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ABSTRACT 

The connected vehicle technology presents an innovative way of sharing information 

between vehicles and the transportation infrastructure through wireless communications. The 

technology can potentially solve safety, mobility, and environmental challenges that face the 

transportation sector. Signal phasing and timing information is one category of information that 

can be broadcasted through connected vehicle technology. This thesis presents an in-depth study 

of possible ways signal phasing and timing information can be beneficial as far as safety and 

mobility are concerned. In total, three studies describing this research are outlined. 

 The first study presented herein focuses on data collection and calibration efforts of the 

simulation model that was used for the next two studies. The study demonstrated a genetic 

algorithm procedure for calibrating VISSIM discharge headways based on queue discharge 

headways measured in the field. Video data was used to first compute intersection discharge 

headways for individual vehicle queue position and then to develop statistical distributions of 

discharge headways for each vehicle position. Except for the 4th vehicle position, which was best 

fitted by the generalized extreme value (GEV) distribution, the Log-logistic distribution was 

observed to be the best fit distribution for the rest of vehicle positions. Starting with the default 

values, the VISSIM parameters responsible for determining discharge headways were heuristically 

adjusted to produce optimal values. The optimal solutions were achieved by minimizing the Root 

Mean Square Error (RMSE) between the simulated and observed data. Through calibration, for 

each vehicle position, it was possible to obtain the simulated headways that reflect the means of 

the observed field headways. However, calibration was unable to replicate the dispersion of the 

headways observed in the field mainly due to VISSIM limitations. Based on the findings of this 
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study, future work on calibration in VISSIM that would account for the dispersion of mixed traffic 

flow characteristics is warranted. 

The second study addresses the potential of connected vehicles in improving safety at the 

vicinity of signalized intersections. Although traffic signals are installed to reduce the overall 

number of collisions at intersections, rear-end collisions are increased due to signalization. One 

dominant factor associated with rear-end crashes is the indecisiveness of the driver, especially in 

the dilemma zone. An advisory system to help the driver make the stop-or-pass decision would 

greatly improve intersection safety. This study proposed and evaluated an Advanced Stop Assist 

System (ASAS) at signalized intersections by using Infrastructure-to-Vehicle (I2V) and Vehicle-

to-Vehicle (V2V) communication. The proposed system utilizes communication data, received 

from Roadside Unit (RSU), to provide drivers in approaching vehicles with vehicle-specific 

advisory speed messages to prevent vehicle hard-braking upon a yellow and red signal indication. 

A simulation test bed was modeled using VISSIM to evaluate the effectiveness of the proposed 

system. The results demonstrate that at full market penetration (100% saturation of vehicles 

equipped with on-board communication equipment), the proposed system reduces the number of 

hard-braking vehicles by nearly 50%. Sensitivity analyses of market penetration rates also show a 

degradation in safety conditions at penetration rates lower than 40%. The results suggest that at 

least 60% penetration rate is required for the proposed system to minimize rear-end collisions and 

improve safety at the signalized intersections. 

The last study addresses the fact that achieving smooth urban traffic flow requires reduction 

of excessive stop-and-go driving on urban arterials. Smooth traffic flow comes with several 

benefits including reduction of fuel consumption and emissions. Recently, more research efforts 

have been directed towards reduction of vehicle emissions. One such effort is the use of Green 



 

xvi 
 

Light Optimal Speed Advisory (GLOSA) systems which use wireless communications to provide 

individual drivers with information on the approaching traffic signal phase and advisory speeds to 

arrive at the intersection on a green phase. Previously developed GLOSA algorithms do not 

address the impact of time to discharge queues formed at the intersection. Thus, this study 

investigated the influence of formed intersection queues on the performance of GLOSA systems. 

A simulation test-bed was modeled inside VISSIM to evaluate the algorithm’s effectiveness. Three 

simulation scenarios were designed; the baseline with no GLOSA in place, scenario 2 with 

GLOSA activated and queue discharge time not considered, and scenario 3 with GLOSA activated 

and where queue dissipation time was used to compute advisory speeds.  At 95% confidence level 

the results show a significant reduction in the time spent in queue when GLOSA is activated 

(scenarios 2 and 3). The change in the average number of stops along the corridor was found not 

to be significant when the base scenario was compared against scenario 2. However, a comparison 

between scenarios 2 and 3 demonstrates a significant reduction in the average number of stops 

along the corridor, and also in the time spent waiting in queues. 

 

Keywords: Discharge Headway, VISSIM, Genetic Algorithm, Connected vehicles, Vehicle-to-

Infrastructure, Advanced Stop Assist System, Microsimulation, GLOSA, Advisory Speed, 

Advanced Signal Controls. 
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CHAPTER 1 INTRODUCTION 

Background 

The history of Connected Vehicles (CV) can be traced back to 2003 when the U.S. 

Department of Transportation first launched the Vehicle-Infrastructure-Integration (VII) program 

(Songchitruksa & Zha, 2014).  The initial objective of VII was to address the traffic safety 

problems through high-speed wireless communications among Vehicle-to-Vehicle (V2V) and 

Vehicle-to-Infrastructure (V2I). Information about vehicles, infrastructure, and the environment 

can be relayed to individual entities such as drivers, vehicles, or transportation agencies through 

wireless communication. CV technology consists of different ways of sharing data and innovative 

ways to use these data to improve safety, mobility, and the environment. Due to CV technology’s 

immense potential for solving various transportation problems, the U.S. Department of 

Transportation (DOT) has significantly invested in research in this area. There has been 

development of prototypes and test bed facilities in Arizona, Michigan, California, Florida, New 

York, Tennessee, and Virginia (Songchitruksa, Bibeka, Lin, & Zhang, 2016). 

When fully implemented, it is expected that connected vehicles will yield unprecedented 

levels of anonymous data that will be the basis for a multitude of innovative applications that will 

lead to smart vehicles, smart infrastructure, and ultimately smart cities. Research has found that 

the technology could reduce unimpaired vehicle crashes by 80 percent, while also reducing the 4.8 

billion hours that Americans spend in traffic annually (FHWA, n.d.). 

One of the applications of connected vehicles is the communication of Signal Phasing and 

Timing (SPaT) information to vehicles which are approaching an intersection. Information like 

signal status, running time and signal switching times can be relayed to vehicles in the intersection 
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approach to help drivers in making early and informed decisions. This technology has a potential 

of reducing vehicular conflicts, fuel consumption and emissions resulting from stop-and-go 

movements along corridors with signalized intersections. 

CV test beds include prototype test beds and simulation test beds. Prototype test beds are 

limited by high cost and small scale. Most CV application algorithms are first tested and evaluated 

in simulation test beds. Only when the CV application development is in the real-world 

implementation phase, prototype test beds are used to test their functionality and feasibility 

(Songchitruksa et al., 2016). 

Study Objectives 

CV technology has an immense potential for solving various transportation problems. This 

thesis provides an in-depth simulation evaluation of different safety and mobility applications of 

SPaT information in a CV environment. The main goals are: 

1. To calibrate a VISSIM simulation model using queue discharge headway data 

observed in the field. 

2. To propose and demonstrate the implementation of an Advance Stop Assist System 

(ASAS) in a microscopic simulator. 

