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Abstract

This paper provides an experimental test of a theory of endogenous network forma-

tion. A group of subjects face a decision problem under uncertainty. The subjects are

endowed with a private information about the fundamentals of the problem, and they

are supposed to make a decision one after the other. The key feature of the experiment

is that a subject can observe the decisions of the preceding subjects by forming links.

A link is costly, yet it enables a subject to observe previous decisions of those to whom

he is linked. We show that subjects respond to changes in the information structure

and the cost of link formation in the expected manner. However, we also show that

behavior systematically deviates from the Bayesian benchmark as subjects form more

links than theory predicts. Subjects also exhibit a tendency to conform rather than

follow their own information. In order to explain this pattern, we provide an econo-

metric model that posits that subjects care about their relative standing in the group.

We show that the modified model provides a better fit than a standard QRE.
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1 Introduction

Evidence that social networks are important in disseminating information has been found in

many contexts. Kelly and Ó Gráda [24] demonstrate the importance of information networks

in market panics using data from two panics in 1850s’ New York. Foster and Rosenzweig

[16], Conley and Udry [11], and Munshi [30] show that technology diffusion is driven by an

underlying social learning process. In particular, Conley and Udry [11] report the results

of field work in rural areas of Ghana indicating that the main channel for the adoption of

new technology in an agricultural sector is social learning through networks. Also, it is

well-documented in the labor economics literature (see Ioannides and Loury [21]) that social

networks are the main source of information about jobs. These are just a few examples that

demonstrate the significance of such questions as:

(1) How does the network structure affect the dissemination of information?

(2) How do social networks form, as far as information aggregation is concerned?

The answers to these questions are sought via the theory of the economics of social

networks.1 There are a number of studies concerning the first question (viz. Bala and

Goyal [1], and Gale and Kariv [18]). These papers address such questions as: how does

information propagates? and, how do agents learn from each other in exogenously given

network structures? Çelen, Choi and Kariv [10] attempts to answer the second question.

Çelen et al. [10] extends the canonical social learning model in order to analyze the role of

information externality on the formation of networks, as well as the impact of the dynamic

evolution of networks on learning dynamics. The present paper carefully modifies Çelen

et al. [10] to design an experiment that contributes to the study of endogenous network

formation in a pure information externality environment.

In the canonical social learning model, agents receive private signals regarding the state

of the world and then make decisions sequentially, after having observed the action choices

of all or some of their predecessors. If agents are Bayesian, they infer valuable information

from their observations, often leading to herd behavior or informational cascades. A critical

assumption of these models is that the interaction between agents is exogenously determined.

This particular assumption is in contrast with many real-life situations where agents form

their own networks and choose whom to observe. Put differently, in order to acquire more

information, an agent can decide to form links to other agents to observe their decisions

and thereafter make his decision. This is what we mean by saying that the network evolves

endogenously.

Our experiment consists of a group of four subjects who sequentially make decisions on

the same problem. Each subject is (potentially) endowed with a piece of valuable information

1For recent and comprehensive surveys of the literature see Jackson [22, 23].

2



regarding the fundamentals of the problem. In addition to having this private information,

each subject, before making a decision, is allowed to form links to his predecessors. Forming

a link is costly, yet it entitles a subject to observe the actions of those with whom he linked.

While the subjects cannot observe the actions without a link, they can observe the structure

of the network that evolved until it is their decision turn. This is an important feature of our

design, since the structure itself divulges the degree of the network’s informativeness, should

the subject decide to form any links. We have two different treatments: the full information

treatment (fi) and the partial information treatment (pi). The two treatments differ in that

in the former treatment, subjects always receive an informative signal, while in the latter

they receive a signal with probability less than one. This allows us to analyze how subjects

react to changes in the quality of information in this environment.

In a nutshell, each subject decides first whether or not to form any links and then,

upon observing the actions through his links, makes an action decision. This two-step

procedure gives us the leverage to pose many interesting questions: how do subjects search for

information, how do subjects respond to the cost of link formation? how much information

is transmitted by the network? how do subjects aggregate the information obtained from

any link decisions?

Section 2 lays out the model that we implement in the laboratory and provides the

predictions of the theory. We first describe what we call the network formation game.

Then we elaborate on the specifics of link formation. In particular we explain the details

of link formation and the way agents can collect information through what we call the

Bayesian Sequential Link Procedure. Finally, we state the theoretical predictions of the

model concerning the behavior of the Bayesian agents.

Section 3 explains what happens in the laboratory, as well as how it happens. We also

explain some of our choices concerning the experimental design. In Section 4, we provide a

descriptive analysis of the observed link and action decisions of the subjects in our experi-

ment. This is where we show that there are systematic deviations from the Bayes-rational

benchmark of Section 2. For example, in both information treatments, informed subjects in

the second position link to the first subject approximately 30% of the time, although it is not

optimal for any positive cost. Remarkably, though, when the observed action and the signal

of the second subject disagree, there is a strong tendency in the fi treatment to conform to

the decision of the first subject, while there is no such tendency for the partial information

treatment. We also show that subjects display herd behavior in link formation: that is, the

third subject is much more likely to link if he observes a link between the subjects in the

first and second positions; the fourth subject almost always links when the third subject has

a link to the second, who is also linked to the first. Finally, we show that subjects do not

necessarily form links to the most informative node; instead, they prefer to link to the larger
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sub-network. All of these deviations should not be construed to mean that subjects’ behavior

is completely erratic. Indeed, subjects respond to changes in the cost of link formation just

as the theory predicts. Moreover, by looking across information treatments, we are able to

see that subjects do respond to information. For example, herding in link formation is less

pronounced in the partial information treatment than in the full information treatment.

The observations gleaned from our descriptive analysis in Section 4 lead us to a number of

hypotheses that we attempt to rigourously test in Section 5. To explain the linking behavior

that we observe, we reformulate our model to incorporate the relative income hypothesis à

la Duesenberry [14]. In particular, we argue that a subject is motivated to form a link above

and beyond the standard reasons found in the Bayesian benchmark because he wishes to

compare his expected earnings to those of his predecessor(s). We parameterize this kind of

behavior with the parameter α: when α > 0, subjects care about their relative standing,

while for α = 0, the model reduces to a more standard Quantal Response Equilibrium model,

which is also discussed in Section 5. Finally, in Section 6 we offer some concluding remarks

and directions for future research.

2 Theoretical Background

The design of our experiment is based on a theory of network formation through information

transmission. In this section, we introduce the model and carefully discuss its theoretical

predictions. These predictions offer the rational benchmark for the analysis of subjects’

behavior in the laboratory.

2.1 Network Formation Game

The basic structure of the problem—which we call the network formation game—is as

follows. There are two equally likely states of the world θ ∈ {−1, 1}. The game consists of

four agents who are randomly assigned to a position in a decision line indexed by i = 1, 2, 3, 4.

Agents act sequentially in a predetermined order. The agents’ problem involves correctly

identifying the true state of the world. Precisely, each agent i is supposed to take an action

ai ∈ {−1, 1}, which we call the action decision. If an agent’s action matches the true state,

then he receives a payoff m > 0; otherwise his payoff is zero. Thus, we can represent the

preferences of agent i by the utility function

ui(ai; θ) =

{

m if ai = θ,

0 otherwise.
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Before he makes a decision, agent i receives a private signal σi ∈ {−1, 0, 1}. We say that the

agent is informed when the signal he receives is either −1 or 1. The signals σi ∈ {−1, 1}

are informative about the true state because, conditional on the true state, the probability

that the signal matches the state is p = 2/3. In contrast, the signal σi = 0 is uninformative

because, given σi = 0, the probability of state θ = −1 and θ = 1 are both 1/2. Hence, the

agent cannot distinguish the states of the world based on his signal. Therefore, we say that

agent i is uninformed if he receives the signal σi = 0. Finally, we assume that an agent is

informed with probability q ∈ (0, 1], and uninformed with probability 1 − q.

The signals that agents receive are independently and identically distributed conditional

on the true state. Table 1 summarizes the probabilities with which an agent receives each

signal conditional on the state of the world.

Table 1: Information Structure

σ θ
−1 1

1 q/3 2q/3
0 1 − q 1 − q

−1 2q/3 q/3

After receiving a private signal but before making the action decision, an agent has

the option to observe action decisions made by the preceding agents in the decision line.

The decision on whether to observe any of the preceding agents’ actions—and, if so, whose

actions to observe—is called the link decision. We make two assumptions on the process

of information gathering through link formation.

(1) First, link decisions are assumed to be public information: that is, each agent

observes all the link decisions made by the preceding agents but not their action

decisions.

(2) Second, by forming a link to one of the preceding agents, an agent not only

observes the action decision of this agent, but also all the actions that this agent

observed through his link decision(s). The cost of each link is assumed to be

c ≥ 0.

The next section provides a detailed description of the process of link formation.

2.2 Bayesian Sequential Link Procedure

For each agent the process of link formation is sequential. In other words, if an agent can

form more than one link, he forms the links one after the other by comparing the potential
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benefit and cost of an additional link at each stage.

Figure 1: Bayesian Sequential Link
Procedure: An Example

b b b1 2 3

Let us be more specific and explain what we call the Bayesian Sequential Link Pro-

cedure (bslp) through an example, illustrated in Figure 1. It is the fourth agent’s turn

to move and he observes the following: the second agent did not form a link to the first,

and took his action based on his private information. The third agent formed a link to the

second; yet, after observing the action of the second, he did not form a link to the first

agent. Therefore, he took his action based on the information deduced from the second

agent’s action and his private information. There are two links that the fourth can form: a

link to the third agent, through which he can observe the action of the third and the second,

and a link to the first agent, through which he can observe the action of the first agent.2

According to bslp, the fourth agent evaluates the problem in the following way. Based

on his own information, he decides whether it is optimal to incur c and form a link to the

third. But in doing so he keeps in mind that he could continue and form a link to the first

by incurring the cost c again. More precisely, he considers all possible action profiles that he

can observe through his link to the third agent. Also, conditional on his private information,

he knows the probability with which he can observe each action profile. Furthermore, for

each one of these contingencies, he considers the action profile he can observe by a second

link and decides whether he would form the second link or not as if he is at that situation.

