ∈ HT . (4.1)

This turns HT into a mixture set as defined in Herstein and Milnor (1953).8

Suppose that the following axioms hold:

A1 < is reflexive, transitive, total.9 It is also non-trivial: for any T ∈ C there are

x0, x, x′ ∈ X such that

(x0, x)T � (x0, x
′)T

A2 Independence. For all T ∈ C, all p, q, r ∈ HT and all α ∈ (0, 1)

p � q ⇒ αp + (1− α)r � αq + (1− α)r

8See Lemma 1 for the proof.

9Totality: a 6= b ⇒ [a < b ∨ b < a].
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A3 Continuity. For all T ∈ C, all p, q, r ∈ HT there exist α, β ∈ (0, 1)

p � q � r ⇒ αp + (1− α)r � q � βp + (1− β)r

A4 Anonymity. For all T ∈ C, h ∈ HT , i, j ∈ T , and `, m ∈ ∆(X2)

(`, h−i)T < (m, h−i)T ⇐⇒ (`, h−j)T < (m, h−j)T

A5 Unimportance. For all x0 ∈ X there exists x∗(x0) ∈ X such that for all intersecting

T, R ∈ C, all Q ∈ T ∩R and all x ∈ X

((x0, x
∗(x0))T\Q, (x0, x)Q) ∼ ((x0, x

∗(x0))R\Q, (x0, x)Q)

A6 Group Disparity. There exist S1, S2 ∈ C such that for all x0, x, x′ ∈ X with

(x0, x)S1 ∼ (x0, x)S2

(x0, x
′)S1 � (x0, x)S1 ⇒ (x0, x

′)S1 � (x0, x
′)S2 and

(x0, x)S1 � (x0, x
′)S1 ⇒ (x0, x

′)S2 � (x0, x
′)S1

***

Axioms A1-A3 are standard necessary conditions for existence of an expected utility

representation for each T ∈ C.

Axiom A4 says that agent 0 does not care about the names of the other agents. Given

any fixed outcomes for all agents but i, if agent 0 prefers lottery ` to m then he will also

prefer ` to m in a situation when he faces agent j instead of i with all other outcomes

still being fixed. Together with the axioms above, A4 implies that in each restriction

<T agent 0 treats all other agents in T in the same way. The only difference comes from

the weights he attaches to different agents. These weights describe the relative “social”
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closeness of others to agent 0, whereas being in subgroup T incorporates the idea of

“topological” closeness.

A4 puts restrictions on what can happen inside each subgroup T . The rest of the

axioms deal with what happens between different subgroups. Without A5-A6 any two

restrictions <T and <R are completely unrelated. It is desirable, however, that agent 0

choose somewhat consistently in different subgroups.

For each level of status x0 of agent 0, axiom A5 asks for the existence of special status

level x∗(x0) of any agent i, such that agent 0, when facing the outcome (x0, x
∗(x0)), does

not care about i and chooses as if i does not exist. For example, agent 0 might not care

about others as long as they have no status or possessions at all (x∗(x0) = 0), but he

starts taking them into account once they have more than that.

Axiom A6 requires that there exist two subgroups T,R ∈ C to which agent 0 at-

taches different total social weight. In particular, if for some (x0, x) it so happens that

(x0, x)T ∼ (x0, x)R, then if agent 0 prefers having (x0, x
′)T to (x0, x)T then he prefers

it also over (x0, x
′)R. This means that subgroup T is preferable to subgroup R only

because agent 0 likes having agents T around more than agents R. A counterexample

might be the situation when all subgroups in C have the same number of others and the

same social weights are attached to all of them. In this case we will have hT ∼ hR for

all h ∈ HT and any T,R ∈ C, which leads to the indeterminacy of status component of

the preferences. Axiom A6 is necessary when there are no two subgroups in C such that

one is the strict subset of the other. If such subgroups exist, then A6 can be dropped

without consequences.

There is no axiom that explicitly describes the “statusness” of the preferences. This

is so because such an axiom is not required for the derivation of the utility. Therefore,

this construction of preferences can be used for any types of interdependent preferences.

The status axiom might look like this:

12



Status Monotonicity. For all T ∈ C, h ∈ HT , i ∈ T and x0, x, x′ ∈ X

x′ ≥ x ⇒ ((x0, x), h−i)T < ((x0, x
′), h−i)T

It states that if we choose any agent i ∈ T and fix the horse lottery outcomes for all

other agents, then agent 0 weakly prefers having less of x for agent i. This reflects the

observation that people dislike others with bigger status.

