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Abstract

We study the relationship between two widely used risk measures, the
spectral measures and the distortion risk measures. In both cases, the
risk measure can be thought of as a re-weighting of some initial distribu-
tion. We prove that spectral risk measures are equivalent to distorted risk
pricing measures, or equivalently, spectral risk functions are equivalent to
distortion functions. Besides that we prove that distorted measures are ab-
solutely continuous with respect to the original measure. This allows us to
find a link between the risk measures based on relative entropy and spectral
risk measures or measures based on distortion risk function.
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1 Introduction

The quantification of market risk for derivative pricing, for portfolio optimization
and pricing risk for insurance purposes has generated a large amount of theoretical
and practical work, with a variety of interconnections.

Two lines of research in these areas are based upon, and use as point of departure
from, foundational desiderata consisting of axioms that both, the market risk
measure and the risk pricing measure, have to satisfy.

Value at Risk (VaR) is one of most popular risk measures, due to its simplicity.
VaR indicates the minimal loss incurred in the worse outcomes of the portfolios.
But this risk measure is not always sub-additive, nor convex. To overcome this,
Artzner, Delbaen, Ebner and Heath (1999) proposed the main properties that a
risk measures must satisfy, thus establishing the notion of coherent risk measure.

After coherent risk measures and their properties were established, other classes of
measures have been proposed, each with distinctive properties: convex (Föllmer
and Shied, 2004), spectral (Acerbi, 2002) or deviation measures (Rockafellar et
al. 2006).

The coherent risk measures were used for capital allocation and portfolio opti-
mization as in Rockafellar, Uryasev and Zabarankin (2002), as well as to price
options in incomplete markets, as in Cherny (2006).

Spectral risk measures are coherent risk measure that satisfies two additional
conditions. These measures have been applied to futures clearinghouse margin
requirements in Cotter and Down (2006). Acerbi and Simonetti (2002) extend the
results of Pflug and Rockafellar-Uryasev methodology to spectral risk measures.

A description of the axioms of risk pricing measures with many applications to
insurance can be found in Wang, Young and Panjer (1997), and in the monograph
by Kass, Goovaerts, Dhaene and Denuit (2001). The concept of distorted risk
measures evolved from this line of work and ties in with the notion of capacity.
Capacities are non-additive, monotone set functions which extend the notion of
integral in a peculiar way. The evolution of this concept, from Choquet’s work
in the 1950’s until the 1990’s can be traced back from the review by Denneberg
(1997).

Interestingly enough, there have been some natural points of contact between
actuarial and financial risk theory. One one hand, concepts in actuarial risk
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theory can be used to solve problems in derivative pricing, and vice versa. A few
papers along these lines are the ones by Embrechts (1996) Gerber and Shiu (2001),
Schweitzer (2001), Goovaerts and Laeven (2006) and Madan and Unal (2004).

Very many risk measures are proposed in the literature, the differences between
them are the properties that they satisfy. It is very interesting to study the
equivalence between these risk measures. It is the purpose of this note to establish
an equivalence between spectral risk measures and distorted risk pricing measures.
Then we shall examine some other way of computing distorted measures.

This paper is organized as follows: in section 2 we introduce the concept of coher-
ent and spectral risk measure as well as that of a distortion measure. We present
different examples of these measures. In section 3 we establish the equivalence
between spectral risk measures and coherent distorted risk measures. For that we
present a simpler mathematical proof of an existing relationship between spectral
risk measure and distortion risk measure. Our proof extends a bit the results ob-
tained by Pflug’s (2004) and Föllmer and Schied’s (2004), who consider bounded
risks. In the process we relate the risk spectrum to the distortion function. In
section 4 we further examine the nature of the distorted distribution function and
the relationship the distorted distributions between different investors, finding a
relationship between the measures studied in the Section 3 and the measures based
in relative entropy. Finally, section 5 concludes the paper.