3. To evaluate potential safety benefits of ASAS. 

4. To develop a modified Green Light Optimized Speed Advisory (GLOSA) algorithm 

that considers the formed intersection queues and queue discharge headways for each 

vehicle position in helping drivers to arrive on green signal indication in a series of 

signalized intersections. 
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Potential Study Benefits 

In 2013, a total of 4,700 fatal crashes, 826,000 injury crashes, and 1.76 million property-

damage-only crashes occurred in relation to signalized intersections in the United States (U.S.); 

nearly 30% of these were rear-end collisions (NHTSA, 2013). Additionally, the transportation 

sector is the second largest source of Greenhouse Gas (GHG) emissions in the United States (U.S.), 

according to the Environmental Protection Agency (EPA) (U.S. Environmental Protection 

Agency, 2010). More than 60 percent of the energy used in the U.S. transportation sector is due to 

light-duty vehicles (EIA, 2010), a higher proportion being attributed to the stop-and-go vehicular 

movement. This study explores the potential of the CV technology for solving these problems by 

relaying SPaT information to vehicles approaching the intersection. Drivers are expected to make 

better and informed decisions that will reduce stop-and-go movements and vehicular conflicts at 

the vicinity of signalized intersections. 

Thesis organization 

This thesis is comprised of five chapters. Chapter 1 provides the general overview of the 

research problem, the description of the research objectives, and possible contributions of the study 

to research and industrial realm at large. The next three chapters of the thesis are comprised of 

three research articles.  Chapter 2 is a stand-alone journal paper that addresses the efforts of 

calibrating vehicle discharge headways in a simulation model. It has been submitted for 

publication consideration. Chapter 3 focuses on the second and third objectives. It is another 

journal article that has already been accepted for publication. Chapter 4 focuses on the third 

objective. It is a stand-alone journal paper that was presented at the 97th annual meeting of the 

Transportation Research Board (TRB). Chapters 5 provides the overall conclusions of the study.  
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CHAPTER 2  

Calibration of VISSIM Discharge Headways Based on Field Measured Values and 

Naturalistic Driving Study Data 
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Introduction 

 Microscopic simulation is widely used in transportation engineering for evaluating facility 

performance during operation and for planning phase as well. When done correctly, simulation 

models also have the ability to capture most of the stochastic variability of real-world traffic 

conditions geometries (Park & Qi, 2005). For accurate and reliable results, simulation models 

have to be well calibrated and validated to account for site conditions.  There are some agencies 

that have developed guidelines to use for calibration (Florida Department of Transportation, 2014; 

Hadi, Sinha, & Wang, 2007; Jin et al., 2009). These guidelines have focused on ensuring that a 

certain tolerance level is maintained for selected Measures of Effectiveness (MOEs). Most 

calibration efforts reported in the literature have focused on macroscopic parameters like volume, 

travel  time,  capacity,  and  delay  (Hadi et al., 2007).  With the increasing research efforts in the 

field of transportation, microscopic parameters like discharge headways can no longer be 

overlooked in the calibration and validation procedures. A need for calibrating microscopic 

variables such as discharge headway has been heightened by an increased interest in the use of 

microscopic simulation to evaluate the benefits of connected and autonomous vehicles (CVs and 

AVs). The current traffic flow – with mixed traffic flow characteristics, has highly stochastic 

discharge headways, with widely dispersed distributions (Jin et al., 2009). Also, the current car 

following behavior causes varied vehicle spacing when stopped and different headways when 

being discharged from the queue. On the other hand, the extreme end of automation (100% 

AVs) is expected to have relatively uniform headway distributions and possibly shorter headways 

due to platooning effect. If discharge headways are not calibrated, the simulation results would 

potentially underrepresent the benefits of CVs and AVs because the default values do not capture 

heterogeneity of discharge headways. This study aimed at calibrating discharge headways based 
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on field measurements and naturalistic driving study (NDS) data. VISSIM, one of the widely 

used microscopic simulator, is employed for this study.  

Literature Review 

Calibration 

Traffic conditions are location-specific. As a result, calibration and validation of a 

simulation model requires collection of local traffic data. Traffic volume, speed distributions, 

delays, travel time and queuing data are among the data required for calibration and validation. A 

report by Park and Won (Park & Won, 2006) discusses in detail the data requirements for calibration 

and validation of microscopic simulation models. For successful calibration and validation of 

simulation models, it is important to have accurate and detailed traffic data which include link 

traffic volumes, turning movement counts and travel times (Hollander & Liu, 2008). While a 

number of studies have suggested calibration of microsimulation models by only adjusting 

driving behavior parameters (Jayakrishnan, Oh, & Sahraoui, 2001; Kim & Rilett, 2003), other 

studies consider calibration as a wider problem and they also try to simultaneously incorporate 

calibration of  route  choice  models (Toledo et al., 2003; Toledo, Ben-Akiva, Darda, Jha, & 

Koutsopoulos, 2004). The latter procedure is considered stronger because solving individual 

sub-problems separately might lead to biased estimates (Hollander & Liu, 2008). 

  Geographical scale also presents an interesting difference between different calibration 

studies. The differences arise from the size of the network being modeled and the number of 

observation points during the collection of actual field data (Hollander & Liu, 2008). While some 

studies focus on a single intersection (Tao Ma & Abdulhai, 2002; Buck, Mallig, & Vortisch, 

2017), the network size may be as large as the whole metropolitan area (Park & Qi, 2005). There is 
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also a substantial variation in the number of parameters being calibrated in different studies, 

generally in the range of 3 to 19 parameters (Hollander & Liu, 2008). With a smaller number of 

parameters, it is easy to observe the overall effect of a single parameter when it is modified. 

Bigger parameter sets are normally calibrated using automated algorithms. This improves the 

efficiency in getting closer to an optimum solution although the procedure may get very intensive 

computationally. Another important difference that is observed across different calibration studies 

is the choice and number of traffic measures used in comparing simulation outputs to observed 

data. While some studies propose procedures that use only a single measure (Tao Ma & Abdulhai, 

2002; Kim & Rilett, 2003), a number of other notable studies perceive calibration as a multi-stage 

procedure that uses a different measure for each calibration stage. In a study by Dowling et al. 

(Dowling, Skabardonis, Halkias, McHale, & Zammit, 2004), calibration starts by adjusting driving 

behavior parameters to match simulated and observed capacities. In the second stage, calibration 

of route choice parameters is done by using flow data. Finally, all parameters are fine-tuned by 

using travel time and queue length data. A similar procedure was used in a study by Hourdakis et 

al. (Hourdakis, Michalopoulos, & Kottommannil, 2003). 

  Calibration by using a number of measures simultaneously reduces the risk of obtaining an 

optimum fit by adjusting the wrong parameters (Hollander & Liu, 2008). However, there are 

circumstances in which different traffic measures are more appropriate for calibrating different 

parameters. In such a case, it is important to decompose the calibration problem into sub-problems. 