4.2 Utility Representation

Two theorems in this section state that < satisfies A1-A6 if and only if there is a utility

representation of the form (4.2). The proofs are provided for the space HT . Notice that

the restriction of this utility to the subspace FT gives the desired consumption-status

additive utility

U [(x0, x
i)T ] = f(x0) +

∑
i∈T

πiu(x0, x
i)

Definition 2. Call any u : X2 → R a status function if it is not constant and there

is a function x∗ : X → X such that u(x0, x
∗(x0)) ≡ 0.

Theorem 1. Suppose that < satisfies A1-A6. Then there are positive numbers (πi)i∈S,

a function f : X → R and a status function u : X2 → R such that for any T ∈ C and

any h, z ∈ HT

h < z ⇐⇒ UT [h] ≥ UT [z]

where

UT [h] =
∑
i∈T

πi

∫
X2

f(x0)

σT

+ u(x0, x)dhi(x0, x) (4.2)

and σT =
∑

i∈T πi.

Moreover, the function U : A → R defined as U [h] = UT [h] for all T ∈ C and h ∈ HT ,
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is the utility representation for <, unique up to a positive affine transformation.

Proof. See Section 7.

Theorem 2. Fix any C as described in the Definition 1 and suppose that f : X → R

is any function, u : X2 → R is a status function, and (πi)i∈S are positive numbers. For

T ∈ C and h ∈ HT let

UT [h] =
∑
i∈T

πi

∫
X2

f(x0)

σT

+ u(x0, x)dhi(x0, x)

Define U : A → R to be U [h] = UT [h]. If there are two subgroups S1, S2 ∈ C such

that

∑
i∈S1

πi 6=
∑
i∈S2

πi (4.3)

then the preference relation < over A generated by U satisfies A1-A6.

Proof. See Section 7.

5 The Space FT

In this section I restrict the space of possible horse lotteries to FT (see the equation

(3.1) above). In subgroup T in each horse lottery agent 0 now always has the same

marginal distribution over x0 for all other agents in T . This represents the idea that

the possessions of agent 0 are independent of those of other agents. The space FT is

much smaller than HT but is still a mixture set. It turns out that it is impossible

to construct a weight-additive utility of the form (8.1) for subgroup T using only the

axioms like A1-A4. This happens because Anonymity Axiom (A4), reformulated for FT ,

cannot compare arbitrary simple lotteries from ∆(X2) keeping the rest of agents fixed,

as this restricts the comparison to only the lotteries with the same marginals over x0.
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The solution to this problem lies in finding an additional assumption that would make

it possible to “compare” any two lotteries in some way.

5.1 Axioms

I will abuse notation and use the same symbol < for the preferences over new space in

this section. This does not create any notational issues as all the results in this paper

refer to only one type of space at a time.

Choose any connected collection of subgroups C ⊆ 2S and let

AF :=
⋃
T∈C

FT

be all horse lotteries in FT in all available subgroups. Consider preference relation <

over AF with ∼ and � being its symmetric and asymmetric parts.

For T ∈ C and µ ∈ ∆(X) write hµ ∈ FT to emphasize that the marginal distribution

over agent 0 possessions is the same for all i ∈ T and is equal to µ: ∀i ∈ T µ0(h
µ
i ) = µ.

Also write `µ ∈ ∆(X2) to emphasize that µ0(`
µ) = µ.

In order to express additional axiom I need the following definition.

Definition 3. Say that the correspondence Θ : ∆(X2) ⇒ ∆(X2) is ubiquitous if for

all `, m ∈ ∆(X2) and α ∈ (0, 1)

U1) ` ∈ Θ(`)

U2) µ0[Θ(`)] = ∆(X),10

U3) m ∈ Θ(`) ⇒ ` ∈ Θ(m)

U4) ∀`∗ ∈ Θ(`) ∀m∗ ∈ Θ(m) α`∗+(1−α)m∗ ∈ Θ(α`+(1−α)m)

Suppose that the following axioms hold.

10For A ⊆ ∆(X2), µ0[A] is {µ0(a) : a ∈ A}.
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AF1, AF2, AF3 The same as A1-A3 only with FT in place of HT

AF4 Anonymity. For all T ∈ C, µ ∈ ∆(X), hµ ∈ FT , i, j ∈ T , and `µ, mµ ∈ ∆(X2)

(`µ, hµ
−i)T < (mµ, hµ

−i)T ⇐⇒ (`µ, hµ
−j)T < (mµ, hµ

−j)T

AF5, AF6 The same as A5 and A6

AF7 Complete Substitutability. For all T ∈ C there exists a ubiquitous correspondence

ΘT such that for all h ∈ FT , µ ∈ ∆(X), and all zµ ∈ ×i∈T ΘT (hi)

h ∼ zµ

***

There are two axioms that carry different meaning in comparison with the previ-

ous set of axioms for HT . First, Anonymity Axiom AF4 now states that < is agent

independent only inside each given marginal distribution over x0, but not across them.

