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Abstract 

The St. Johns River (SJR; Jacksonville, FL, USA) is a large, brackish, estuarine system 

characterized by considerable anthropogenic pollution, recurrent harmful algal blooms (HABs), 

and diverse toxin-producing cyanobacteria. The most prevalent toxins in SJR water samples are 

microcystins/nodularins (MCs/NODs). Additionally, the SJR provides critical habitat for a 

genetically and behaviorally distinct estuarine community of bottlenose dolphins (Tursiops 

truncatus) that routinely uses and strands in low mesohaline and oligohaline areas of the river. 

This population has been subject to two unusual mortality events (UME) since 2010 and has 

since been described as having substantial declines in population health, characterized by 

widespread dermatitis and emaciation. Additionally, three dolphins have been recovered from 

low salinity habitats with epidermal algal mats. Because dolphin illness and strandings 

overlapped temporally and spatially with confirmed cyanobacterial blooms in the SJR, there is 

concern that estuarine dolphin health may be declining due to exposure to toxic cyanobacteria 

and HAB events. Specific to this study, the SJR estuarine community was considered a high-risk 

group for cyanotoxin exposure in relation to coastal animals. This study analyzed all available 

hepatic tissues for estuarine dolphins, and used samples from coastal individuals that stranded 

outside of the known cyanotoxin bloom season as controls. Three analytical methods were used 

to determine MCs/NODs presence in dolphin liver and epidermal algal mat samples. An Adda 

ELISA and LC-MS/MS were used to determine free MCs/NODs presence while the MMPB 

technique was used to determine total (bound and free) concentrations and as confirmatory 

analyses.  ELISA analyses produced high values that were not supported by concurrent LC-

MS/MS or MMPB analyses, indicative of false positives. MMPB testing resulted in low-level 
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total MCs/NODs detection in some specimens. Results indicate that both estuarine and coastal 

dolphins are exposed to MCs/NODs, with potential toxic and immune health impacts.   

Introduction  

Cyanobacteria are diverse, photosynthetic, prokaryotic organisms that are integral to most 

aquatic ecosystems (Dvorák et al., 2017). Many cyanobacterial species have the ability to 

produce toxic secondary metabolites, which function as neurotoxins, hepatotoxins, and/or 

dermatoxins, that are most associated with harmful algal blooms (HABs; Watson et al., 2015). 

Recent research has shown that epiphytic cyanobacteria are also able to produce significant 

concentrations of cyanotoxins leading to death of avians such as bald eagles, American coots, 

Canada geese, and mallard ducks after consumption (Rocke et al. 2002, Augspurger et al. 2003; 

Williams et al., 2007; Mohamed & Shehri, 2010; Wilde et al., 2014). Presence of HABs and 

cyanotoxins have severely impacted local and state economies (Anderson et al., 2000), caused 

temporary closure of public water systems (McCarty et al., 2016), led to declarations of 

municipal emergencies (Executive Order, 2016), and have prolonged, deleterious impacts on 

aquatic animals and ecosystems (Paerl et al. 2001; Miller et al., 2010).  

An excellent example of an ecosystem experiencing recurrent HAB events is the large, 

north-flowing, brackish St. Johns River (SJR; Jacksonville, FL, USA). The SJR is characterized 

by considerable anthropogenic pollution (e.g., high nutrient load, chemical runoff, heavy metal 

pollution, and septic system failure), recurrent HABs, and diverse toxin-producing 

cyanobacterial taxa (Aubel et al., 2006; Dunn et al., 2008; Environmental Protection Board, 

2017). Water sampling in the SJR has documented recurrent cyanobacterial blooms throughout 

the year since at least 2005, with many species (e.g. Microcystis, Anabaena/Dolichospermum, 
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Aphanizomenon/Chrysosporum, and Cylindrospermopsis) having the ability to produce potent 

toxins (Aubel et al., 2006; Environmental Protection Board, 2017). Additionally, the State of the 

River Report summarized the ten year status trend of HABs in the SJR as “unsatisfactory” and 

“unchanged” and with no projected decrease (Environmental Protection Board, 2017). 

Environmental exposure to cyanotoxins can pose both acute and chronic adverse health impacts. 

Symptoms of exposure in mammals include dermatitis, gastroenteritis, anorexia, impaired 

immune function, respiratory compromise, tumor production, and death, depending on the 

cyanotoxin type, concentration, route, and duration of exposure (Codd et al., 1995; Codd, 2000; 

Dow and Swoboda, 2000; Zhou et al., 2002; Shen et al., 2003).   

Regardless of bloom presence, the most prevalent and persistent toxins in SJR water 

samples are microcystins/nodularins (MCs/NODS), whose concentrations have ranged from 0.15 

to >2,000 µl L-1 (ppb; SJWMD, unpublished). The SJR also provides critical habitat for a 

genetically and behaviorally distinct estuarine community of bottlenose dolphins (Tursiops 

truncatus, Montague 1821; Caldwell, 2001; Gubbins, 2002; Ermak et al., 2017). This population 

routinely uses mesohaline (5-18ppt) and oligohaline (0-3 ppt) areas of the river and has been 

subject to two unusual mortality events (UME) since 2010 (Borkowski, personal comm.; Gibson, 

unpublished; Environmental Protection Board, 2017). Since the 2010 UME, behavioral and 

stranding data suggest substantial declines in population health, characterized by widespread 

dermatitis, emaciation, and routinely utilizing and stranding in low mesohaline and oligohaline 

areas of the river (Borkowski , unpublished; Gibson, unpublished). Because dolphin illness and 

strandings overlapped temporally and spatially with confirmed cyanobacterial blooms in the SJR 
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ecosystem, there is concern that estuarine dolphin health may be declining due to chronic or 

intermittent exposure to HAB events and associated cyanotoxins.  

One of the most important aspects of analyte determinations in biological matrices is 

pairing extraction methodology with appropriate analytical techniques. MCs (heptapeptides) and 

NODs (pentapeptides) are structurally similar hepatotoxins that possess the unique Adda moiety 

([2S,3S,8S,9S,4E,6E,]-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid, 

Rinehart and Harada, 1988; Namikoshi et al., 1990; Mazur-Marzec et al., 2006; Bortoli and 

Volmer, 2014; Niedermeyer, 2014). All MC/NOD variants share the same mechanisms of 

toxicity, though the specific amino acid combinations on the peptide ring affect LD50 of MCs 

(MC-LR = 50 µg kg-1; MC-RR = 600 µg kg-1) and most NOD congeners have comparable 

LD50 to MC-LR (Krishnamurthy et al., 1986; Watanabe et al., 1988; Ohta et al., 1994; Pearson 

et al., 2010). Similarity in structure and methodologies that target the Adda result in the two 

classes being jointly classified in quantification in some analyses, such as the Adda ELISA and 

the MMPB technique. Traditional methodologies used (i.e., ELISA and LC/MS-MS) are limited 

to the ability of detecting only of free forms of MCs/NODs for detection. More recently, the 

MMPB technique has been used to measure free, bound, and degraded forms of MCs/NODs 

(Sano et al., 1992; Foss and Aubel, 2015). Specific to this study, there is the potential that 

MCs/NODs may be degraded through environmental exposure, tissue decomposition, sample 

preservation, or present as unavailable, conjugated forms.   

The core objective of the first chapter was to compare MCs/NODs liver burdens for 

estuarine and coastal bottlenose dolphin populations using the most reliable methodology 

available, and with direct comparison of findings from several analytical techniques. The 
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primary objectives of the second chapter was to identify the species of, and to assess the toxin 

producing potential of the epidermal algal mat found on a stranded SJR resident. For both 

studies, three methods were used in confirmatory analyses due to the complex nature of the 

target matrices. Results from chapter one provided evidence of cyanobacterial hepatotoxin 

exposure to both estuarine and coastal populations of bottlenose dolphins. Three analytical 

techniques were used to screen for MCs/NODs in liver samples. MMPB was detected in 

oxidized liver samples of six wild dolphins, with levels ranging from 1.3-19.9 ng g-1 d.w. total 

MCs/NODs. The Adda ELISA revealed high detects, including a sample negative for total 

MCs/NODs via MMPB (8.1 – 487 ng-1). These results support that the ELISA is prone to false 

positive data for dolphin tissue extracts. Individual variant analysis (LC-MS/MS) did not result 

in free MC (14 variants tested) nor NOD-R detections, suggesting that the MMPB response was 

due to partially degraded, bound, conjugated, or untested MCs/NODs variants. Results of the 

second study support the erection of a new species of potentially toxin producing cyanobacteria 

(Komarekiella delphikthonos) based on a total evidence approach of molecular (toxin analysis), 

genetic (16S rDNA and 16-23S ITS), and ecological (e.g., growing as an epidermal mat on T. 

truncatus) characters under the International Code of Nomenclature for Algae, Fungi, and Plants. 

Results from these studies provides more information on the determinations of MCs/NODs 

concentrations in bottlenose dolphin liver tissues as well as adds to the literature previously 

uninvestigated toxin potential and species identification of epidermal mats to aid effective 

management of these important ecological sentinels. 
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Highlights 

 First report of MCs/NODs detected in cetacean liver samples from Florida, USA.  

 MMPB technique should be strongly considered for screening MCs/NODs in liver 

samples. 

 Adda-ELISA analyses are unreliable for screening MCs/NODs in dolphin liver samples. 

 Hepatic MCs/NODs were found in both coastal and estuarine dolphin populations.  

 Expanded monitoring is advised for animals living in cyanotoxin-impaired habitats.  
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Abstract 

 Microcystins/Nodularins (MCs/NODs) are potent hepatotoxic cyanotoxins produced by 

harmful algal blooms (HABs) that occur frequently in the upper basin of the St. Johns River 

(SJR), Jacksonville, FL, USA. Areas downstream of bloom locations provide critical habitat for 

an estuarine population of bottlenose dolphins (Tursiops truncatus). Since 2010, approximately 

30 of these dolphins have stranded and died within this impaired watershed; the cause of death 

was inconclusive for a majority of these individuals. For the current study, environmental 

exposure to MCs/NODs was investigated as a potential cause of dolphin mortality. Stranded 

dolphins from 2013-2017 were categorized into estuarine (n=17) and coastal (n=10) populations. 

Because estuarine dolphins inhabit areas with frequent or recurring cyanoblooms, they were 

considered as a comparatively high-risk group for cyanotoxin exposure in relation to coastal 

animals. All available liver samples from estuarine dolphins were tested regardless of stranding 

date, and samples from coastal individuals that stranded outside of the known cyanotoxin bloom 

season were assessed as controls. The MMPB (2-methyl-3-methoxy-4-phenylbutiric acid) 

technique was used to determine total (bound and free) concentrations of MCs/NODS in liver 

tissues. Free MCs/NODs extractions were conducted and analyzed using ELISA and LC-MS/MS 

on MMPB-positive samples to compare test results. MMPB testing resulted in low-level total 

MCs/NODs detection in some specimens. The Adda ELISA produced high test values that were 

not supported by concurrent LC-MS/MS analyses, indicative of false positives. Our results 

indicate that both estuarine and coastal dolphins are exposed to MCs/NODs, with potential toxic 

and immune health impacts.   

Key words: ELISA, HABs, microcystins, MMPB, Tursiops truncatus 
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Introduction 

1.1 Background  

Harmful algal blooms (HABs) are large, toxic and/or nuisance algae blooms that can 

negatively impact aquatic habitat and threaten human and animal health. Due to substantial 

human health risks associated with cyanotoxin ingestion, respiration, or skin contact (WHO, 

1998), detection of these toxins above recommended guidance levels has resulted in prolonged 

closure of public water supplies (McCarty et al., 2016), municipal or regional emergency 

declarations (Executive Order, 2016), and substantial economic losses (Anderson et al., 2000). 

Environmental exposure to cyanotoxins can pose both acute and chronic adverse health impacts. 

Symptoms of exposure in mammals include dermatitis, gastroenteritis, anorexia, impaired 

immune function, respiratory compromise, tumor production, and death, depending on the 

cyanotoxin type, concentration, route, and duration of exposure (Codd et al., 1995; Codd, 2000; 

Dow and Swoboda, 2000; Zhou et al., 2002; Shen et al., 2003). With increased anthropogenic 

watershed manipulation, nutrification, and urbanization altering flow and natural filtration of 

waterways worldwide, humans are becoming more susceptible to adverse health effects posed by 

more frequent and severe cyanobacterial blooms. Moreover, warmer temperatures associated 

with climate change are hypothesized to increase toxic HAB events (Paerl, 2008; Davis et al., 

2009; Ye et al., 2011).  