2 Preliminaries

We shall consider a one period market model (Ω,F , P ). The information about
the market, that is the σ-algebra F , can be assumed to be generated by a finite
collection of random variables, i.e., F = σ(S0, S1, ...SN), where the {Sj | j =
0, ..., N} are the basic assets traded in the market. We shall model the present
worth of our position by X ∈ L2(P ), that is, essentially all random variables with
finite variance. This somewhat restrictive framework greatly simplifies the proofs.

Definition 2.1 A coherent risk measure is defined to be a function ρ : L2 → R
that satisfies the following axioms:

1. Translation Invariance: For any X ∈ L2 and a ∈ R, we have ρ(X + a) =
ρ(X) − a.
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2. Positive homogeneity: For any X ∈ L2 and λ ≥ 0, we have ρ(λX) = λρ(X).

3. Monotonicity: For any X and Y ∈ L2, such that X ≤ Y then ρ(X) ≥ ρ(Y ).

4. Subadditivity: For any X and Y ∈ L2, ρ(X + Y ) ≤ ρ(X) + ρ(Y ).

These properties insure that the diversification reduce the risk of the portfolio and
if position size directly increase risk (consequences of lack of liquidity) it is been
computed in the future net worth of the position.

One example of coherent risk measures is the Conditional Value at Risk (CVaR).
This measure indicate the expected loss incurred in the worst cases of the position.
It is the most popular alternative to the Value at Risk.

CV aRα(X) = − 1

α

∫ α

0

V aRt(X)dt .

where V aRt(X) = sup{x : P [X > x] > t}

Spectral risk measures are defined by a general convex combination of Conditional
Value at Risk.

Definition 2.2 An element φ ∈ L1([0, 1]) is called an admissible risk spectrum if

1. φ ≥ 0

2. φ is decreasing

3. ‖φ‖ =
∫ 1

0
|φ(t)|dt = 1.

Definition 2.3 Let, an admissible risk spectrum φ ∈ L1([0, 1]) the risk measure

ρφ(X) = −
∫ 1

0

qX(u)φ(u)du

is called the spectral risk measure generated by φ.

φ is called the Risk Aversion Function and assigns, in fact, different weights to
different p-confidence level of the left tail. Any rational investor can express her
subjective risk aversion by drawing a different profile for the weight function φ.
Spectral risk measures are a subset of coherent risk measures as Acerbi proves.
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Specifically, a spectral measure can be associated with a coherent risk measure
that has two additional properties, law invariance and comonotone additivity.
Law invariance in particular is a important property for applications since it is a
necessary property for a risk measure to be estimable from empirical data.

Theorem 2.1 The risk measure ρφ(X) be defined by

ρφ(X) = −
∫ 1

0

qX(u)φ(u)du (1)

is a coherent risk measure. Here, for u ∈ (0, 1), q(u) = inf{x |F (x) ≥ u} is the
left continuous inverse of F (x) = P (X ≤ x)

Comment 2.1 Note that if X ≥ 0, then q(u) ≥ 0 and ρ(X) < 0, that is, positive
worth entails no risk.

Example 2.1 Conditional Value at Risk is a spectral risk measure defined by the
Risk Aversion Function:

φ(p) =
1

α
1{0≥p≥α} (2)

Example 2.2 Other example of Risk Aversion Function is defined by Cotter and
Dowd (2006)

φ(u) =
Re−R(1−u)

1 − e−R

where R is the user’s coefficient of absolute risk aversion.

Value at Risk is not a spectral risk measure because it is not a coherent risk
measure and it not satisfies the comonotone additive property.

On the other hand, Wang (1996) defines a family of risk measures by the concept
of distortion function as introduced in Yaari’s dual theory of choice under risk.
The distortion risk measures are defined by a distortion function.

Definition 2.4 We shall say that g : [0, 1] → [0, 1] is a distortion function if

1. g(0) = 0 and g(1) = 1.
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2. g is non-decreasing function.

For applications to insurance risk pricing it is convenient to think of the liabilities
as positive variables, we restrict ourselves to X ∈ L+

2 (P ), i.e., to positive random
variables with finite variance, which we think about as losses or liabilities. If we
were to relate this to the previous interpretation, we would say that our position
is −X. The companion theorem characterizing the distorted risk measure induced
by g is the following.