A study by Hollander and Liu (Hollander & Liu, 2008) suggests that decomposition of the 

calibration problem should only be done when the sub-problems are independent from each other.  
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Calibration of VISSIM Intersection Models 

 Although there are different guidelines on the calibration and validation of simulation 

models, most  of  them  do  not  cover  specific  aspects  of  individual  traffic  flow  simulation  

software. Calibration of VISSIM models for different facilities has been discussed in a number of 

studies (Gomes, May, & Horowitz, 2004; Menneni, Sun, & Vortisch, 2008;  Manjunatha, Vortisch, 

& Mathew, 2013; Geistefeldt et al., 2014). Most of the available literature is on different procedures 

for calibrating freeway facilities and arterial corridors.  Only  a  few  notable  studies  exist  that  

discuss  the  calibration  of  VISSIM intersection models. Calibration of roundabouts in VISSIM 

is discussed in a study by Cicu et al. (Cicu, Illotta, Bared, & Isebrands, 2011). The use of 

intersection maximum queue length data for validation is demonstrated in studies by Park et al. 

(Park & Qi, 2005; Park & Won, 2006). A study by Cunto and Saccomanno (Cunto & Saccomanno, 

2008) provided an alternative approach  to calibration of signalized intersections in VISSIM 

through the use of safety performance measures. Most of the VISSIM intersection calibration 

studies use delay or travel time data.  The use of discharge headway data for calibration has not 

been deeply investigated. A study by Buck et al. (Buck et al., 2017) used discharge headway data 

as part of the  calibration  procedure.  The performance of the calibrated model was measured by 

using average values of discharge headways for each queue position. The study did not provide 

an extensive analysis in the distribution of simulated discharge headway data and how the 

calibration process affected it. Therefore, the present study aims at calibrating the simulated 

VISSIM headways based to reflect the ones observed in the field by adjusting car following 

parameters that influence discharge headways. To extend the research that was conducted by Buck 

et al. (Buck et al., 2017), this study will not only base calibration on mean headways but would 

explore calibration of simulated headway distributions to resemble those of the observed field data. 
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Vehicle Discharge Headway 

The discharge headway at signalized intersections is a microscopic traffic flow characteristic used 

for estimating intersection capacity and as a safety surrogate measure. The use of inaccurate 

discharge headways may lead to wrong estimations of traffic flow characteristics influenced by 

this parameter. 

The headway of the first  vehicle consists of three parts; start-up of the first vehicle, elapsed 

time for the first vehicle to pass the stop line, and elapsed time before the front of the second 

vehicle touches the stop line; while the headways of other vehicle positions do not have the first 

component (Jin et al., 2009). The characteristics of the first discharge headway is often studied 

independently from other vehicle positions (Jin et al., 2009). For similar reasons, the present 

study focused on the second through the tenth vehicle position in the queue. 

Several studies have been carried out in the last five decades to investigate how discharge 

headways are influenced by external factors such as number of lanes, vehicle type and vehicle 

maneuver (Greenshields, Schapiro, & Ericksen, 1947; Carstens, 1971; Zegeer, 1986; Luttinen, 

1992; Jin et al., 2009; Panichpapiboon, 2015; Badhrudeen, Ramesh, & Vanajakshi, 2016). One of 

the facts addressed by previous studies is that discharge headway tends to decrease sequentially 

with respect to the queue position. The first discharge headway is usually larger because it requires 

a longer reaction time. Normally, a steady headway is achieved starting at the fourth or the fifth 

vehicle. Nevertheless, while most previous studies focused on estimating the mean discharge 

headways, few studies have focused on the detailed distribution of the discharge headways (Jin et 

al., 2009; Yin, Li, Zhang, Yao, & Li Li, 2009; Wu, Hu, & Sun, 2010; Panichpapiboon, 2015).  
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Findings in studies that explored discharge headways using distributions identified 

different distributions to fit the observed discharge headway data. While Zhang et al. (Zhang, 

Wang, Wei, & Chen, 2007) determined that log-normal distributions fit observed headways better, 

other studies found the generalized extreme value (GEV) model to provide the best fit ( Yin et al., 

2009; Panichpapiboon, 2015)  for field headway  data. On the other hand, log-normal distribution 

was observed to be the best fit for headway data collected during off peak-hours while log-

logistic distribution was observed to be better for discharge headways collected under the 

congested traffic environment (Yin et al., 2009; Wu et al., 2010; Jang, Park, Kim, & Choi, 2011). 

In general, these models provide a convenient way to characterize stochastic features of the vehicles 

discharge process. 
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Methodology 

Study Site 

A simulation model was developed for a signalized intersection located in the city of 

Tampa, Florida (Figure 2.1). It is an intersection between Bruce B Downs Boulevard and 

University Square Drive, adjacent to the University of South Florida.  The intersection is one of 

the four major signalized intersections located in the Bruce B Downs corridor. The site was 

chosen because of the availability of naturalistic driving data for different age groups collected 

by the Strategic Highway Research Program 2 (SHRP2). The naturalistic driving data was used 

for simulation input data, specifically, speed profiles, deceleration and acceleration rates. 

 

Figure 2.1 Study site. 
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Data Collection 

Data were collected during the morning peak hour between 8:00 and 10:00 a.m. on three 

consecutive days, March 20 to March 22, 2017. This helped to capture the day to day variability. 

The morning peak was chosen because longer queues were observed to form during this time along 

the direction of the corridor that was used for data collection. Video recorders were used to record 

discharging queues at the intersection. The field set up included two video cameras as shown in 

Figure 2.2. The upper camera was strategically placed to capture vehicles as they cleared the 

intersection. The lower camera was used to record the signal switching times. In order to obtain a 

clear view of the vehicles and to capture the entire queue length, the upper camera was mounted 

at a height of at least 15 feet above the existing grade. Utility poles and sign posts were used for 

mounting the cameras as shown in Figure 2.2. Travel time data were obtained by using the floating 

car technique with a Global Positioning System (GPS) receiver that logged in data at every second. 

A total of 40 runs in 3 different days were done between two established points along the corridor. 

 

   

Figure 2.2 Video recording setup. 
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Data Reduction Process 

 The videos recorded by the lower and upper camera were synchronized in order to keep 

track of the start of green phase. Discharge headway data was then extracted from the videos by 

tracking the time at which the rear bumper of queued up vehicles crossed the stop line. The site 

chosen had an exclusive right turn lane. Only the discharge headways for the through movement 

was used in this study. The summary of the observed discharge headways is shown in Table 2.1. 

Travel time data was processed in Geographic Information System (GIS). To compute travel time, 

a shapefile for each trip was created from the GPS data that contained coordinates and time stamps 

at 1 second resolution. The travel time data was obtained by taking a difference between the time 

stamps at the first and the last point of the established measurement section. Queue lengths were 

extracted from the recorded videos by counting the number of queued up vehicles before the 

start of a green phase. 
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Table 2.1 Summary of Observed Discharge Headways 

Position Sample size Maximum Minimum Range Mean Median Variation 

2 135 9.09 0.72 8.37 3.74 3.61 1.21 

3 133 7.25 0.81 6.44 2.61 2.45 0.83 

4 127 6.80 1.28 5.51 2.47 2.19 0.81 

5 127 6.44 1.13 5.31 2.41 2.31 0.83 

6 122 5.66 1.00 4.66 2.28 2.12 0.54 

7 116 6.07 0.89 5.19 2.33 2.26 0.71 

8 107 5.58 0.97 4.61 2.09 1.99 0.61 

9 96 4.18 0.71 3.47 2.09 1.94 0.52 

10 86 4.65 1.00 3.65 2.14 1.96 0.61 

 