An excellent example of an ecosystem experiencing recurrent HAB events is the large, 

north-flowing, brackish St. Johns River in the southeastern United States (SJR, Jacksonville, FL, 

USA). The SJR is severely impacted by anthropogenic pollution (e.g., noise, chemical and 

nutrient runoff, septic system failure, and heavy metal pollution), which can accentuate existing 
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ecological stressors (e.g., seasonal freshwater discharge, harmful algal blooms, daily pH and 

salinity fluctuations). In this complex river system, northward flow plus strong tidal influences 

prevent natural flushing and cause periodic reverse directional flow (up to 161 miles upstream), 

allowing for prolonged retention of pollutants and biotoxins (Environmental Protection Board, 

2017).  

Water sampling in the lower SJR and surrounding freshwater tributaries has documented 

recurrent cyanobacterial blooms throughout the year since at least 2005 (Aubel et al., 2006). 

Many of the cyanobacteria species that predominate during blooms (e.g. Microcystis, 

Anabaena/Dolichospermum, Aphanizomenon/Chrysosporum, and Cylindrospermopsis) can 

produce potent toxins that can adversely affect public health, and cause widespread morbidity 

and mortality of aquatic organisms (Environmental Protection Board, 2017). Since 2005, the St. 

Johns Water Management District (SJWMD) has documented cyanotoxins in all areas of the 

river, from low salinity tributaries, to the brackish main channel (SJWMD, unpublished). 

Regardless of bloom presence, the most prevalent and persistent toxins in SJR water samples are 

microcystins/nodularins (MCs/NODS), whose concentrations have ranged from 0.15 to >2,000 

µg L-1 (ppb) (SJWMD, unpublished). MCs and NODs are classified together as they are 

biochemically similar, potent and environmentally persistent hepatotoxins that share the unique 

Adda moiety (Rinehart et al., 1988). The U.S. Environmental Protection Agency (EPA) has 

drafted a nationally recommended ambient water quality criterion for recreational exposure to 

MCs/NODs at 4 ng mL-1 (EPA, 2016). Under these guidelines, waterbodies exceeding this limit 

may require swimming and recreational advisories to protect human health (EPA, 2016).  
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In contrast, health risks for animals continuously or periodically inhabiting the river and 

feeding in cyanotoxin-impaired riverine systems are less well characterized, although their 

MC/NODs exposure may be substantial (D’Anglada, 2017). The SJWMD did not consistently 

collect toxin data or track toxin prevalence following dissipation of visible bloom events. 

However, detection of MCs/NODs throughout the year suggests that the SJR ecosystem retains 

cyanotoxins long after visible blooms have dissipated (SJWMD, unpublished).  As a result, marine 

mammals utilizing this habitat could be repeatedly or chronically exposed to MCs/NODs, including 

levels exceeding human recreational exposure limits.  

Although the precise metrics of post-bloom toxin persistence are unknown, marine 

mammals utilizing this habitat can serve as sentinels for the SJR ecosystem, and for associated 

human health risks, due to their high trophic level and ecological and physiological similarities 

to humans (Bossart, 2011). The SJR provides critical habitat for >300 common bottlenose 

dolphins (Tursiops truncatus), approximately half of which inhabit the river year round (Gibson, 

unpublished). This population has suffered two unusual mortality events (UME) since 2010 

(Environmental Protection Board, 2017). The cause of the 2010 UME was not determined, but 

followed a significant harmful algal bloom of Aphanizomenon flos-aquae, and a mass fish die-off 

as cited in the State of the River Report for the St. Johns River (Environmental Protection Board, 

2017). Dolphins stranding during the 2010 UME exhibited mild to severe skin lesions, and a few 

individuals exhibited strange swimming patterns (TtNEFL1021, TtNEFL1024, TtNEFL2027) 

prior to stranding (FWC-FWRI, unpublished). Skin lesions in cetaceans can be associated with 

environmental and anthropogenic pollution and/or prolonged freshwater exposure (Wilson et al., 

1999; Fury and Reif, 2012). Exposure to bloom byproducts may be associated with skin and 



19 
 
 

 

respiratory disease, although specific byproducts remain poorly characterized. Exposure to 

water-borne cyanotoxins has been associated with development of a rash and other skin ailments 

in humans and terrestrial animals (Torokne et al., 2001; Stewart et al., 2006a; Stewart et al., 

2006b). Pre-existing or concurrent skin disease in dolphins could further enhance susceptibility 

to freshwater cyanotoxin exposure, and associated health impacts. Since the 2010 UME, 

behavioral and stranding data suggest substantial declines in population health, characterized by 

widespread dermatitis, emaciation, and routinely utilizing and stranding in oligohaline (0.5-5 

ppt) and low mesohaline (5-18 ppt) areas of the river (Gibson, unpublished; Borkowski, personal 

comm.; Environmental Protection Board, 2017). Although most of these stranded estuarine 

dolphins had no definitive cause of death, gross necropsy findings included dermatitis, congested 

and hemorrhagic-appearing livers, kidneys, and lungs, and pneumonia (FWC-FWRI, 

unpublished data), all of which are non-specific symptoms, but are all ailments associated with 

cyanotoxin exposures (Codd et al., 1995; Codd, 2000; Dow and Swoboda, 2000; Zhou et al., 

2002; Shen et al., 2003) Because dolphin illness and strandings overlapped temporally and 

spatially with confirmed cyanobacterial blooms and cyanotoxin presence in the SJR ecosystem 

(Unpublished data; report received 3/28/2017 per request to the SJRWMD), there is concern that 

estuarine dolphin health may be declining due to chronic or intermittent exposure to HAB events 

and associated cyanotoxins.  

The high anthropogenic activity and additional environmental stressors that characterize 

the SJR could enhance the susceptibility of estuarine dolphins to the adverse effects of 

cyanotoxin exposure both during bloom and non-bloom periods, similar to findings from 

Grasman (2002), who documented enhanced wildlife disease impacts in pollution-impaired 
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ecosystems. Exposure to pollution and environmental stressors has been associated with 

increased frequency and severity of UME events in eastern US estuarine dolphins, indicated by a 

higher proportion of infectious disease, physiological stress, and exposure to algal toxins (Hohn, 

2002; Van Bressem et al., 2009). Marine mammals could also be exposed to biotoxins outside of 

bloom periods due to toxin persistence in sediment and biota, bioaccumulation, 

biomagnification, and disturbance of contaminated sediment during foraging activity (Welker 

and Steinberg, 2000; Miller et al., 2010;; Papadimitriou et al., 2012; Corbel et al., 2014; Zastepa 

et al., 2017). Direct and recurrent exposure to biotoxins have been associated with 50% of 

declared marine mammal UMEs (NOAA, 2010). The SJR dolphins are classified as a genetically 

unique population, so continued deaths could result in significant loss of genetic diversity 

(Caldwell, 2001). 

Microcystins (MCs) are a class of heptapeptides, consisting of over 150 structurally-

related variants, while nodularins (NODs) are pentapeptides with over ten naturally occurring 

variants (Namikoshi et al., 1990; Stirling and Miles, 1999; Mazur-Marzec et al., 2006; Bortoli 

and Volmer, 2014; Niedermeyer, 2014). Both MCs/NODs are hepatotoxins that share the unique 

Adda moiety ([2S,3S,8S,9S,4E,6E,]-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-

dienoic acid) (Rinehart and Harada, 1988) and are jointly classified due to lack of specificity in 

some analyses. For instance, the Adda-specific enzyme-linked immunosorbent assay (ELISA) 

(Fischer et al., 2001) and the MMPB (2-methyl-3-methoxy-4-phenylbutiric acid) technique (Foss 

et Aubel, 2015) detect MCs/NODs indiscriminately.  MCs/NODs are actively absorbed by liver 

hepatocytes through a specific energy-dependent transport process involving the rifampicin-

sensitive hepatic bile acid carrier (Eriksson et al., 1990; Hooser et al., 1991; Runnegar et al., 
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1991; Fischer et al., 2010). This process allows MCs/NODs to concentrate in hepatocytes (Yu, 

1995) as free, covalently bound, and conjugated forms (Kondo et al., 1992; MacKintosh et al., 

1995; Buratti et al., 2011).  Not only does this make the liver a key indicator for MCs/NODs 

exposure, but the change in toxin availability also influences methodologies used in analyte 

determination. 

One of the most important aspects of analyte determinations in biological matrices is 

pairing extraction methodology with appropriate analytical techniques. Traditional 

methodologies used such as ELISA and LC/MS-MS rely on the availability of free forms of 

MCs/NODs for detection. More recently, the MMPB technique has been used to measure free, 

bound, and degraded forms of MCs/NODs (Foss and Aubel, 2015; Sano et al., 1992). The 

MMPB technique uses oxidation to cleave the Adda moiety unique to MCs/NODs to create the 

MMPB molecule which can be monitored using mass spectrometry (Sano et al., 1992; Harada et 

al., 1996; Williams et al., 1997a; Williams et al., 1997b). To date, there has been no reported 

MMPB equivalent found in nature, and is strongly supported to only be formed when oxidizing 

MCs/NODs, allowing for method specificity in recovering all forms (i.e. free, conjugated, or 

degraded) of these toxins (Sano et al., 1992; Williams et al., 1997a; Williams et al., 1997b; Foss 

et Aubel., 2015; Foss et al., 2017). Specific to this study, there is the potential that MCs/NODs 

present in hepatic samples have been degraded through decomposition, as evidenced by Code 3 

(moderate decomposition) and late Code 3 (moderate to severe decomposition) stranded 

individuals (Dierauf et al., 2001). In forensic toxicology, analyte recovery is affected by extent of 

tissue decomposition and the time between sampling and analyses (Kastrissios et al., 2005). 

Bacterial degradation of the analyte and putrefaction of the tissue are both sources that affect 
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retrieval in decomposing tissues (Kastrissios et al., 2005). With these influences, total 

MCs/NODs concentrations may not be accurately quantified using ELISA or LC-MS/MS 

methodologies and thus the MMPB method was used in confirmatory analyses to account for all 

forms of MCs/NODs.  

The core objective of our study was to compare MCs/NODs liver burdens for estuarine 

and coastal bottlenose dolphin populations using the most reliable methodology available, and 

with direct comparison of findings from several analytical techniques. Our diagnostic approach 

provides more information on the determinations of MCs/NODs concentrations in bottlenose 

dolphin liver tissues to aid effective management of these important ecological sentinels.  

2.0 Methods  

2.1 Selection Criteria of Estuarine and Coastal Individuals 

Using unique dorsal fin characteristics (i.e. fin shape, nick and notch patterns), bottlenose 

dolphins from the Florida Fish and Wildlife Conservation Fish and Wildlife Research Institute’s 

(FWC-FWRI) North East Field Lab (NEFL) mortality database (2013-2017) were identified as 

either “estuarine” or “coastal” individuals. Dorsal fins that matched with the University of North 

Florida’s (UNF) dolphin photo-identification catalog (n = 17) were included in the study as the 

“estuarine” population. Cryoarchived liver samples from all estuarine dolphins, regardless of 

stranding date or season, were analyzed in attempts to determine MCs/NODs exposure 

throughout the year.  

Dorsal fin images of dolphins that were not identified in the UNF catalog, stranded 

outside of typical bloom seasons, and were recovered from the coastline were submitted to the 

Northeast Florida Dolphin Research Consortium to be compared to all estuarine dolphin 
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catalogs. Dolphins not identified as estuarine dolphins within any of the Consortium catalogs 

were considered a part of the “coastal” population (n=10) and their cryopreserved liver samples 

were used as MCs/ NODs controls. These selection criteria were based on the hypothesis that 

coastal-dwelling animals that stranded outside of typical bloom seasons would have lower 

hepatic burdens of MCs/NODs. Tested livers were limited to Code 2 (fresh dead), Code 3 

(moderate decomposition), and late Code 3 (moderate/advanced) stranded dolphins (Dierauf et 

al., 2001), and decomposition status was assessed as part of toxin retrieval efforts.  

2.2 Retrieval and Necropsy Protocols 

  For the above 17 cases and 10 controls, FWC-FWRI provided archived liver samples, all 

available necropsy reports, necropsy photographs, and GPS coordinates of stranding locations 

under permission from NOAA’s Code of Federal Regulations 50CFR216.22. All samples were 

stored at -20° C in sterile whirlpak bags. The weight of individual samples varied from <5-70gm.  

