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Abstract 

Although it was once thought that neurons solely rely on glucose as a substrate for 

cellular energy production, it is now known that small monocarboxylate molecules, like 

pyruvate, lactate, and ketone bodies, are also utilized.  Monocarboxylates are transported across 

plasma membranes via facilitated diffusion using a family of transport proteins known as 

monocarboxylate transporters (MCTs).  Four MCTs (MCT1, MCT2, MCT3, and MCT4) are 

expressed within neural tissues.  Expression of the MCTs has been tied to co-expression of a cell 

adhesion molecule belonging to the Basigin subset of the immunoglobulin superfamily (IgSF).  

Basigin gene products are known to interact with MCT1 and MCT4 in the mammalian neural 

retina and this association is essential to support the cellular energy needs of photoreceptors.  A 

previous study indicated that Basigin gene products use hydrophobic amino acids within specific 

regions of the transmembrane domain to interact with MCT1.  In the present study, it is 

hypothesized that the same amino acids within the transmembrane domain are used to interact 

with MCT4, but that no association exists with MCT2, which typically interacts with a different 

member of the IgSF subset.  Therefore, the purpose of the present study was to assess the 

association between Basigin gene products and MCT4, and with MCT2.  Recombinant proteins 

corresponding to the transmembrane domain of Basigin gene products were used in in vitro 

binding assays with endogenous MCT2 and MCT4 from mouse brain protein lysates.  Contrary 

to the hypothesis, it was determined that the transmembrane domain of Basigin gene products 

binds to both MCT2 and MCT4 in vitro.  Different amino acids within the transmembrane 

domain of Basigin gene products are used for each association and the pattern is different from 

that used in the association with MCT1.  The data suggest that Basigin plays multiple roles in the 

nervous system.



 

 

Chapter 1 

Introduction 

 

Cell adhesion is an essential process for the maintenance and development of tissues, 

synaptogenesis, and embryonic development. Connections between cells, mediated by cell-

surface proteins, underlie all these processes, and set up the three-dimensional structure of 

tissues (Gumbiner, 1996).  The proteins involved in cell adhesion can be classified into one of 

four classes of cell adhesion molecules (Figure 1.1), which include the immunoglobulin 

superfamily (IgSF), cadherins, selectins, and integrins (Alberts et al., 2015). Studies of the 

expression, structure, and function of cell adhesion molecules are powerful ways to understand 

the molecular composition of a tissue, and hence its function.   

 

Immunoglobulin Super Family 

The IgSF is the largest group of four types of cell adhesion molecules (Beesley et al., 

2014; Alberts et al., 2015).  Members of the IgSF are typically characterized by a large amino-

terminal extracellular domain containing one or more Ig folds, a single transmembrane domain, 

and a cytoplasmic tail (Aplin et al., 1998).  These Ig folds are similar in structure to those found 

in immunoglobulins, or antibodies, and therefore provide the commonality for this group of 

proteins (Alberts et al., 2015).  IgSF cell adhesion molecules are involved in many processes and 

found on many cell types, including the development of the nervous system, in which they are  
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Figure 1.1.  The four classes of cell adhesion molecules.  These include the immunoglobulin (Ig) 

superfamily, cadherins, selectins, and integrins. (Alberts et al., 2000). 

 

 



3 
 

used in the establishment and maintenance of neuronal connections and axonal guidance (Murase 

and Schuman, 1999). 

 

Cadherins 

Cadherins are a family of transmembrane proteins that possess an extracellular domain 

with a series of repeats of 100-amino acid cadherin-specific modules (Juliano, 2002).  The 

cadherin family of cell adhesion molecules can be divided into three major subfamilies.  The first 

subfamily is composed of primarily calcium-dependent homotypic cell adhesion molecules 

referred to as “classic” cadherins.  This subset of cadherins specializes in the formation of 

adherence junctions with actin filaments (Angst et al., 2001).  The second subfamily is composed 

of desmosome-associated cell adhesion molecules.  These cadherins form intracellular linkages 

with intermediate filaments, rather than actin filaments (Hynes, 1999).  The final subfamily of 

cadherins are the proto-cadherins.  These are important for the development of the nervous 

system (Angst et al, 2001).  

 

Selectins 

The selectin family of cell adhesion molecules consist of a small family of lectin-like 

adhesion receptors (Lasky, 1995).  Lectins are carbohydrate-binding proteins (Aplin et al., 1998).  

Selectins possess an amino-terminal domain homologous to calcium-dependent animal lectins, 

an epidermal growth factor domain, two to nine complement regulatory protein repeats, a 

transmembrane domain, and a short cytoplasmic tail (Juliano, 2002). Selectins regulate 

heterotypic cell interactions via calcium-dependent recognition of sialylated glycans, which 
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plays a role in leukocyte adherence to endothelial cells and platelets during the inflammation 

process (Springer, 1995).  

 

Integrins 

Integrins are cell-surface glycoproteins that serve as receptors for extracellular matrix 

proteins and connect to the cytoskeleton, hence “integrating” the outside of the cell with the 

inside of the cell (Juliano, 2002). Integrins exist as heterodimers consisting of two subunits, 

known as α and β.  The  and  subunits each contain an extracellular domain, a membrane 

spanning region, and cytoplasmic domain (Hynes, 1999; Aplin et al., 1998).  Signals originating 

outside the cell are responsible for cytoskeletal organization, cell motility, and signal 

transduction, whereas signals originating from inside the cell are responsible for regulation of 

integrin affinity (Juliano, 2002). 

 

Basigin subset of the IgSF 

Within the IgSF exists a subset of proteins that includes two Basigin gene products, two 

Neuroplastin gene products, and Embigin.  These five proteins are classified as a subset of the 

IgSF based on the similarities of these proteins at the amino acid level, and therefore their 

structures (Beesley et al., 2014).  As members of the IgSF, they share a similar structure, with 

extracellular Ig-like domains, a transmembrane domain, and a cytoplasmic domain (Figure 1.2; 

Beesley et al., 2014).  A defining feature of this subset of the IgSF is the presence of a glutamate 

residue within the transmembrane domain (Beesley et al., 2014).  The function of this polar 

amino acid within a hydrophobic domain of the protein has yet to be fully determined.  The gene  
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Figure 1.2.  Comparison of the structures of Neuroplastin, Basigin, and Embigin.  Each protein 

family possesses extracellular Ig domains, a transmembrane domain, and a cytoplasmic domain.  