Finally, with this continuation value in mind, he decides whether to form his first link or

not. In what follows, we will explain this procedure more formally. All the results that we

will report in the following sections are based on the use of the formula we derive here.

As is the case in the example, forming a link is equivalent to saying that the agent observes

the outcome (the action profile) of an experiment (forming a link). For the purposes of the

present paper, it is enough to look at the case where there are two random variables, X1, X2,

that are independent conditional on θ, but not necessarily identical. The realizations of

the random variables are denoted by x1 and x2 respectively. Therefore, an agent facing

X1 and X2 first decides whether to take an optimal action simply based on his private

information, or to experiment X1. If he decides to experiment X1, for any realization x1, he

specifies whether to take an optimal action, or to further experiment X2. If he decides to

experiment X2, for all realizations x2, he specifies the optimal action he should take.

2 By Blackwell’s [6] celebrated theorem, it is clear that it is not optimal to form a link to the second,
rather than the third. Similarly, it is not optimal to form a link to the first and then to the third agent.
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Let s0 = (σ), s1 = (σ, x1), s2 = (σ, x1, x2) denote the information nodes where the agent

observes only his private information, his private information and the realization of X1,

and his private information, the realization of X1 and of X2, respectively. We denote the

maximum expected utility an agent can get at a node s ∈ {s0, s1, s2} without further exper-

imentation by

v(s) := max
{

Pr(θ = 1|s), Pr(θ = −1|s)
}

m. (1)

Also, at node sj , where j ∈ {0, 1} the ex ante maximum expected utility from further

experimentation is

v̄(sj) :=
∑

sj+1
Pr(sj+1|sj) max

{

v(sj+1), v̄(sj+1) − c
}

, (2)

since at each sj an agent compares v(sj) against v̄(sj) − c to decide whether to experiment

Xj+1 or to take the optimal action at sj. To capture this, we define what we refer to as the

value of information from further experimentation by

v(sj) := v̄(sj) − v(sj) − c for j ∈ {0, 1},

v(s2) := v̄(s2).
(3)

Therefore at sj , an agent decides to further experiment if v(sj) > 0, otherwise he takes the

optimal action at sj without experimenting Xj+1.

By using the equations (1), (2), (3) and backward induction, we can fully describe the

optimal strategy of an agent. The following proposition formally states the complete char-

acterization of bslp that we illustrated.

Proposition 1. The optimal policy of Bayesian sequential link procedure for an agent is

characterized by a pair (τ, a∗) such that

τ = min
{

j ∈ {0, 1, 2} : v(sj) ≤ 0
}

, (4)

a∗ ∈ arg maxa

{

∑

θ Pr(θ|sτ )u(a, θ)
}

. (5)

Proposition 1, and the value of information, as defined by (3), provide us with the full

characterization of the decision problem. In other words, an agent stops at the first node at

which the value of information is negative; otherwise, he keeps forming links. If the agent

stops at the node sτ , then he takes the action that maximizes his expected utility given his

information. The equilibrium results that we present in the following section are derived by

use of this characterization.
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2.3 Theoretical Predictions

In this section we state the equilibrium behavior of agents i ∈ {1, 2, 3, 4} as corollaries to

Proposition 1. Furthermore, we discuss the equilibrium networks that can be observed in

the network game. The proofs of the corollaries are in Appendix A.

First Agent. The decision problem of the first agent is easy because there is no preceding

agent; thus, he takes an action based only on his private signal. If the first agent is informed,

then he follows his signal. If he is uninformed, he randomizes between the two possible

actions. Therefore, unless q = 1, the second agent cannot determine the status of the first

agent as either informed or uninformed. Figure 2 depicts this situation. We reserve the

diamond to refer to an agent whose status cannot be determined.

Figure 2: After the First Agent

r1(1.a)

Second Agent. The second agent faces a more interesting problem because he has the

option of observing the first agent’s action. Here, optimal behavior depends on whether or

not the agent is informed. If the second agent is informed, then by applying Proposition 1

we find that he does not form a link for any positive cost. Intuitively, this is easy to see:

if the second agent incurs the cost c and forms a link to the first, either he will observe an

action that is the same as his own private information or he will observe the opposite action.

In the former case, he will take the action that he would have taken without a link. In the

latter, for any q < 1, he will still favor the action that is in line with his information. At

best, when q = 1, he will become indifferent between the two actions. This suggests that

forming a link does not provide any value to an informed second agent.

On the other hand, if he is uninformed, then it is optimal to form a link to the first agent

if the cost is low enough, because there is a positive probability that the first is informed. If

the cost is high, an uninformed second agent does not form a link.

Corollary 1 summarizes the optimal behavior of the second agent.

Corollary 1. The optimal decision rule of the second agent is characterized as follows:

1. Let σ2 ∈ {−1, 1} and q ∈ (0, 1]. For any c > 0, the second agent does not form a link

and takes action a2 = σ2.
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2. Let σ2 = 0 and q ∈ (0, 1]. There exists a threshold c∗ = qm/6 such that for any c < c∗,

the second agent links to the first and takes action a2 = a1; if c ≥ c∗, the second agent

does not form a link and randomizes between the two actions.

Notice that the threshold value c∗ increases linearly in the probability of being informed,

q, and in the payoff from a correct action, m. Intuitively, when q is higher, the first agent is

more likely to be informed and thus, from the perspective of an uninformed second agent, it

becomes more valuable to form a link to the first agent. In a similar vein, when the payoff

from a correct decision is larger, the same amount of information increases the potential

benefit from that information. Figure 3 depicts the networks that can emerge in the equilib-

rium for 0 < c < c∗, and c ≥ c∗. The square indicates the event in which it can be deduced

that the agent is uninformed, while the circle indicates that he is informed.

Figure 3: After the Second Agent

0 < c < c∗

r r1 2(2.a)

r b1 2(2.b)

c ≥ c∗

r r1 2(2.c)

Third Agent. Note that when c < c∗, the third (and fourth) agent(s) can discern whether

the second agent is uninformed ((2.a) in Figure 3) or informed ((2.b) in Figure 3) simply

by observing the network structure emerging from his link decision. As such, the network

structure itself contains valuable information and affects significantly the behavior of all

agents coming after the second agent.

The decision problem for the third agent is interesting because the network structure be-

comes more significant in determining the optimal behavior. When the third agent observes

a link between the second and the first agents, he rationally infers that the second agent is

uninformed and his action conveys no information. In this case, his problem is equivalent to

the second agent’s problem: if he is informed, he does not form a link for any positive cost,

whereas if he is uninformed, he forms a link to the second agent for c < c∗.3 The networks

(3.a) and (3.b) in Figure 4 exhibit these situations.

Suppose that 0 < c < c∗ and the third agent faces the network (2.b) in Figure 3. When

the third agent observes that there is no link between the first and the second agents, he

3 Note that it is also optimal to form a link to the first agent and the third observes only the first agent’s
action. In order to get around an unnecessary multiplicity of equilibria, we assume that an agent starts to
form a link to the closest agent in a line.
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Figure 4: After the Third Agent

0 < c < c∗∗

r b b1 2 3(3.d)

r b r1 2 3(3.c)

r r b1 2 3(3.b)

r r r1 2 3(3.a)

c∗∗ ≤ c < c∗

r r r1 2 3(3.a)

r r b1 2 3(3.b)

r b b1 2 3(3.e)

r b r1 2 3(3.f)

c∗ ≤ c

r r r1 2 3(3.g)

knows that the second agent is informed. However, he knows that the first is informed only

with probability q ∈ (0, 1]. Therefore, an uninformed third agent forms a link to the second

and imitates his action ((3.c) and (3.f) in Figure 4). Note that after observing the second

agent, the uninformed third agent is exactly the same as an informed second agent. Hence,

a link to the first agent is worthless.

On the other hand, if the third agent is informed, we find that the value of information

is positive only when the cost is low enough (i.e. c < c∗∗ = 2qm/39.) Suppose that c < c∗∗.

An informed third agent starts forming a link to the second. If he finds out that the signal

of the second agent is the same as his, he imitates the second’s action without forming a link

to the first ((3.c) in Figure 4.) Otherwise, he proceeds with a link to the first agent ((3.d)

in Figure 4.) Since there is a chance an informed third agent does not form a link to the

third, the fourth agent facing the network (3.c) in Figure 4 cannot tell whether the third is

informed or not. On the other hand, when c∗∗ ≤ c < c∗, an informed third agent does not

form a link to the second agent ((3.e) shown in Figure 4.)

Finally, when the cost is high enough (i.e., c > c∗), the third agent observes the empty

network where the second did not form a link. Because the third agent cannot distinguish

whether the second agent is informed, he faces two opportunities for linking with equal

amounts of information ((3.g) in Figure 4.) However, due to the high cost, it is never

optimal for him to form any link, regardless of whether he is informed.

We summarize this discussion in the following Corollary.

Corollary 2. The optimal decision rule of the third agent is characterized as follows:
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1. Suppose there is a link between the first and the second agents.

(a) Let σ3 ∈ {−1, 1} and q ∈ (0, 1]. Then, for any c > 0, the third agent does not

form a link and takes action a3 = σ3.

(b) Let σ3 = 0 and q ∈ (0, 1]. Then, for any c < c∗, the third agent links to the

second and takes action a3 = a2; if c ≥ c∗, the third agent does not form a link

and randomizes between the two actions.

2. Suppose there is no link between the first and the second agents.

(a) Let σ3 ∈ {−1, 1} and q ∈ (0, 1].

i. There exists a threshold c∗∗ = 2qm/39 such that for any c < c∗∗, the third

agent links to the second agent. If a2 = σ3, then he does not form a link to

the first and takes action a3 = a2; if a2 6= σ3, then he links to the first and

takes action a3 = a1.

ii. For any c ≥ c∗∗, the third agent does not form a link and takes action a3 = σ3.