 Full necropsy reports with histology were available for 8 dolphins (5 cases and 3 

controls). Results of diagnostic testing for potential pathogens, such as cetacean morbillivirus 

and Brucella sp. were available for 16 individuals (12 cases and 4 controls). All available data 

were used to assess health status and identify potential histological lesions that could be 

associated with MCs/NODs exposure at the time of stranding. 

2.3 Sample Preparation 

 All toxin analyses were conducted at Greenwater Labs/CyanoLab located in Palatka, FL. 

Initially, homogenization of >30 gm wet weight (w.w.) samples was attempted using a bead 

ruptor (Omni Bead Ruptor 24, Omni Kennesaw, GA, USA), but this sample size was too large 

and fibrous to provide sufficient homogenization.  Thereafter, samples, including the attempted 
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homogenized samples, were lyophilized (Thermo Savant Modulyo freeze dryer), and 

homogenized into fine powder via a coffee grinder. The stainless-steel coffee grinder was 

thoroughly cleaned between samples to prevent cross-contamination.  To equate results produced 

by testing lyophilized samples to wet tissue concentrations, wet to dry ratios were determined by 

adding known wet weight (w.w.) aliquots to vials, lyophilizing, and determining water loss.  

2.4 Total Microcystins/Nodularins by MMPB 

2.4.1 – Liver samples 

Chemical oxidations and extractions were conducted as in Foss et al. (2017). Quality 

control included pre-oxidation spikes of all samples (2- 20 ng g-1), matrix curves of 3 samples 

(TtNEFL1624, TtNEFL1701, TtNEFL1703) and lab duplicates (TtNEFL1460, TtNEFL1510, 

TtNEFL1517, TtNEFL1610).  Spikes were prepared using certified MC-LR (National Research 

Council, CRM, Halifax, Nova Scotia, CA). Liver samples were oxidized as 0.100 ± 0.005 gram 

subsets dry weight (d.w.) using 5 mL of oxidant solution (0.2 M K2CO3, 0.1 M KMnO4, 0.1 M 

NaIO4) for 2.5 hours. The reaction was stopped with drop-wise addition of 40% (w/v) sodium 

bisulfite until solutions turned opaque. Samples were centrifuged (1,500 xg; 10 minutes) and 

pellets were rinsed with 2 mL DI. Pooled supernatants were sent through pre-conditioned solid 

phase extraction (SPE) (Strata™-X; PN 8B-S100-FCH, Phenomenex, Torrance, CA, USA), 

rinsed (2 mL; 5% MeOH), eluted (5 mL; 90% acetonitrile) and blown to dryness at 60°C with N2 

(Zymark LV TurboVap® evaporator, Biotage, Charlotte NC). Extracts were reconstituted in 1.5 

mL of 5% MeOH, pH adjusted using 1 N HCl (< 3) and loaded onto 12 cc Novum simplified 

liquid extraction (SLE) tubes (PN 8B-S138-KDG, Phenomenex, Torrance, CA, USA). Elutions 
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(ethyl acetate; 10 mL) were blown to dryness (60ºC; N2), reconstituted (5% MeOH; 200 mg mL-

1) and filtered (0.2 µm polyvinylidene fluoride - PVDF).  

2.4.2 Extracts of Free MCs/NODs & Standards 

 External standard curves (0.5 - 100.0 ng g-1) of certified MC-LR were oxidized and 

extracted following protocols in Foss and Aubel (2015). Subsamples of all ‘free MCs/NODs’ 

extracts analyzed using ELISA (section 2.5.2) were oxidized in the same manner.  Extracts (100 

µL) and MC-LR standards (1 mL) were oxidized 0.5 hours at final concentrations of 15 mM 

KMnO4, 15 mM NaIO4, and 100 mM K2CO3. The oxidation was stopped with dropwise addition 

of 40% (w/v) sodium bisulfite and clarified using Strata X Polymeric SPE, as previously 

described.  

2.4.3 LC-MS/MS Analysis MMPB 

The [M-H]-  ion of MMPB (m/z 207) was fragmented and the product ion m/z 131 was 

monitored. External standard curves of oxidized MC-LR (0.5 - 100 ng g-1) were analyzed daily 

and used to determine recoveries, verify instrument response and to quantitate ‘free MCs/NODs’ 

in extracts. Quantification of liver samples was conducted using matrix spikes and matrix 

standard curves. The method detection limits (MDL) for both matrices were calculated using a 

signal to noise ratio of 3, with quantification limits set to 3x that of the MDL.    

2.5 Free MCs/NODs 

2.5.1 Individual Variant Analysis (LC-MS/MS)  

A single sample from individual (TtNEFL1435) tested >10 ng g-1 for MMPB and was 

analyzed for intact individual variants of microcystins/nodularin. The liver sample was extracted 

in 0.100 ± 0.005 gram subsets (d.w.). Quality control included the pre-extraction fortification of 
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isotopically labelled standards d7-MC-LR & d5-MC-LF (Abraxis Kits, Warminster PA, USA) 

and a matrix spike containing 14 variants of MC and NOD-R. NOD-R and MC standards were 

purchased from National Research Council Canada / Certified Reference Materials (MC-LR, 

MC-RR, Nodularin & [Dha7]MC-LR; Ottawa, Ontario, CA), Enzo Biochem Inc. (MC-WR, 

[DAsp3]MC-RR, [DAsp3]MC-LR, MC-HtYR, MC-LF, MC-LW & MC-HilR; Farmingdale, NY, 

USA) and GreenWater Laboratories (MC-YR, MC-LA & MC-LY; Palatka, FL, USA).  

Subsets were extracted (5 mL; 75% methanol in 0.1 M acetic acid) in a sonicating water 

bath (25 minutes) followed with centrifugation (10 minutes; 1,500 xg). The supernatants were 

retained and pellets rinsed with five mL 75% acidified methanol. Methanolic supernatants were 

pooled and treated separately from a second 1 mL rinse utilizing n-butanol (certified ACS, 

Thermo Fisher, Waltham, MA, USA). Supernatants were blown to dryness using N2 at 60°C, 

reconstituted (5 mL; deionized water), and clarified using preconditioned Strata X Polymeric 

SPE (200 mg for methanolic extracts, 100 mg for butanol extracts). The SPE columns were 

rinsed with 5% MeOH (1-2 mL), and followed by an elution with 90% acetonitrile (column 

volume). Elutions were blown to dryness (60° C, N2) and reconstituted (1 mL, 5% MeOH) and 

filtered 0.2 µm PVDF. 

LC-MS/MS analysis used a Thermo Scientific Surveyor HPLC system coupled with a 

LTQ XL™ Linear Ion Trap Mass Spectrometer as described in Foss et al. (2017). Transitions 

monitored are summarized in Table 4.  Separation of analytes was achieved using a Phenomenex 

Kinetex™ 2.6 µm C18 100 Å, LC Column (150 x 2.1 mm) over a linear gradient with mobile 

phase A (2 mM formic acid and 3.6 mM ammonium formate in deionized water) and B (95% 

acetonitrile (v/v) in 2 mM formic acid and 3.6 mM ammonium formate). Acetonitrile (Optima 
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LC/MS), water (HPLC), ammonium formate (ACS grade), and formic acid (98%) were 

purchased from Thermo Fisher Scientific (Waltham MS). The gradient running at 0.2 mL min-1 

was as follows: Solvent A held 70% for 5 minutes, 70-65% A over 8 minutes, held 65% A for 2 

minutes, 65-30% A over 4 minutes, 30-70% A over 2 minutes and held 70% A for 3 minutes. 

Each chromatographic run was 24 minutes and 20 µL full loop injections were employed. MDLs 

were determined using the pre-extraction matrix spike and a signal to noise value of 3. Seven-

point external standard curves ranging from 1-100 ng g-1 using the suite (14 variants of MCs and 

NOD-R) were used in spike return assessments.  The internal standard d7-MC-LR was used to 

calibrate analytes detected in positive ionization mode ([DAsp3] MC-RR, MC-RR, NOD-R, MC-

YR, MC-HtYR, MC-LR, [DAsp3]MC-LR, [Dha7]MC-LR, MC- HilR, MC-WR, [Leu1]MC-LR).  

The internal standard d5-MC-LF was used to calibrate analytes monitored in negative ionization 

mode (MC-LA, MC-LY, MC-LW, MC-LF).  An external standard curve was also used to assess 

recoveries without internal standard correction.   

2.5.2 Adda Enzyme-linked Immunosorbent Assay (ELISA)  

Free MCs/NODs were extracted for all hepatic samples that were MMPB-positive, and 

one MMPB-negative sample was analyzed for comparison. Liver samples were extracted in 

0.250 ± 0.005 g subsets (d.w.) with pre-extraction spikes (MC-LR) prepared of two samples 

(TtNEFL1501 & TtNEFL1701) at 20 and 100 ng g-1, respectively. Samples were extracted using 

the same methods as in the Individual Variant Analysis (2.5.1), but had an additional butanol 

rinse combined in the final extract. The samples were reconstituted at a concentration of 500 

mg/mL and further diluted 10 fold for analysis at final sample concentrations of 50 mg/mL.  A 

polyclonal Adda ELISA (Abraxis Kits, PN 520011, Warminster, PA, USA) was used to analyze 
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extracted MCs/NODs as described in Foss et al. 2017Additional dilutions were required to 

achieve final ELISA values for samples reported greater than 80 ng/g.  TtNEFL1503 and 

TtNEFL1507 samples were diluted 50-fold from the extract, a final 100-fold dilution from the 

sample (10 mg/mL).The MDL was determined to be 3 ng g-1 (ppb) based on dilution factors and 

kit sensitivity.  

2.5 Dolphin Habitat Analyses  

 Stranding data provided by FWC-FWRI were used to map stranding locations for all 

MMPB-positive dolphins (n=6) using ArcGIS 10.4.1 (ESRI; Redlands, California). Additionally, 

to assess associations between pre-stranding habitat use and presence of MCs/NODs in hepatic 

subsamples for stranded estuarine dolphins, the sighting histories (2011-2016) were compared 

between MMPB-positive and MMPB-negative estuarine dolphins. Photo identification surveys 

have been conducted weekly in the SJR since March 2011 along a fixed 40-km transect from 

Mayport Inlet (N 30.39904, W -81.39396)  to downtown Jacksonville (N 30.31479, W -

81.62987) as described in Ermak et al., (2017).  Spatial analyses were limited to individuals 

sighted ≥10 times (MMPB–positive, n=3; MMPB-negative, n=12). After same day resights had 

been removed, mean sightings per individual was 28.1 (SD= 12.5) with a mean sighting duration 

(time between first and last sighting) of 3.51 years.  

To enable comparisons of individual home ranges and critical habitat areas, 95% and 

50% utilization distributions were calculated. Univariate kernel density estimate (KDE) analyses 

were preferred over bivariate KDE because it decreases the amount of uninhabitable areas (i.e. 

land) included in analyses of narrow habitats (Rayment et al., 2009; Nekolny et al., 2017), such 

as the St. Johns River (narrowest along route = 381 m, Water-Resources Investigations Report, 
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1995; widest along route = 1.25 km; Gibson, unpublished). In order to generate univariate 

datasets, a midline was mapped throughout the survey route where downtown Jacksonville was 

assigned as location “0”, and the Mayport Inlet was defined as “40”. Sighting locations were 

plotted and transformed to the midline using the tool “locate features along routes”. Data were 

then input into SAS (version 9.4; SAS Institute, Cary, NC, USA) and the function PROC KDE 

computed the 95% and 50% utilization distributions. Three different computational methods 

were compared (i.e. simple normal reference, Silverman’s rule of thumb, and the Sheather-Jones 

plug in) to select bandwidth; Silverman’s rule of thumb (SROT) was chosen, as it moderately 

smoothed the data in comparison to other methods.  

3.0 Results  

3.1 Total MCs/NODs measured as MMPB  

 For hepatic subsamples tested from 27 dolphins (17 estuarine and 10 coastal controls), six 

resulted in the detection of MMPB, indicating the presence of total (bound, conjugated and free) 

MCs/NODs. The MDL was determined to be 1.3 µg g-1 d.w. with a method quantification limit 

(MQL) of 3.9 µg g-1. The average ratio of wet to dry weight was calculated as 3.856 ± 0.333  

𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡

𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 grams.  