All members of this subset of the IgSF possess a glutamate (E) within the transmembrane domain.  

There are two Basigin and Neuroplastin gene products.  The longer product is depicted by the 

additional lighter colored domain at the region most distal from the membrane. (Beesley et al., 

2014) 
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for Basigin and the gene for Neuroplastin each produce two main protein products that differ in 

overall size.  The shorter forms of Basigin (Basigin variant-2) and Neuroplastin (Neuroplastin 

gp55) are ubiquitously expressed and each have two extracellular Ig domains (Beesley et al., 

2014). The longer forms of Basigin (Basigin variant-1) and Neuroplastin (Neuroplastin gp65) are 

expressed in the retina and the brain, respectively, and have three extracellular Ig domains each 

(Figure 1.2; Beesley et al., 2014). The Embigin gene is unique to this subset, in that it codes for a 

single polypeptide that has two extracellular Ig domains (Figure 1.2; Beesley et al., 2014).  

Embigin is known as the “embryonic Ig,” based on early studies that indicated that expression is 

highest during embryonic development (Fan et al., 1998).  More recently, it has been determined 

to be expressed during tissue regression of rat prostate and in mammary glands following 

hormonal ablation (Guenette et al., 1997), as well as in adult rodent muscle (Lain et al., 2009).  

As cell adhesion molecules, members of the Basigin subset of the IgSF play many roles 

in many different tissues.  Basigin variant-2 is known to be involved in glial cell maturation, 

oocyte maturation, thymic development, and HIV-1 infection (Ding et al., 2002; Renno et al., 

2002; Pushkarsky et al., 2001).  Conversely, Basigin variant-1 is expressed only in the neural 

retina and is thought to play a role in regulation of glucose metabolism (Ochrietor et al., 2003; 

Ait-Ali et al., 2015).  The Neuroplastin gene products are specific to the brain and nervous 

system and are important for mediating neurite outgrowth and plasticity, especially activity-

dependent synaptic plasticity (Beesley et al., 2014).  Whereas Neuroplastin gp55 is expressed 

throughout the mammalian brain, Neuroplastin gp65 expression is predominantly found in the 

hippocampus, cortex, and striatum, with lower concentrations in the brainstem (Hill et al., 1988; 

Mlinac et al., 2012.; Smalla et al., 2000; Marzban et al., 2003).  Embigin regulates cell growth 

and differentiation during embryonic development (Guenette et al., 1997).  Embigin mRNA 
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levels are elevated in embryonic carcinoma cells, which supports the hypothesis that it is 

involved in tumorigenesis and cancer development as well (Huang et al., 1990).  The common 

feature of the Basigin subset of the IgSF is their ability to associate with, and direct the 

expression of, monocarboxylate transporters (Beesley et al., 2014). 

 

Monocarboxylate Transporters 

  Monocarboxylate transporters (MCTs) are members of the MCT solute carrier family of 

proteins.  All family members possess a similar characteristic structure, consisting of twelve 

transmembrane helices with intracellular carboxy- and amino-termini, as well as a large cytosolic 

loop between transmembrane domains six and seven (Figure 1.3; Halestrap and Price, 1999). 

There are nine different MCT isoforms, but only four of these (MCT1, MCT2, MCT3 and 

MCT4) are known to transport pyruvate, lactate, and ketone bodies (monocarboxylates) via 

facilitated diffusion, in a proton-dependent manner (Halestrap and Price, 1999).  These isoforms 

are known to interact with members of the Basigin subset of the IgSF and will therefore be the 

focus of this discussion. However, because MCT3 is retina-specific (Philp et al., 2001), for this 

discussion the focus will be on MCT1, MCT2, and MCT4. A comparison of the amino acid 

sequences of MCT1, MCT2, and MCT4 is shown in Figure 1.4.  The area designated by the box 

shows transmembrane domain 3, which is thought to be the region within MCT1 that interacts 

with Basigin (Manoharan et al., 2006).   

 

 

 



8 
 

 

 

 

 

 

 

Figure 1.3. Structure of monocarboxylate transporters.  The overall structure is depicted 

using circles that represent each amino acid in the protein.  The circles are color-coded to indicate 

the class of amino acid present at each position.  MCTs possess ten to twelve transmembrane 

domains, with a large cytoplasmic domain between transmembrane domains six and seven.  Both 

the amino- and carboxy-termini are positioned within the cell.  (Halestrap and Price, 1999) 
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Figure 1.4. Amino acid sequence comparison of MCT1, MCT2, and MCT4.  The one-letter amino 

acid code is shown for each transporter.  Positions that share identical amino acids are noted with 

an asterisk (*), whereas positions that have conserved substitutions are noted with a colon (:) or a 

period (.), depending on the strength of the conservation.  The boxed sequence shows 

transmembrane domain 3, the region of MCT1 thought to interact with Basigin. 
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The MCT family members are expressed throughout the body.  MCT1 is expressed in 

many tissues and is thought to be responsible for basal monocarboxylate transport across 

epithelial membranes (Halestrap, 2012).  Within the brain, MCT1 and MCT2 expression has 

been localized to the neocortex, hippocampus, cerebellum, and striatum (Pellerin et al., 1998).  In 

areas where MCT1 and MCT2 are both expressed, they are differentially localized, which may 

be due to unique functional roles for each transporter (Halestrap, 2012).   Expression of MCT2 is 

largely found in the postsynaptic density of neurons and may therefore facilitate the uptake of 

monocarboxylates for those cells (Halestrap, 2012).  Conversely, expression of MCT1 is largely 

found in the heart, brain, and retina (Bergersen, 2007; Halestrap and Price, 1999). MCT1 is 

particularly expressed in the endothelial cells of capillaries in the brain (Bergersen, 2007). MCT4 

is widely expressed in glycolytic tissues, such as white skeletal muscle fibers, astrocytes, white 

blood cells, chondrocytes, and some mammalian cell lines.  It is thought that MCT4 may be 

involved in the export of lactic acid derived from glycolysis (Halestrap, 2012). While highly 

glycolytic cells are shown to predominantly express and utilize MCT4, cells that have a net 

influx of lactic acid express and utilize predominantly MCT1 (Kirk et al., 2000).  MCT3 is 

unique to this group in that its expression is restricted to the retinal pigmented epithelium (RPE) 

of the eye (Philp et al., 2001).  Excess lactate from the neural retina is moved into the RPE via 

apically-expressed MCT1 and out of the RPE toward the choroid via basally-expressed MCT3 

(Philp et al., 2001).   