This makes the standard subjective probability arguments fail to prove that weighted-

additive utility exists. Second, Complete Substitutability Axiom AF7 says that for any

horse lottery hν with fixed amount of possessions ν ∈ ∆(X) for the agent 0 and any

other amount of his possessions, µ ∈ ∆(X), it is possible to find the levels of statuses of

others zµ such that agent 0 is indifferent between hν and zµ. Moreover, given any two

components i, j ∈ T of the horse lotteries, agent 0 indifference is the same component-

wise (since the same correspondence ΘT works for any i). So, agent 0 is always ready to

substitute some wealth for some status in the same way for any component i and any

change in possessions.
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5.2 Utility Representation

The goal is to show the existence of the expected utility

UT [hµ] =

∫
X

f(x0)dµ(x0) +
∑
i∈T

πi

∫
X2

u(x0, x)dhµ
i (x0, x).

with unique f , u, and (πi)i∈S for any T ∈ C. The main challenge with the space FT is

to show the existence of the weighted-additive expected utility

UT [h] =
∑
i∈T

πi
T

∫
X2

ūT (x0, x)dhi(x0, x)

with function ūT unique for each T . Once this is done the rest of the proof is the same

as for the HT case.

As I mentioned above, it is impossible to use standard subjective probability results

for this case. Therefore, another way of constructing the utility should be used. Let us

define some new notation. For any µ ∈ ∆(X) let

Xµ := {h ∈ FT : µ0(h1) = µ}.

Xµ is the set of all horse lotteries with marginal distribution over x0 being µ. Notice

that FT = ∪µ∈∆(X)Xµ.

Complete Substitutability leads to the following result: for any µ and ν in ∆(X) the

preference < generates “the same” order on Xµ and Xν once “sameness” is appropriately

defined. To be more specific, fix T ∈ C and consider any Xµ ⊆ FT with the order

generated by <. Debreu (1983) defines natural topology on Xµ as any topology in which

both upper and lower contour sets are open for all h ∈ Xµ.11 Call the coarsest natural

topology the order topology. The subbasis of the order topology consists only of all upper

and lower contour sets (Eilenberg, 1941). Endow Xµ with the order topology τµ and

11Upper contour set for h ∈ Xµ is {z ∈ Xµ : z � h}. Lower contour set is {z ∈ Xµ : h � z}.
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find the quotient space Xµ/∼. Let τ ?
µ be the quotient topology on Xµ/∼ derived from

τµ. Now, we say that two orders on Xµ and Xν are equivalent if it is possible to find

bijective order and topology preserving map between spaces (Xµ/∼, τ ?
µ) and (Xν/∼, τ ?

ν ).

Theorem 3. Suppose AF7 holds. Then for any T ∈ C and any µ, ν ∈ ∆(X) there exists

an order preserving homeomorphism (Xµ/∼, τ ?
µ) 7→ (Xν/∼, τ ?

ν ).

Proof. See Section 7.

The Theorem essentially says that given AF7 the preference < generates the same

order on all Xµ ∈ FT regardless of µ. So we can choose one µ, say some degenerate

distribution x0 ∈ X, continue constructing utility on Xx0 and then extend the utility

function to all other elements of FT .

Theorem 4. Suppose AF1-AF4 and AF7 hold. Then for any T ∈ C there are positive

numbers (πi
T )i∈T and a function ūT : X2 → R such that

UT [h] =
∑
i∈T

πi
T

∫
X2

ūT (x0, x)dhi(x0, x)

is a utility representation for <T on FT unique up to a positive affine transformation.

Proof. See Section 7.

Now we are ready to give main representation theorems of this section. They are

different from those for the case HT as Complete Substitutability (AF7) imposes restric-

tions on the shape of the admittable utility functions.

Definition 4. Say that a function ū : X2 → R is equispread if for all x0, y0 ∈ X

sup{ū(x0, X)} = sup{ū(y0, X)} and inf{ū(x0, X)} = inf{ū(y0, X)}.

Theorem 5. Suppose that < satisfies AF1-AF7. Then there are positive numbers

(πi)i∈S, a function f : X → R and a status function u : X2 → R such that for any

T ∈ C and any h, z ∈ FT

h < z ⇐⇒ UT [h] ≥ UT [z]
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where

UT [hµ] =

∫
X

f(x0)dµ(x0) +
∑
i∈T

πi

∫
X2

u(x0, x)dhµ
i (x0, x) (5.1)

and for all T ∈ C the function f(x0)/σT + u(x0, x) is equispread where σT =
∑

i∈T πi.