Theorem 2.2 Define the distorted risk measure Dg(X) induced by g on the class
L2(P ) by

Dg(X) =

∫ ∞

0

g(S(x))dx+

∫ 0

−∞
[g(S(x))− 1]dx. (3)

where S(x) = 1 − FX(x). Then Dg(X) has the following properties:

1. X ≤ Y implies Dg(X) ≤ Dg(Y ).

2. Dg(λX) = λDg(X) for all positive λ. Dg(c) = c whenever c is a constant
risk.

3. If the risks X and Y are comonotone, then Dg(X + Y ) = Dg(X) +Dg(Y ).

4. If g is concave then Dg(X + Y ) ≤ Dg(X) +Dg(Y ).

5. If g is convex then Dg(X + Y ) ≤ Dg(X) +Dg(Y ).

Hardy and Wirch (2001) have shown that a risk measure based on a distortion
function is coherent if and only if the distortion function is concave. It can be
shown that if g is concave the generated risk measure is spectral.

A distortion risk measure is the expectation of a new variable, with changed
probabilities, re-weighting the initial distribution.

Example 2.3 The VaR can be defined by the distortion function:

g(x) =

{
0 if x < α

1 if x ≥ α
, (4)
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Example 2.4 CVaR is a distortion risk measure with respect to the following
distortion function:

g(x) =

{
x
α

if x ≤ α

1 if x ≥ α
. (5)

Example 2.5 Some distortion risk functions used for insurance risk pricing are
the following.

1. Dual-power functions: g(u) = 1 − (1 − u)ν with ν ≥ 1.

2. Proportional Hazard transform: g(u) = u
1
γ with γ ≥ 1.

3. Wang’s distortion function: gα(u) = Φ[Φ−1(u) + α], u ∈ (0, 1) where Φ is
the standard Normal distribution.

More examples are quadratic function or Denneberg’s absolute deviation principle
(see Wang (1996) for more details).

Wangs distortion function is often used to price financial and insurance risks
(Wang (2002)). Wang transform risk measure uses the whole distribution and
that it accounts for extreme low-frequency and high severity losses.

Let us now recall a couple of results about quantiles. The following are taken
from the nice expose by Laurent(2003). First of all we need the notion of set of
quantiles.

Definition 2.5 Given a probability space (Ω, , P ) as above and a random variable
X and α ∈ (0, 1), the α-quantile set of X is defined to be

QX(α) = {x ∈ R |P (X < x) ≤ α ≤ P (X ≤ x)}.

Theorem 2.3 With the notations introduced above

QX(α) = [qX(α), q+
X(α)],

where, as above

qX(α) = inf{x |P (X ≤ x) ≥ α} = sup{x |P (X < x) < α},

and
q+
X(α) = sup{x |P (X < x) ≥ α} = inf{x |P (X ≤ x) > α}.
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The following characterizations are important: for u ∈ (0, 1) and x ∈ R we have

q+
X(u) ≥ x⇔ P (X < x) ≥ u
qX(u) ≤ x⇔ P (X ≤ x) ≥ u.

(6)

Also, for u ∈ (0, 1), the fact that QX(u) = [qX(u), q+
X(u)], can be used to establish

that
Q−X(u) = −QX(1 − u),

and in particular that q−X(u) = −qX(1 − u).

For the proof of the first theorem of section 3, we shall need the following version
of the transference theorem (see section 6.5 in Kingman and Taylor(1966)). Set
G(x) = P (X < x) = F (x−). Then clearly G(x) is increasing and left continuous.
We have

Theorem 2.4 (Transference theorem)
(a) For every positive, measurable h : (0, 1) → R we have

∫ 1

0

h(u)dq+(u) =

∫

R
h(G(x))dx,

where q+ denotes the right quantile of F (x) = P (X ≤ x).
(b) For every positive, measurable h : R → R, and every continuous increasing
g : [0, 1] → [0, 1], we have

∫ 1

0

h(qX(u))dg(u) =

∫ ∞

−∞
h(x)d(g ◦ FX)(x).