(b) Let σ3 = 0 and q ∈ (0, 1].

i. For any c < c∗, the third agent links to the second and takes action a3 = a2.

ii. For any c ≥ c∗, the third agent does not form a link and randomizes between

the two actions.

Fourth Agent. Since most of our attention will be focused on the first three agents in

the analysis of the experimental data, we will not provide a full characterization of optimal

behavior for agents in the fourth position. We can point out, however, that often the problem

of the fourth agent will be strategically equivalent to either the second or the third agent.

For example, consider the case where the cost of link formation is low enough, and the fourth

agent observes the network displayed in Figure 5.

Figure 5: The Fourth Agent’s Problem:
An Example

b b b1 2 3

Given this network, the fourth agent can infer that the second agent was informed. He

also can infer that the signals of the second and third must have disagreed (since the third

agent also formed a link to the first). Therefore, the signals of the second and third essentially
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cancel each other out, leaving the only relevant signal that of the first agent—exactly as it

is for the second agent. Therefore, if the fourth agent is informed, he should not link for any

positive cost, while if he is uninformed, he should link provided that c is small enough. To

be sure, there are situations in which the fourth agent’s problem is not equivalent to one of

his predecessors. However, since this is not our main focus, and the intuition is relatively

straightforward, we will omit such details.

3 Experimental Design

The experiment was run at the Experimental Economics Laboratory of the Center for Exper-

imental Social Sciences (C.E.S.S.) at New York University. The 72 subjects were recruited

from undergraduate classes at New York University and had no previous experience in social

learning experiments. In each session, after subjects read the instructions they were also

read aloud by an experimental administrator.4 Each session lasted for about one hour and

fifteen minutes and each subject participated in only one session. An $8.00 participation

fee and subsequent earnings, which averaged about $13.60, were paid in private at the end

of the session. Throughout the experiment, we ensured anonymity and effective isolation of

subjects in order to minimize any interpersonal influences that could stimulate uniformity

of behavior.5

In each session, subjects played the network formation game described in section 2.1, for

40 independent rounds. At the beginning of each session, subjects’ positions were randomly

assigned to either 1, 2, 3 or 4. Moreover, their positions were held fixed for the duration

of the experiment. In each round, the cost of link formation, in experimental points, was

randomly drawn by the computer uniformly from the set {0, 2, . . . , 18, 20}.

In our experiment, we conducted two treatments, which we call the full information

treatment (fi) and the partial information treatment (pi). In treatment fi, all the subjects

received an informative signal (i.e., q = 1), while in treatment pi we set q = 2/3 so there was a

chance of a subject receiving an uninformative signal. In all treatments, the informativeness

of the signal was held fixed at p = 2/3, and the cost of each link was determined as described

above. Table 2 summarizes the details of our experiment.

In each round, subjects earned m = 100 points for correctly guessing the state and 0

points otherwise. Subjects’ net point total was determined by subtracting the appropriate

number of points for each link that a subject made from the points collected in that round

4 At the end of the first round, subjects were asked if there were any misunderstandings. No subject
reported any problems with understanding the procedures or using the computer program.

5 Participants’ work stations were isolated by cubicles making it impossible for participants to observe
others’ screens or to communicate. We also made sure that all remained silent throughout the session. At
the end of a session, participants were paid in private according to the number of their working-stations.
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Table 2: Summary of Experiments

Number of
Subjects

c q p
Number of

Rounds

Session 1 (fi) 20 Random 1 2/3 40
Session 2 (fi) 16 Random 1 2/3 40
Session 3 (pi) 20 Random 2/3 2/3 40
Session 4 (pi) 16 Random 2/3 2/3 40

for guessing the state. At the end of the experiment, the computer randomly selected three

rounds for which subjects would be paid. The total number of points was then converted

back to dollars at the rate of $1.00 = 15 points.

3.1 Some Remarks on The Design

Subjects’ Positions. In the experiment, the subjects engage in a two-step decision pro-

cess. Our decision to fix the subjects’ position throughout the session aims to allow them

to develop a strategy and to play accordingly. Therefore, for fixed p and q, subjects decide

whom to link at different levels of cost. It is critically important to note that in a given

session, there are either 16 or 20 subjects, and the groups (of four subjects) are reshuffled at

each round. Therefore, a subject knows that at each round he is a member of a (possibly)

different group. This is how we avoid any collusive behavior in the experiment.

Random Cost. As section 2.3 discussed in detail, the cost of link formation is one of

the critical parameters that affects rational behavior according to bslp. Therefore, having

a subject play at different cost levels for 40 rounds allows us to observe how his behavior

responds to the cost of link formation. The costs were chosen so that subjects in each (non-

trivial) position would experience link formation costs such that, according to bslp, the

optimal action is to form a link (if c is low) or not form a link (if c is high).

Treatments fi & pi. Like the level of cost, different values of q generate different behav-

iors, according to bslp.6 The two treatments fi and pi give us the opportunity to compare,

across treatments, the effect of varying the probability with which subjects receive a private

signal and determining whether the predicted comparative statics hold true.

6 The exact behavioral differences are evidenced in the threshold costs of link formation. In general, the
higher the probability that subjects receive signals, the higher the threshold cost.
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Payoffs. We employ a random lottery incentive system in our experiment as we randomly

choose three rounds to determine the payoffs of the subjects. Cubitt et al. [12] demonstrates

that this incentive scheme generates reliable data. Furthermore, it has many advantages.

First, it helps us to generate a large data set while economizing on cost. Second, and more

importantly, it assures homogenous behavior during the experiment by mitigating any wealth

effects. For instance, had a subject earned many points in earlier decision rounds, his or her

behavior might be distorted in the final rounds of the session. Instead, the random lottery

incentive scheme makes each round equally important, so behavior should be less history

dependent.

4 Descriptive Analysis

We start our analysis with a basic description of the experimental data. We organize our

presentation by focusing separately on the behavior of the subjects at each decision turn.

Our goal is to have a first look at the subjects’ behavior and to develop the hypotheses that

we test thoroughly in Section 5. In particular, we question how subjects use the information

available to them and how/why they deviate from the predictions of the theory.

4.1 The First Subject

The decision problem of the subjects in the first position is simple: if a subject is informed

with signal σ1 ∈ {−1, 1}, he should optimally follow his own signal and choose a1 = σ1; if

his signal is uninformative, i.e., σ = 0 (in the pi treatment), then randomization seems to

be a natural way to determine the action.

Table 3: The Behavior of the Informed First Subject

fi pi
σ1 ∈ {−1, 1}

Number of errors 9 51
Number of decisions 360 236
Frequency 2.5% 21.6%

Table 3 summarizes the behavior of the informed subjects in the first round. One striking

observation is the difference in the number of errors between the fi and pi treatments. In

the fi treatment there are nine cases in which the subjects take an action that conflicts

with their signals. In the pi treatment, this number goes up to 51 out of 236 cases in which
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subjects were informative. It is worth noting that the relatively high frequency of errors is

spread across seven subjects in the first position—but two subjects are responsible for 25 of

the 51 errors.

4.2 The Second Subject

A subject in the second position must make two decisions: a link decision and an action

decision. We summarize our data in three tables: Tables 4, 5, and 7 fully describe the

decomposition of link decisions and action decisions in the fi treatment, the pi treatment

when subjects are informed, and the pi treatment when subjects are uninformed, respectively.

In Table 6 we also compare different aspects of subjects’ behavior across treatments.

4.2.1 fi Treatment

In the fi treatment, the theory predicts that a subject should not form a link unless the cost

is zero. Out of 360 decisions, we observe 239 cases in which subjects do not form a link and

thus make their decisions based on their signals. Among these 239 cases, subjects take the

action that is the same as their signal in 214 instances. In 25 cases, however, they take the

action that is opposite to their signal. Table 4 displays this data.

There are a total of 121 cases in which subjects decide to form a link to the first subject.

However, in 25 of these cases the cost is zero, hence the link decisions are (weakly) optimal.7

In order to distinguish the link decisions that are taken at zero cost, we use the notation

x : y, meaning that x links are formed when the cost is positive and y are formed when the

cost is zero. When there exists a link between the first and the second subject, there are

four different possibilities:

(1) In 61 cases, the subjects observe the same action as their signal, and take

the same action. Thus, even though the link decision is a deviation from the

theory (for 48 of the cases), the resulting action decision is backed up with two

matching pieces of information.

(2) In 21 cases, the subjects observe an action that is different from their signal.

Facing two conflicting pieces of information, they decide to follow their signal.

This is a curious case, because the action choice of the subject makes it even

harder to justify the link decision.

(3) In 35 instances the subjects observe an action different from their signals,

but prefer to follow the first subject’s decision. This is the opposite of the second

7 While it is formally not an error to form a link when the cost is zero, that is not to say that the
information should not be ignored—this is especially true if subjects believe that their predecessors are
prone to make mistakes.
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situation: there they disregard the action of the first subject; here they disregard

their private signal.

(4) Finally, in 4 cases the subjects observe the same action as their signals but

they ignore both the action they observe and their signals by choosing an opposite

action. Such behavior is extremely irrational but, fortunately, it is also quite rare.

Table 4: The Behavior of the Second
Subject in fi Treatment

Number of Subjects
No Link Link

a2 = a1 48:13
a2 = σ2 214

a2 6= a1 15:6
a2 = a1 30:5

a2 6= σ2 25
a2 6= a1 3:1

4.2.2 pi Treatment—Informed Subjects

In the pi treatment, there are 244 cases in which the subjects are informed. Out of these

244 cases, subjects in 169 of them do not form a link. This behavior is consistent with

the predictions of the theory. However, in 61 instances subjects decide to form a link even

though the cost is strictly positive.