Fitting of Headway Distributions 

 MATLAB software was used to fit different parametric probability distributions to the 

field headway data for each of the vehicle queue position. The following parametric distribution 

models were tested: normal distribution, t-location scale distribution, log-normal distribution, log-

logistic distribution, logistic distribution, generalized extreme value (GEV), Weibull distribution, 

inverse Gaussian distribution, Gamma distribution, exponential distribution, extreme value, 

and beta distribution. The Kolmogorov-Smirnov (K-S) test was used to determine the best fit 

distribution for each of the vehicle position. This test measures how well the data follow a 

particular distribution. The K-S test has also been used by previous studies (Jin et al., 2009; 

Yin et al., 2009; Wu et al., 2010; Panichpapiboon, 2015). The best-fit distribution is determined 
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by checking the P-value of the K-S test. The best distribution is defined to be the one with highest 

P-value, above the alpha value (0.01 for this case). Table 2.2 presents the results of the best fit 

distribution for actual headway data collected from field with the K-S test P-values. Log-logistic 

distribution is observed to be the best fit distribution for 8 out of 9 vehicle positions used in this 

study. Literature indicates that log-logistic distribution is suitable during peak-hours (Yin et al., 

2009; Wu et al., 2010). The log-logistic distribution model is presented in Equation (2.1) where h 

refers to the discharge headway value. The generalized extreme value (GEV) distribution was 

found to be the best fit for the 4th   position. It has been found to be effective in modeling time 

headways by some previous studies (Wu et al., 2010; Panichpapiboon, 2015). 

𝑓(ℎ) =
𝑒𝑥𝑝 (

𝑙𝑛ℎ − 𝜇
𝜎 )

𝜎 [1 + 𝑒𝑥𝑝 (
𝑙𝑛ℎ − 𝜇

𝜎 )]
2 (2.1) 

Table 2.2 The K-S Hypothesis Testing Results of Actual Discharge Headways Data 

Position Best fit distribution K-S test (default level 0.01) k Mu (𝜇) Sigma (𝜎) 

2 Log-logistic 0.7053  3.5609 1.1972 

3 Log-logistic 0.3829  2.4843 1.1853 

4 GEV 0.9407 0.19 2.0500 0.5300 

5 Log-logistic 0.9424  2.2479 1.2214 

6 Log-logistic 0.8516  2.1383 1.1735 

7 Log-logistic 0.2976  2.2255 1.2214 

8 Log-logistic 0.8589  1.9542 1.1972 

9 Log-logistic 0.7784  1.9739 1.2214 

10 Log-logistic 0.8531  1.9937 1.1972 
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Simulation Input Data 

 Simulation input included NDS data, traffic volumes, signal timings and geometric data. 

This section provides a short discussion of the simulation data inputs.  

 Naturalistic Driving Study Data: Part of the data employed for this study was obtained from the 

Strategic Highway Research Program 2 (SHRP2) insight website for Bruce B Downs corridor, in 

Tampa, Florida (Virginia Tech Transportation Institute, 2016). The data consist of speeds and 

vehicle acceleration/deceleration rates, collected on a Naturalistic Driving Study (NDS), and 

summarized based on the age groups. The Bruce B Downs corridor had the highest number of NDS 

participants, about 400-600 people. 

 Traffic Data: Traffic volume data was provided by the city of Tampa traffic office in the form of 

intersection turning movement counts. Network balancing was done to develop the Origin-

Destination (OD) matrix. 

 Signal Timings & Geometric Information: Signal timing data was provided by the city of Tampa 

traffic office. Modeling was based on the AM peak. Geometric information such as number of lanes, 

lane widths and turning radius was extracted from Google Earth Pro. 

 Calibration and Validation Data: Travel time and queue lengths data were used for general 

calibration and validation of the model following the Florida Department of Transportation (FDOT)  

simulation guidelines (Florida Department of Transportation, 2014). Discharge headway data were 

used in the second calibration stage.  

Initial Evaluation 

 Once the simulation model was set up, multiple runs with default VISSIM parameters were 

conducted and the results are presented in Figure 2.3. The default parameters in VISSIM could 

not replicate the values of discharge headways very well and produced results which are rather 
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low (Figure 2.3(a)). Therefore, calibration was necessary and the procedure recommended in a 

study by Park et al. (Park & Qi, 2005) was used. 

  

(a) (b) 

Figure 2.3 Average discharge headways before calibration. 

Initial Calibration 

Identification of Calibration Parameters 

 VISSIM uses a stochastic, time step based, microscopic traffic flow model that treats driver-

vehicle units as basic entities. It provides two Wiedemann’s traffic flow models which are based 

on the assumption that there are basically four different driving states for a driver: free driving, 

approaching, following, and braking (PTV AG., 2015). Out of the two Wiedemann’s models, the 

VISSIM manual recommends Wiedemann 74 car-following model to be used for arterials (PTV 

AG., 2015). The Wiedemann 74 car following model is shown in Equation (2.2). 

𝑑 = 𝑎𝑥 + 𝑏𝑥 (2.2) 
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Where: 

 

 

 

 

 The term 𝑏𝑥𝑎𝑑𝑑 allows adjustment of the time requirement values and 𝑏𝑥𝑚𝑢𝑙𝑡 allows 

adjustment of the standard deviation of the safety distance values. In VISSIM, the discharge 

headways at the intersection are highly influenced by parameters of the car-following model. 

Vehicle accelerations are also known to affect the queue dissipation time. In this study, VISSIM 

acceleration functions were calibrated in the initial calibration stage. Therefore, discharge headway 

calibration was done by adjusting driving behavior parameters. 

 In addition to this, VISSIM provides a reaction time distribution parameter which causes a 

time delay between the time step when the signal switches to green and the time when the first 

vehicle upstream of the corresponding stop line starts to move (PTV AG., 2015). Calibration of 

the first discharge headway was done through selecting an established time distribution for this 

parameter. User-adjustable parameters selected for calibration and their acceptable ranges 

suggested by literature (Park & Won, 2006; Miller, 2009; PTV AG. VISSIM 8 User Manual., 

2015; Lidbe, Hainen, & Jones, 2017) are as shown in Table 2.3. 

  

𝑑 = Desired safety distance 

𝑎𝑥 = Standstill distance 

𝑏𝑥 = (𝑏𝑥
𝑎𝑑𝑑 

+ 𝑏𝑥
𝑚𝑢𝑙𝑡 

× 𝑧)√𝑣 

𝑣 = Vehicle speed 

0 ≤ 𝑧 ≤ 1, 𝑧~𝑁(0.5, 0.152) 
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Table 2.3 Driving Behavior Parameters 

Parameter Units Min. Value Max. Value 

Car-following 

model parameters 

Standstill Distance (𝑎𝑥) ft. 2 8 

Additive part (𝑏𝑥𝑎𝑑𝑑 ) - 0 3 

 Multiplicative part (𝑏𝑥𝑚𝑢𝑙𝑡 ) - 0 3 

Signal control 

parameters 

Safety distance reduction factor - 0 1 

Reaction time distribution - - - 

 

Experimental Design for Calibration 

The number of possible combinations of the adjustable parameters is very large. In order to 

reduce the number of samples to a reasonable level while still covering the entire parameter 

surface, Latin Hypercube Design (LHD) was used for sampling. LHD is useful for limiting the 

experiment to a fixed user-defined number of combinations (Park & Qi, 2005). A total of 20 

parameter sets that constituted the parent generation were generated by using LHD in MATLAB. 