Moreover, the function U : A → R defined as U [h] = UT [h] for all T ∈ C and h ∈ FT ,

is the expected utility representation for <, unique up to a positive affine transformation.

Proof. See Section 7.

Theorem 6. Fix any C as described in the Definition 1 and suppose that f : X → R

is any function, u : X2 → R is a status function, and (πi)i∈S are positive numbers. For

T ∈ C and hµ ∈ FT let

UT [hµ] =

∫
X

f(x0)dµ(x0) +
∑
i∈T

πi

∫
X2

u(x0, x)dhµ
i (x0, x).

Define U : A → R to be U [h] = UT [h]. If all functions f(x0)/σT + u(x0, x) are

equispread and there are two subgroups S1, S2 ∈ C such that

∑
i∈S1

πi 6=
∑
i∈S2

πi (5.2)

then the preference relation < over A generated by U satisfies AF1-AF7.

Proof. The proof of Theorem 2 applies exactly with replacing all occurrences of axioms

A# with AF#. Axiom AF7 follows from the Lemma 8. �

6 Conclusion

The model of preferences constructed in this paper shows that it is possible to sepa-

rate consumption preferences from social preferences. In order to do so one needs to

observe the choices people make in different subgroups. This creates the possibility to

experimentally find out what social preferences are without making ad hoc assumptions.
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The next step in this research is to design an experiment or find the data which would

help to understand the relative importance of social and personal components of prefer-

ences. The first step is to check whether the axioms proposed in this paper hold. The

experiment in question is not beyond one’s imagination. It is not hard to observe how

behavior changes in different subgroups. To give the simplest example, think of how

people behave differently being at work among colleagues or at home among relatives.

It should be relatively easy to test the axioms experimentally by making various pieces

of information on the outcomes available to different subjects during one treatment.
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7 Proofs

Proof of Theorem 1. The idea of the proof is to 1) establish the existence of the

weighted-additive utilities UT for all T ∈ C; 2) show that a unique function f can be

constructed in a way that is consistent with each of the utility functions; 3) rescale the

now redefined utility functions to show that all the utilities can have the specific form

described in the Theorem.

Fix any T ∈ C. Then A1-A3 and the fact that HT is a mixture set imply existence

of the expected utility UT : HT → R, unique up to a positive affine transformation

(Theorem 8.4 of Fishburn (1970)). Lemma 2 shows that UT on the certain outcomes has

the weighted-additive form

UT [(xi
0, x

i)T ] =
∑
i∈T

πi
T ūT (xi

0, x
i).

Now by Lemma 5 the assertion of the Theorem is true. �

Proof of Theorem 2. A1 holds since u is a status function, which is assumed to be

not constant. For any T ∈ C A2-A3 hold by the “only if” part of the Theorem 8.4 of

Fishburn (1970). Additivity of UT immediately implies A4. The assumption that u is a

status function implies that for each x0 there is x∗(x0) such that u(x0, x
∗(x0)) = 0, so

A5 follows. It is left to show that A6 holds. Without loss of generality assume that

∑
i∈S1

πi >
∑
i∈S2

πi

where S1 and S2 are as in the description of this Theorem. Suppose for some (x0, x) ∈ X2

we have U [(x0, x)S1 ] = U [(x0, x)S2 ]. Then

∑
i∈S1

πiu(x0, x) =
∑
i∈S2

πiu(x0, x)
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can happen only when u(x0, x) = 0 since we assume (4.3). Now, take any x′ such that

U [(x0, x
′)S1 ] > U [(x0, x)S1 ]. This implies that u(x0, x

′) > u(x0, x) = 0. But then

∑
i∈S1

πiu(x0, x
′) >

∑
i∈S2

πiu(x0, x
′)

and therefore U [(x0, x
′)S1 ] > U [(x0, x

′)S2 ]. This is the first part of A6. Second part is

proved by the exactly same argument. �

Proof of Theorem 3. Consider a mapping Ψµν : (Xµ/∼, τ ?
µ) → (Xν/∼, τ ?

ν ) that takes

equivalence class [h] to equivalence class [z] whenever h ∼ z. Notice that (Xµ/∼,�) and

(Xν/∼,�) are linearly ordered sets. By Lemma 6, Ψµν is the order preserving bijection,

so Ψµν = Ψ−1
νµ . By Lemma 7, τ ?