Table 5: The Behavior of the Second Subject
in pit Treatment: Informed Subjects

Number of Subjects
No Link Link

a2 = a1 31:4
a2 = σ2 157

a2 6= a1 24:9
a2 = a1 5:0

a2 6= σ2 12
a2 6= a1 1:1

Table 5 is the same as Table 4, except for informed subjects in pi treatment. The second

column shows the number of subjects in each of the four possibilities that we discussed

earlier. We elaborate more on this in the next subsection as we compare the behavior of

informed subjects in the pi and fi treatments.
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4.2.3 Comparison of Informed Subjects in pi and fi Treatments

To compare the two treatments, we provide in Table 6 the frequency of the decisions in each.

Although subjects tend to form links slightly less often in the pi treatment, the difference is

not statistically distinguishable.

However, there is one notable compositional difference between the two treatments that

is statistically significant. Specifically, we observe that subjects tend to give more weight to

their own signal in the pi treatment than in the fi treatment. In the fi treatment, subjects

form a link, observe an action different from their signal, and take an action consistent with

their signal, 5.83 percent of the time. This goes up to 13.52 percent in the pi treatment.

Similarly, in the fi treatment subjects form a link, observe an action different from their

signal, but take an action consistent with the action they observe 9.72 percent of the time;

that percentage goes down to 2.05 in the pi treatment.

Table 6: The Frequency of Links by Informed
Subjects in the fi and pi Treatments.

fi Treatment pi Treatment
No Link Link No Link Link

a2 = a1 16.94% 14.34%
a2 = σ2 59.44% 64.34%

a2 6= a1 5.83% 13.52%
a2 = a1 9.72% 2.05%

a2 6= σ2 6.94% 4.92%
a2 6= a1 1.11% .08%
Total 66.39% 33.61% 69.26% 30.24%

Observation 1. Linking behavior is not substantially different across treatments. However,

it deviates from the rational benchmark. In contrast, action decisions differ across treat-

ments. Whereas in the pi treatment, subjects who observe an action that conflicts with their

own signal almost always follow their own signal, in the fi treatment there is a noticeable

tendency to conform to the observed action.

4.2.4 pi Treatment—Uninformed Subjects

Recall from Corollary 1 (and Figure 3) that the optimal behavior of the second subject

depends on the level of cost. It turns out that with the parameters of the experiment, an

uninformed subject should always form a link when the cost is less than 11, and should avoid

forming a link when it is above 11. This is how Table 7 organizes the data. From the Table,

we observe that the majority of the decisions are in this line: the number of links when the
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cost is less than the threshold is more than the number of links when the cost is greater than

the threshold.

Table 7: The Behavior of the Second Subject in
pi Treatment: Uninformed Subjects

c < 11 c ≥ 11

Number of Subjects Number of Subjects
No Link Link No Link Link

a2 = a1 33 a2 = a1 9
17 34

a2 6= a1 16 a2 6= a1 7
The exact threshold cost is c∗ ≃ 11.11.

4.2.5 Responsiveness to Cost

While it is theoretically a mistake for the informed second subject to form a link to the first

at any positive cost, it is a more costly mistake when the cost is higher. Therefore, one

would expect that there is a decrease in the number of links as the cost of forming a link

increases. This is exactly what we find. Figure 6 depicts the observed empirical frequency

of a link forming at each possible cost of link formation. There is strong evidence that the

frequency of link formation decreases as the cost increases.8

Observation 2. While subjects’ linking behavior deviates from the Bayesian benchmark, the

frequency with which links are formed is decreasing with the cost of link formation, as would

be predicted by a relaxed model which allows for stochastic best response.

4.3 The Third Subject

The subjects in the third position face a more complicated problem. In fact, there are two

possible networks that they can observe. In the first network there is a link between the

first and the second subjects, while in the second there is no link between the first and the

second subjects.

We begin our analysis with the link formation behavior of the subjects in the fi treatment.

Table 8 provides these data. Note that when q = 1, as in the fi treatment, the network of

the first type (the second is linked to the first subject) is not an equilibrium network for any

c > 0. Nevertheless, we observe this off-the-equilibrium path network in the experiment. The

first two rows in Table 8 show the behavior of the third subject facing such networks. There

8We will elaborate on this point further in section 4.4.
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Figure 6: Frequency of Link Formation:
Informed Second Subjects
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are 121 networks of this type. Note that in 24 of them, the cost is zero, which rationally

justifies the existence of the link. In all of the cases in which c > 0, the third decides to

form a link 62.5 percent of the time. It is worth analyzing the action behavior of the third in

these situations. Table 9 summarizes the decomposition of the action decisions of the third

subject.

Table 8: The Distribution of Networks in
the fi Treatment

Networks c < 5 c > 5

(3.a) b b b1 2 3 5224 32
(3.b) b b b1 2 3 121 25
(3.g) b b b1 2 3 192 174
(3.c) b b b1 2 3 131 12
(3.d) b b b1 2 3 144 7

The exact threshold cost is c∗∗ ≃ 5.13.
The highlighted cells indicate the equilibrium path decisions and networks.

Let us look first at the case where the third forms a link to the second. If the two actions

that the third observes are the same as his signal, then he always chooses the action that
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matches this information (39 instances versus 0.) If, however, the actions of the second and

third subjects are the same but differ from his signal, then the third subject tends to follow

the actions that he observes more often than his signal (20 instances versus 6 instances.)

Finally, if the actions of the first and the second are different, then his private signal becomes

more decisive. In fact, in 16 cases out of 19, the third subject observes two different actions

and finally takes the same action as his signal.

Table 9: The Decomposition of
Action Decisions in the fi Treatment

Networks a3 = σ3 a3 6= σ3

a1 = a2 = σ3 39 0
(3.a) b b b1 2 3 a1 = a2 6= σ3 6 20

a1 6= a2 16 3
(3.b) b b b1 2 3 29 8
(3.g) b b b1 2 3 167 26

a1 = σ3 20 1
(3.c) b b b1 2 3

a1 6= σ3 2 2
a1 = a2 = σ3 4 4

(3.d) b b b1 2 3 a1 = a2 6= σ3 0 0
a1 6= a2 11 2

The other network that the third subject observes is when the second subject does not

form a link to the first (the last three rows in Table 8). In this case, there are three

possibilities for the third subject: either he does not form any links, he forms only one link,

or he forms two links. There are 239 such instances. Among those cases, he does not form

any links 81 percent of the time, he forms a link to the second and stops 10 percent of the

time, and he forms two links 9 percent of the time. Note that, according to the predictions

of the theory, if the cost is greater than 5 the third subject should not form any links. This

indeed happens in 90 percent of those situations. In terms of action decisions, as Table 9

indicates, we do not observe a substantial number of mistakes.

We also undertake the analysis for the pi treatment. Tables 10 and 11 provide a summary

of the data for the pi treatment. The left panel of Table 10 details the networks formed

by informed subjects, whereas the right hand side panel details the networks formed by

uninformed subjects. Table 11 decomposes the informed subjects’ action decisions in the pi

treatment.

Observation 3. There is a substantial difference in linking behavior when the third subject

faces network (2.A) or (2.B). In particular, when the third subject observes a link between
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Table 10: The Distribution of Networks in pi Treatment

σ3 ∈ {−1, 1} σ3 = 0
Networks c < 3 3 < c < 11 c > 11 c < 3 3 < c < 11 c > 11

(3.a) b b b1 2 3 2515 15 2 2111 12 5
(3.b) b b b1 2 3 92 17 17 3 9 5
(3.g) b b b

1 2 3 7 35 68 5 12 26
(3.f) b b b1 2 3 0 4 10 2 5 6
(3.d) b b b1 2 3 1 15 11 1 6 6

c∗ ≃ 11.11 and c∗∗ ≃ 3.41.
The highlighted cells indicate the equilibrium path decisions and networks.

Table 11: The Decomposition of Action Decisions in
pi Treatment—Informed Subjects

Networks a3 = σ3 a3 6= σ3

a1 = a2 = σ3 17 0
(3.a) b b b1 2 3 a1 = a2 6= σ3 5 9

a1 6= a2 11 0
(3.b) b b b1 2 3 41 2
(3.g) b b b1 2 3 103 7

a1 = σ3 12 1
(3.c) b b b1 2 3

a1 6= σ3 0 1
a1 = a2 = σ3 4 0

(3.d) b b b
1 2 3 a1 = a2 6= σ3 1 6

a1 6= a2 14 2
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the first and the second (network (2.A)), he is very likely to form a link, whereas when the

third subject observes that no link has been formed (network (2.B)), he is very unlikely to

form a link.

Observation 3 is remarkable because, at least in the pi treatment, the latter network

signals that the second subject was informed, while the former network signals that he

was uninformed. Therefore, the Bayesian model would predict a higher frequency of link

formation in the latter network than in the former network.

4.4 Observed Network & Link Decisions

Finally, we want to understand the relationship between the observed network and the link

decisions of the third and fourth subjects. Specifically, we look at the binary decision of

forming at least one link and how it depends upon the observed network. Tables 12 and

13 report the results of a series of estimations. The variable informed is a dummy variable

which takes the value 1 if the subject was informed and zero otherwise. Similarly, variables

depicted as networks are dummy variables which take the value 1 if the subject observes

that particular network and zero otherwise. The variable link cost is simply the cost

of link formation. For each information treatment, we first report the results of a logit

estimation (coded as .1) and then the results of a fixed-effect logit estimation (coded as .2)

which allows for subject heterogeneity. Clearly, allowing for subject heterogeneity does not

change the results qualitatively, but it does change the magnitude of the effects; in particular,

by including the fixed-effects terms, we derive estimated coefficients that are substantially

larger in absolute value.

These tables reinforce some points that we have already made in our descriptive analysis.

First, as was apparent in Figure 6 for the second subject, the negative coefficient on link

cost for the third and fourth subjects shows that the greater is the cost of forming links, the

lower is the probability that they will be formed. Second, informed subjects are less likely to

form links than their uninformed counterparts, although this is only marginally significant

for the fourth subject. Notice, too that the estimated coefficients on the network dummies

are almost always smaller in the pi treatment than in the fi treatment. Thus our subjects

do have a sense that information matters, even if they tend to form links more often than

the theory predicts.