Parameter Calibration by Use of Genetic Algorithm (GA) 

 The use of heuristic algorithms like GA for simplifying the tedious task of calibration has 

been investigated in a number of studies (T. Ma & Abdulhai, 2001; Park & Qi, 2005; Manjunatha 

et al., 2013; Lidbe et al., 2017).  The process starts by generating a number of parameter sets, each 

of which represents a possible solution. Multiple simulation runs are then performed for a 

selected number of sets and the simulation results are compared with the actual field data by 

using a defined fitness function. A fitness value is then assigned to each of the candidate 
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solutions. If the stopping criterion is not met, a new set of parameters is generated through 

the process of selection, crossover and mutation. The chances of a candidate solution appearing 

in the next generation depends on the fitness value assigned to it. A summary of the algorithm 

used in this study is shown in Figure 2.4.  

Discharge headway 
record

Vissim

Parameter sets

Start

Evaluation

Selection

Cross-over

Mutation

Offspring

LHD

Stopping criteria
 met? Exit

 

Parent generation

New generation

Initial path

COM

Y

N

 

Figure 2.4 Calibration flow chart. 

Calibration by using heuristic algorithms in VISSIM is normally automated through the 

Component Object Model (COM) environment. Parameters are fed in VISSIM by using scripts 

and multiple runs are performed. The results are then fed back to the heuristic algorithm for 

assessing the fitness of the solutions and the process is repeated until the stopping criterion is met. 
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In VISSIM, discharge headway is not available as one of the result attributes. It can only 

be obtained through direct output files, which require farther processing before average 

discharge headway values can be obtained. As a result, the calibration process in this study 

was semi-automated. The processing of discharge headway output files was done manually 

after which assigning of the fitness values and the remaining part of the heuristic algorithm was 

automated through a Visual Basic (VB) script. The COM interface allowed the task of performing 

multiple runs in VISSIM with different parameter sets to be automated. For each parameter 

set, five simulations with a different random seed were run. The output files were then processed 

manually to obtain the average discharge headways from the second queue position to the 

tenth queue position. 

 The Root Mean Squared Error (RMSE) of the discharge headway values from the second 

position in the queue to the tenth position between the simulation output and the field data was 

used as the fitness value for the GA. The fitness function is as shown in Equation (2.3). 

𝐹𝑉 = √
1

9
∑ (𝐻𝑖𝑓𝑖𝑒𝑙𝑑

− 𝐻𝑖𝑠𝑖𝑚
)

210

𝑖=2
 (2.3) 

 

Where: 

𝐹𝑉 = Fitness value 

𝐻𝑖𝑓𝑖𝑒𝑙𝑑 
= Average discharge headway for position 𝑖 from the field 

𝐻𝑖𝑠𝑖𝑚 
= Average discharge headway for position 𝑖 from the simulation 18  

 

 The values of discharge headways are relatively low. Therefore, RMSE was used for 

computing the fitness values because it penalizes large errors heavily (Hollander & Liu, 2008). A total 
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of 23 generations with a population size of 20 were produced as the algorithm converged. 

Proportionate selection, single point cross-over, and point mutation was used for this study.  A 

mutation rate of 5 percent was used in the algorithm. 
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Calibration Results 

 This section discusses the results obtained after calibration and fitting the statistical 

distributions. Results in Figure 2.5(a) show that the simulated mean discharge headway values, 

after calibration, closely matched the actual mean discharge headways compared to the default 

simulated headways. In order to test the performance of the calibrated VISSIM model, Figure 

2.5(b) is plotted to show the relationship  between  the  simulated  average  headways,  after  

calibration,  and  the  observed headways.  After  calibration,  the  simulated  mean  discharge  

headways  are  close  to  the field observed average headways with an R-squared value of 0.95. 

This value is much higher than the R-squared value obtained using the default simulated values 

(0.25, see Figure 2.3). Thus, a conclusion can be drawn that after calibration, the averages of the 

simulated discharge headways are closer to the field observed headways, for each vehicle position.  

  

(a) (b) 

Figure 2.5 Average discharge headways after calibration. 

 Plots shown in Figure 2.6 provide a visual comparison of the simulated headways for 

the initial model (using default parameters), the final model (after calibration), and the field 

observations. The means of the calibrated headway distributions (green curves) are closer to the 
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mean of the field observed headways (red curves) compared to those of the initial models. On the 

other hand, the calibration process was not able to replicate the dispersion of the field data. As 

shown in Figure 2.6, although the central tendency of both the calibrated and field headways appear 

to be relatively similar, the simulated probability distributions of simulated headways have higher 

picks and less dispersion compared to the field headways.  In VISSIM,   𝑏𝑥
𝑚𝑢𝑙𝑡   allows adjustment 

of the standard deviation of the safety distance values. However, the variability that is inherent 

in the observed field data could not be captured even by using the highest reasonable values of  

𝑏𝑥𝑚𝑢𝑙𝑡   as suggested by literature (Park & Won, 2006; Miller, 2009; PTV AG. VISSIM 8 User 

Manual., 2015; Lidbe et al., 2017). 
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Figure 2.6 Fitted distribution for discharge headways data from the field, default simulation and calibrated simulation output.
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Conclusions and Recommendations 

Calibration is an important process in microscopic traffic simulation. Most of the previous 

research efforts have used macroscopic measures including delay and travel time for calibrating 

traffic models and have ignored calibrating microscopic elements such as discharge headways. 

Rightfully so, in practice, typical transportation projects use microscopic models to evaluate 

measures of effectiveness (MOEs) such as delays and travel time hence a reason to ensure that the 

base model outputs for those MOEs are within a certain tolerance level. The advent of 

autonomous and connected vehicle (AV and CV) technologies have led to an increased use of 

simulation models to investigate the benefits of these technologies in improving traffic flow 

characteristics. Some of the benefits could include reducing stop-and-go conditions, reducing loss 

time due to reaction time caused by human limitations, and improved capacity. If discharge 

headways are not calibrated to reflect the characteristics of the mixed traffic flow, the 

simulation evaluation would not be accurate. This study presented the efforts in calibrating the 

intersection discharge headways by measuring discharge headways in the field, fitting the 

headways using a statistical distribution and adjusting VISSIM parameters that control discharge 

headways. 

 Four VISSIM parameters; average standstill distance (𝑎𝑥), additive part (𝑏𝑥𝑎𝑑𝑑
), 

multiplicative part (𝑏𝑥𝑚𝑢𝑙𝑡
) and safety distance reduction factor were used to adjust the distribution 

of discharge headways. This study was successful in shifting the distribution of the simulated 

discharge headways to replicate the mean of the field observed values. One of the significant 

revelations of this study was the inability of the calibration process to replicate the dispersion of the 

discharge headways obtained by the field measurements. Even by using high values of 𝑏𝑥𝑚𝑢𝑙𝑡, the 
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parameter that controls dispersion of the headways, the dispersion of the distributions of the 

simulated headways could not come closer to those of the field observations. 