µ and τ ?
ν are the order topologies, so Ψ−1

νµ takes any upper

(lower) contour set of Xµ/∼, which is open, to upper (lower) contour set of Xν/∼, which

is also open. Therefore, since Ψ−1
νµ is a bijection, any open set in the basis of τ ?

µ goes

to the open set in the basis of τ ?
ν . This immediately implies that any open set in τ ?

µ is

mapped by Ψ−1
νµ to an open set in τ ?

ν . Thus Ψνµ = Ψ−1
µν is continuous.12 By the same

argument Ψµν = Ψ−1
νµ is continuous. Thus Ψµν is an order preserving homeomorphism.

�

Proof of Theorem 4. Fix any T ∈ C and x0 ∈ X. AF1-AF4 imply that there is

weighted-additive expected utility on Xx0 of the form

UT [hx0 ] =
∑
i∈T

πi
T ūT [hx0

i ] (7.1)

where (πi
T ) are positive weights and ūT [hx0

i ] stands for an expectation of ūT with respect

to hx0
i (Theorem 13.2 of Fishburn (1970)).

12This argument is based on the fact that the image of a finite intersection (arbitrary union) of any
sets is equal to the finite intersection (arbitrary union) of images under a bijective map.
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Now, for any µ ∈ ∆(X) extend UT to Xµ by setting

UT [hµ] =
∑
i∈T

πi
T ūT [hµ

i ] (7.2)

where ūT [hµ
i ] = ūT [zx0

i ] for any zx0
i ∈ ΘT (hµ

i ) ,which is non-empty by the ubiquitousness

of ΘT . The choice of ūT [hµ
i ] here is unambiguous since AF7 guarantees that ūT [zx0

i ] =

ūT [px0
i ] for all px0

i ∈ ΘT (zx0
i ).13 Now, by Theorem 3 the order on Xx0 is homeomorphic

to the order on Xµ for any µ ∈ ∆(X), thus this procedure defines UT for all elements of

Xµ and since µ was arbitrary, for all elements of FT .

The utility UT : FT → R constructed in this way conforms with AF4 and AF7. The

only thing left to check is that UT indeed represents <T and that it has expected utility

form. These properties follow from the fact that UT satisfies them by construction when

restricted to Xx0 .

Indeed, fix any h, z ∈ FT with h < z. Let hx0 ∈ ×i∈T ΘT (hi) and zx0 ∈ ×i∈T ΘT (zi)

be horse lotteries in Xx0 . Then

h < z
AF7
⇐⇒ hx0 < zx0

(7.1)
⇐⇒ UT [hx0 ] ≥ UT [zx0 ]

(7.2)
⇐⇒ UT [h] ≥ UT [z]

The first equivalence works by definition of AF7 and ΘT ; second, because UT restricted

to Xx0 is a utility representation (7.1); third, by construction (7.2). Therefore UT on FT

is a utility function for <T .

It is still left to show that UT on FT is expected utility function. To do that it is

enough to show that for all `, m ∈ ∆(X2) and α ∈ (0, 1)

ūT [α` + (1− α)m] = αūT [`] + (1− α)ūT [m].

13In the definition of AF7 fix zx0 , let µ = x0 and apply ΘT to only ith component leaving the rest
unchanged (which we can always do since ` ∈ ΘT (`) for any `).

23



Fix any (α` + (1 − α)m)x0 ∈ ΘT (α` + (1 − α)m), `x0 ∈ ΘT (`), and mx0 ∈ ΘT (m). By

property U4 of Definition 3

α`x0 + (1− α)mx0 ∈ ΘT (α` + (1− α)m)

which implies

ūT [α`x0 + (1− α)mx0 ] = ūT [(α` + (1− α)m)x0 ]

But uT on Xx0 does have expected utility property by construction (7.1). Therefore,

αūT [`x0 ] + (1− α)ūT [mx0 ] = ūT [(α` + (1− α)m)x0 ]

which by definition of utility (7.2) implies

αūT [`] + (1− α)ūT [m] = ūT [α` + (1− α)m].

This finishes the proof. �

Proof of Theorem 5. By Theorem 4 <T for each T ∈ C has the utility representation

UT [h] =
∑
i∈T

πi
T

∫
X2

ūT (x0, x)dhi(x0, x).

By Lemma 5 we can rewrite these utilities as

UT [h] =
∑
i∈T

πi

∫
X2

f(x0)

σT

+ u(x0, x)dhi(x0, x)

for all T ∈ C such that U as defined above is unique up to a positive affine transformation.

By the nature of FT (each horse lottery has the same marginal distributions on x0) the
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above becomes

UT [hµ] =

∫
X

f(x0)dµ(x0) +
∑
i∈T

πi

∫
X2

u(x0, x)dhµ
i (x0, x).