However, there is information in these tables. First, notice that Observation 3 carries

through to the fourth subject. In both treatments and for all specifications, the estimated

coefficient on the dummy for network 3.a is substantially larger than that of network 2.a.

Therefore, there is a strong tendency towards what we call herding in link formation.

Finally, there is further evidence that subjects understand the informativeness of networks, at
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Table 12: Logit Regressions: Third Subject

fi.1 fi.2 pi.1 pi.2

informed
na na -0.607 -1.964

na na (0.238) (0.453)

(2.a) b b1 2

1.562 2.559 0.703 2.217

(0.298) (0.497) (0.252) (0.478)

link cost
-0.247 -0.404 -0.076 -0.226

(0.031) (0.053) (0.021) (0.045)

constant
0.867 na 0.447 na

(0.298) na (0.319) na

LL -146.88 -67.87 -220.61 -71.86
N 360 360 360 360

Estimated standard errors are in parentheses.

Table 13: Logit Regressions: Fourth Subject

fi.1 fi.2 pi.1 pi.2

informed
na na -0.453 -0.535

na na (0.296) (0.361)

b b b(3.b) 1 2 3

0.160 0.866 1.211 1.930

(0.435) (0.537) (0.371) (0.485)

(3.a) b b b1 2 3

5.069 6.589 1.930 2.922

(1.034) (1.305) (0.378) (0.506)

(3.d) b b b1 2 3

3.472 5.432 3.086 3.823

(1.065) (1.393) (0.467) (0.669)

(3.c) b b b1 2 3

2.246 3.708 1.034 1.307

(0.624) (0.906) (0.518) (0.672)

link cost
-0.160 -0.162 -0.158 -0.242

(0.033) (0.037) (0.027) (0.038)

constant
0.376 na 0.238 na

(0.402) na (0.397) na

LL -122.05 -84.48 -170.09 -103.46
N 360 360 360 360

Estimated standard errors are in parentheses.
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least across treatments. For the fi treatment compare the estimated coefficients on the (non-

equilibrium) network 3.b and the (equilibrium) network 3.f. The coefficient is substantially

and significantly larger in the latter case, indicating a greater propensity to form a link when

faced with this network than the out-of-equilibrium network 3.b.9

5 Econometric Analysis

In the previous sections, we described behavior of the second, third, and fourth subjects

in various situations. Although the behavior clearly deviates from the fully rational theory

as espoused by the bslp, we argue that it can be rationalized in the sense that there are

systematic patterns of behavior that can be modeled. In particular, as the Bayesian theory

predicts, the cost of link formation matters: the higher the cost, the less likely links are to

be formed. Information matters: often behavior is substantially different between the fi and

pi treatments. Finally, the structure of links (i.e., the network) matters—even if it matters

differently than the Bayesian theory predicts.

Our goal in this section is to derive and estimate a parsimonious model of behavior that

explains the key patterns of behavior described in our descriptive analysis. Our discussion

will focus almost exclusively on the second and third subjects. Clearly, there is very little to

be said about the first subject. The analysis of behavior for the fourth subject is exceedingly

complex and, moreover, we have very few observations for each network. We begin with

the standard Quantal Response Equilibrium (QRE) model of behavior and show that we

can reject the rational model. Then, we extend the model by modifying the preferences of

agents for incorporating the effects of local interactions via the relative income hypothesis

à la Duesenberry [14]. In this way, we are able to describe subjects’ linking and action

decisions better than the QRE model.

5.1 A Model of Stochastic Best Response

5.1.1 The Second Agent

In the standard model of stochastic best response, agents experience a random shock to each

of their possible decisions. For simplicity, consider the second agent receiving signal σ2 = 1.

Let ℓi,j = 0, 1 denote the existence of a link between the ith and the jth agents when j > i.

There exists a link between them if and only if ℓi,j = 1. The expected utility of forming a

9 Interestingly, for both networks and across both treatments, the fourth subject almost always forms
a link to the larger sub-network, rather than to the most informative node. Thus, subjects would seem
to prefer to observe more action decisions, even if, from a strictly informative point of view, doing so is
suboptimal.
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link is given by:

ϕ(σ2 = 1, ℓ1,2 = 1) := r max
{

sm, (1 − s)m
}

+ (1 − r) max
{

tm, (1 − t)m
}

− c + ǫ1 (6)

where r = Pr(a1 = 1|σ2 = 1), s = Pr(θ = 1|σ2 = a1 = 1) and t = Pr(θ = 1|σ2 = 1, a1 = −1).

Whereas the expected utility of not forming a link is given by:

ϕ(σ2 = 1, ℓ1,2 = 1) = max
{

pm, (1 − p)m
}

+ ǫ0 (7)

where p = Pr(θ = 1|σ2 = 1). Under standard assumptions on ǫ1 and ǫ0, the probability that

a link is formed is given by:

Pr(ℓ1,2 = 1|σ2, c) =
[

1 + exp
{

λl

(

ϕ(σ2, ℓ1,2 = 0) − ϕ(σ2, ℓ1,2 = 1)
)}

]−1

(8)

where λl is a parameter to estimate and captures the subject’s ability to best-respond in his

link decision.

From these equations, one can easily write the likelihood function given a set of observa-

tions and obtain the maximum likelihood estimates of the model. This is precisely what the

left panel of Table 14 depicts. Before discussing these results, however, recall that subjects

make an action decision as well as a link decision and, as we have seen, this is another source

of errors in decision making. In this case, the probability that the second subject will take

an action depends upon his signal and the first subject’s action choice whenever there is a

link. For example,

Pr(a2 = 1|σ2 = 1, a1 = 1) =
[

1 + exp
{

λa(1 − 2s)m
}

]−1

(9)

where λa is a parameter to be estimated and captures the subject’s ability to best respond in

his action decision. By taking the action decision into account, we can write the full likelihood

function for the subject’s decision problem and obtain maximum likelihood estimates of

λl, λa. The results of this exercise are reported in the right panel of Table 14.

There are a number of points worth making. First, likelihood ratio tests easily allow us

to reject the hypothesis that behavior is purely random (i.e., that the λ’s are all zero).10

Second, the Bayesian model also is easily rejected (i.e., that the λ’s are infinite).11 Third,

λl > λa, implying that subjects are more likely to make an erroneous action decision than

link decision. This effect is particularly pronounced in the fi treatment and much less so

10 The calculated LR statistics are, respectively, 101.3, 96.5, 328.3 and 351.5, while the 5% critical values
are χ2(1) = 3.841 and χ2(2) = 5.991.

11 We approximated the Bayesian model by taking λl = λa = 8. The calculated LR statistics are,
respectively, 250.0, 203.9, 928.5 and 513.3.
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Table 14: Estimation Results: Second Subject
Pure QRE

Link Only Link & Actions
fi pi fi pi

λl 2.160 2.362 2.160 2.362
λa na na 1.185 1.805
LL -198.9 -201.3 -334.900 -323.30
N 360 360 360 360

in the pi treatment. We have two explanations for this observation. First, we assumed

that the second subject correctly anticipates that the first will make errors.12 Therefore, in

the event that σ2 6= a1, it is strictly optimal to follow one’s signal. However, as we saw in

the descriptive analysis, over half the time σ2 6= a1 and the second subjects actually chose

a2 = a1. We assert that this is not so much an error but a behavioral pattern that deserves

further exploration.

Remark 1. Note that λl’s are the same in the Link Only and the Link & Actions spec-

ifications. This is because of the independence of errors in the link and action decisions.

Alternatively, one may argue that, for example,

ϕ(σ2 = 1, ℓ1,2 = 1) = r max {sm + ǫ1, (1 − s)m + ǫ2}+(1−r) max {tm + ǫ1, (1 − t)m + ǫ2}−c

so that, before his link decision, the second agent receives a preference shock in each of his

possible action decisions. The realization of these preference shocks not only determine his

eventual action decision, but also determine his link decision. This substantially complicates

the estimation, since it is no longer possible to obtain closed form solutions for the probability

of any given action. Nevertheless, we were able to estimate by drawing vectors of random

numbers, ǫi, from a type I extreme-value distribution with parameter λ. The results we

obtained are roughly similar to what we report here. Also, perhaps more importantly, it is

hard to justify that this is the correct approach. As Table 14 shows, and from our descriptive

analysis, there are clear differences between the link and action decisions.

5.1.2 The Third Agent

The empirical analysis of the third agent is in the same spirit as that of the second agent.

However, matters are substantially more complicated. In particular, the third agent may

12 That is, the anticipated error rate, 1 − δ1, is the empirical error rate from our data set. For example,
Pr(a1 = 1|θ = 1) = 2q

3 δ1 + q

3 (1 − δ1) + 1−q

2 , where, for the fi treatment, q = 1 and δ1 = 0.975.
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face one of two different networks and has the option of forming 0, 1, or 2 links to his

predecessors. Instead of giving a full derivation of the empirical choice model, we simply

note the key steps required.

In addition to the required calculations from the previous section, we need more tedious

calculations to be able to solve for the value of information. The task is even more com-

plicated, since we assume that the third agent anticipates the errors made by the first and

second agents. For example, consider the case in which the third agent observes that the

second linked to the first. For ease of exposition, let us introduce the following notation:

Pr(a1, a2|σ3, ℓ1,2 = 1)

(a1, a2) σ3

−1 0 1

( 1, 1) a11 a12 a13

( 1,−1) a21 a22 a23

(−1, 1) a31 a32 a33

(−1,−1) a41 a42 a43

Pr(θ = 1|a1, a2, σ3, ℓ1,2 = 1)

(a1, a2) σ3

−1 0 1

( 1, 1) c11 c12 c13

( 1,−1) c21 c22 c23

(−1, 1) c31 c32 c33

(−1,−1) c41 c42 c43

Then, the ex ante expected utility of the third, who observes a link between the first and

the second, is

ϕj = a1j max
{

c1jm, (1 − c1j)m
}

+ a2j max
{

c2jm, (1 − c2j)m
}

+a3j max
{

c3jm, (1 − c3j)m
}

+ a4j max
{

c4jm, (1 − c4j)m
}

,

where j = 1 for σ3 = −1, j = 2 for σ3 = 0, and j = 3 for σ3 = 1, and an informed third

agent will form a link if and only if:

max
{

pm, (1 − p)m
}

+ ǫ1 < ϕj − c + ǫ0.