The mechanism by which MCTs transport monocarboxylates has been studied in detail 

using inhibitors, transport kinetics, and site-directed mutagenesis (Halestrap, 2012). The MCT1 

transporter has been the prototype molecule used for many of these studies.  The mechanism 

MCT1 utilizes is one in which a substrate binding site, open to one side of the membrane, binds a 
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proton and lactate anion, causing a conformational change in the protein which brings the two to 

the opposite surface of the membrane (Halestrap, 2012). The MCT1 transporter specifically uses 

a lysine residue in the hydrophobic pocket of the substrate-binding channel, that when coupled 

with the binding of a proton, allows for the binding of the monocarboxylate anion (Halestrap, 

2012).  

While glucose is considered the main energy source for the brain, lactate and ketone 

bodies can be utilized by neurons within the brain (Koehler-Stec et al., 1998).  It has been 

proposed that neurons obtain these metabolites to fuel oxidative phosphorylation using an 

astrocyte-neuron coupling mechanism (Figure 1.5; Magistretti, 2006).  It is thought that glucose 

is taken up by astrocytes (glial cells), using the GLUT-1 transport protein (Magistretti, 2006), 

and converted to pyruvate via glycolysis.  The pyruvate is then reduced to lactate and shuttled to 

neurons in close association with the astrocyte, which oxidize lactate to pyruvate and continue 

the process of aerobic respiration (Magistretti, 2006).  Lactate converted to ketone bodies within 

the liver and released into the bloodstream can also be used by neurons, upon conversion of the 

ketone bodies to pyruvate (Koehler-Stec et al., 1998).  In addition, glucose directly enters the 

neurons, via a separate mechanism, for glycolysis and aerobic respiration in those cells 

(Magistretti, 2006).  Not shown in the diagram are the MCTs that contribute to lactate transport 

across the membranes of cells. 
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Figure 1.5. The astrocyte-neuron coupling mechanism proposed to exist in the mammalian brain.  

Glucose is taken up by astrocytes and metabolized to lactate, which is then delivered to neurons 

and used as a substrate for cellular energy production. (Magistretti, 2006) 
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The relationship between members of the Basigin subset of the IgSF and MCTs 

Numerous studies conducted over the past two decades indicate that MCTs associate with 

members of the Basigin subset of the IgSF.  Basigin gene products are known to associate with 

MCT1 and MCT4, as demonstrated via in vitro and in vivo analyses (Kirk et al., 2000; Wilson et 

al., 2002; Philp et al., 2003; Finch et al., 2009).  It has been proposed that expression of MCT1 is 

dependent of its association with Basigin gene products, because absence of Basigin gene 

expression in a mouse model system results in the absence of MCT1 protein at the plasma 

membrane of the cell (Philp et al., 2003).  The co-expression of Basigin and MCT1 correlates 

with a substantially enhanced rate of lactate transport, as compared to cells not expressing both 

proteins (Kirk et al., 2000).  Similarly, a recent study suggests that Neuroplastin gene products 

associate with MCT2 on neurons, although a direct relationship was not established (Wilson et 

al., 2013).  In another study, Embigin was co-expressed with MCT1 in erythrocytes (Wilson et 

al., 2009).  Although the study was limited by heterologous expression, rather than endogenous 

expression, it did demonstrate that the two proteins interact at the plasma membrane (Wilson et 

al., 2009).   

The interaction between Basigin gene products and MCT1 has been studied at the 

molecular level.  Binding studies utilizing recombinant forms of the transmembrane domain of 

Basigin gene products and endogenous mouse neural retina MCT1 demonstrated that this domain 

of Basigin gene products does bind to MCT1 (Finch et al., 2009).  Although it was hypothesized 

that the central glutamate within the domain would play a significant role in binding to MCT1 

(Wilson et al., 2002), it did not appear to play any role in the interaction (Finch et al., 2009).  In 

contrast, hydrophobic interactions were found to be responsible for the interaction with MCT1 

(Figure 1.6; Finch et al., 2009).   
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Figure 1.6.  The entire transmembrane domain of Basigin gene products (BasTM-All) is shown 

using the amino acid one-letter code.  It was determined by Finch et al., (2009), that the 

transmembrane domain of Basigin gene products (BasTM) binds to MCT1 using the hydrophobic 

amino acids shown in blue.  One letter code: A = alanine; E = glutamate; F = phenylalanine; G = 

glycine; I = isoleucine; L = leucine; M = methionine; P = proline; T = threonine; V = valine; W = 

tryptophan; Y = tyrosine 
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In a study using a mouse model system, it was determined that Basigin gene expression 

affects the expression of MCT1 and MCT4, but not MCT2 (Figure 1.7; Philp et al., 2003).  

Immunoblotting analyses using detergent-solubilized protein lysates of the neural retinas from 

Basigin null and control animals indicated that expression of MCT1 and MCT4 proteins was 

significantly reduced at the plasma membrane of Basigin null animals, as compared to the 

control animals (Figure 1.7; Philp et al., 2003).  In contrast, the expression of MCT2 protein was 

not different between the two groups (Figure 1.7; Philp et al., 2003).  It is known that Basigin 

gene products interact with MCT1 via the transmembrane domain (Finch et al., 2009).  

Therefore, the purpose of the present study was to determine if Basigin gene products interact 

with other members of the MCT family, specifically MCT2 and MCT4, using the same 

mechanism.  Based on previous data, it was hypothesized that Basigin gene products interact 

with MCT4 in a similar manner to that of MCT1, whereas Basigin gene products do not interact 

with MCT2 and thus it will serve as a negative control.  This hypothesis was tested using a series 

of biochemical analyses. 
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Figure 1.7. Basigin gene products affect the expression of MCT1 and MCT4, but not MCT2 in the 

mouse neural retina.  An immunoblot of neural retina membrane-associated protein expression is 

shown.  Samples from Basigin normal (Bsg +/+) and null (Bsg -/-) were tested from animals at 20-

days of age and one year of age.  In the top panels, the proteins were probed with an antibody 

specific for the glutamate transporter GLUT1, which served as a loading control.  The remaining 

panels show the results of probing with antibodies specific for MCT1, MCT4, and MCT2. 