Proof To prove (a) it suffices to prove the result for h(u) = I(a,b](u) with 0 < a <
b ≤ 1. In this case, involving the characterization (6), we have that

∫ 1

0

I(a,b](u)dq
+(u) = q+(b) − q+(a) =

∫

R
I(q+(a),q+(b)](x)dx =

∫

R
I(a,b](G(x))dx

which concludes the proof of (a). To prove (b), we consider qX : ((0, 1), dg) → R,
and to identify the transfered measure it suffices to consider h(x) = I(a,b](x) and
denoting by g̃ the transfered measure, we have

∫ 1

0

h(qX(u))dg(u) =

∫ ∞

−∞
h(x)dg̃(x),

therefore g̃(b)− g̃(a) =
∫ 1

0
I(a,b](x)(qX(u))dg(u) =

∫ 1

0
I(FX(a),FX(b)](u)dg(u)

= (g ◦ FX)(b) − (g ◦ FX)(a), for which we invoke (6) once more. 2
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Corollary 2.1 Under the assumptions of the theorem we have
∫ 1

0

h(u)dq+(u) =

∫

R
h(F (x))dx.

Proof Just recall that G(x) differs from F (x) at a countable set of points 2

3 Equivalence between spectral and distortion

risk measures

In this section, we prove the relationship between the spectral measures of risk
and the distorted measures.

Theorem 3.1 Let φ be a piecewise continuous, admissible spectral function and
let X be such that the spectral risk measure ρφ(−X) is finite. Then Dg(X) ≡
ρφ(−X) is a coherent distortion risk measure with concave distortion function
satisfying g′(u) = φ(u)

Comment 3.1 When integrating g′(u) = φ(u), keep in mind that g(0) = 0.

Proof Consider ρφ(−X) = −
∫ 1

0
q−X(u)φ(u)du, and invoke part (b) of the trans-

ference theorem, with h(x) = x and φ = g′to obtain

ρφ(−X) = −
∫ 1

0

q−X(u)φ(u)du = −
∫ ∞

−∞
xdg̃(x),

where g̃(x) = g ◦ F−X(x). Consider now the following chain of identities.
∫ ∞
−∞ xdg̃(x) =

∫ 0

−∞ xdg̃(x) +
∫ ∞

0
xdg̃(x)

= −
∫ 0

−∞ dg̃(x)
∫ 0

x
ds+

∫ ∞
0
dg̃(x)

∫ x

0
ds

= −
∫ 0

−∞ ds
∫

(−∞,s]
dg̃(x) +

∫ ∞
0
ds

∫
(s,∞)

dg̃(x)

= −
∫ 0

−∞ g̃(s)ds +
∫ ∞
0

(1 − g̃(s))ds.

Now, recalling that g̃(s) = g ◦ F−X(x), after a simple change of variables, we an
rewrite the last line of the previous chain as

−
∫ 0

−∞
(g ◦ SX)(s)ds+

∫ ∞

0

(1 − g ◦ SX)(s))ds = −Dg(X),

where, recall, SX(x) = P (X ≥ x), thus concluding the proof. 2
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Example 3.1 The risk measure CVaR is a spectral risk measure (see Example
2.1). If we apply the last Theorem to (2) we have that the Conditional Value at
Risk is a distortion risk measure defined by:

g(u) =

∫ u

0

φ(s)ds =

∫ u

0

1

α
1{0≥s≥α} =

{
u
α

if u ≤ α

1 if u ≥ α

We thus reobtain the result of Example2.4

The previous theorem admits the following reciprocal, the proof of which can
follows reversing the steps of the proof of the previous theorem.

Theorem 3.2 Let g a concave distortion function, and let Dg be the associated
distorted risk measure. Then φ(u) = g′(u) defines a spectral measure ρφ such that
ρ(X) = Dg(−X).

Example 3.2 We now calculate the Risk Aversion Function for the distortion
risk functions listed in Example 2.5.