If no link is observed, then the decision is even more complicated, because now the agent

must decide whether to link to the first agent, second agent, or not at all; then, if he decides

to link, he must decide whether to form another link, and only then to make his action

decision.

In Table 15 we report the results of two different estimations for the third subjects’s link

decision. The first column considers the simpler problem in which the third subject observes

a link between the first and the second subjects. The second column considers only the

third agent’s first link decision, whether or not the second subject linked to the first. We

do not want to go into too much detail here. However, there are a couple of points that we

would like to make. First, it is again the case that we can easily reject, with one exception,

both the random behavior, λl = 0, and the fully rational behavior, λl = ∞, in favor of the
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model of stochastic best response.13 The second point, which is particularly striking in the

fi treatment, is the difference in λl in the first and the second columns. As we saw in the

descriptive analysis, when the second agent linked to the first, the third agent was very likely

to form a link—very often this is a mistake. Table 8 shows that λl is substantially higher

when we consider the more general linking problem. When there was no link between the

first and second agents, it was rare that the third formed a link if the cost was above the

threshold. Therefore, we add to the mix a great number of instances in which the third

agent took the correct action. Why does this result not appear to hold in the pi treatment?

Probably because the decision problem is generally more difficult and, moreover, the aversion

to forming links when the second did not link to the first appears to persist, even though

linking would more often be optimal. If no link is observed, then the decision is still more

complicated because the agent must decide whether to link to the first agent, second agent,

or not at all. Then, if he decides to link, he must decide whether to form another link, and

only then to make his action decision.

Table 15: Estimation Results: Third Subject
Pure QRE

fi pi
ℓ1,2 = 1 ℓ1,2 ∈ {0, 1} ℓ1,2 = 1 ℓ1,2 ∈ {0, 1}

λl 1.184 4.361 1.983 2.249
LL -82.330 -207.98 -87.54 -285.2
N 121 360 140 360

Remark 2. We also could consider the full linking problem; however, we choose not to for

two reasons. First, it was very rare that subjects actually formed two links. Second, of the

subjects that did form two links, the first link was always to the first subject. Moreover, in

the pi treatment, two subjects were responsible for all but two of these instances, while in the

fi treatment, two subjects were responsible for the vast majority of cases.14

5.2 A Model of Local Interactions

The QRE model in Section 5.1 formally demonstrates the existence of deviations from ra-

tional behavior; however, any deviation is simply termed a mistake and manifests itself as a

13 The calculated LR statistics, going from left to right, for the λl = 0 hypothesis are: 3.1, 276.9, 19.0 and
107.1, while for the λl = ∞ hypotheses they are: 69.3, 61.8, 79.9 and 308.7. The one exception noted above
is that we cannot reject the random behavior hypothesis for the case in which the third agent observed a
link between the first and second in the fi treatment.

14Estimation results for the full link decision problem are available upon request.
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lower estimate of λ. But why do subjects in the second position link over 30% of the time,

while at the same time showing a tendency to conform in the fi treatment but not in the

pi treatment? The baseline model of stochastic best response is not able to capture this.

The purpose of this section therefore is to generalize our model in order to better capture

behavior.

5.2.1 The Second Agent

We reformulate the utility function of the subjects in order to account for possible preferences

for relative well-being. In a way, we modify the preferences to incorporate the relative income

hypothesis, à la Duesenberry [14], which simply states that people often care more about

their relative well being than their absolute well being.15 In an axiomatic study, Ok and

Koçkesen [31] proposes the following representation under some plausible axioms on the

relation %:

(a, y) % (b, x) if and only if
a

µ(a, y)
≥

b

µ(a, x)
.

This representation states that an individual who satisfies the axioms prefers a wealth level

a when the wealth distribution of the peer groups is given by a vector y, to a wealth level b

when the wealth distribution of the peer groups is x, if and only if the ratio of the individual’s

wealth a to average income µ(a, y) is larger than the ratio of the individual’s wealth b to

average income µ(b, x). The representation is silent in the existence of risk. Nevertheless,

having been inspired by this representation, we propose the following utility function for the

second agent:

U(a2, a1; θ, σ) := u(a2; θ) + v(a1, a2; θ, σ),

where u is given by

u(a2; θ) :=

{

m if a2 = θ

0 otherwise

and v is the relative utility specified as

v(a2, a1; θ, σ) :=

{

ǫ0 if ℓ1,2 = 0,

αE(u(a2;θ)|σ)
E(u(a1;θ)|σ)

+ ǫ1 if ℓ1,2 = 1.

That is, if the second agent forms a link to the first, he gets a utility kick of α times his relative

standing vis-à-vis the first agent. Notice that this model generalizes the QRE model of the

previous subsection—if α = 0, second subject’s relative standing does not matter and we are

back to the standard case. In the specification above, ǫ1, ǫ0 are random preference shocks.

We assume that they are independently distributed according to the Type I extreme-value

15 For a literature review of the literature see Ok and Koçkesen [31] and the references therein.
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distributions, with parameter λ1.

Suppose, for example, σ2 = 1. If no link is formed, then his expected utility is pm + ǫ0,

where p = Pr(θ = 1|σ2 = 1). On the other hand, if he forms a link, then his ex ante expected

utility is:

ϕ = r max

{

sm + α, (1 − s)m + α
(1 − s)m

sm

}

+(1 − r) max

{

tm + α
tm

(1 − t)m
, (1 − t)m + α

}

+ ǫ1

= ϕ′ + ǫ1

where r, s, and t are as in section 5.1.1. It is clear that the second agent will link if the

following inequality is satisfied:

pm + ǫ0 ≤ ϕ′ + ǫ1 − c.

Again, one can easily write the likelihood function for the entire data set and obtain the

Maximum Likelihood estimates of α and λl.

As with our QRE specification above, we also can make use of choice data. Specifically,

for all those who have formed a link to the first subject, we can calculate the probability that

he will take any particular action. Consider the case in which σ2 = a1 = 1. The expected

utility from conforming, i.e., a2 = 1, is sm + α + ǫc. On the other hand, the expected utility

of not conforming is: (1 − s)(m + α
s
) + ǫn. The probability of conforming is then given by:

Pr(a2 = 1|σ2 = a1 = 1) = Pr

(

sm + α + ǫc −
(

(1 − s)
(

m +
α

s

)

+ ǫn

)

≥ 0

)

= Pr

(

ǫ̃ ≥ (1 − 2s)
(

m +
α

s

)

)

.

Now consider the case in which σ2 6= a1 = 1. The expected utility from conforming is

(1−t)m+α+ǫc. On the other hand, the expected utility of not conforming is: t(m+ α
1−t

)+ǫn.

The probability of conforming is then given by:

Pr(a2 = 1|σ2 6= a1 = 1) = Pr

(

(1 − t)m + α + ǫc −
(

t
(

m +
α

1 − t
) + ǫn

)

≥ 0

)

= Pr

(

ǫ̃ ≥ −(1 − 2t)
(

m +
α

1 − t

)

)

.

As earlier, we assume that ǫc and ǫn are independently distributed with a Type I extreme-

value distribution with parameter λa, where λl 6= λa to reflect potentially different best-
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response frequencies for link and action decisions. Given this, one can write the full log-

likelihood as: Pr(choice|link decision) · Pr(link decision) and estimate the parameters of the

model. For both the fi and pi treatments, the results are presented in Table 16.

Table 16: Estimation Results:
Second Subject

Link Only Link & Actions
fi pi fi pi

α 0.236 0.192 0.232 0.194
λl 3.643 3.894 3.623 3.905
λa na na 1.168 1.763
LL -190.22 -190.1 -326.77 -311.45
N 360 360 360 360

There are a number of interesting observations here. First, notice that likelihood ratio

tests easily allow us to reject the null hypothesis that α = 0 in all cases.16 A more important

observation is the fact that the α’s are estimated to be the same whether we use only linking

data or linking and choice data.17 This provides our model with an extra degree of external

validity, for it is able to explain: 1) why subjects form links, and 2) why subjects have a

tendency to conform in the fi treatment but not in the pi treatment. For example, one

may be tempted to say that subjects have a preference for conformity. In the fi treatment,

this could accurately rationalize the data. However, in the pi treatment, one would need an

ex ante preference for conformity (to explain the linking behavior) and an unanticipated ex

post Bayes rationality (to explain choice behavior). Our model succeeds in explaining both

facts with one parameter.

Notice that λa is not significantly different in this specification than in the QRE specifi-

cation, even though more action decisions are being labeled correct. However, since α > 0,

the payoff difference between the correct and incorrect actions is widened and, therefore, the

same λa generates greater accuracy. On the other hand, notice that λl is significantly higher

in the present specification than in the QRE specification. This may seem to conflict with

the explanation offered for why λa is constant across the two specifications; however, there

is a relatively straightforward explanation. For action decisions, from a strictly Bayesian

perspective, the payoff difference from choosing a2 = 1 or a2 = −1 is not that great if the

second agent’s signal differs from the observed action; therefore, systematic errors in favor

16 For the “Link & Actions” estimation, we obtain LR statistics of 16.2 and 23.64 for the fi and pi
treatments, respectively. For the “Link Only” estimation the LR statistics are 17.28 and 22.44.

17 The LR statistic for the Link Only case is 0.79, while for the Link & Actions case is 0.59. Also, in
neither case can we reject the null hypothesis that αfi = αpi.
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of one action will not bias λa downwards much in the QRE specification. However, again

from a strictly Bayesian perspective, because linking requires the payment of a positive (and

sometimes large cost), systematic deviations toward linking necessarily bias λl downwards,

unless there is something else to compensate by raising the payoff to linking. That something

else is α > 0.