Expression of MCT1 and MCT4 is reduced in the null animals, as compared to the age-matched 

normal animals, whereas the expression of MCT2 is similar for all samples. (Philp et al., 2003) 
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Chapter 2 

Materials and Methods 

Recombinant protein expression and isolation 

 Expression plasmids containing the cDNA for the entire transmembrane domain of 

Basigin gene products, as well as those containing truncated and mutated sequences were 

previously generated (Finch et al., 2009; Brown, 2016).  A plasmid containing no insert was also 

previously generated and served as the control for binding assays (Finch et al., 2009).  The 

expression plasmid used was pET102 (Invitrogen Corporation, Carlsbad, CA), which allows 

recombinant proteins containing an epitope of six histidine residues at the carboxy-terminus to 

be expressed in bacteria.  The plasmid codes for 157 amino acids, which mask the hydrophobic 

nature of the Basigin-specific amino acids and allows a soluble protein to be expressed. 

Recombinant protein expression was carried out by transforming BL21 cells (Invitrogen 

Corporation).  The cells were grown to mid-log phase, induced with 1 mM 

isopropylthiogalactoside (IPTG; Thermo Fisher Scientific, Hampton, NH), and grown overnight 

at 37oC with shaking.   

Recombinant proteins were isolated using the His-TALON system (Clontech, Mountain 

View, CA).  Cells were pelleted by centrifugation at 3000 ×g for 15 minutes and resuspended in 

X-tractor buffer (20 mL per 1 g of cells).  The cells were lysed by incubation for 10 minutes at 

room temperature in the presence of 100 g/mL lysozyme (Clontech) and 5 U/mL DNase I 

(Clontech).  A protein lysate was formed by centrifugation at 10,000 ×g for 20 minutes.  The 
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lysate was mixed with TALON purification resin (Clontech) for 10 minutes at room temperature.  

The resin was washed by centrifugation and the via column gravity filtration.  Proteins were 

eluted from the column using elution buffer (Clontech) in 0.5 mL fractions and the presence of 

protein was analyzed at 280 nm.   

 

Mouse brain protein lysates 

 Three adult male mouse brains were obtained using an approved protocol and 

immediately washed in phosphate buffered saline (PBS).  Each brain was homogenized in 

detergent lysis buffer (0.5% SDS, 0.05 M Tris⋅HCl, pH to 8.0, plus 1 mM fresh dithiothreitol 

(DTT)) and incubated on ice for 10 minutes.  A protein lysate was generated by centrifugation at 

16,000 ×g for 10 minutes.  

 

Bradford-Coomassie protein assay 

 Protein concentration of lysates was determined using the Bradford-Coomassie protein 

assay method (Pierce/Thermo Scientific).  Concentrations of bovine serum albumin (BSA, 

Pierce/Thermo Scientific) ranging from 2.0 mg/mL to 0.1 mg/mL were generated and mixed 

with Bradford-Coomassie binding reagent.  The absorbance at 595 nm was measured and a 

standard curve (absorbance versus protein concentration) was created.  The equation from the 

best-fit trendline (usually logarithmic) was used to determine the concentration of recombinant 

and mouse brain protein samples. 
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ELISA Binding Assay  

Enzyme-linked immunosorbent assays (ELISA) were used as binding assays, as 

described in Finch et al., (2009).  Capture antibody (specific for MCT1, MCT2, or MCT4; 50 

ng/mL in phosphate buffered saline [PBS]; Millipore Corporation, Billerica, MA) was plated and 

incubated overnight at 4oC.  The solution was removed, and the wells were washed with PBS 

containing 0.25% Tween-20 (PBS-T).  Bovine serum albumin (BSA; Pierce/Thermo Scientific), 

diluted to 100 g/mL in PBS, was added to all wells and incubated at 37oC for 30 minutes.  The 

solution was removed, and wells were washed with PBS-T.  Mouse brain protein lysates (100 

g/mL) were added to all wells and incubated at 37oC for 30 minutes.  The solution was 

removed, and wells were washed with PBS-T.  Recombinant proteins (diluted to 100 g/mL in 

PBS) were added to individual wells in triplicate and incubated at 37oC for 30 minutes.  The 

solution was removed, and wells were washed with PBS-T.  Primary antibody specific for the 

carboxy-terminal six-histidine tag (diluted 1:1000 in PBS; BD Biosciences) was added to all 

wells and incubated at 37oC for 30 minutes.  The solution was removed, and wells were washed 

with PBS-T.  Alkaline phosphatase-conjugated goat anti-mouse secondary antibody (diluted 

1:1000 in PBS) was added to all wells and incubated at 37oC for 30 minutes.  The solution was 

removed, and wells were washed with PBS-T.  Alkaline phosphatase substrate (PNPP, 

Pierce/Thermo Scientific) was added to all wells for color development.  The reaction was 

stopped with the addition of 2N NaOH.  The absorbance at 405 nm was measured.  All runs were 

performed in triplicate, using different protein samples, and the average absorbance was plotted.  

Binding was compared for Basigin-containing recombinant proteins with that of the control 

recombinant protein via a paired, one-tailed T-test.  For the binding assays that compared the 

mutated sequence to the normal sequence, the average absorbance for the protein with the 
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normal sequence was set to 100% binding and all mutant proteins were compared.  Binding was 

compared for mutant recombinant proteins with that of the normal recombinant protein via a 

paired, one-tailed T-test. 

Affinity binding assays were performed like the simple binding assays described, with 

the exception that varying concentrations of recombinant protein (10 M, 5 M, 2.5 M, 1.25 

M, 0.625 M) were used.  All runs were performed in triplicate, using different brain protein 

samples.  The average absorbance for the protein at 10 M was set to 100% binding and the 

absorbances for the other concentrations was compared.  A binding curve was generated and the 

equation for the logarithmic trendline was used to determine the concentration equal to 50% 

binding.  This was determined to be the binding affinity.  The similarity of binding of Basigin 

transmembrane domain recombinant protein for MCT1, MCT2, and MCT4 was compared via a 

single factor ANOVA. 

 

Immunohistochemistry 

Many previous studies by this laboratory have involved the investigation of Basigin gene 

expression in the retina. It was noted in a recent study in the lab that Basigin and MCT2 

expression appears to overlap in tongue, thus providing a biologically relevant application for in 

vitro data.  Therefore, mouse tongues were isolated from adult male mice, according to an 

accepted animal use protocol.  The organs were washed in PBS and fixed by incubation for 24 

hours in 4% paraformaldehyde in PBS at room temperature.  The tissues were embedded in 

paraffin wax and 5-m sections were cut and applied to poly-L-lysine-coated glass microscope 

slides.  The retina sections were previously generated (Ochrietor et al., 2003; Tokar et al., 2017).   