Three MMPB-positive dolphin livers were from estuarine dolphins, while three were 

from the coastal population. One female and two male estuarine dolphins were MMPB-positive, 

while two female and one male coastal animals were MMPB-positive. A larger sample size 

would be needed to determine whether sex, age, or other attributes are significant risk factors for 

MCs/ NODs exposure for dolphins. Five of the hepatic subsamples had concentrations of MMPB 

between the MDL and the MQL (1.3 – 3.9 ng g-1), while one hepatic subsample tested above the 
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MQL at 14.3±5.6 ng g-1 (Table 1). A representative chromatogram of Individual TtNEFL1701, 

with overlaid matrix spikes can be viewed in Figure 1. The standard addition matrix curve 

generated from chromatograms in Figure 1 data can be viewed in Figure 2. 

3.2 Free MCs/NODs 

3.2.1 Individual Variant Analysis LC-MS/MS 

LC-MS/MS analysis of the only hepatic subsample whose MMPB concentration was > 

10 ng g-1 (dolphin TtNEFL1435) did not reveal intact free MCs or NOD-R present above MDLs 

(1.6 - 11.5 ng g-1; Table 3), suggesting that the MCs/NODs in this sample were derived from 

bound, conjugated or partially degraded MCs/NODs variants. Alternatively, the MMPB may 

have come from variants not tested for in the current study, or from multiple variants with no 

single congener exceeding current MDLs.  

 The two-step extraction with 75% acidified methanol followed by a butanol rinse resulted 

in recovery of additional, less polar, and later eluting analytes from the spike (i.e. MC-WR, MC-

LA, MC-LY, MC-LW & MC-LF; Table 3). Although examination of variant-specific recoveries 

in relation to extraction solvent was brief, recovery of additional MC variants following addition 

of a butanol rinse to the original extraction implies that detection of less polar MC variants, when 

present in the sample, requires application of a stronger solvent in order to be released from 

dolphin liver. Additional study is warranted to optimize free MCs/NODs extraction from 

mammalian livers.   

3.2.2 ELISA  

 ELISA testing of all MMPB-positive and one MMPB-negative livers yielded levels of 

MCs/NODs 3.5-244 times higher than total MCs/NODs measured as MMPB (Table 1). A liver 
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subsample that had been considered <MDL via MMPB analysis (TtNEFL1610; <1.3 ng g-1 total 

MCs/NODs) resulted in detection of 12.8 ng g-1 free MCs/NODs by ELISA. Our results indicate 

that ELISA testing yielded false positive data due to matrix effects, potentially through non-

specific binding with kit antibodies.  Although spikes were recovered, the returns were below 

most acceptable ranges at 13% for the 20 ng g-1 spike, and above most acceptable ranges at 169% 

for the 100 ng g-1 spike (Table 2). 

3.3 MMPB of ELISA Extracts 

MMPB analysis of the above ELISA extracts supported that ELISA analyses yielded 

false positive data, with all extracts registering <MDL (2.5 ng g-1) for total MCs/NODs (Table 

1). The low spike returns (below detection and 39%) indicate that the matrix retained the 

analytes and supports that the ELISA overestimated MCs/NODs concentrations (Table 2).  

3.5 Dolphin Habitat Analyses 

 Dolphins whose liver samples were MMPB-positive stranded in multiple areas of the 

SJR, as well as along the coast (Figure 3). Two MMPB-positive estuarine dolphins stranded in 

oligohaline areas, while one stranded in a low mesohaline area (Figure 3). Individual 95% 

utilization distributions (home ranges) showed that a majority of both MMPB-positive (n=3) and 

MMPB-negative (n=12) dolphins utilize almost the full extent of the SJR study area, including 

low mesohaline areas of the river. However, 50% utilization distributions (core areas; Figure 4) 

showed that two MMPB-positive dolphins (CLSA, NIKE) were habitually utilizing low 

mesohaline areas. The one MMPB-positive animal (MKNA) whose 50% utilization distribution 

was not primarily found in low mesohaline areas stranded in oligohaline waters. Limitations of 

the 40 km survey route prevent further analyses of how far MMPB-positive dolphins routinely 
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travel upriver. Interestingly, core areas of four MMPB-negative dolphins (U141, Q132, Q175, 

Q58) were also located in low mesohaline waters.  

4.0 Discussion 

4.1 MCs/NODs retention and exposure 

MCs/NODs are well known to persist in natural systems due to resistance in degradation 

by sunlight, fluctuating temperatures, or changing pH (Tsuji et al., 1994; World Health 

Organization, 1998; Song et al., 2006). Additionally, the half-life of one of the most toxic 

variants (MC-LR) is 90-120 days per meter water depth (Welker and Steinberg, 2000), allowing 

for persistence in deeper water systems, such as the SJR (channel average depth ~12.2 m from 

Jacksonville to the mouth; Environmental Protection Board, 2017). Unlike a previous study 

where passive adsorptive systems (SPATT bags) were deployed to track toxin movement (Miller 

et al., 2010), cyanotoxin data taken in the SJR did not determine toxin retention or dissipation 

from blooms. Water sampling for cyanotoxins (2005-2016) in the SJR were inconsistent with 

respect to sample site, depth, testing method, and sampling intervals. Despite these 

shortcomings, analytical data have confirmed the presence of MCs/NODs in water collected 

throughout the SJR ecosystem, including the river mouth (SJWMD, unpublished). Toxin 

presence in the lower basin may be due to blooms occurring in freshwater tributaries close to the 

river mouth, or due to prolonged retention of contaminated water originating upstream. Due to 

the combination of an extremely low slope gradient and reverse directional flow, the retention 

time of SJR water is approximately three to four months (Benke and Cushing, 2005). Previous 

studies conducted by Anderson and Goolsby (1973) determined that tidal inflow into the mouth 
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of the river is seven times greater than the volume of freshwater discharged from the SJR, 

potentially facilitating toxin retention long after toxic blooms have dissipated.  

It is unknown whether MCs/NODs can bioaccumulate throughout the SJR food web or 

biomagnify in higher predators. Typical MCs/NODs exposure paths include inhalation, possible 

dermal contact, ingestion through contaminated food, and drinking contaminated water (World 

Health Organization, 1998). For this pilot study, we were unable to determine the route of 

MCs/NODs exposure for dolphins, as most animals stranded without stomach contents. 

Estuarine and coastal dolphins inhabiting the SJR ecosystem may be chronically exposed to 

MCs/NODs or cyanobacterial byproducts via multiple routes, including toxin ingestion in water 

or biota, inhalation, or dermal contact. Due to the environmental persistence of MCs/NODs and 

limited flushing in the SJR, estuarine dolphins could be exposed to persistent MCs/NODs 

following bloom events (De Maagd et al., 1999; Welker and Steinberg, 2000;; Miller et al., 2010; 

Papadimitriou et al., 2012; Corbel et al., 2014; Zastepa et al., 2017). A potential explanation of 

the MCs/NODs in coastal animal hepatic tissue is transient exposure through coastal stocks 

migrating into estuaries (Griffin et al., 2018) or exposure to estuarine or marine, MCs/NODs 

producing cyanobacterial species (Pearson et al., 2010)). 

4.2 Microcystins as potential immunosuppressants  

The results of this study support that MMPB-positive animals did not die as a result of 

acute MCs/NODs exposure. Rather, the low MC/NOD exposure may have contributed to health 

decline or mortality through synergetic effects due to immune system compromise. All six 

dolphins that stranded with MMPB-positive liver samples exhibited skin lesions, confirmed 

cetacean morbillivirus infection, pneumonia, and/or poor nutritional condition (Table 1). 
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Although effects of cyanotoxins on the immune system have not been characterized in cetaceans, 

development of skin lesions has been associated with impaired immune function (Aguilar and 

Raga, 1993; Schulman and Lipscomb, 1999; Venn-Watson et al., 2015). Chronic sublethal 

exposure to MCs/NODs can impair immune function in mammals and facilitate more severe 

infection by viruses and other pathogens in mammals and birds (Shen et al., 2003; Pikula et al., 

2010; Palikova et al., 2012). For example, concurrent exposure to MCs and low concentrations 

of heavy metals (i.e., lead) and Newcastle disease virus (NDV) resulted in enhanced morbidity 

and mortality of Japanese quails (Coturnix japonica; Pikula et al., 2010). Japanese quails 

ingesting 0.045 – 46.044 μg MCs per 10 mL in water daily for 10 - 30 days did not exhibit 

mortality, despite analytically-confirmed MC accumulation, oxidative stress, and microscopic 

evidence of hepatic damage (Pikula et al., 2010). In contrast, MC exposure in combination with 

NDV or Pb resulted in 20-40% mortality of exposed animals around 10 days post-exposure 

(Pikula et al., 2010). Quail exposed to both MCs and Pb, or MCs, Pb, and NDV showed minimal 

NDV seroreactivity, suggesting that exposure to cyanobacterial biomass altered humoral immune 

responses (Pikula et al., 2010).  

In a similar study, common carp (Cyprinus carpio) were exposed to either cyanobacterial 

biomass (0.4 mg MCs/kg total fish weight), white spot disease (Ichthyophthirius multifiliis), or 

both physiological stressors for 20 days (Palikova et al. 2012). Exposure to cyanobacterial 

biomass alone led to a significant increase in white blood cell count without significant 

mortality, while 32.5% mortality was observed in the combined exposure group (Palikova et al., 

2012). These studies suggest that sub-lethal MCs exposure can substantially elevate mortality in 

animals that are concurrently exposed to anthropogenic pollutants or pathogens (Pikula et al., 
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2010; Palikova et al., 2012). Concurrent pathogen and MCs exposure may pose significant 

additive impacts on non-specific immune responses (Palikova et al., 2012); when hosts are faced 

with multiple environmental or immune stressors, including cyanotoxins, opportunistic 

pathogens may be better able to penetrate host defenses and disseminate. 

A similar scenario may be affecting dolphins in the SJR. In addition to chronic or 

recurrent MCs/ NODs exposure (SJWMD, unpublished), estuarine dolphins are exposed to other 

potential immune suppressors, such as heavy metals (e.g. lead, copper, silver), viruses (e.g. 

cetacean morbillivirus), anthropogenic pollution (e.g. leaking septic tanks, noise) (Environmental 

Protection Board, 2017; King, 2017). While exposure to separate health threats at low 

concentrations are unlikely to cause mortality, simultaneous exposure to multiple stressors in the 

SJR may be enhancing dolphin mortality.  

4.3 Habitat Utilization 

Although this study was limited in survey area and sample size, GIS analyses suggest that 

MMPB-positive estuarine dolphins and some MMPB-negative dolphins are consistently using 

lower salinity habitats in the SJR ecosystem. Habitat use and home range vary greatly among 

individual bottlenose dolphins, so a much larger sample size will be needed to draw definitive 

conclusions. Maintenance dredging occurs frequently in the SJR, and deepening the channel 

through expanded dredging has been proposed (Environmental Protection Board, 2017), possibly 

re-suspending sediment containing cyanotoxins and other pollutants. Additional research to 

assess pollutant burdens in SJR sediment could enhance protections for estuarine and coastal 

dolphin populations. 

4.4 MMPB use for Biological Matrices 
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Due to the lack of a distinctive shoreline with a low slope gradient, dolphins that die in 

the SJR are unable to beach and are typically found floating in the water. As a result, carcasses 

may float in the water for hours or days, actively decomposing prior to carcass recovery. Partial 

decomposition in water should not allow MCs/NODs present in the water column to enter the 

liver, as there is strong scientific evidence that MCs/NODs cannot passively diffuse across cell 

membranes. MCs require active uptake by cells due to the large molecular size and logDow ratio 

(Opperhuizen et al., 1985; Pouria et al., 1998; De Maagd et al., 1999). The logDow is the 

comparison of the log of the octanol/water distribution ratio, or the ratio that correlates the ability 

of a ML-LR to concentrate or bind into lipids of the cell wall (Karickhoff et al., 1979; Mackay, 

1982). The MC-LR logDow is approximately -1 at physiological pH, signifying that MC-LR is 

highly unlikely to passively diffuse into tissues from surrounding contaminated water, or diffuse 

from the liver into adjacent tissues during decomposition (De Maagd et al., 1999). This 

knowledge is beneficial in selection of an analytical technique to determine total MCs/NODs 

concentrations in stranded and decomposing animals.  