By Lemma 8 all functions f(x0)/σT + u(x0, x) are equispread. �

8 Lemmata

Lemma 1. For all T ∈ C the sets HT and FT as defined in part 3.1 are mixture sets.

Proof. Fix any T . For any two horse lotteries h and z from either HT or FT let

αh + (1− α)z = (αhi + (1− α)zi)i∈T

for any α ∈ [0, 1]. First it is necessary to show that the mixture of h and z stays in the

set from which they came from. Then we need to show that the definition of mixture

satisfies conditions (1-3) of Herstein and Milnor (1953).

For h, z ∈ HT the mixture is trivially in HT . For FT this is true since the marginal

distributions of T mixtures of pairs of lotteries with the same marginals on x0 are still

the same, thus by definition mixture is in FT . The conditions (1-3) of Herstein and

Milnor (1953) for mixture set are trivially satisfied since we are mixing independent

probability distributions. �

Lemma 2. Suppose that < satisfies A1-A4. Then for any T ∈ C, the restricted prefer-

ence relation <T , defined over HT , has expected utility representation of the form

UT [(xi
0, x

i)T ] =
∑
i∈T

πi
T ūT (xi

0, x
i)

where πi
T > 0 for all i ∈ T . Moreover, UT is unique up to a positive affine transformation.

Proof. Fix any T ⊆ C and consider the restriction <T . A1-A3 still hold for <T .
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Now notice that by condition (4.1) HT is a mixture set. A1-A3 are exactly the

requirements of Theorem 13.1 of Fishburn (1970).14 The first condition of Theorem 13.2

follows from the non-triviality of <T and A4. The second condition of the theorem is

exactly A4. Therefore, expected utility representation UT obtains. �

Lemma 3. Suppose A5-A6 (AF5-AF6) hold. Then for all C1, C2 ∈ C, all x0 ∈ X and

all x∗(x0) ∈ X satisfying A5 (AF5)

(x0, x
∗(x0))C1 ∼ (x0, x

∗(x0))C2

Proof. Let us first assume that C1 ∩ C2 6= ∅. Then by putting x = x∗(x0) in the

definition of A5 (AF5) we get the desired

(x0, x
∗(x0))C1 ∼ (x0, x

∗(x0))C2

Now, C is the connected collection of subsets (see Definition 1). Therefore, any two

disjoint subgroups can be connected by the sequence of intersecting ones. Therefore, by

transitivity of ∼ the result above holds for all C1, C2 ∈ C. �

Lemma 4. Suppose A5-A6 (AF5-AF6) hold. Then for all x0 ∈ X there exists a non-

empty set

X∗
x0

= {x ∈ X : ∀T, R ∈ C (x0, x)T ∼ (x0, x)R}.

Moreover, for all x0 ∈ X, x, y ∈ X∗
x0

and all T ∈ C

(x0, x)T ∼ (x0, y)T

Proof. A5 (AF5) says that for all x0 ∈ X there is x∗(x0), which by Lemma 3 satisfies

the condition for being a member of X∗
x0

. Therefore, we have shown that non-empty

14To verify that � is a weak order see Proposition 2.4 of Kreps (1988).
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X∗
x0

exists for all x0.

Now suppose that the second condition of the Lemma does not hold. In other words,

there is x0 and x, y ∈ X∗
x0

such that for some T ∈ C

(x0, x)T � (x0, y)T

Let S1, S2 ∈ C be the two subgroups satisfying A6 (AF6). Then, by definition of y

(x0, y)S1 ∼ (x0, y)S2

Moreover, the definitions of x and y and the assumption give

(x0, x)S1 ∼ (x0, x)T � (x0, y)T ∼ (x0, y)S1

The two conditions above and A6 (AF6) imply that

(x0, x)S1 � (x0, x)S2

which contradicts the fact that x is an element of X∗
x0

. �

Lemma 5. For the space HT (FT ) suppose that <T admits an expected utility represen-

tation that on the certain outcomes is given by

UT [(xi
0, x

i)T ] =
∑
i∈T

πi
T ūT (xi

0, x
i)

(
UT [(x0, x

i)T ] =
∑
i∈T

πi
T ūT (x0, x

i)

)
(8.1)

for each T ∈ C and A5-A6 (AF5-AF6) hold for <. Then the statement of Theorem 1

(Theorem 5) is true.

Proof.