21 
 

The tissue sections were rehydrated by incubating in CitriSolve (Fisher Scientific) twice, 

for 10 minutes each time, followed by 5 minutes in 100% ethanol (Fisher Scientific), then 95% 

ethanol, then 70% ethanol, and finally tris-buffered saline (TBS).  The rehydrated sections were 

solubilized in a buffer consisting of TBS with 0.1% Triton X-100 (Fisher Scientific) and 2% 

normal goat serum (Pierce/Thermo Scientific) by incubation at 4oC overnight.  The sections were 

then incubated in the presence of an antibody specific for Basigin (Ochrietor et al., 2003) or 

MCT2 (Millipore Corporation, Billerica, MA), diluted to 5 g/mL in the solubilization buffer for 

1 hour at 37oC, followed by continued incubation at 4oC overnight.  The solution was removed, 

and the sections were washed several times with TBS.  The sections were then incubated in the 

presence of Alexa488-conjugated or Alexa594-conjugated goat anti-rabbit secondary antibody 

(Pierce/Thermo Scientific) diluted 1:1000 in solubilization buffer and incubated at 37oC for 30 

minutes.  The solution was removed, and the sections were washed several times with TBS.  

DRAQ5 (Pierce/Thermo Scientific) was added to the first TBS wash at 1:1000 dilution.  

Coverslips were applied with 30% glycerol containing p-phenylenediamine (Sigma Chemical 

Company, St.  Louis, MO) and the tissues were viewed with an Olympus Fluoview F1000 

confocal microscope (Pittsburgh, PA).   
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Chapter 3 

Results 

 
Assessing the ability of Basigin to bind to MCT2 and MCT4 

The purpose of the present study was to assess the ability of the transmembrane domain 

of Basigin gene products to interact with MCT2 and MCT4.  Previous studies indicate that 

Basigin gene products interact with MCT1 using hydrophobic amino acids within the domain 

(Finch et al., 2009).  Other studies suggest that Basigin may interact with MCT4 using a similar 

mechanism but does not likely interact with MCT2 (Philp et al., 2003).  Therefore, the ability of 

a recombinant form of the Basigin transmembrane domain to bind to endogenous mouse brain 

MCT2 and MCT4 was tested.   

Initially, simple ELISA binding assays were employed to test the ability of the 

recombinant Basigin transmembrane domain protein to bind to endogenous mouse brain MCT2 

and MCT4.  The ability of the protein to bind to endogenous mouse brain MCT1 served as the 

positive control.  As observed previously, binding of the Basigin transmembrane domain protein 

(BasTM-all) to MCT1 was significantly greater than the binding of the vector control protein 

(control) to MCT1 (Figure 3.1A; p = 0.0009).  Similarly, the ability of BasTM-all to bind to 

MCT2 (Figure 3.1B; p = 0.009) and MCT4 (Figure 3.1C; p=0.001) was significantly greater than 

binding of the control protein.   

Next, the affinity of the transmembrane domain of Basigin gene products for MCT1, 

MCT2, and MCT4 was assessed.  Standard curves in which the recombinant BasTM-all protein  
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Figure 3.1 Binding of Bas-TM-all to MCTs.  The ability of Bas-TM-all to bind to MCT1 (A), 

MCT2 (B), and MCT4 (C) was assessed via an in vitro binding assay.  In all cases, the binding of 

BasTM-all was significantly greater than that of the vector control protein (Control).   
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was tested over a range of concentrations were used to determine the concentration at 50% 

binding, which is considered the affinity.  The affinity binding curves for BasTM-all against 

MCT1, MCT2, and MCT4 are shown in Figure 3.2.  Table 3.1 shows that the affinity of the 

BasTM-all protein for each of the transporters.  The affinities of BasTM-all for MCT1, MCT2, 

and MCT4 were not significantly different from each other (p = 0.086). 

 

Assessing the ability of the Basigin transmembrane domain to bind MCT2 

To determine which amino acids within the transmembrane domain of Basigin gene 

products are used in the interactions with MCT2, deletion mutants of the domain were used.  The 

domain was fractioned into six amino acid sections and the resulting recombinant proteins were 

used for simple binding assays.  It was determined that the region containing amino acids 1-6 

had significantly greater binding to MCT2 than the control protein (p = 0.004) and similar to that 

of the BasTM-all protein (p = 0.068; Figure 3.3).  Conversely, the regions containing amino 

acids 7-12 (p = 0.421) and 19-24 (p = 0.310) were not significantly greater than the control 

protein (Figure 3.3).  The ability of the region containing amino acids 13-18 was significantly 

lower than that of the control protein (p = 0.003; Figure 3.3).  To confirm the data obtained 

through the simple binding assays, affinity assays were performed for each section of the Basigin 

transmembrane domain (Table 3.2).  The affinity for MCT2 of the region containing BasTM 1-6 

(0.714±0.391 M) was significantly greater than that of the entire domain (BasTM-all; 1.70 

±0.24 M; p = 0.041).  The affinities for MCT2 of the regions contain BasTM 13-18 (2.82±0.22 

M) and BasTM 19-24 (2.66±0.30 M) were significantly lower than that of BasTM-all (p =  
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Figure 3.2 Binding curves for BasTM-6xHis with MCT1, MCT2, and MCT4.  For each transporter, 

the absorbance obtained for 10 M was set to 100% binding, and the other absorbances were 

compared to it.  A logarithmic trendline was applied and the equation was used to determine the 

affinity.  The R2 value for each trendline is shown. 
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Table 3.1 Binding affinity of BasTM-6xHis for MCT1, MCT2, and MCT4 in µM. 

 

 

 

  

Transporter Binding affinity (M)
MCT-1 1.74 +/- 0.12

MCT-2 1.70 +/- 0.24

MCT-4 1.36 +/- 0.19
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Figure 3.3 Binding of BasTM truncation mutants to MCT2.  The ability of each section of the 

transmembrane domain of Basigin (BasTM 1-6, BasTM 7-12, BasTM 13-18, BasTM 19-24) to 

bind to MCT2 was assessed through an in vitro binding assay.  The binding of each BasTM protein 

was individually compared to that of the control protein using a paired, one-tailed T-test.  The 

asterisk (*) represents p=<0.01. 
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Table 3.2 Binding affinity of BasTM-all and the Bas-TM truncation mutants for MCT2 in M.  
The p-value was obtained via a paired, one-tailed T-test comparing each mutant to the BasTM-
all protein. 