In this study, the MMPB technique provided low level detection limits for total (e.g. free, 

bound, conjugated, degraded, partially metabolized) MCs/NODs in livers from fresh or 

moderately decomposed, stranded bottlenose dolphins. Although individual MCs/NODs 

congeners cannot be identified using the MMPB technique, it can be used to successfully 

quantify a broad spectrum of harder-to-detect MCs/NODs congeners (e.g. conjugated, bound, 

more hydrophobic variants). An individual variant analysis (LC-MS/MS) did not confirm the 

presence of intact MCs or NOD-R in this study. The loss of less polar microcystins during free 

analyte extraction, such as MC-LW & MC-LF, highlights the need to optimize the efficacy of 
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congener extraction in biological matrices, such as mammalian liver. The suspected false 

positive data from the ELISA for free MCs/NODs requires additional attention as well, as many 

studies are prone to utilize the ELISA without additional or secondary confirmation, which may 

lead to erroneous conclusions.  

The disparity in ELISA and MMPB analyses highlights the importance of conducting 

secondary/confirmatory analyses when testing novel biological matrices, such as dolphin liver. 

Heussner et al. (2014) conducted a study to assess the suitability of monoclonal and polyclonal 

Adda ELISAs to screen MCs/NODs exposure across multiple mammalian species. They 

confirmed that use of human-sera specific Adda ELISAs for screening MCs/NODs presence in 

bovine or canine sera resulted in extreme deviations from spiked concentrations, suggesting high 

matrix effects. Assessing the reliability of Adda ELISAs against MCs/NODs recovery from 

standard cell culture media also yielded high matrix effects and significant overestimation of true 

MCs/NODs concentrations (Heussner et al., 2014). Additionally, Meissner et al. (2013) and 

Ernst et al. (2005) demonstrated that conventional extraction procedures used for ELISA are not 

suitable for extracting bound MCs. Although ELISA analyses have been successful for screening 

some biological matrices, such as smallmouth bass livers (Foss et al. 2017), analysis of 

mammalian, and potentially other animal tissues for MCs/ NODs, may require higher detection 

limits coupled with more rigorous clean up to minimize matrix effects. The lack of a consistent, 

sensitive and reference-validated biochemical assay for MCs/ NODs detection in biological 

samples has greatly limited prior efforts to study the impacts of these potent hepatotoxins on 

mammals and birds.  
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Another interesting discovery was that MCs/NODs were detected in archival liver 

samples of <5 gm w.w. During dolphin necropsies, liver sampling techniques were not 

standardized to a single hepatic lobe or location, and the size of the archived sample also varied. 

Because MCs/NODs are not lipid soluble, samples <5-10 grams may not be representative of 

MCs/NODs concentrations in the liver.MC-LR has been shown to specifically and preferentially 

accumulate in hepatic cells and do not localize in non-parenchymal cells (Yoshida et al., 2001). 

Furthermore, Yoshida et al. (2001) determined that MC-LR distribution in the liver was 

heterogeneous after intraperitoneal exposure in mice. Results from this study demonstrated MC-

LR accumulated most in the centrilobular region and least in the perilobular region (Yoshida et 

al., 2001). Thus, samples under a certain weight, or sampled from a nonspecific location may not 

allow for detection of MCs/NODs, and could under-estimate actual/ total MCs/NODs 

concentrations.  

It is possible that additional dolphins in this study could have been affected by 

MCs/NODs but were false-negative. Some factors include the elimination of the MCs/NODs 

prior to death or the hepatic sampling technique used (e.g. small size, non-representative 

sampling). For example, MMPB-negative dolphins (i.e. U141, Q132, Q175, Q58, DUSK) also 

shared characteristics of MMPB-positive dolphins, such as skin lesions, cetacean morbillivirus 

infection, emaciation, and hepatic necrosis, unusual freshwater stranding locations and low 

mesohaline critical habitat use areas (FWC-FWRI, unpublished; Bossart, unpublished; Figure 3). 

Standardized tissue sampling techniques could help address this question from a scientific and 

management perspective.  

4.5 Future Analyses of MCs/NODs 
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Future application of MMPB testing, to allow for all bound, degraded, and free 

MCs/NODs recovery, will greatly facilitate efforts to test biological tissue matrices, and assess 

animal exposure to hepatotoxic MCs/NODs. Prior studies have demonstrated inconsistent 

detection of MCs/NODs in biological matrices such as liver, even when cyanotoxin ingestion 

was confirmed via biochemical tests of gastrointestinal content, and animal exposure was known 

or highly suspected (Palikova et al., 2012; Mittelman et al., 2016). For many prior studies, LC-

MS/MS was the preferred method of analysis, and targeted intact and free MCs/NODs. However, 

LC-MS/MS analysis of intact MCs/NODs is likely to underreport congeners in biological 

matrices such as dolphin livers. Thus, reliance on one analytical method may be insufficient in 

determining total MCs/NODs concentrations in biological matrices.  

This study demonstrated the successful detection of MMPB in all assessed postmortem 

decomposition codes, with detection of MCs/ NODs in liver samples from Code 2 (n=2), Code 3 

(n =2) and late Code 3 (n= 2) dolphins. The highest hepatic MMPB concentration was retrieved 

from a Code 3 (moderately decomposed) individual. The ability of MMPB methodology to 

detect bound, degraded, and partially metabolized MCs/NODs removes some of the current 

obstacles for assessing cyanototoxin exposure using biological matrices, including samples from 

both fresh dead and more severely decomposed animals. According to current sampling 

protocols, the amount of tissue archived as part of gross necropsy is lower for more decomposed 

specimens. Our research demonstrates that both fresh and more autolyzed animals can be 

successfully analyzed for MCs/NODs using MMPB methodology and that MMPB could serve as 

an optimal screening test for assessing MCs/NODs exposure in animals in various states of 

decomposition. We have also demonstrated that Adda-ELISA analyses are unreliable as a 
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screening test for MCs/NODs in dolphin liver samples. In order for ELISA to be an effective 

screen for MCs/NODs, further research and method improvement is needed.  

 The MCs/NODs measured in this study did not exceed 20 ng g-1 d.w., which would 

roughly equate to 5 ng g-1 w.w. when using the average wet to dry weight ratio.  It is difficult to 

directly relate the data from this study to others determining MCs/NODs in hepatic tissue due to 

the differences in methodologies used. Miller et al., 2010, whom extracted wet weight, free MCs 

from sea otter hepatic tissue, and quantified via LC-MS/MS, had reported MC concentrations 

ranging from 1.6 ng g-1 to approximately 390 ng g-1. The concentrations of total MCs/NODs in 

this study were comparative to the lower concentrations of free MCs in the sea otters, though 

size of sample, methodologies used, and inability to determine individual MCs/NODs congeners 

prohibit direct comparisons between sea otter and dolphin toxin exposures. Although the 

concentration of MCs/NODs in estuarine and coastal dolphin liver samples were comparatively 

low, the potential for chronic, recurrent, sublethal exposure, and the demonstrated ability of these 

toxins to accentuate the negative impacts of anthropogenic pollutants, pathogens, and 

environmental stressors is of significant concern. Chronic exposure to low concentrations to 

MCs/NODs may be contributing to low population fitness and increased mortality of the SJR 

bottlenose dolphins. These effects may not be raising immediate concern, however sub-lethal 

effects will become an important issue in management of this population if it continues to 

decline.  

5.0 Conclusions 

This study provided evidence of cyanobacterial hepatotoxin exposure of wild bottlenose 

dolphins, a sentinel species. Three analytical techniques were used to screen for MCs/NODs in 
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liver samples of SJR estuarine and coastal stranded bottlenose dolphins, including a more recent 

technique (MMPB) known to detect free, bound, and degraded MCs/NODs in biological 

samples. MMPB was detected in oxidized liver samples of six wild dolphins, with levels ranging 

1.3-19.9 ng g-1 d.w. total MCs/NODs. Individual variant analysis (LC-MS/MS) did not result in 

free MC (14 variants tested) or NOD-R detections, suggesting that the MMPB response was due 

to partially degraded, bound, conjugated or untested MCs/NODs variants.  

ELISA analysis may not be an acceptable screening mechanism for (MCs/NODs) in 

dolphin liver samples, especially for low level detection (<15 ng g-1). In this study, MMPB 

detections were not confirmed using traditional analysis techniques geared towards free 

MCs/NODs (ELISA & LC-MS/MS). Additional approaches that may support MMPB results 

include techniques demonstrated to measure bound sources of MCs/NODs in biological matrices, 

such as thiol-deconjugation followed by extraction and LC-MS/MS analysis (Miles et al., 2016). 

Every effort was employed to verify the MMPB data in this work, including replicate oxidations 

and standard addition. However, since low level detections in complex matrices may be due to 

artifacts, it should be a priority to investigate alternate approaches to detecting low level 

MCs/NODs in marine mammalian tissues. While this study encompasses a small sample size, it 

supports MCs/ NODs uptake by wild dolphins in a cyanotoxin-impaired watershed. This study 

also provides a clear representation of the obstacles faced when analyzing complicated biological 

matrices from animals, such as liver, for MCs/NODs analytes. Analyses incorporating a larger 

sample size coupled with systematic antemortem and postmortem health assessments may help 

clarify whether cyanotoxin exposure can also impair immune function in bottlenose dolphins. 
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Tables  

Table 1. Abnormalities noted as part of postmortem examination or diagnostic testing, and 
hepatic concentrations of total microcystins (MCs) and nodularins (NODs) reported as ng g-1 
d.w. for estuarine and coastal populations of bottlenose dolphins (Tursiops truncatus) using the 
2-methyl-3-methoxy-4-phenylbutiric acid (MMPB) or ELISA techniques. Basic Level A and 
stranding data was provided by FWC-FWRI and Bossart, unpublished data. 

Population 
Stranding 

Date 
Decomp 

Code Sex Necropsy evidence 

Total 
MCs/NODs 

(MMPB) 

Free 
MCs/NODs 

(ELISA)        
MCs/NODs (MMPB) 

of ELISA Extracted Material  
Estuarine        

TtNEFL1435 7/7/2014 3 M Cetacean morbillivirus (PCR+) 14.3±5.6 54.1 ND 

TtNEFL1460 10/21/2014 Late 3 F Splenomegaly, thin blubber 1.3-3.9a 12.7 ND 

TtNEFL1501 1/15/2015 Late 3 M Thick algal mat on epidermis 1.3-3.9 a  8.1 ND 

TtNEFL1610* 6/6/2016 3 F Stranded in lake (salinity ~ 0 ppt) ND 12.8 ND 

Coastal        

TtNEFL1503 2/5/2015 2 F 
Emaciation, dermatitis, 

angiomatosis, pneumonia, possible 
intestinal obstruction 

1.3-3.9 a 239 ND 

TtNEFL1507 3/5/2015 3 M Emaciation 1.3-3.9 a 487 ND 

TtNEFL1701 1/14/2017 2 F Pneumonia, dermatitis, 
angiomatosis, emaciation  1.3-3.9 a 59.8 ND 

        

MDL     1.3 3.0 2.5 
MQL     3.9 3.0 7.5 

              The average ratio of wet to dry weight was calculated as 3.856 ± 0.333  𝑤𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡

𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
 grams. 

* Represents MMPB negative individual used as a negative control for ELISA analyses  

a =MMPB detected above the MDL but below the MQL  
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Table 2. Recoveries of lab fortified sample matrices measured using an Adda ELISA and as 
Total MCs/NODs via the oxidation of ELISA extracts and analysis for MMPB” for clarification 

Analyte 
Spike 

Concentration  
(ng g-1) 

Sample ID ELISA 
Returns 

MC-LR  
Returns (as 

MMPB) 
MC-LR 20 TtNEFL1501 13% Not Recovered 
MC-LR 100 TtNEFL1701 169% 39% 
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Table 3. Recoveries of the MC and NOD-R suite using 75% acidified MeOH and an additional 
butanol rinse. Method detection limits (MDLs) are shown. 