1. Dual-power measure: φ(u) = ν(1 − u)ν−1 with ν ≥ 1.

2. Proportional Hazard measure: φ(u) = 1
γ
u

1
γ
−1 with γ ≥ 1.

3. Wang’s measure: φα(u) = e[αΦ−1(u)−α2

2
].

It is also easy to check that the derivative of the distortion risk defining CVaR (2)
yields the Risk Aversion function that defines Value at Risk (5).

Observe that for Proportional Hazard and Wang’s measures, the Risk Aversion
function is not bounded at zero. Moreover, the Risk Aversion function of the
Wang’s measure decreases more quickly than that of the Proportional Hazard.
Therefore, the investor using the Wang’s risk measures is more risk averse than
other investor that measures the risk by the Proportional Hazard distortion be-
cause the first investor gives more importance to higher loses than the last one.

We have thus established that both methods to construct risk measures, either
by means of distortion risk functions or by admissible spectral functions, are
equivalent. In both, the risk measure can be thought of as a re-weighting of
the initial distribution. Moreover, the derivative of the distortion risk function
indicate the way of this re-weighting, as Balbas et.al (2006) have indicated.
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Comment 3.2 These correspondences also provide an indirect proof of the fact
that for a concave distortion function g, the risk measure defined by 3 is a coherent
risk measure.

4 Relationship to maximum entropy risk mea-

sures

Consider a random variable X describing the future value of some asset or mar-
ket position. Assume that FX is continuous and strictly increasing on its sup-
port. Another method to transform a given distribution appears when solv-
ing generalized moment problems by means of the relative entropy optimiza-
tion. Denote by F ∗

X the minimizer of the Kullback relative entropy K(G,F ) =∫ (
ln dG/dFX(x)

)
dG(x), over the class of probability distributions

{G |
∫
hi(x)dG(x) = µi i = 1, ..., N}.

It is well known, e.g., Kapur(1989), that there exists (λ1, ..., λN) such that

dF ∗
X(x) = exp(

N∑

1

λihi(x) −Ψ(λ))dFX(x),

where

Ψ(λ) =

∫
e(

∑N
1 λihi(x)dFX(x),

and λ = (λ1, . . . , λN ) is uniquely determined by the moment constraints.

The following is a formalization of an idea implicit in Reesor and McLeish’s
(2002) work. We begin exploring the nature of the distorted distribution func-
tion F ∗

X(x) = g(FX(x)). One such study was undertaken by Hurlimann in several
papers, but it goes in a different direction than the one we follow here. We fit
the results of Reesor and McLeish within this point of view, and establish a link
between the risk measures defined by a relative entropy and a distortion risk mea-
sure, therefore a relationship between the spectral risk measures and the relative
entropy risk measures.

We begin with a result in measure theory.

11



Theorem 4.1 Let dm∗ = dF ∗ and dm = dF be two measures on (R,B(R))
such that m∗ << m having continuous density ψ. Then there exists a distortion
function g such that F ∗(x) = g(F (x)).

Proof Define g(u) =
∫ u

0
ψ(q(s))ds, where for 0 < u < 1 we denote by q(u) the left

continuous inverse of F. Clearly, g is increasing, continuous, with g(0) = 0 and
g(1) = 1.

Let us now verify that g(F (x)) = F ∗(x). An application of the transference the-
orem (or a variation on the change of variables theme, see Kingman and Taylor,
(1970)) yields that

F ∗(x) =
∫ x

−∞ ψ(t)dF (t) =
∫

R I(−∞,x])(t)ψ(t)dF (t)

=
∫ 1

0
I(−∞,x])(F

−1(u))ψ(F−1(u))du =
∫ F (x)

0
ψ(F−1(u))du = g(F (x))

since u ≤ F (x) ⇔ F−1(u) ≤ x, and we are through. 2

Comment 4.1 This theorem asserts that any two possible distributions assigned
to a given random variable, can be be related by means of a distortion function.

Theorem 4.2 Let g be a piecewise continuously differentiable distortion function
as above, and FX(x) be a continuous, and strictly increasing distribution function
on its support. Then the measure dm∗ = dF ∗

X on (R,B(R)) induced by the dis-
torted distribution function F ∗

X is absolutely continuous with respect to dm = dFX

having density ψ(x) = g′(FX(x)).