 

 

 

 

  

Protein Affinity p-value

BasTM-all 1.70 ±0.24 M

BasTM 1-6 0.714±0.391 M 0.041

BasTM 7-12 1.70±0.88 M 0.492

BasTM 13-18 2.82±0.22 M 0.019

BasTM 19-24 2.66±0.30 M 0.045

BasTM-all-E13G 1.43±0.266 M 0.187
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0.019, p = 0.045, respectively).  Contrary to the data obtained from the simple binding assay, the 

affinity for MCT2 of the region containing BasTM 7-12 (1.70±0.88 M) was the same as that for 

BasTM-all.  These data suggest that binding of the transmembrane domain of Basigin to MCT2 

employs amino acids within the first twelve residues of the domain.   

The glutamate residue found in the center of the transmembrane domain of Basigin, at 

position 13, has been hypothesized by others to be essential for the interaction with MCTs (Kirk 

et al., 2000; Wilson et al., 2002).  Although the affinity data generated through this study suggest 

otherwise, a direct assessment of the residue was performed using a recombinant version of the 

entire Basigin transmembrane domain, in which the amino acid glutamate was mutated to 

glycine (BasTM-all-E13G), and in an affinity binding assay (Figure 3.4).  The affinity of the 

BasTM-all-E13G protein for MCT2 was determined to be 1.429 ± 0.266 M, which is not 

statistically different from the affinity of the wild-type sequence for the transporter when 

compared using a paired, one-tailed T-test (p = 0.187; Table 3.2).  These data suggest that the 

glutamate plays no role in the interaction between Basigin and MCT2. 

To determine which amino acids in the segment containing amino acids 1-6 are used in 

the interaction with MCT2, deletion mutants in which individual amino acids were mutated to 

glycine were used.  Binding of each mutant was compared to that of the BasTM 1-6 protein 

(Figure 3.5).  It was determined that the proteins containing an alanine-to-glycine mutation at 

position 3 (p = 0.001) and a leucine-to-glycine at position 4 (p = 0.01) had significantly lower 

binding to MCT2 than the BasTM 1-6 protein.  These amino acids are likely used in the 

association with MCT2.  The proteins containing a methionine-to-glycine mutation at position 1 

(p = 0.001), an alanine-to-glycine mutation at position 2 (p = 0.048), and a tryptophan-to-glycine  
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Figure 3.4 Binding curve of BasTM-all-E13G for MCT2.  The absorbance obtained for 10 M 

was set to 100% binding, and the other absorbances were compared to it.  A logarithmic trendline 

was applied and the equation was used to determine the affinity.  The R2 value for the trendline is 

shown. 
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Figure 3.5 Binding of BasTM 1-6 mutants to MCT2.  The ability of each amino acid to contribute 

to binding to MCT2 was evaluated through an in vitro binding assay, and compared to that of the 

BasTM 1-6 sequence, which was set to 100% binding.  Mutants with binding greater than 100% 

are thought to inhibit the interaction with MCT2, whereas those with binding less than 100% are 

thought to be involved in the interaction.  *=p<0.05 when individually compared to BasTM 1-6 

via a paired, one-tailed T-test. 
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mutation at position 5 (p = 0.05) had significantly greater binding to MCT2 than the BasTM 1-6 

protein.  These amino acids likely inhibit the interaction with MCT2. 

To determine which amino acids in the segment containing amino acids 7-12 are used in 

the interaction with MCT2, deletion mutants in which individual amino acids were mutated to 

glycine were used.  Binding of each mutant was compared to that of the BasTM 7-12 protein 

(Figure 3.6).  It was determined that mutation of no amino acids resulted in a significant decrease 

in binding.  On the contrary, mutation of the phenylalanine at position 7 (p=0.003), the leucine at 

position 8 (p=0.006), the isoleucine at position 10 (p=0.031), and the alanine at position 12 

(p=0.009) had significantly greater binding to MCT2 than BasTM 7-12.  Mutation of the valine 

at position 11 had similar binding to MCT2 as BasTM 7-12 (p=0.247).  The amino acid at 

position 9 is glycine and therefore was not mutated. 

 

Assessing the ability of the Basigin transmembrane domain to bind MCT4 

To determine which amino acids within the transmembrane domain of Basigin gene 

products are used in the interactions with MCT4, deletion mutants of the domain were again 

used.  It was determined that the regions containing amino acids 1-6 and 7-12 had significantly 

greater binding to MCT4 than the control protein (p = 0.018, 0.024, respectively; Figure 3.7) and 

similar to that of the BasTM-all protein (p = 0.099, 0.250, respectively), whereas the region 

containing amino acids 19-24 was not greater than the control protein (p = 0.255; Figure 3.7).  

The ability of the region containing amino acids 13-18 was significantly lower than that of the 

control protein (p = 0.002; Figure 3.7).  To confirm the data obtained through the simple binding 

assays, affinity assays were performed for each section of the Basigin transmembrane domain  
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Figure 3.6 Binding of BasTM 7-12 mutants to MCT2.  The ability of each amino acid to contribute 

to binding to MCT2 was evaluated through an in vitro binding assay, and compared to that of the 

BasTM 7-12 sequence, which was set to 100% binding.  Mutants with binding greater than 100% 

are thought to inhibit the interaction with MCT2, whereas those with binding less than 100% are 

thought to be involved in the interaction.  *=p<0.05 when individually compared to BasTM 7-12 

using a paired, one-tailed T-test. 
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Figure 3.7 Binding of BasTM truncation mutants to MCT4. The ability of each section of the 

transmembrane domain of Basigin (BasTM 1-6, BasTM 7-12, BasTM 13-18, BasTM 19-24) to 

bind to MCT4 was assessed through an in vitro binding assay.  The binding of each BasTM mutant 

protein was individually compared to that of the BasTM-all protein using a paired, one-tailed T-

test.  The asterisk (*) represents p=<0.01. 
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Table 3.3 Binding affinity of BasTM-all and the Bas-TM truncation mutants for MCT4 in M.  
The p-value was obtained via a paired, one-tailed T-test comparing each mutant to the BasTM-
all protein. 