Variant: 
75% Acidified 

MeOH Butanol Rinse SUM 

Uncorrected 
Returns 
(sum) 

MDL 
(ng g-1) 

[DAsp3]RR 75% 0% 75% 33% 5.3 
RR 69% 0% 69% 37% 5.8 

NOD-R 129% 0% 129% 45% 1.6 
YR 113% 0% 113% 50% 4.5 

HtYR 85% 0% 85% 41% 2.9 
LR 105% 0% 105% 46% 2.4 

[DAsp3]LR 109% 0% 109% 45% 2.8 
[Dha7]LR 92% 0% 92% 36% 3.3 

HilR 71% 0% 71% 38% 7.0 
WR 39% 4% 43% 17% 11.5 

[Leu1]LR 59% 0% 59% 30% 4.2 
LA 122% 4% 126% 30% 1.6 
LY 51% 6% 56% 18% 3.5 
LW 18% 19% 37% 4% 5.4 
LF 22% 30% 53% 12% 3.8 
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Table 4: Transitions monitored for MCs and NOD-R analysis 

Analyte 
Precursor Ion 

(m/z) 
Fragment Ions 

(m/z) 
[DAsp3]MC-RR [M+2H]2+ 512.9 291, 426, 446 ,499, 504 
MC-RR [M+2H]2+ 519.9 298, 440, 453, 455, 504, 511 
NOD-R [M+H]+ 825.5 599, 674, 776, 781 
MC-YR [M+H]+ 1045.5 599, 710, 1027 
MC-HtYR [M+H]+ 1059.5 599, 584, 567, 484 
MC-LR [M+H]+ 995.5 553, 599, 867, 968, 978 
[DAsp3]MC-LR [M+H]+ 981.5 539, 599, 954, 964 
[Dha7]MC-LR [M+H]+ 981.5 539, 599, 954, 964 
MC-HilR [M+H]+ 1009.5 484, 567, 599 
MC-WR [M+H]+ 1068.6 599, 626, 940, 1041, 1051 
[Leu1]MC-LR [M+H]+ 1037.6 599, 1019 ,612 
MC-LA [M-H]− 908.5 780, 797, 878, 891 
MC-LY [M-H]− 1000.5 872, 889, 970, 984 
MC-LW [M-H]− 1023.6 1005.6  
MC-LF [M-H]− 984.6 966.6 

Internal Standards 
d7-MC-LR [M+H]+ 1002.5 599.5 
d5-MC-LF [M-H]− 989.6 971.5 
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Figures 
Figure 1: The TtNEFL1701 liver sample chemically oxidized, extracted, and analyzed for 
MMPB (blue chromatogram) with overlaid matrix spikes in red (2, 10, 20 ng g-1) of MC-LR.  
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Figure 2: The standard addition curve of dolphin liver sample (TtNEFL1701) constructed using 
MC-LR spiked at 2, 10 & 20 ng g-1. The sample was oxidized, extracted and analyzed for 
MMPB. Corresponding chromatograms can be viewed in Figure 1.   
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Figure 3. Locations of MMPB-positive bottlenose dolphins (Tursiops truncatus) stranding in 
northeast Florida from 2014-2017. Black circles indicate stranded MMPB-positive coastal 
dolphins, and black stars indicate stranded MMPB-positive estuarine dolphins that stranded 
within the St. Johns River.  
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Figure 4. 50% utilization distributions (core areas) of individual MMPB-positive estuarine 
bottlenose dolphins (black), and individual MMPB-negative estuarine dolphins (gray) calculated 
using univariate Kernel Density estimates The x-axis represents distance along the 40km transect 
where 0 represents the stop location in downtown Jacksonville (ogliohaline), and 40 represents 
the mouth of the SJR near Mayport (oceanic salinity). 
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Highlights  

 Proposed new taxon of epiphytic cyanobacteria with unknown toxin potential 

 Confirmed epiphytic cyanobacterial growth on a stranded dolphin 

 Identification of Komarekiella sp. in Florida 

 Expanded monitoring is advised for epiphytic growth on skin lesioned dolphins  
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Abstract 

On January 15, 2015, an adult male bottlenose dolphin (Tursiops truncatus), identified as 

“MKNA” from the UNF photo-identification catalog, stranded in an unusual, oligohaline habitat 

with an epidermal algal mat present on the dorsal fin, both flanks, peduncle, and fluke. 

Microscopic investigation of the composition of this mat revealed cyanobacterial dominance 

with the presence of other bacteria and fungi. While gross necropsy was unable to determine 

cause of death, subsequent toxin analysis revealed low levels of microcystins/nodularins 

(MCs/NODs) in MKNA’s hepatic tissue. Cultures of the epidermal mat produced a Nostocalean 

isolate that was closely aligned (97% 16S rDNA) with the recently erected genus, Komarekiella. 

Immunoassay (ELISA) and 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) techniques were 

used to test the original mat sample and subsequent culture samples for microcystins/nodularins 

(MCs/NODs). Concentrations of MCs/NODs could not be confirmed between methodologies, 

but data generated using the MMPB technique suggested toxin concentrations in all samples 

were below detection. A total evidence approach of molecular, genetic, and ecological 

examination determined this isolate to have many unique characters, constituting the erection of 

a new species within the Komarekiella genus, Komarekiella delphikthonos. This discovery 

warrants an area of further investigation as toxic, epiphytic cyanobacteria may be new source of 

health decline and mortality in bottlenose dolphins utilizing low salinity habitats. 

  

Key words: 16S rDNA, microcystin, oligohaline stranding, Tursiops truncatus     
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1. Introduction 

Cyanobacteria are diverse, photosynthetic, prokaryotic organisms that are integral to most 

aquatic ecosystems (Dvorák et al., 2017). Many cyanobacterial species have the ability to 

produce toxic secondary metabolites, cyanotoxins, which function as neurotoxins, hepatotoxins, 

and/or dermatoxins. Most notably, these toxins are associated with harmful algal blooms 

(HABs), described generally as the visual domination of planktonic and benthic cyanobacteria 

(Watson et al., 2015). Presence of HABs and cyanotoxins have severely impacted local and state 

economies (Anderson et al., 2000), caused temporary closure of public water systems (McCarty 

et al., 2016), led to declarations of municipal or regional emergencies (Executive Order, 2016), 

and have prolonged, deleterious impacts on aquatic animals and ecosystems (Paerl et al. 2001; 

Miller et al., 2010). Toxin-producing cyanobacteria have also been identified as causative agents 

of health decline and mortality to such diverse taxa as Caribbean coral reefs (Casamatta et al. 

2012), dogs (Edwards et al., 1992; Gugger et al., 2005; Wood et al., 2010; Backer et al., 2013), 

cattle (Galey, 1987; Mez et al., 1997), terrapins (Nasri et al., 2008), and sea otters (Miller et al., 

2010). Recent research has shown that epiphytic cyanobacteria are also able to produce 

significant concentrations of both hepatotoxins (Mohamed & Shehri, 2010) and neurotoxins, 

leading to death of avians such as bald eagles, American coots, Canada geese, and mallard ducks 

after consumption (Rocke et al. 2002, Augspurger et al. 2003; Williams et al., 2007; Wilde et al., 

2014). Although ingestion of contaminated water or food sources is the most common route of 

toxin exposure (Pitosis et al., 2000; Sharma et al., 2008; Cox et al., 2016), no prior research has 

been conducted on the potential of direct toxin transfer from epiphyte to host.  
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The St. Johns River (SJR, Jacksonville, FL, USA) is a large, brackish, estuarine system 

characterized by considerable anthropogenic pollution (e.g., high nutrient load, chemical runoff, 

heavy metal pollution, and septic system failure), recurrent HABs, and diverse toxin-producing 

and epiphytic cyanobacterial taxa (Environmental Protection Board, 2017; Aubel et al., 2006; 

Dunn et al., 2008). The State of the River Report summarized the ten year status trend of HABs 

in the SJR as “unsatisfactory” and “unchanged” and with no projected decrease (Environmental 

Protection Board, 2017). Additionally, the SJR provides critical habitat for a genetically and 

behaviorally distinct estuarine community of bottlenose dolphins (Tursiops truncatus; Montague 

1821) (Caldwell, 2001; Gubbins, 2002; Ermak, 2017). This dolphin population routinely uses 

mesohaline (5-18 ppt) and oligohaline (0-3 ppt) areas of the river and has been subject to two 

unusual mortality events (UME) since 2010 (Borkowski, personal comm.; Gibson, unpublished; 

Environmental Protection Board, 2017). Additionally, the SJR community has been recently 

described as being exposed to hepatotoxic microcystins/nodularins (MCs/NODs), classes of 

potent hepatotoxins, produced by cyanobacteria (Brown et al., 2018).  

On January 15, 2015, an adult male dolphin carcass (TtNEFL1501) was recovered from 

an oligohaline habitat in Green Cove Springs, FL (N 30.029086, W -81.696062) (FWC-FWRI, 

unpublished).  The stranded animal was later identified as “Makena” (MKNA) from the 

University of North Florida (UNF) dolphin photo-identification catalog, was discovered with a 

thick mat of fungi, bacteria, and cyanobacteria covering his left and right flank, dorsal fin, 

peduncle, and fluke. TtNEFL1501 was last seen alive on August 28, 2014 with extensive skin 

lesions in mesohaline waters located near the Hart Bridge (N 30.3154, W -81.62584) in the SJR.  

The gross necropsy was unable to determine cause of death for TtNEFL1501 with the only major 
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findings being lack of stomach contents and PCR negative for cetacean morbillivirus (FWC-

FWRI, unpublished). Subsequent toxin analysis revealed TtNEFL1501 had low concentrations of 

MCs/NODs present in hepatic tissue at the time of stranding (Brown et al., 2018). 

Because of the MCs/NODs present in TtNEFL1501’s hepatic tissue at the time of 

stranding, toxin analyses were performed on both the original mat sample and isolated cultures. 

MCs (heptapeptides) and NODs (pentapeptides) are structurally similar hepatotoxins that possess 

the unique Adda moiety ([2S,3S,8S,9S,4E,6E,]-3-amino-9-methoxy-2,6,8-trimethyl-10-

phenyldeca-4,6-dienoic acid) (Rinehart and Harada, 1988; Namikoshi et al., 1990; Mazur-

Marzec et al., 2006; Bortoli and Volmer, 2014; Niedermeyer, 2014). All MC/NOD variants share 

the same mechanisms of toxicity, though the specific amino acid combinations on the peptide 

ring affect LD50 of MCs (MC-LR = 50 µg kg-1; MC-RR = 600 µg kg-1) while  most NOD 

congeners have comparable LD50 to MC-LR (Krishnamurthy et al., 1986; Watanabe et al., 1988; 

Ohta et al., 1994; Pearson et al., 2010). Similarity in structure and methodologies that target the 

Adda result in the two classes being jointly classified in quantification in some analyses, such as 

the Adda enzyme-linked immunosorbent assay (ELISA) and the 2-methyl-3-methoxy-4-

phenylbutyric acid (MMPB) technique. The polyclonal Adda ELISA nonspecifically measures 

free MCs/NODs that have a methylated, unmodified (e.g. [DMAdda5] and [ADMAdda5]) Adda 

moiety through antibody binding (Samdal et al., 2014). The MMPB technique is used to detect 

the same unmodified MCs/NODs, but includes free, bound/conjugated, or degraded MCs/NODs 

by oxidative cleavage of the Adda moiety and analysis through mass spectrometry (Sano et al., 

1992; Foss & Aubel., 2015; Foss et al., 2017; Brown et al., 2018).  
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The unusual conditions surrounding TtNEFL1501’s stranding (i.e. location, hepatic 

MCs/NODs, epidermal mat) warranted further investigation to determine whether the epiphytic 

cyanobacteria played a role in the stranding of this animal. Morphologic, genetic (16s rDNA 

gene), and molecular (secondary folded structures of the 16S-23S ITS region) methods were 

used to elucidate cyanobacterial species identity. Toxin analyses (i.e. ELISA and MMPB) were 

conducted to determine MCs/NODs presence in the epidermal mat sample at the time of 

stranding and the potential for the isolates to produce toxins in culture.   

2.0 Methods 

2.1 Sample Collection/Dorsal Fin Identification 

 The cryoarchived epidermal mat sample, necropsy report, associated histopathology 

reports, necropsy photographs, and GPS coordinates of stranding location for TtNEFL1501 were 

provided by Florida Fish and Wildlife Conservation Fish and Wildlife Research Institute (FWC-

FWRI) under permission from NOAA’s Code of Federal Regulations 50CFR216.22. 

TtNEFL1501 was identified as MKNA in the UNF dolphin photo-identification catalog by 

comparing distinctive dorsal fin features (i.e. nick and notch patterns, fin shape) from photos 

taken from the necropsy to photos taken during behavioral surveys. Two algal samples (0.05 g 

and 0.06 g w.w.) were excised during routine necropsy and stored at -20° C in a sterile whirlpak 

bag for one year and 9 months before culture.  

2.2 Culturing  

 A small piece of the cryoarchived epidermal mat sample was removed and initially plated 

on BG-11 agar (Allen and Stanier, 1968) until enough growth was achieved for sub-culturing. 