Proof It boils down to noticing that F ∗
X(x) = g(FX(x)) implies that dF ∗

X(x) =
g′(FX(x))dFX(x). 2

Comment 4.2 In this case the relationship between distorted measures and spec-
tral risk measures is easy to establish. For, note that

E∗[X] = −E∗[−X] = −
∫ ∞
−∞ xdF ∗

−X(x) = −
∫ ∞
−∞ xg′(F−X(x))dF−X(x)

= −
∫ 1

0
q−X(u)g′(u)du = ρφ(−X)

if we identify φ(u) with g′(u).
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The following result shows the relationship between spectral risk measures, and
those based on distortion functions and relative entropy.

Theorem 4.3 Let X be a risk such that FX is continuous and strictly increas-
ing on its support. Then the spectral, the distorted and the relative entropy risk
measures are similar ways to transform the original distribution FX. Denote by
F ∗ the minimizer of the Kullback relative entropy described above, and assume as
well that the h′is are continuously differentiable and that

∑N
i=1 λih

′
i(u)

≤ 0, ∀ u ∈ [0, 1], then there exists a concave distortion function, g and φ a ad-
missible spectral function such that EF ∗(X) = Dg(X) = ρφ(−X) where F ∗ is the
probability distribution obtained by the relative entropy minimization procedure.

Proof If dm∗ = dF ∗ is the survival a relative entropy density, it is absolutely
continuous with respect to the original distribution, dm = dF . By Theorem 4.1,
there exists a distortion function, g(u) =

∫ u

0
exp (

∑N
i=1 λihi(q(s))− Ψ(λ))ds, such

that g(F (x)) = F ∗(x). We already seen that EP ∗(X) = Dg(X). The distortion
function is concave since

g′′(u) = exp (
N∑

i=1

λihi(u)− ψ(λ))
N∑

i=1

λih
′
i(u)

and
∑N

i=1 λih
′
i(u) ≤ 0. Thus concludes the proof. 2

We add the following simple observation: If
∫
hi(x)dF (x) = µi are known gener-

alized moments, and g is as in theorem 4.1, then F ∗(x) = g(F (x)) has moments∫
ĥi(x)dF

∗(x) = µi with ĥi(x) = hi(x)/g
′(F (x)).

Comment 4.3 Consider two agents that assign different physical measures to
their market models. Let F ∗(x) and F (x) be the distribution function describing
the statistical nature of some asset to each of them. Intuitively we may expect that
dF ∗ ∼ dF . What theorem 4.1 asserts that upon some conditions on the density
of F ∗ with respect to F , each may conclude that the other has a distorted view of
reality with respect to him/herself.

Comment 4.4 Two agents may have the same point of view of reality, that is,
both agents have the same market model, but may have different risk aversion
functions, for example the first agent measure his level of risk by the distortion
function g1 and the agent two by g2. If the agents have the same opinion about
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what losses are important, that is, the loss which they assign a new probability
positive, or in the same sense the percentiles that they consider to measure the
lever of their risk.

In this case, F ∗
1 (x) = g1(x) and F ∗

2 (x) = g2(x) are absolutely continuous one
respect the other. And applying the Theorem 4.1 we have F ∗

1 (x) = h(F ∗
2 (x)). If

both distortion functions are strictly increasing and continuous, the difference of
the agent’s risk aversion is given by h = g1 ◦ g−1

2 .

5 Conclusions

We have established that spectral risk measures are related to distorted risk pric-
ing measures. Thus we have two representations at hand for a given risk measure,
and may choose whichever representation is more convenient for the application
at hand. Also, distorted risk pricing measures turn out absolutely continuous with
respect to the measure that they distort. This allows us, for example, to inter-
pret different physical probabilities (or different generalized scenarios) as distorted
views of reality, one with respect to the other. Moreover, we link the spectral risk
measures, and those based in distortion function and relative entropy.
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