 

 

 

 

 

  

Protein Affinity p-value

BasTM-all 1.36±0.19 M

BasTM 1-6 1.76±0.433 M 0.185

BasTM 7-12 2.03±0.14 M 0.015

BasTM 13-18 0.838±0.280 M 0.032

BasTM 19-24 2.44±0.12 M 0.012

BasTM-all-E13G 1.69±0.127 M 0.043
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(Table 3.3).  The affinity for MCT4 of the region containing BasTM 1-6 (1.76±0.433 M) was 

similar to that of the entire domain (BasTM-all; 1.36 ±0.19 M).  The affinities for MCT4 of the 

regions containing BasTM 7-12 (2.03±0.14 M) and BasTM 19-24 (2.44±0.12 M) were 

significantly lower than that of BasTM-all.  Surprisingly, the affinity for MCT4 of the region 

containing BasTM 13-18 was significantly greater than that of BasTM-all (0.838±0.280; p = 

0.032).  These data suggest that amino acids within the first six residues of the domain may play 

a role in binding to MCT4, but amino acids within residues 13-18 play a more significant role in 

the interaction.  The glutamate residue within the transmembrane domain of Basigin gene 

products is found at position 13.  The role of this amino acid was tested using the recombinant 

version of the entire Basigin transmembrane domain, in which the amino acid glutamate was 

mutated to glycine (BasTM-all-E13G), in an affinity binding assay (Figure 3.8).  The affinity of 

the BasTM-all-E13G protein for MCT4 was determined to be 1.69 ± 0.127 M, which is 

statistically greater than the affinity of the wild-type sequence for the transporter (p = 0.043; 

Table 3.3).  These data suggest that the glutamate plays a direct role in the interaction between 

Basigin and MCT4. 

To determine which amino acids in the segment containing amino acids 1-6 are used in 

the interaction with MCT4, deletion mutants in which individual amino acids were mutated to 

glycine were used.  Binding of each mutant was compared to that of the BasTM 1-6 protein 

(Figure 3.9).  It was determined that the protein containing an alanine-to-glycine mutation at 

position 3 (p = 0.046) had significantly lower binding to MCT4 than the BasTM 1-6 protein.  

This amino acid likely binds to MCT4.  The proteins containing a methionine-to-glycine 

mutation at position 1 (p = 0.009), an alanine-to-glycine mutation at position 2 (p = 0.041), a 

tryptophan-to-glycine mutation at position 5 (p = 0.023), and a proline-to-glycine mutation at  
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Figure 3.8 Binding curve of BasTM-all-E13G for MCT4. The absorbance obtained for 10 M was 

set to 100% binding, and the other absorbances were compared to it.  A logarithmic trendline was 

applied and the equation was used to determine the affinity.  The R2 value for the trendline is 

shown. 
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Figure 3.9 Binding of BasTM 1-6 mutants to MCT4. The ability of each amino acid to contribute 

to binding to MCT4 was evaluated through an in vitro binding assay, and compared to that of the 

BasTM 1-6 sequence, which was set to 100% binding.  Mutants with binding greater than 100% 

are thought to inhibit the interaction with MCT4, whereas those with binding less than 100% are 

thought to be involved in the interaction.  *=p<0.05 when individually compared to BasTM 1-6 

using a paired, one-tailed T-test. 
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position 6 (p = 0.008) had significantly greater binding to MCT4 than the BasTM 1-6 protein.  

These amino acids are likely inhibitory in the interaction with MCT4. 

To determine which amino acids in the segment containing amino acids 13-18 are used in 

the interaction with MCT4, deletion mutants in which individual amino acids were mutated to 

glycine were again used.  Binding of each mutant was compared to that of the BasTM 13-18 

protein (Figure 3.10).  It was determined that the protein containing a glutamate-to-glycine 

mutation at position 13 (p = 0.022) had significantly lower binding to MCT4 than the BasTM 13-

18 protein.  This amino acid likely binds to MCT4.  The proteins containing a leucine-to-glycine 

mutation at position 15 (p = 0.010), a valine-to-glycine mutation at position 16 (p = 0.002), a 

leucine-to-glycine mutation at position 17 (p = 0.002), and a valine-to-glycine mutation at 

position 18 (p = 0.004) had significantly greater binding to MCT4 than the BasTM 13-18 

protein.  These amino acids are likely inhibitory in the interaction with MCT4. 

 

Assessing the expression of Basigin and MCT2 in vivo 

 To assess the biological relevance of the ability of Basigin to bind to MCT2, 

immunohistochemical analyses were conducted.  Paraffin-embedded sections of mouse retina 

were subjected to immunohistochemical analyses using antibodies specific for Basigin and 

MCT2 (Figure 3.11).  While Basigin is found on the Muller cells, photoreceptor cells, and blood 

vessels of the retina, MCT2 expression predominates in the inner and outer plexiform layers, 

where synapses between neurons form.  A more recent study by this laboratory investigated the 

expression of Basigin gene products within the mouse tongue (Figure 3.12). Basigin and MCT2 

overlap in the taste buds on the surface of the tongue epithelium. 
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Figure 3.10 Binding of BasTM 13-18 mutants to MCT4.  The ability of each amino acid to 

contribute to binding to MCT4 was evaluated through an in vitro binding assay, and compared to 

that of the BasTM 13-18 sequence, which was set to 100% binding.  Mutants with binding greater 

than 100% are thought to inhibit the interaction with MCT4, whereas those with binding less than 

100% are thought to be involved in the interaction.  *=p<0.05 when individually compared to 

BasTM 13-18 using a paired, one-tailed T-test. 
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Figure 3.11. Expression of Basigin and MCT2 in the mouse retina.  In both panels, the green 

fluorescence represents protein expression (Basigin or MCT2) and the blue fluorescence 

represents DRAQ5, which binds DNA.  The magnification bar represents 50 m.  Abbreviations: 

RPE, retinal pigmented epithelium; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, 

inner nuclear layer; IPL, inner plexiform layer. 
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Figure 3.12 Expression of Basigin and MCT2 in mouse tongue.  In the left panel, Basigin 

expression is represented by red fluorescence.  In the right panel, MCT2 expression is 

represented by green fluorescence.  In both panels, DRAQ 5 binding to DNA is represented by 

the blue fluorescence.  The magnification bars represent 50 m. 
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Chapter 4 

Discussion 

 

It is generally accepted that the proton-linked monocarboxylate transporters MCT1, 