Subcultures were then isolated using standard isolation techniques (Anderson, 2005) and were 



68 
 
 

 

plated on nitrogen-free, BG-11, and Z-8 media (Staub 1961) to assess for morphological 

differences. Cultures were grown for approximately two months at room temperature and 

maintained in 100 mm Petri dishes. 

2.3 Microscopic Identification  

Samples from the BG-11 and Z-8 culture samples were prepared and photographed using 

an Olympus Fluoview FV1000 (Olympus Corporation, Center Valley, PA) confocal laser 

microscope. Photos were taken using brightfield, phase contrast, and epifluorescence at 400x. 

2.3.1 Extraction and Cloning 

DNA from cyanobacterial isolates was extracted with the PowerSoil™DNA Kit from 

0.25 g of culture samples (Mo Bio Laboratories Inc., Carlsbad, CA).  DNA quality was checked 

on an ethidium bromide stained 1.5% agarose gel. Polymerase chain reaction (PCR) 

amplification of the partial 16S rDNA and the whole 16S–23S ITS was performed using primers 

forward 8F (5’–AGTTGATCCTGGCTCAG–3’), and reverse B23S (5‘-

125CTTCGCCTCTGTGTGCCTAGG –3’), previously described in Lane (1991). ITS PCR 

amplification was performed using primers forward VRF5 (5’ –TGTACACACCGGCCCGTC – 

3’) and reverse VRF1 (5’ – CTCTGTGTGCCTAGGTATCG – 3’) as previously described 

(Ororio-Santos et al. 2014).  The 50 μl PCR reaction contained 19 μl sterile water, 2 μl of each 

primer (0.01 mM concentration), 25 μl PCR Master Mix (Promega, Madison, WI) and 2 μl 

template DNA (50 ng μl-1). PCR amplification proceeded as detailed in Casamatta et al (2005).  

Amplified rDNA was cloned into pGEM® T Vector System I and JM-109 High Efficiency 

Competent Cells (Promega, Madison, WI) and cultured using carbenicillin infused LB media. 

Plasmid DNA was purified from eight replicate transformed competent cell colonies per isolate, 
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using QIAprep® Spin Miniprep Kits (QIAGEN, Hilden, Germany). Sequencing of cDNA 

libraries from two operons of varying size was performed by Eurofins Genomics (MWG Operon 

Inc., Louisville, KY). 

2.4 Toxin analyses  

2.4.1 Sample Preparation  

Cyanobacterial growth was removed from the agar of both BG-11 and Z-8 culture 

samples using a razor blade and were extracted as 0.20 g (w.w.) subsets for ELISA and oxidized 

as 0.25 g (w.w.) subsets for MMPB. Sample spikes of culture material (20 ng g-1 for ELISA; 2 & 

5 ng g-1 for MMPB) were prepared pre-extraction/pre-oxidation using certified reference 

material of MC-LR (National Research Council, CRM, Halifax, Nova Scotia, CA). The 

epidermal mat sample was extracted free as a 0.06 g subset and oxidized for total as a 0.05 g 

subset. Both the mat sample and the culture samples were homogenized in 7 mL tubes with 0.01 

M phosphate buffer (pH = 7) and metal beads (2.4 mm) using an Omni Bead Rupter 24 (Omni 

Kennesaw, GA, USA) for 15 seconds. The mat sample subset extracted for ELISA analysis was 

not pre-treated prior to extraction. Extractions were conducted using 5 mL of extraction solution 

(75% MeOH in 0.1M acetic acid) and water bath sonication for 25 mins. Samples were 

centrifuged (10 min; 1,500 × g), supernatants retained and the pellet was rinsed with extraction 

solution via vortex mixing (1 mL). Solutions were re-centrifuged (10 minutes at 1,500 × g) and 

resulting supernatants were combined. Methanol was removed using N2 at 60°C (Zymark LV 

TurboVap® evaporator, Biotage, Charlotte NC) and samples were reconstituted to ca 5 mL using 

deionized water (DI).  Samples were loaded onto preconditioned (3 mL MeOH followed by 3 

mL DI) solid phase extraction (SPE, 100 mg) columns (Strata™-X; PN 8B-S100-FCH, 
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Phenomenex, Torrance, CA, USA), rinsed (2 mL DI) and eluted (3 mL 90% acetonitrile). 

Elutions were blown to dryness (60° C, N2), reconstituted (DI), and filtered (0.2 µm 

polyvinylidene fluoride).  

2.4.2 Adda Enzyme-linked Immunosorbent Assay (ELISA) 

A polyclonal Adda ELISA (Abraxis Kits, PN 520011, Warminster, PA, USA) was used 

for free MCs/NODs analysis as described in Foss et al. (2017).  Culture samples were analyzed 

at a sample concentration of 50 mg mL-1, resulting in a detection limit of 3 ng g-1 (ppb) based on 

kit sensitivity (0.15 ng mL-1) and sample dilution factor (DF=20). The mat sample was analyzed 

at 100 mg mL-1, resulting in a detection limit of 1.5 ng g-1 (ppb). 

2.4.3 Total Microcystins/Nodularins Oxidation (MMPB) & Analysis 

 Two sample sets were oxidized to create MMPB; the first were the extracts prepared and 

analyzed using ELISA and the second were whole samples not previously extracted. Oxidations 

of ELISA extracts were conducted similar to those described in Brown et al. (2018). Extracts 

(100 µL) were oxidized at final oxidant concentrations of 100 mM K2CO3, 15 mM KMnO4, 15 

mM NaIO4 for 30 min. Unextracted samples (0.05 – 0.25 g) were oxidized using 5 mL of oxidant 

solution (0.2 M K2CO3, 0.1 M KMnO4, 0.1 M NaIO4) for 2 hours. Oxidations for both reactions 

were stopped via dropwise addition of 40% (w/v) of sodium bisulfite. Preconditioned Strata X 

Polymeric SPE (3 mL MeOH followed by 3 mL DI) was used to clean extracts (Sample followed 

by 3 mL DI and eluted with 5 mL ACN). The samples were blown to dryness (N2 60°C) and 

reconstituted in DI.   

Samples were analyzed as described in Foss et al. (2017) using a Thermo Scientific 

Surveyor HPLC system coupled with a LTQ XL™ Linear Ion Trap Mass Spectrometer. The 
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MMPB [M-H]- ion, (m/z 207), was fragmented and the resulting ion (m/z 131) was monitored. 

The method detection limit (MDL) was determined using a signal to noise ratio of 3. External 

curves generated of oxidized MC-LR (0-10 ng mL-1) were used to determined spike recoveries. 

2.5 Home Range/Core Area Determination 

 TtNEFL1501 (MKNA)’s home range and core area was determined to assess associations 

between pre-stranding habitat use and abnormal, oligohaline stranding location. Weekly dolphin 

photo-identification surveys have been conducted in the SJR since March 2011 along a fixed 40-

km transect from Mayport Inlet (N 30.39904, W -81.39396) to downtown Jacksonville (N 

30.31479, W -81.62987) (Ermak et al., 2017). MKNA had 20 sightings after same-day resights 

were removed. Sighting locations were plotted in ArcGIS 10.4.1 (ESRI; Redlands, California) 

and were transformed into a univariate dataset. Univariate kernel density estimate (KDE) 

methodology is preferred when determining the home range and core areas of populations that 

inhabit narrow, aquatic habitats, such as the SJR, as it prevents the inclusion of uninhabitable 

areas, (i.e. land) in analyses and allows for more accurate habitat use calculation (Moyer et al., 

2007; Rayment et al., 2009; Nekolny et al., 2017).  A midline was run through the middle of the 

survey route and downtown Jacksonville was designated as location 0 while the Mayport Inlet 

was designated as location 40. Sighting locations were transformed to the midline via the “locate 

features along routes” tool. The generated univariate dataset was input into SAS (version 9.4; 

SAS Institute, Cary, NC, USA) and the PROC KDE function was used to calculate MKNA’s 

95% (home range) and 50% (core area) utilization distributions. To select bandwidth, the simple 

normal reference (SNR), Silverman’s rule of thumb (SROT), and the Sheather-Jones plug in 
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(SJPI) methodologies were compared. SROT was selected as the appropriate bandwidth as it 

smoothed the data moderately in relation to the other two methods.  

3.0 Results  

3.1 Phylogeny 

The new isolate fell within a highly supported (97% ML bootstrap support, 96% MP 

bootstrap support) clade containing other species of K. atlantica (Figure 1).  All K. atlantica 

strains formed a highly supported clade (100% ML support), with K. delphikthonos falling as a 

sister taxon. As a clade, K. atlantica and K. delphikthonos were sister to a clade with Halotia, 

Nostoc, and Trichormus on one branch and Goleter, Cronbergia, Hydrocoryne, and Nodularia 

on the other (Figure 1). 

3.2 ITS data 

Comparisons of folded ITS structures showed slight variations between the new taxon 

and available structures from sister species, K. atlantica.  The D1-D1´ helix for K. delphikthonos 

had a single nucleotide change, which altered the basal clamp from 4 b.p. to 5 b.p., constricting 

the basal unilateral bulge (Figure 2A).  Further, an internal bilateral bulge, offset by 2 b.p. on 

either side, distinguished this structure from K. atlantica.   

Analyses of the Box-B helix revealed a 2 b.p. insert between the internal and terminal 

bulge, as well as two nucleotide substitutions in the terminal bulge (not affecting structure) in the 

Box-B helix of K. delphikthonos  (Figure 3A).  

The V3 helix showed the greatest deviation in structure in relation to the other strains.  

The K. delphikthonos V3 helix was 83 nucleotides in length as compared to 54 nucleotides for 

similar strains (Table 1).  There was one large insertion located within the internal portion of the 
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helix, as where the basal clamp and the basal bilateral bulge were highly conserved (Figure 4).  

This insert also facilitated several changes in the internal secondary structure of the stem.  

Additionally, a single nucleotide polymorphism was discovered in the terminal bulge for K. 

delphikthonos (Figure 4A).   

3.3 Morphology 

Komarekiella delphikthonos was morphologically similar to other K. atlantica strains.  

This taxon exhibits unusual features, such as radical morphologic change as a component of the 

life-history stage, as previously described by Hentschke et al. (2017). Hormogonia resemble 

fragments as seen in other Nostoc taxa, and other cells congregate into pseudo-sarconoid packs 

(Figure 5). Additionally, K. delphikthonos has single cells that vary in size and color (Figure 5).  

Some stages of colonial development are morphologically similar to Pseudanabaena (Figure 

5D), while other cells resemble unicellular Synechococcus, or as aggregates of filamentous 

and/or packet-like cells typically associated with Chlorogloeopsidaceae morphology.  Filaments 

were either uni- or multi-serate, with a mixture of both structures found within the same culture.  

Unlike Chlorogloeopsis and Komarekiella, however, K. delphikthonos had heterocysts that were 

both similar in size, and at times larger than, vegetative cells (Figure 5B). It is important to note 

that akinetes were not present within either the epidermal or culture samples.  

3.4 Toxin Analyses 

3.4.1. ELISA 

ELISA analysis for free MCs/NODs resulted in absorbencies relating to concentrations 

just above the MDLs (1.5 & 3 ng g-1), with assay values for all samples below 0.50 ng mL-1. 

Resultant concentrations were 4.6, 5.0 and 4.5 ng g-1 (w.w.) for the epidermal mat, BG-11 
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culture and Z-8 culture samples, respectively (Table 2). ELISA determined spike returns for the 

free extracted culture samples were low (2% - 6%), potentially due to retention of co-extracted 

agar.  

3.4.2. MMPB of free (ELISA extracts) and total MCs/NODs 

MMPB analysis of the oxidized extracts did not support the ELISA data, as all samples 

tested were below detection, even though the MDL was lower than ELISA responses (MDL= 2.5 

ng g-1 total ‘free’ MCs/NODs). MMPB of oxidized whole samples supported samples were 

below detection for total MCs/NODs, with the samples all < 1.3 ng g-1 total MCs/NODs. A small 

peak was observed at the MMPB retention time for both oxidized whole and extracted ELISA 

epidermal mat samples, however the levels were below the established MDLs. 

Spikes for the ELISA culture extracts were not returned post oxidation and MMPB 

analysis, supporting losses were to the agar. In contrast, when culture samples were spiked and 

oxidized directly, without a free MCs/NODs extraction, spikes were recovered 92% & 95%.  