5.2.2 The Third Agent

Just as it was possible to generalize the QRE specification to the third agent, we can do

the same with our model of local interactions. Consider the case in which the third agent

observes that the second linked to the first.18 It can be shown that the ex ante expected

utility of the third who observes a link between the first and the second is:19

ϕj = a1j max

{

c1jm + α, (1 − c1j)m + α
1 − c1j

c1j

}

+a2j max {c2jm + 2αc2j, (1 − c2j)m + 2α(1 − c2j)}

+a3j max {c3jm + 2αc3j, (1 − c3j)m + 2α(1 − c3j)}

+a4j max

{

c4jm + α
c4j

1 − c4j

, (1 − c4j)m + α

}

,

where j = 1 for σ3 = −1, j = 2 for σ3 = 0, and j = 3 for σ3 = 1. Here, aij and cij represent

the same probabilities as in the QRE specification; however, because we assume that agents

anticipate the errors of their predecessors, they will indirectly depend on λl, λa, and α, which

we estimated earlier for the second subject. An informed third agent will form a link if and

only if:

max{pm, (1 − p)m} + ǫ1 < ϕj − c + ǫ0

As in Table 15, Table 17 reports the results of two different estimations: first, considering

only those instances in which the third subject observes a link between the first and second;

then, considering the third subject’s first link decision problem, regardless of whether there

is a link between the first two subjects. Three points are of immediate interest. First,

for both information treatments, the estimated α declines substantially in the second (more

general) estimation. Second, while α always remains positive for the fi treatment, it becomes

negative (but insignificant) in the pi treatment. Finally, the model appears to fit the data

18 In this case we write the relative utility for the third agent as

v(a3, a2, a1; θ, σ) :=

{

ǫ0 if ℓ2,3 = 0,

α
E(u(a3;θ)|σ)

E(u(a1;θ)|σ)+E(u(a2;θ)|σ) + ǫ1 if ℓ2,3 = 1.

19 Details of this and other calculations are available upon request.
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generated from the fi treatment substantially better than that of the pi treatment.

Table 17: Estimation Results:
Third Subject’s Link Decision

fi pi
ℓ1,2 = 1 ℓ1,2 ∈ {0, 1} ℓ1,2 = 1 ℓ1,2 ∈ {0, 1}

α 0.369∗ 0.091∗ 0.227∗ -0.083
λl 3.415∗ 5.033∗ 2.607∗ 1.974∗

LL -65.668 -204.131 -81.956 -285.190
n 121 360 140 360

∗ Significant at 5% level

Table 17 lends further support to what was apparent in the descriptive analysis: sub-

jects in the third position view their decision problem substantially differently depending on

whether they observe a link between the first and the second subjects. When they observe

a link, they are very likely to form a link; conversely when they do not observe a link, they

are very unlikely to form a link. To be sure, because the network evolves endogenously, and

subjects in the second position are more likely to form a link for low costs, the third subject

is more likely to observe a link when the cost is low and not to observe a link when the cost

is high (in which case, the Bayesian theory would predict that no link should be formed).

However, our estimation procedure controls for the cost of link formation—yet the apparent

difference remains!

We are at somewhat of a loss to explain this feature of the data. According to bslp,

the reason that subjects in the third position do not form a link upon observing the empty

network is that they realize that by forming one link, they may observe that their linked

subject took the opposite action from his signal, therefore necessitating another link, and

hence the costs of two links. If c is high enough, this tradeoff is simply not worth it. However,

our subjects appear to go beyond even what would be predicted by bslp: upon observing

the empty network, they only link infrequently.

5.3 Discussion

Our empirical results suggest that local interactions between subjects are important in driv-

ing the evolution of the network. For the second agent, it appears, the motivating factor

is a desire to compare his standing with that of the first agent. This shows up as a posi-

tive estimate for α and can explain the inflation of links in both treatments, a tendency to

conform in the fi treatment, and the strong incentive to follow one’s own signal despite a

contradictory observation. Eliaz and Schotter [15] experimentally study a problem similar

to the second agent’s: A prize is in Urn A with probability h in the high state and with
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probability l ∈ (1
2
, h) in the low state; in either state, the prize is in Urn B with complemen-

tary probability. Subjects can pay a cost, c > 0, in order to learn whether the state is high

or low. As in our setting, the subjects should never pay the cost because choosing Urn A is

always better than choosing Urn B. Similar to us, they find a substantial number of subjects

who are willing to pay for this information, and argue that subjects have a preference over

beliefs. While this could explain some of our results, it cannot explain why many subjects

actually conformed to the first subject, even though it went against their own signal. Thus,

in our experiment, the information gained by forming a link was often decisive.

Eliaz and Schotter [15] discuss two alternative explanations: the “disjunction effect”

of Tversky and Shafir [34] and Kreps and Porteus’ [25] preference for early resolution of

uncertainty. It is difficult to see how the latter explanation could rationalize our data,

because the act of forming a link does not actually resolve any uncertainty about the state

of the world. The disjunction effect, which posits that subjects do not fully anticipate their

final decision when making their initial link decision, also has some merit; however, we

believe it fails on two grounds: first, like Eliaz and Schotter [15], it cannot explain why the

information gained from linking is sometimes decisive. Second, since subjects played the

network formation game forty times, we would expect any disjunction effect to dampen over

time as subjects learn. However, we found no such tendency in our data. Therefore, we

believe that our explanation remains the leading one.20

For the third subject, matters are more complicated because now subjects can condition

their behavior on one of two networks; indeed, when faced with the empty network they

must consider the possibility that if they form one link, they may form subsequent links.

Here we saw the importance of the network: when the second linked to the first, the third

was very likely to link (hence α > 0), but when the second did not link to the first, the third

was much less likely to link (hence the dramatic drop in α). It is of interest here to examine

subject heterogeneity in order to determine the reasons for the decline in α. In Table 18, we

re-estimated our empirical model for the third agent but allowed for a subject-specific α.

Three things are apparent. First, there is a great deal of variation in the estimated α’s

across subjects. Second, going from the network with a link between the first and second

subject to the one without a link, the estimated α diminishes in all but one case, sometimes

becoming negative. Why this uniform drop in α? Two explanations come to mind: either

subjects in the third position like to mimic the link decision of the second, or the prospect

of having to form two links scares them away from forming any links. Finally, it is apparent

that allowing for subject heterogeneity dramatically improves the model’s fit; however, it

20From the discussion in Remark 1, one could argue that our empirical model already contains a disjunction
effect. While this is a valid point, it was done largely for empirical convenience. As was discussed above, the
empirical results are qualitatively similar if we estimate the more complicated model discussed in Remark 1;
i.e., we still obtain α > 0.
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Table 18: Estimation Results: Subject-Specific α’s

fi pi
ℓ1,2 = 1 ℓ1,2 ∈ {0, 1} ℓ1,2 = 1 ℓ1,2 ∈ {0, 1}

λ 6.701 7.445 3.807 4.114
α1 0.935 0.458 0.680 1.884
α2 0.319 0.156 0.811 0.678
α3 0.019 -0.068 -0.246 -0.518
α4 0.725 0.505 0.138 -0.281
α5 0.281 0.188 -0.382 -0.523
α6 0.466 0.242 0.276 -0.138
α7 0.120 0.053 0.933 0.430
α8 -0.239 -0.250 0.126 -0.067
α9 -1.276 -1.833 -0.384 -0.516
LL -35.293 -137.134 -49.806 -162.994
N 121 360 140 360

does not alter the qualitative results, with one exception: it is not true that all subjects are

averse to forming links when faced with the empty network (as one might conclude from

Table 17), but rather there appears to be a mixture of behavioral types.

6 Concluding Remarks

In this paper we present the results of an experiment on endogenous network formation.

Not surprisingly, there were substantial deviations from the Bayesian theory. In particular,

subjects in the second position tended to form many links; in some instances there was a

tendency to conform to the decision of one’s predecessor; the observed network was extremely

important in driving linking behavior; and, rather than linking to the most informative node,

subjects tended to prefer linking to larger networks. There was also a noticeable pattern

of herding in link formation. However, behavior did conform to many of our expectations:

the frequency of link formation was negatively related to the cost, and there were important

differences in behavior between the fi and pi treatments, suggesting that subjects do grasp

certain aspects of information transmission through the networks.

All of our results suggest that local interactions matter: whether in their link or action

decisions, people emulate their predecessors and are heavily influenced by what they observe.

Indeed, the empirical model in Section 5.2, in which subjects are motivated to form links

because they care about their relative standing, does an excellent job of rationalizing the

data. This suggests that there is value in seeking out further connections between the social

learning/network formation literature and the literature on local interactions—both in terms

of theory and experimental design.
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Appendices

Appendix A: Omitted Proofs

Corollary 1. The optimal decision rule of the second agent is characterized as follows:

1. Let σ2 ∈ {−1, 1} and q ∈ (0, 1]. For any c > 0, the second agent does not form a link and
takes action a2 = σ2.

2. Let σ2 = 0 and q ∈ (0, 1]. There exists a threshold c∗ = qm
6 such that for any c < c∗, the

second agent links to the first and takes action a2 = a1; if c ≥ c∗, the second agent does not
form a link and randomizes between the two actions.

Proof. a

1. Let q ∈ (0, 1], and without loss of generality, suppose that σ2 = 1. Then, the value of
information from linking to the first agent when the unit cost of a link is c > 0 is

v(σ2) =
∑

a1

Pr(a1|σ2)max
a2

{

∑

θ

Pr(θ|σ2, a1)u(a2, θ)

}

− max
a2

{

∑

θ

Pr(θ|σ2)u(a2, θ)

}

− c

=
∑

a1

Pr(a1|σ2)
∑

θ

Pr(θ|σ2, a1)u(1, θ) −
∑

θ

Pr(θ|σ2)u(1, θ) − c < 0

The second equality comes from the fact that choosing a2 = 1 is always optimal, regardless
of a1 and hence the first two terms are canceled out. Therefore, it is never optimal to form
a link to the first agent for any positive unit cost c > 0. The case of σ2 = −1 is similar.