MCT2, and MCT4 require an interaction with a cell adhesion molecule of the Basigin subset of 

the IgSF for expression at the plasma membrane and transport as an accessory protein to express 

at the plasma membrane (Kirk et al., 2000; Philp et al., 2003; Wilson et al., 2009).  It was 

thought that Basigin gene products interact with MCT1 and MCT4 (Kirk et al., 2000; Philp et al., 

2003), whereas the Neuroplastins interact with MCT2 (Wilson et al., 2013).  Little is known of 

Embigin, but it was shown to interact with MCT1 (Wilson et al., 2009).  The purpose of the 

present study was to characterize the interaction between Basigin gene products and MCT4, to 

determine if that interaction is like that for MCT1.  During the investigation, it was determined 

that the interactions of Basigin gene products with MCT1 and MCT4 are quite distinct from each 

other.  Additionally, although it was designed to serve as a negative control, an interaction 

between Basigin gene products and MCT2 was identified.  That interaction differs from those of 

the other two transporters.  In all, the data suggest that Basigin gene products, especially Basigin 

variant-1, which is ubiquitously expressed, are highly versatile proteins.   

While simple binding studies are useful in establishing interactions between proteins, 

affinity binding assays allow the interaction to be quantified and compared.  Initially, 

interactions between the transmembrane domain of Basigin and MCT1 were used as a positive 

control and to validate the study system used.  Affinity data for the Basigin-MCT1 interaction 
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obtained through this study was similar to those of previous studies and suggest that the 

interaction is of moderate affinity (Howard et al., 2010).  This study demonstrated that the 

affinity of Basigin for MCT2 and for MCT4 were statistically similar to that of MCT1.  This is 

the first study to indicate that Basigin can interact with MCT2, which was previously thought to 

interact solely with the Neuroplastins (Beesley et al., 2014).  The moderate affinity for MCT4 is 

not surprising considering a recent study in which an interaction between Basigin and MCT4 was 

determined to be crucial for development of glioblastoma and disruption of that interaction can 

reverse that development (Voss et al., 2017).   

The interactions between Basigin and monocarboxylate transporters are distinct.  A 

previous study in which the interaction between the transmembrane domain of Basigin gene 

products and MCT1 was investigated indicated that hydrophobic amino acids on both “ends” of 

the domain were used (Finch et al., 2009).  In the present study, it was determined that the 

interaction between Basigin and MCT2 utilizes two of the three amino acids at the extracellular-

facing portion of the membrane-spanning domain that are used by MCT1.  However, no amino 

acids within the cytoplasmic-facing portion of the membrane-spanning domain are used.  In 

contrast, it was determined that for the interaction with MCT4, Basigin uses only one amino acid 

within the extracellular-facing portion of the membrane-spanning domain used for the 

interactions with MCT1 and MCT2, but also uses the glutamate residue positioned at the center 

of the domain.  A summary of the interactions is shown in Figure 4.1. 

 One exciting component of the present study was the finding that the glutamate residue 

within the transmembrane domain of Basigin is used in the interaction with MCT4.  In previous 

studies of Basigin and MCT1, it was hypothesized that the polar, charged amino acid glutamate  
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Figure 4.1. Summary of Basigin binding to monocarboxylate transporters.  The transmembrane 

domain is depicted with the one-letter code for the individual amino acids shown in the circles.  

Amino acids within white circles are not used to bind any MCT.  Amino acids within blue circles 

are used by MCT1 only.  Amino acids within red circles are used by MCT4 only.  Amino acids 

within green circles are used by MCT1 and MCT2.  Amino acids within yellow circles are used 

by MCT1, MCT2, and MCT4.  
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must have a specific function within the hydrophobic domain of Basigin, and that the function 

was for the purposes of chaperoning MCT1 to the cell surface (Kirk et al., 2000).  That 

hypothesis was not supported by data from a previous study by this laboratory (Finch et al., 

2009).  However, the role of the glutamate was never determined.  In the present study, it was 

determined through two independent assays that glutamate interacts with MCT4.  When the 

residue was mutated to glycine within a recombinant protein consisting of the entire BasTM 

domain (BasTM-E13G), the affinity of the protein for MCT4 was statistically lower than that of 

the original BasTM protein. In addition, the simple binding assay using deletion mutants 

consisting of BasTM 13-18 showed that mutation of glutamate to glycine produced significantly 

decreased binding to MCT4 when compared to the original BasTM 13-18 sequence. A recent 

study using glioblastoma stem cells indicated that the interaction between Basigin and MCT4 

can be disrupted by acriflavine (Voss et al., 2017).  The acriflavine molecule binds to the 

extracellular domain of Basigin, as determined by surface plasmon resonance, and can prohibit 

proliferation of the glioblastoma cells (Voss et al., 2017).  Even more impressively, disruption of 

the Basigin-MCT4 interaction in mice with glioblastoma xenographs, showed significant 

inhibition of tumor progression in both early and late stages of the disease (Voss et al., 2017).  

The data presented herein suggest that the interaction between acriflavine and Basigin creates 

either a conformational change in the Basigin molecule that prevents the glutamate from 

interacting with MCT4 or changes the charge on the glutamate residue within Basigin and hence 

prevents an interaction with MCT4. 

 Another exciting finding from this study is the fact that Basigin binds to MCT2.  Previous 

studies in which the expression of MCTs in the absence of Basigin gene expression was 

investigated indicated that expression of MCT1 and MCT4 were altered in the absence of 
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Basigin, whereas the expression of MCT2 was unaffected (Philp et al., 2003).  The 

immunohistochemical analyses presented in this study provide an explanation for that 

observation.  Basigin and MCT2 are not expressed in the same places within the retina. 

Therefore, Basigin does not affect MCT2 expression in that tissue.  The immunohistochemical 

analyses of mouse tongue suggest that Basigin and MCT2 expression do overlap in that organ 

and provide biological relevance to the biochemical data obtained.  Unfortunately, an analysis of 

MCT2 expression in the mouse tongue in the absence of Basigin expression is beyond the 

current abilities of the laboratory and cannot be undertaken.  The laboratory has not been able to 

produce a Basigin-null animal in several years.   

 In conclusion, it has been demonstrated that the transmembrane domain of Basigin can 

interact with MCT1, MCT2, and MCT4.  The amino acids used in the interactions differs by 

transporter.  The observed preference of Basigin for MCT1 and MCT4 is therefore more likely 

an effect of overlapping expression, rather than the ability to interact. 
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