3.5 Home Range and Core Area 

Home range analyses demonstrated that MKNA utilized almost the entirety of the 40 km 

study area, including mesohaline areas of the SJR. However, Kernel density analyses indicated 

that MKNA’s core area (50% UD) was located in mesohaline (5-18ppt) waters.  MKNA stranded 

approximately 44 km upriver from the furthest inland extent of his documented home range in 

oligohaline water (0-3 ppt) (Figure 6).  

Komarekiella delphikthonos A.O. Brown, A.D. Garvey, C.D. Villanueva et D.A. Casamatta 

(Figure 5) 



75 
 
 

 

Description: Thallus at first sandy-brown on dolphin epidermal samples, then dark blue-green, 

later turning jade green in culture. Thallus consists of subspherical colonies and aggregates of 

filaments enveloped in a common, mucilaginous sheath. Colonies initially consist of mainly 

unicellular aggregates later differentiating into either filaments via cell division or as fascicles of 

filaments, occasionally in multiple planes. Hormogonia frequent in culture, small (ca. 3 μm), and 

few-celled (3-8). Filaments both uni- and multiseriate. Vegetative cells mainly spherical, with 

compressed spherical to roughly isodiametric forms common, 3-5 μm. Heterocytes intercalary, 

3-6 μm. Akinetes were not observed.         

4.0 Discussion  

Though it was not determined whether the K. delphikthonos mat was present on 

TtNEFL1501 (MKNA)’s epidermis while alive, there have been many reports of epidermal 

algal-type mats associated with skin lesions on live dolphins (Barry et al., 2008; Riggin & 

Maldini, 2010; Mullin et al., 2015; Nokes, personal comm.; Mazzoil, personal comm.; FWC, 

unpublished). Dolphin skin lesions have been associated with, and are known to, manifest and 

worsen due to prolonged low salinity exposure, potentially leading to opportunistic infections 

(Greenwood et al. 1974; Colbert et al. 1999; Wilson et al., 1999; Dierauf and Gulland 2001;). 

Additionally, it is suspected that as the skin condition worsens and becomes more textured, 

microorganisms, such as bacteria, algae, or water molds, may aggregate (Mullin et al., 2015). 

Though it was determined that MKNA stranded 44km upriver from the furthest inland extent of 

his home range, this could be an artifact due to the limitations of the 40km survey route. The 

home range for MKNA, and other dolphins, may extend much further into low salinity habitats, 

which are not routinely surveyed.  
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In addition to TtNEFL1501, two other animals have been reported with algal-type 

epidermal mats in the SJR (HBOI-0806 and TtNEFL1511); both animals were described as “out 

of habitat” and were recovered from low salinity waters (HBOI 0806, a rescue attempt from 

Trout River; TtNEFL1511, stranded N 30.264378, W -81.697820). Epidermal algal-type mats 

have been reported on dolphins utilizing low salinity waters in Lake Pontchartrain (Louisiana, 

USA; Barry et al., 2008) and in the Tomoka River (Ormond Beach, FL; Hubbs-1037-Tt; Noke, 

personal comm.). A case study from Monterey Bay, California documented an “orange film” 

present on the dorsal surface of a calf that also had large, necrotic lesions (Riggin & Maldini, 

2010). Salinity measurements were not taken, however this animal was described as having 

marked health decline (emaciated) with irregular swimming patterns (unable to sustain proper 

body orientation) (Riggin & Maldini, 2010). All three animals with algal-type mats in the SJR 

expired (HBOI-0806 - euthanasia; TtNEFL1501and TtNEFL1511 – carcasses; FWC-FWRI 

unpublished) as well as the dolphin, Hubbs-1037-Tt. The fates of the Lake Pontchartrain animals 

and the calf in Monterey Bay are unknown to the authors. Though the health and behavioral 

decline of these animals is likely attributed to a multitude of factors, it is a possibility that some 

of deleterious effects could be associated from an epiphytic toxin producing cyanobacterium.  

The MCs/NODs producing capability of K. delfikthonos was not confirmed in this study, 

though that does not exclude this species from being a toxin producer. Cyanobacterial species 

have the ability of producing multiple toxins, of which many were not targeted in this work. For 

instance, the Florida manatee (Trichechus manatus latirostris) is known to be a host to dermal 

flora, with one instance of cyanotoxin associated dermal disease. Toxin producing epiphytic 

cyanobacteria (Lyngbya spp. dominated) were collected from manatees inhabiting Homosassa 
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Springs, FL, USA (Harr et al., 2008). Dermatoxins (e.g. aplysiatoxins & lyngbyatoxins) were 

detected in associated cyanobacteria mats, on the mat samples growing on the manatee dorsum 

and in the feces (Harr et al., 2008). Direct exposure to these toxins hypothetically resulted in the 

dermatological disease associated with this population of manatees. Though toxin concentrations 

for both epidermal and fecal samples were low, there are still potential health implications , such 

as immunosuppression, that may make the animal more susceptible to secondary infections. 

Though it is unlikely that cyanobacterial species constituting epidermal mats will ever be a 

source of mass mortality, this information provides relevance to the management of these 

species, especially in assessing the importance of intervening when dolphin has had prolonged 

freshwater exposure. 

Photos taken from the TtNEFL1501’s necropsy suggest the K. delphikthonos mat 

penetrated the epidermis. In culture, K. delphikthonos also permeates, degrades, and produces 

bubbles in culture media, indicating the ability to interact with its surrounding matrix. This 

characteristic will be relevant for future studies determining and assessing health effects 

associated with dolphin epidermal mats. Future sampling of these epidermal mats is 

recommended as epiphytic cyanobacteria may be a new source of health decline and mortality in 

dolphins inhabiting freshwater areas. 

Toxin analyses on isolates supported that these samples are not producing MCs/NODs in 

culture. ELISA analyses from culture samples resulted in false positives and spike loss, which 

was likely due to interference from the culture agar. In culture, K. delphikthonos was embedded 

within agar, which could not be fully removed prior to toxin extraction. Although a trace level of 

MMPB was detected in the epidermal mat sample, it is possible that it was contaminated by 
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native MCs/NODs in the field or concomitant cyanobacteria. These findings, however, do not 

eliminate the potential of cyanotoxin production. It has been documented that some 

cyanobacteria produce MCs with modifications to the Adda which would not be observed using 

these methodologies (Sivonen et al., 1992). Additionally, other cyanotoxins may have been 

present, but were not tested for (e.g. anatoxin-a, cylindrospermopsin, saxitoxin), as evident in 

other studies (Harr et al., 2008). In light of these observations, further toxin and genome analyses 

are warranted.  

 K. delphikthonos has an unusual ability to prosper in cooler temperatures, as evidenced 

by the extent of growth found on MKNA in January, as well as its ability to survive being frozen 

for approximately two years. A previous survey of epiphytic cyanobacteria in the Lower St. 

Johns River showed greatest algal richness beginning in winter with majority of the identified 

species being described as filamentous with the potential to be mat forming (Dunn et al., 2008).   

5.0 Conclusions 

Culturing of the epidermal mat yielded a Nostocalean isolate, with subsequent 16S rDNA 

gene analysis revealing close similarity (97%) to the recently erected genus, Komarekiella 

(Hentschke et al. 2017).  Based on a total evidence approach of molecular (toxin analysis), 

genetic (16S rDNA and 16-23S ITS), and ecological (e.g., growing as an epidermal mat on T. 

truncatus) characters, we propose the erection of K. delphikthonos under the International Code 

of Nomenclature for Algae, Fungi, and Plants. To the authors’ knowledge, this is the first time 

MCs/NODs analyses have been conducted on an epidermal mat recovered from a bottlenose 

dolphin. This discovery warrants an area of further investigation as toxic, epiphytic 
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cyanobacteria may be new source of health decline and mortality in bottlenose dolphins utilizing 

low salinity habitats.  

When initially described, this genus was recovered as epiphytes from subtropical and 

tropical trees of the Atlantic Rainforest, as well as from wet cement in Hawaii (Hentzscke et al. 

2017). In a potentially prescient insight echoing the Baas-Becking hypothesis (Baas-Becking 

1934), the authors of Hentzchke et al., 2017 noted that “everything is not everywhere, but 

humans will soon fix that”.  It may be that, like Cylindrospermopsis (Padiak 1997), 

Komarekiella may be potentially increasing distribution perhaps triggered by anthropogenic 

factors (e.g., ballast water, eutrophication, invasive vectors). It may also be that this taxon has 

historically been misidentified.  Depending on the life history cycle, this taxon could easily be 

mistaken for Pseudanabaena, Nostoc, or even any number of colonial, coccoid cyanobacteria. 

The presence on the epidermis of the dolphin may also be much more common than currently 

described.  For example, images of wild dolphins from Lake Pontchartrain and the St Johns 

River contain grossly similar epidermal mats (Barry et al., 2008; FWC-FWRI, unpublished data). 

The biotic component of these mats has not been studied but may prove fruitful to further 

investigation for the biogeography of this lineage.  
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Tables 

Table 1. Comparison of nucleotide lengths of conserved ITS domains for K. delphikthonos sp. 
nov. and closest relatives with available ITS data. 
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K. delphikthonos clone A 8 65 39 25 64 92 73 38 48 11 21 100 

K. atlantica CCIBT 3483  7 66 39 12 64 92 73 40 44 11 20 71 

K. atlantica CCIBT 3481 7 65 39 12 64 92 73 40 43 11 20 71 

K. atlantica CCIBT 3487 7 66 39 12 64    47 11 20 71 

K. atlantica CCIBT 3552 8 102 38 11 64 84 73 133 47 11 20 71 

K. atlantica CCIBT 3486 1 67 38 139     47 11 20 71 

K. atlantica HA4396-MV6 clone C10B 8 67 38 129     49 11 20 71 

K. atlantica HA4396-MV6 clone C10A 8 79 38 11 74 60 73 126 49 11 20 71 
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Table 2. Concentrations of microcystins/nodularins (MCs/NODs) reported as ng g-1 w.w. for 
cultures and the epidermal mat sample. The samples were analyzed using an Adda ELISA (first 
column) with additional confirmatory analyses of ELISA extracts using the MMPB technique 
(middle column). Whole samples were also oxidized (last column) and analyzed for MMPB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 

 Free MCs/NODs Free MCs/NODs Total MCs/NODs 

Sample ID 
(ELISA) (MMPB) (MMPB) 

ng g-1 (ppb) ng g-1 (ppb) ng g-1 (ppb) 

Culture Sample Z8 4.5 ND ND 

Culture Sample BG11 5.0 ND ND 

Original Epidermal Mat Sample 4.6 ND* ND* 

Method Detection Limit (MDL)= 3.0 2.5 1.3 

* = trace level observed below MDL    
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Figure 1. Maximum Likelihood tree of K. delphikthonos and closest relatives.   
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Figure 2. Folded ITS D1-D1helices for A) K. delphikthonos, and B-H) K. atlantica, B) CCIBT 

3483 (KX638487.1), C) CCIBT 3481 (KX638484.1), D) CCIBT 3487 (KX638488.1), E) CCIBT 

3552 (KX638485.1), F) CCIBT 3486 (KX638489.1), G) HA4396-MV6 clone C10B 

(KX646832.1), H) HA4396-MV6 clone C10A (KX646831.1). 
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Figure 3. Folded ITS Box B helices for A) K. delphikthonos and B-H) K.  atlantica, B) CCIBT 
3483 (KX638487.1), C) CCIBT 3481 (KX638484.1), D) CCIBT 3487 (KX638488.1), E) CCIBT 
3552 (KX638485.1), F) CCIBT 3486 (KX638489.1), G) HA4396-MV6 clone C10B 
(KX646832.1), H) HA4396-MV6 clone C10A (KX646831.1) 
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Figure 4. Folded ITS V3 helices for A) K. delphikthonos and B-H) K. atlantica, B) CCIBT 3483 
(KX638487.1), C) CCIBT 3481 (KX638484.1), D) CCIBT 3487 (KX638488.1), E) CCIBT 3552 
(KX638485.1), F) CCIBT 3486 (KX638489.1), G) HA4396-MV6 clone C10B (KX646832.1), 
H) HA4396-MV6 clone C10A (KX646831.1) 
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Figure 5. Morphological assessment of K. delphikthonos. A) Colony appearance after initial 
isolation, B) appearance of heterocytes after culturing on nitrogen free medium, C) mixture of 
both filamentous and individual cells common after culturing, D) Pseudanabaena-like filament 
production. Scale bars = 10 μm. 
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Figure 6. Plotted stranding location (black square) and furthest extent of home range (black 
circle) of MKNA, St. Johns River, Jacksonville, FL. 
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