1. Lemma 4 says that for any x0 there exists a non-empty set X∗
x0

which consists of
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all the points x ∈ X∗
x0

such that for all T, R ∈ C (x0, x)T ∼ (x0, x)R. Moreover,

for all x, y ∈ X∗
x0

and all T ∈ C we have (x0, x)T ∼ (x0, y)T .15 The pairs in X∗
x0

are perfect candidates for the representation of the pure consumption value of x0:

agent 0 does not care to which subgroup he belongs when choosing among pairs

from sets X∗
x0

. Let

X∗ :=
⋃

x0∈X

{(x0, x) ∈ X2 : x ∈ X∗
x0
}.

Notice that the choice between any two pairs (x0, x), (y0, y) ∈ X∗ depends only on

x0 and y0 and nothing else. In terms of the utilities defined on the previous step,

we have

UT [(x0, x)T ] = UT [(x0, y)T ] = UR[(x0, x)R]

for all (x0, x), (x0, y) ∈ X∗, all T, R ∈ C.

Define f : X → R to be

f(x0) := UT [(x0, x)T ]

for any x ∈ X∗
x0

and any T ∈ C and rewrite UT as

UT [(xi
0, x

i)T ] =
∑
i∈T

πi
T

(f(xi
0)

σT

+ uT (xi
0, x

i)
)

(8.2)

where uT (x0, x) = ūT (x0, x) − f(x0)/σT , σT =
∑

i∈T πi
T and uT (x0, x) = 0 for all

(x0, x) ∈ X∗.16

2. Fix i ∈ S and consider all subgroups C1, ..., Ck ∈ C to which i belongs. Then A5

15Lemma 4 makes sure that there are no other points outside X∗
x0

that satisfy these conditions. Thus,
X∗

x0
is the biggest “unique” set with these properties.

16Notice that if all xi
0 are the same, then UT becomes f(x0) +

∑
i∈T πi

T uT (x0, x
i).
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(AF5) with Q = {i} implies that for all (x0, x) ∈ X2

((x0, x)i, (x0, x
∗(x0))−i)C1 ∼ ... ∼ ((x0, x)i, (x0, x

∗(x0))−i)Ck

Therefore,

f(x0) + πi
C1

uC1(x0, x) = ... = f(x0) + πi
Ck

uCk
(x0, x)

implying

πi
C1

uC1(x0, x) = πi
C2

uC2(x0, x) = ... = πi
Ck

uCk
(x0, x) (8.3)

for all (x0, x) ∈ X2.

Now fix some T, R ∈ C such that there are i, j ∈ T ∩R. Then by the above

πi
T uT (x0, x) = πi

RuR(x0, x) (8.4)

πj
T uT (x0, x) = πj

RuR(x0, x) (8.5)

By A1 (AF1) the preferences < are non-trivial on all subgroups. So there is

(y0, y) ∈ X2 such that uT (y0, y) 6= 0. The connectedness of C, positiveness of (πi
T )

and (8.3) implies then that uC(y0, y) 6= 0 for all C ∈ C.

The equations (8.4-8.5) hold for (y0, y). So, by dividing them we obtain

πi
T

πi
R

=
πj

T

πj
R

=: LT,R (8.6)

for all intersecting T, R and all i, j ∈ T ∩R. If T ∩R has only one element i, then

set

πi
T

πi
R

=: LT,R
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Notice as well that for L > 017

∑
i∈T

πi
T

(f(xi
0)

σT

+ uT (xi
0, x

i)
)

=
∑
i∈T

πi
T

L

(f(xi
0)

σT /L
+ LuT (xi

0, x
i)
)

(8.7)

For intersecting T,R we can rescale all the weights (πi
T ) and uT using LT,R in place

of L in (8.7). This makes the weights for all i ∈ T ∩ R equal in both subgroups.

Also rescaled uT becomes equal to uR. Denote this rescaled UT by LT,R(UT ).

3. C can be represented as a graph. Let all elements of C be nodes. Two nodes C1, C2

are connected by an edge if C1 ∩ C2 6= ∅. By definition of C the resulting finite

graph G is connected.18

For each node C ∈ G there corresponds a collection of weights (πi
C) and a status

function uC . Call 〈G, {(πi
C), uC}C∈G〉 a graph structure.

Choose any nodes (T, (πi
T ), uT ) and (R, (πi

R), uR) connected by an edge. Rescale

UT to LT,R(UT ) and contract the two nodes into one node (T ∪ R, (πi
T∪R), uT∪R),

where uT∪R = uR.

This turns the structure 〈G, {(πi
C), uC}C∈G〉 into the structure

〈G1, {((πi
T∪R), uT∪R), ((πi

C), uC)}C∈G\{T,R}〉

where G1 is a minor of G obtained by the contraction of an edge between T and

R.