 The inability of the calibration process to account for the dispersion of headway data 

requires special attention. On the simulator side, microscopic simulation software developers could 

modify the way discharge headways are modeled. In VISSIM, for example, allowing discharge 

headway data to be entered as a distribution similar to how it is done for speeds, reaction time, and 

stopping distance before the stop bar, would enable analysts to define discharge headways in terms 

of the distributions observed in the field. 
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CHAPTER 3  

Safety Evaluation of the Advanced Stop Assist System in Connected Vehicle Environment 
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Introduction 

The American Association of State Highway and Transportation Officials (AASHTO) 

offered a nationwide challenge to deploy Dedicated Short Range Communications (DSRC) 

infrastructure with Signal Phase and Timing (SPaT) broadcast on at least one corridor 

(approximately 20 signalized intersections) in each of the 50 states by January 2020 (AASHTO, 

2016). These corridors are expected to play a significant role as test beds for implementing 

innovative initiatives in the connected and autonomous vehicle technology. One of the potential 

uses of such deployment would be an implementation of a Vehicle-to-Infrastructure (V2I)-based 

intersection crash avoidance system. Signalized intersections are associated with different types of 

conflicts due to various opposing movements and differential speeds. Although traffic signals are 

installed to reduce certain types of collisions (e.g., head-on and angle crashes), they are known to 

increase rear-end collisions ( Roess, Prassas, & McShane, 2011; Nuyttens, Carpentier, Declerq, & 

Hermans, 2014) . In 2013, a total of 4,700 fatal crashes, 826,000 injury crashes, and 1.76 million 

property-damage-only crashes occurred in relation to signalized intersections in the United States 

(U.S.);, nearly 30% of these were rear-end collisions (NHTSA, 2013). Rear-end crashes at 

intersections are caused in part by differential speeds as vehicles approach the intersection, 

followed by abrupt decelerations at the onset of yellow and red indication. The indecision of 

drivers in these situations is likely to result in harder braking, thus increasing the likelihood of a 

rear-end crash.   

Currently, there are several in-vehicle systems that use I2V communication to provide 

information of the signal states to drivers. For example, in the Tampa, Florida, there are two I2V 

systems that are currently being beta-tested. The first system, EnLighten, developed by Connected 

Signals (Marshall, 2016), is a cloud based I2V system that uses a smartphone application to show 
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the amount of remaining green time and if the driver is stopped on a red signal the system advises 

the driver of the remaining amount of red time before the next green phase. In the second system, 

a U.S. Department of Transportation (DOT) pilot project, Siemens partnered with the Tampa-

Hillsborough Expressway Authority (THEA) to install an I2V system in downtown Tampa to 

provide an advisory speed to drivers who wish to travel without stopping before the next green 

phase (Satow, 2016). While EnLighten is based on analytics of the signal grid master data, the 

second system uses DSRC and requires a Road Side Unit (RSU) to be installed at the intersection 

and an On-Board Unit (OBU) in the vehicle to enable short range communication. The I2V and 

V2V technology has a potential of reducing rear-end conflicts at signalized intersections.  

There is a need to devise a system referred herein as the Advanced Stop Assist System 

(ASAS), which takes advantage of I2V and V2V communication technology to notify drivers to 

prepare to stop when the remaining green time is insufficient to clear the intersection under 

prevailing traffic conditions. Since the connected vehicle technology allows vehicles to 

communicate with each other and with the infrastructure, the broadcast information can be used to 

provide an advisory speed message in advance. It is worth pointing out that messages are sent not 

only to vehicles in the dilemma zone, but also to any qualifying vehicle that is within the 

communication range. Each driver will receive an advisory message when the signal is still green. 

Earlier stopping maneuvers would allow for smooth deceleration and potentially reduce the 

number of vehicles trapped in the dilemma zone, hence improving safety by reducing rear-end 

collisions and red-light running, a leading cause of angle crashes. 

Objectives 

The objectives of this study are to (1) propose and demonstrate the implementation of 

ASAS in a microscopic simulator, and (2) evaluate potential safety benefits of ASAS. In particular, 
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reduction of rear-end collisions under the connected vehicle environment with I2V and V2V 

communications.  Thus, this manuscript presents an algorithm used to develop the ASAS under 

the connected vehicle environment in the microscopic traffic simulator. The effectiveness of the 

proposed ASAS algorithm is assessed using two performance measures: speed profiles as vehicles 

approach the intersection to examine speed smoothness, and maximum deceleration rates to 

determine the effectiveness of the system in reducing hard-braking. The proposed system was 

implemented and evaluated using the Car-to-Devices (C2X) simulation module available in the 

VISSIM microscopic simulation software. 

Literature Review 

There are numerous research efforts that have documented the CV technology and its 

potential in improving mobility, safety, and environmental sustainability of transportation systems. 

The following sections provide a summary of the CV literature pertinent to this study. 

Connected Vehicle Technology 

The history of connected vehicles can be traced back to 2003 when the U.S. DOT first 

launched the Vehicle-Infrastructure-Integration (VII) program (Songchitruksa & Zha, 2014).  The 

initial objective of VII was to address the traffic safety problems through high-speed wireless 

communications among Vehicle-to-Vehicle (V2V) and V2I. The connected vehicle framework is 

made up of three critical elements; On-Board Unit (OBU), Roadside Unit (RSU), and Back-Office 

Servers (SAE, 2013). OBU consists of devices embedded in the vehicle that support DSRC with 

nearby vehicles and RSU. RSU consists of roadside devices that support DSRC with nearby OBU-

equipped vehicles within the communication distance, other RSUs, and the control centers. Back-

office server represents the control center that connects RSUs and monitors the traffic network. 
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The Federal Communications Commission (FCC) has allocated the spectrum from 5.850 

Giga Hertz (GHz) to 5.925 GHz, i.e. the “5.9 GHz band”, for DSRC operations in the United 

States. This spectrum is divided into seven 10 Mega Hertz (MHz) channels with a 5 MHz guard 

(reserve) at the low end. Pairs of 10 MHz channels can also be combined into a 20 MHz channel 

(Kenney, 2011). Most of the wireless devices participating in safety applications have a maximum 

output power of 20 Decibel-Milliwatts (dBm) and a communication zone of nearly 400 m (Kenney, 

2011).  Due to hidden terminal problems and multipath interference, the effective range of 

communication may be lower than the nominal value. Although now vehicles collect and convey 

a lot of information, just a few years ago vehicles relied completely on low technology methods to 

communicate with each other and the environment by using turn signals, brake lights, and static 

signs.  In recent years, technology that provides wireless communication between vehicles and 

transportation infrastructure has increased. This technology is a combination of  number of 

technological advancements including advanced wireless communications, on-board computer 

processing, advanced sensors, Global Positioning System (GPS)  navigation and smart 

infrastructure to provide a networked environment (Federal Highway Administration, 2012). A 

connected vehicle environment allows high speed broadcast of information from vehicles and 

infrastructure. Signal systems can use data from in-vehicle sensors transmitted wirelessly from 

equipped vehicles to the signal controller. A number of measures can be accessible such as vehicle 

speeds, positions, arrival rates, acceleration or deceleration rates, stopped time, and queue lengths. 

(Goodall, Smith, & Park, 2013). 

Connected Vehicles at Intersections 

Several studies have examined the use of connected vehicles for intersection control.  