2. Let q ∈ (0, 1], and suppose that σ2 = 0. Then a simple computation leads the value of
information from linking to the first agent to be

v(σ2) =
qm

6
− c.

Therefore, when c < qm
6 the second agent forms a link to the first. However, when c ≥ qm

6
the second agent does not form a link.

Corollary 2. The optimal decision rule of the third agent is characterized as follows:

1. Suppose there is a link between the first and the second agents.

(a) Let σ3 ∈ {−1, 1} and q ∈ (0, 1]. Then, for any c > 0 the third agent does not form a
link and takes action a3 = σ3.

(b) Let σ3 = 0 and q ∈ (0, 1]. Then, for any c < c∗ the third agent links to the second and
takes action a3 = a2; if c ≥ c∗, the third agent does not form a link and randomizes
between the two actions.

2. Suppose there is no link between the first and the second agents.

(a) Let σ3 ∈ {−1, 1} and q ∈ (0, 1].
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i. There exists a threshold c∗∗ = 2qm
39 such that for any c < c∗∗, the third agent links

to the second agent. If a2 = σ3, then he does not form a link to the first and takes
action a3 = a2; if a2 6= σ3, then he links to the first and takes action a3 = a1.

ii. For any c ≥ c∗∗(q,m) the third agent does not form a link and takes action a3 = σ3.

(b) Let σ3 = 0 and q ∈ (0, 1].

i. For any c < c∗ the third agent links to the second and takes action a3 = a2.

ii. For any c ≥ c∗, the third agent does not form a link and randomizes between the
two actions.

Proof. a

1. Suppose there is a link between the first and the second agents. When there is a link between
the first and the second agents, the decision problem of the third agent is equivalent to that
of the second agent (see the proof of Corollary 1.)

2. Suppose that there is no link the first and the second agents.

(a) Let σ3 ∈ {−1, 1} and q ∈ (0, 1].

i. The value of information is

v(σ3) = −c +
∑

a2

Pr(a2|σ3)max{v(σ3, a2), 0}

= −c +
4

9

(

qm

6
− c

)

=
2qm

27
−

13

9
c.

Therefore, when c < 2qm
39 we have v(σ3) > 0, hence the third agent links to the

second agent. If a2 = σ3, the value of information is v(σ2, σ3) = v(σ2); hence the
third does not form a link. If a2 6= σ3, then the value of information is equivalent
to v(σ3 = 0). We already know that in this case the third forms a link.

ii. If c ≥ 2qm
39 we have v(σ3) < 0, hence the third agent does not form a link to the

second agent.

(b) Let σ3 = 0 and q ∈ (0, 1].

i. The value of information is

v(σ2) =
∑

a2

Pr(a2|σ3)max
a3

{

∑

θ

Pr(θ|σ3, a2)u(a3, θ)

}

− max
a3

{

∑

θ

Pr(θ|σ3)u(a3, θ)

}

− c +
∑

a2

Pr(a2|σ3)max{v(σ3, a2), 0} =
m

6
− c,

where v(σ3, a2) < 0 for any (σ3, a2). Thus, for 0 < c <
qm
6 , it is optimal to form a

link to the second agent. After forming a link, for any action he observes, the value
of information for the third agent is identical to that of an informed second agent.
Therefore, the third does not form a link to the first, and takes action a3 = a2 (see
the proof of Corollary 1.) and follow his action decision.

ii. When c ≥ qm
6 , the value is v(σ3) < 0. Therefore, the third does not form a link to

the second agent.
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Appendix B: Instructions

General Instructions

This is an experiment in the economics of decision-making. Your earnings will depend partly on
your decisions and partly on chance. By following the instructions and making careful decisions
you will earn varying amounts of money, which will be paid at the end of the experiment. Details
of how you will make decisions and earn money will be provided below.

In this experiment, you will participate in 40 independent rounds, each of which contains four
decision positions in a decision queue. In each round you will be asked which of two urns has been
randomly chosen (called action decision); however, before making your action decision, some sub-
jects will be able to observe the actions of those who have gone before them (called link decision(s))
by paying a cost that will be determined by the computer at the beginning of each round.

Before the first round, you will be randomly assigned to a position in the decision queue labeled 1,
2, 3 or 4. One-fourth of the participants will be randomly assigned to each of the four positions.
Your position depends solely on chance and will remain constant in all rounds throughout the
experiment. When you are called to make decisions, in the center of the computer screen you will
be informed of your position and any link decisions made by those in preceding decision positions;
however, you will not observe their action decisions.

A Decision Round

Each round starts by having the computer randomly form groups of four participants by selecting
one participant from each of the four positions. The groups formed in each round depend only on
chance and are independent of the groups formed in any of the other rounds.

In each round you will be asked to predict which of two urns, labeled A and B, has been chosen.
For each group of four, it is equally likely that urn A or urn B will be chosen. Urn A contains
2 balls labeled A and 1 ball labeled B. Urn B contains 2 balls labeled B and 1 ball

labeled A.

To help you determine which urn has been selected, you will be allowed to observe one ball, drawn
at random, from the urn at no cost. In addition, if you are in position 2, 3 or 4, you will be given
a chance to see action decisions in preceding positions at a cost determined by the experimental
software.

Your private draw in each round is independent of the draw received by any other participant. The
result of your draw will be your private information and should not be shared with any of the other
participants. You will see your private draw in the middle portion of the computer screen.

After each draw, the ball will be returned to the urn before making a private draw
for the next participant. This is done by the experimental software.

Participants assigned to position 1 may see the following screen on your computer screen:
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In this case, since you are in the first position in a decision queue, all you need to do is make your
action decision based on your private information. This is done at the bottom of the screen by
simply clicking on either A or B.

For participants assigned to positions 2, 3 and 4, there will be other participants in the same
group who have already made their action and link decisions. In addition to your private draw, you
will have the opportunity to observe the action decisions of those in preceding positions at a cost
determined by the experimental software at the beginning of each round. When it is your turn to
move, you will see a graphical representation of all the link decisions made by those who precede
you in the decision queue.

For example, suppose that you are assigned to position 3 in the queue. You may see the following
screen:

In this example, your private draw was a ball labeled A. In addition, you observe that the participant
in the second position chose not to form a link to the first position. That is, the participant in
the second position predicted which urn was more likely to be chosen, while having chosen not to
observe the action decision by the participant in the first position.

Continue with the example above and suppose that you wish to form a link to the second position.
To do this, simply click on the box labeled 2. Then you will observe the action decision made by
the participant in position 2 while incurring the cost of forming a link. This is depicted below:
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Note that once you form a link to one preceding participant, you see not only his/her
action choice but also the action choices of all those with whom that person linked.

For example, suppose that the second person had actually formed a link to the first person in the
queue. In this situation, by forming a link to the second position in the queue you would see the
action decisions of both participants in the first and the second positions in the queue.

In this example, if you wish to observe more information, you may form a link to the first position,
at an additional cost, and observe his or her action decision. If not, and you are ready to make
your decision, simply click on the box labeled A or B at the bottom of your screen, corresponding
to which urn you think was more likely to have been chosen.

Once you have made your decision for that round, you will be informed which urn was actually
used and what your potential payoffs are for that round. By clicking on the OK button you will
be taken to a waiting screen and then the next person in the line will be able to make his or her
decisions.

This concludes one decision round. All of the participants will then be randomly placed into a new
group of four people. In total, you will repeat 40 independent rounds with various levels of costs.

Remember: In each round, the same urn applies to all members of a group. That is, the experi-
mental software picks one urn for each group in each round.

Cost of Forming Links

Now, we will describe in detail how the cost of forming a link will be determined in each of the
40, independent, rounds. In all rounds throughout the experiment, the cost of forming a link can
be any even number between 0 and 20, inclusive; that is, the cost will be one of the following
numbers, 0, 2, 4, . . ., 16, 18, 20.

In each round, the computer will randomly assign a cost to each group of four. The chance that
the computer selects any even number between 0 and 20 points is exactly the same. That is, the
chance that a cost of 2 is selected is the same as the chance that a cost of 14 is selected and so on.
Moreover, the cost assigned in one decision round is independent of the cost in any other decision
round.

Remember: The cost of forming a link in each round is the same for all members of a group.
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Moreover, the cost for each link is the same (e.g., If you form one link at a cost of 10 points, you
are free to form another link by paying an additional cost of 10 points.).

Payoffs

Your potential earnings for each round are determined as follows. If you made the correct action
decision regarding which urn was used, you will be awarded 100 points for that round; otherwise,
you will be awarded nothing. From this amount, either 100 or 0, we will subtract the appropriate
cost for each link decision that you made. For example, if, in round 10, the cost of link formation
was 18 points, then in determining your potential earnings for round 10, 18 points will be subtracted,
from either 100 or 0, for every link decision that was made. For example, if, after having made one
link decision, you correctly guessed which urn was chosen, your potential earnings would be 100 -
18 = 82 points.

At the end of the 40 rounds, the experimental software we will randomly select three rounds from
which you will be paid. The total number of points earned will be summed up for each of these
three rounds — 100 points for each correct decision, from which we will subtract the appropriate
number of points for each link decision. This will be converted to a dollar amount according to the
rule:

$1 = 15 points

This amount will then be added to the $8.00 participation fee to give your payment for this ex-
periment. Payments will be made in private via petty cash vouchers at the conclusion of the
session.

Rules

Please do not talk with anyone during the experiment. We ask everyone to remain silent until the
end of the last decision problem.

Your participation in the experiment and any information about your earnings will be kept strictly
confidential. Your receipt of payment and consent form are the only places on which your name will
appear. This information will be kept confidential in the manner described in the consent form.

If you have any questions please ask them now. If not, we will proceed to the experiment.
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