Continue contracting edges until there are none left. The sequence of graph struc-

tures thus obtained is finite and its last element 〈GN , (πi
S), uS〉 has one node and

no edges. By construction, for any agent i ∈ S the weight πi
S is the same in all

subgroups i belongs to. The status function uS is also same in all subgroups. Let

17For the case of the space FT remove indexes i from all occurences of xi
0.

18See the definitions of all graph theoretic terms in Diestel (2000).
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πi = πi
S and u = uS, then we obtain desired utility U : A → R defined on each HT

or FT as

UT [h] =
∑
i∈T

πi

∫
X2

f(x0)

σT

+ u(x0, x)dhi(x0, x)

Each UT is unique up to a positive affine transformation. In addition, all functions

UT are restricted by A5 (AF5) to have the same weights and status functions.

Thus the whole U is unique up to a positive affine transformation. �

Lemma 6. Suppose AF7 holds. Then for any T ∈ C, all µ, ν ∈ ∆(X) and all h ∈ Xµ

there is z ∈ Xν such that h ∼T z.

Proof. By AF7 the correspondence ΘT is ubiquitous (see Definition 3). This means

that for any h ∈ FT and any i ∈ T the set ΘT (hi) ⊆ ∆(X2) contains some lotteries

whose marginal distribution over x0 is any ν. Therefore, the set

{z ∈ ×i∈T ΘT (hi) : ∀i ∈ T µ0(ΘT (hi)) = ν} ⊆ Xν

is not empty. By AF7 any element of this set is indifferent to h. �

Lemma 7. For any T ∈ C and any µ ∈ ∆(X) the quotient topology τ ?
µ is the order

topology on Xµ/∼.

Proof. The quotient map [·] : (Xµ, τµ) → (Xµ/∼, τ ?
µ) takes open sets to open. Therefore,

[·] maps any upper contour set to the open upper contour set in Xµ/∼. The same is

true for lower contour sets. But then these contour sets form the subbasis of the order

topology on Xµ/∼. Therefore, the quotient topology τ ?
µ is no coarser than the order

topology on Xµ/∼. Suppose that it is actually strictly finer. Then, there exists an open

set A ∈ τ ?
µ that is not a finite intersection and/or arbitrary union of the images of upper

and lower contour sets under [·]. But [·] is continuous, thus there should exist an open

inverse image of A in Xµ, which is also not a finite intersection and/or arbitrary union
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of upper and lower contour sets. This contradicts the assumption that τµ is the order

topology. �

Lemma 8. Suppose that for T ∈ C there is an expected utility function that represents

<T and on the certain outcomes it is given by UT [(x0, x
i)T ] =

∑
i∈T πi

T ūT (x0, x
i). Then

ūT is equispread (Definition 4) if and only if AF7 holds.

Proof. [AF7 ⇒ equispread]. Suppose that AF7 holds for <T on T ∈ C and there

is expected utility UT with ūT being not equispread. Then there are x0, y0 ∈ X such

that either sup{ūT (x0, X)} > sup{ūT (y0, X)} or inf{ūT (x0, X)} < inf{ūT (y0, X)}. In

case of supremum take any x ∈ X with ūT (x0, x) > sup{ūT (y0, X)}. It is clear that

for no `y0 ∈ ∆(X2) is it true that ūT [`y0 ] = ūT (x0, x). This contradicts AF7 and the

fact that UT is utility function as Lemma 6 states that there should exist `y0 with

ūT [`y0 ] = ūT (x0, x). The case of infimum is treated similarly.

[Equispread ⇒ AF7]. Suppose ūT is equispread and fix a real number r such

that inf{ūT (x0, X)} ≤ r ≤ sup{ūT (x0, X)}.19 Take any x0 and find some x, y ∈ X

such that ūT (x0, x) ≤ r ≤ ūT (x0, y). Then it is possible to find α ∈ [0, 1] such that

αūT (x0, x) + (1 − α)ūT (x0, y) = r. Thus we found a lottery which has utility r. This

procedure can be performed for arbitrary x0 and any r. It is also possible to find a

lottery with utility r for any marginal distribution [αk, x
k
0] ∈ ∆(X) on x0 by just taking

the lotteries with marginal distributions xk
0 which have utility r and combining them

with appropriate probabilities αk. Thus for any r between infimum and supremum and

any µ ∈ ∆(X) we can find a lottery hµ with ūT [hµ] = r. Construct ΘT by mapping each

point in ∆(X2) to the subset of ∆(X2) of points with the same utility. It is trivial to

check that ΘT is ubiquitous and that AF7 holds. �

19Any x0 here is fine by assumption of equispreadness.
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