Many of these studies focused on the optimization of signal phases by taking advantage of the 
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information sent from the equipped vehicles. Guler et al. (Ilgin Guler, Menendez, & Meier, 2014) 

developed a traffic control algorithm to minimize delay using information from connected vehicles 

to mitigate urban congestion. V2I safety applications were proposed to address  problems that V2V 

communications would not address (NHTSA, 2010). Safety applications that use V2I only require 

RSU at targeted facilities, normally at intersections. There are V2I safety applications that have 

been developed at intersections and tested for their effectiveness through simulation studies and 

field test beds. Some of these applications include Cooperative Intersection Collision Avoidance 

System (CICAS) framework and its related applications such as CICAS-V (traffic signal 

violation), CICAS-LTA (signalized left-turn assist) and CICAS-TSA (traffic signal adaptation) 

(Misener, 2010).  Songchitruksa et al. (Songchitruksa & Zha, 2014) proposed safety performance 

monitoring using V2I data. However, the study proposed a framework for monitoring safety 

performance at signalized intersections by means of connected vehicle technology. The study only 

focused on through-vehicle movements because of their relatively well-defined paths and conflict 

regions. Types of messages commonly used for signalized intersection operations include the 

Basic Safety Message (BSM) which describe the vehicle kinematics, Map data describing the 

intersection geometry and Signal Phasing and Timing (SPaT) for sending signal status data (Zha, 

Zhang, Songchitruksa, & Middleton, 2016). 

Connected Vehicles and Speed Advisory at Intersections 

Katsaros et al. (Katsaros, Kernchen, Dianati, & Rieck, 2011) proposed a Green Light 

Optimized Speed Advisory (GLOSA) application implementation in a typical reference area and 

presented the performance analysis results using an integrated cooperative ITS simulation 

platform. The study focused on the improvement of fuel consumption and reduction of traffic 

congestion at intersections using wireless communication between intersection signals and vehicle 
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(I2V communication). Drivers of vehicles which were GLOSA equipped were provided with 

advisory speeds intended to reduce the number of stops at intersections. Stevanovic et al. 

(Stevanovic, Stevanovic, & Kergaye, 2013) and Tielert et al. (Tielert et al., 2010) employed 

GLOSA in an attempt to minimize delay, fuel consumption, and emissions at intersections by 

providing advisory speed messages to drivers to guide them in moving through the green phase. 

However, even with GLOSA in place, vehicles must come to a stop at the intersection at some 

point. With the upper and lower limits of speeds at which vehicles can drive, it is impractical for 

all the vehicles to arrive during the green phase. The present study focuses on vehicles that would 

come to a stop at the intersection due to the end of the green phase.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    

Methodology 

Microscopic Simulation 

Researchers and practitioners have widely used simulation applications for various 

purposes such as comparison of alternatives, analyzing the impact of developments, and cost 

estimation (Lownes & Machemehl, 2006). In this study, VISSIM software was used. Through the 

Component Object Model (COM) interface, the I2V and V2V wireless communications were 

modeled using an algorithm implemented through the C2X Application Programming Interface 

(API). 

Study Site 

The signalized intersection of Bruce B Downs Boulevard and East Fletcher Avenue (Figure 

3.1), located in Tampa, Florida, and  adjacent to the University of South Florida, was selected for 

the simulation model. The intersection is one four major signalized intersections located along the 

Bruce B Downs corridor. The site was chosen because of the availability of naturalistic driving 
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data for different age groups collected by the Strategic Highway Research Program 2 (SHRP2). 

The naturalistic driving data was used for simulation data input, specifically, speed profiles, and 

deceleration and acceleration rates.     

 
Figure 3.1 Study site. 

Data Input 

Data employed for this study was obtained from the SHRP2 Naturalistic Driving Study 

(NDS), through Virginia Polytechnic Institute, for the Bruce B Downs corridor, in Tampa, Florida 

(Virginia Tech Transportation Institute, 2016).  Bruce B Downs corridor is a one mile stretch 

containing four major signalized intersections and the highest traversal density of NDS 

participants, about 400-600 people. This corridor is also one of the several corridors located in 

Hillsborough County, Florida with a high severe injury crash rate (“Tindale-Oliver and Associates 

Inc.,” 2013). 

Br
uc

e 
B 

D
ow

ns
 

Fletcher 



`   
 

35 
 

Traffic and signal timing data were provided by the city of Tampa Traffic Office. 

Geometric information such as number of lanes, lane widths, and turning radii were extracted from 

Google Earth Pro software. PM peak traffic data were also used for this study. The model was 

calibrated based on the Florida Department of Transportation (FDOT) simulation guidelines to 

reflect real conditions (Florida Department of Transportation, 2014). The volume levels and signal 

timings are depicted in Table 3.1.  

Table 3.1 Traffic Volumes & Signal Timing Settings 

Traffic Volume 

Phase 

Number 
1 2 3 4 5 6 7 8 

Lane Type SBL NBT NBR WBL EBT EBR NBL SBT SBR EBL WBT WBR 

Volume 

(veh/hr) 
275 1148 243 144 637 204 382 612 320 371 625 254 

Signal Timing Setting 

Min Green 

(sec) 
5 5 5 5 5 5 5 5 

Veh 

Extension 

(sec) 

3 3 3 3 3 3 3 3 

Max 1 (sec) 7 19 7 20 7 19 9 18 

Yellow 

(sec) 
3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 

Red 

Clearance 

(sec) 

1 1 1 1 1 1 1 1 
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Where; 

SBL =  South-Bound Left 

NBT =  North-Bound Left 

NBR =  North-Bound Right 

WBL =  West-Bound Right 

EBT =  East-Bound Through 

EBR =  East-Bound Right 

NBL =  North-Bound Left 

SBT =  South-Bound Through 

SBR =  South-Bound Right 

EBL =  East-Bound Left 

WBT =  West-Bound Through 

WBR =  West-Bound Right 

Simulation Test Bed 

The intersection simulation model was developed in VISSIM. I2V and V2V 

communication was modeled using the C2X module available in the software through the COM 

API. This module enables the modeling of the wireless communication involving high speed 

exchange of data plus other wireless communication characteristics such as the wireless 

transmission success rate. Scripting was done using Visual Basic (VB). The simulation resolution 

was set to 10 time steps/sim.sec, which is equivalent to the transmission frequency of 10 Hz for 

the Basic Safety Message (BSM). 
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The intersection was modeled with pre-timed signal control to simplify the SPaT 

information tracking. The naturalistic driving data from the SHRP2-NDS was used for calibrating 

vehicle speeds at the intersection approach.  

A number of operational assumptions were made in order to model I2V and V2V 

communications in this study. Some of these assumptions were derived from a study by 

Songchitruksa (Songchitruksa & Zha, 2014). These assumptions are listed below: 

 Although the effective range of DSRC communications is over 2000 ft., communication 

was maintained for only those vehicles which were in the range of 765 ft. from the 

intersection stop bar. This range was established by considering the speed limit of the 

approach (45 mph) and the Green length + Amber time. A five mph allowance was made 

for vehicles driving at a speed slightly higher than the speed limit. 

 At every time step, the RSU broadcasts SPaT and Map information to the OBUs where 

advisory messages to each “qualified” C2X equipped vehicle speed is calculated utilizing 

an algorithm described in more detail in the next section.  

 The study assumed a 100% compliance rate to the speed advisory messages provided. 

 

Vehicle-To-Infrastructure Communication Algorithm 

The objective of the algorithm is to provide a smooth deceleration of vehicles that are 

coming to a stop at the intersection. This is achieved by providing speed advisory messages as 

soon as the algorithm detects that a vehicle will arrive at the intersection while the signal is red. 

Thus, the algorithm seeks to resolve the potential for hard-braking as the vehicle approaches the 

intersection stop bar. 
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The algorithm was developed only for North-Bound Through (NBT) movements at the 

study intersection (see Figure 3.1). Dynamic arrays, populated after every time step, were used for 

storing the relevant connected vehicle data. The algorithm starts by checking if there are vehicles 

in NB approach within the range of communication. If there are vehicles approaching the 

intersection, three types of datasets, shown in Table 3.2 are produced.  
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Table 3.2  Datasets Produced by the Algorithm 

Type of information Variables collected 

SPaT information  Signal state 

 Signal state running time 

 Remaining green time 

Map data  Stop bar location  

 RSU location 

BSM  Vehicle speed 

 Vehicle acceleration/deceleration 

 Vehicle location 

 

The vehicle position and location of the stop bar were used to establish the vehicle distance 

to the stop bar. Given d as the distance to the intersection stop bar, u as the current speed of the 

vehicle, and a as the acceleration of the vehicle, the time to reach the intersection stop bar (TTL) 

can be calculated using Equation (3.1). 

 

TTL = {

𝑑

𝑢
                                                        𝑤ℎ𝑒𝑛 𝑎 = 0 

−𝑢

𝑎
+  √

𝑢2

𝑎
+

2𝑑

𝑎
                                     𝑤ℎ𝑒𝑛 𝑎 ≠ 0      

  

 
(3.1) 

 

 

The value of TTL was used to check the signal status by the time the vehicle arrives at the 

intersection. 
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If a queue exists at the intersection, drivers would start slowing down if the signal is still 

green. Therefore, no speed advisory messages would be required. As shown in Figure 3.2 with 

accompanying notation, a series of conditions had to be fulfilled before speed advisory messages 

were given to the driver of a “qualified” C2X vehicle. It is important to note that the advisory 

messages are provided when the signal is still green. The conditions imposed ensured that speed 

advisory messages were given to drivers of vehicles that will arrive at the intersection when the 

signal is red. The definitions of notations used in Figure 3.2 are shown below. 

 

 

 

 

 

 

 

 

𝐷 Distance to intersection stop bar 

𝑡𝑐𝑙𝑟 Time to clear intersection 

𝑡𝑔 Green time 

𝑡𝑔𝑟 Remaining green time 

𝑡𝑎 Amber time 

V Current vehicle speed 
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SPaT

MAP
RSU

Vehicles
within DSRC?

Exit

Obtain D + tclr

GREEN +
tgr < 9s?

tgr + ta < tclr < 
tg + ta ? 

Queue in the 
approach?

Exit

V > 25 mph ?

Vehicle in 
queue
state?

Vehicle C2 X 
equipped?

Vehicle upstream
of intersection?

Gather speed + 
acceleration/

deceleration data
Obtain stopping position

Obtain suitable braking 
deceleration

Provide advisory speed 
to assist stopping

Gather speed + 
acceleration/ deceleration 

data

End

Next time-step

Y

N

Y

N

N

Y

Y

N

Y

N

Y N

N

Y

N

Y

Y-Yes

N-No

OBU

BSM

 

Figure 3.2   Algorithm for V2I communication. 
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Stop Distance Estimation  

Before the speed advisory messages were provided, the position where a vehicle would 

come to stop had to be estimated as shown in Figure 3.3. This location was then used as a reference 

for obtaining a suitable deceleration rate to stop the vehicle. 

 

 

Figure 3.3  Stopping distance illustration. 

 

Where: 𝐶𝑖 = Vehicle length 

 𝐻𝑖 = Average standstill distance 

 D = Vehicle distance to stop bar 

 𝑑𝑠 = Stopping distance 

If there are n vehicles ahead of the current vehicle, the stopping distance is computed as:  

 

𝑑𝑠 = D - ∑ 𝐶𝑖
𝑛
𝑖=1  - ∑ 𝐻𝑖

𝑛−1
𝑖=1  (3.2) 
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The value of 𝑑𝑠 is obtained before the preceding vehicles come to a stop at the stop bar. The values 

of 𝐻 were assumed to be fixed at 7.4 𝑓𝑡 which is the average standstill distance of the Wiedemann 

74 car following model after calibration. 

Braking Deceleration Estimation 

When a C2X equipped vehicle is “qualified” for computing advisory speed messages, a 

suitable uniform deceleration rate was calculated using the information extracted from the vehicle, 

plus additional Map data using Equation (3.3). 

𝑑𝑏𝑟 = 
V2

2×ds
 (3.3) 

                              

Where: 

𝑑𝑏𝑟 = Uniform deceleration required to bring a vehicle to stop 

V = Current speed of the vehicle 

𝑑𝑠 = Stopping distance as obtained using Equation (3.2) 

 

The calculated value of 𝑑𝑏𝑟 was then used to calculate the values of speed as the vehicle moves 

along using Equation (3.4). These speed values were provided to the driver as speed advisory 

messages. 

𝑉𝑎𝑑𝑣 = √2 × 𝑑𝑏𝑟  × 𝑑𝑠 (3.4) 

                              

Where: 

 𝑉𝑎𝑑𝑣 = Advisory speed at the current position 
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The values of 𝑑𝑠 and 𝑉𝑎𝑑𝑣  decrease as the vehicle approaches the intersection. As a result, 

the speed advisory messages would prompt drivers to slow down before the signal turns red 

because the algorithm had already projected that these vehicles would arrive on a red signal 

indication. 

Evaluation 

Vehicle Approach-Speed Profiles 

The main objective of an ASAS is to enable vehicles that come to a stop at the intersection 

to smoothly decelerate as a result of receiving advisory messages in advance. Therefore, a record 

of vehicle speeds as they approach the intersection would be a good measure of how well the 

objective is met. 

Vehicle approach speeds were recorded using detectors modeled in VISSIM. The first 

detector was positioned at a distance of 750 ft. from the intersection stop bar. This is within the 

range of I2V communication used in this study (765 ft.). A total of 23 detectors were used to obtain 

a smooth speed profile at 32.8 ft. (10 m) intervals. Since the study focused on vehicles coming to 

a stop at the intersection, speeds were recorded only for such vehicles. Speed data for stopping 

vehicles that were not C2X equipped were also taken into consideration to provide a means for 

comparison.  

Within the communication range, based on vehicle speed and acceleration, different C2X 

vehicles qualify to compute advisory messages at different locations. Detectors close to the stop 

bar recorded a higher number of vehicles. In order to obtain a complete speed profile for 

decelerating vehicles, a record was kept only for stopping vehicles that were detected from the 

first detector. 



`   
 

45 
 

Safety Evaluation 

Surrogate safety evaluation is a widely-accepted alternative to historical crash data analysis 

(Bonneson & Ivan, 2013). Given the randomness and rareness of crash occurrence, statistics can 

be applied to relate surrogate safety measures with crash frequency and severity even before 

crashes occur. Traffic conflicts, a commonly used surrogate safety measure, are defined as 

situations where two or more vehicles will collide if their movements remain unchanged 

(Amundsen & Hyden, 1977). Thus, the number, type, and severity of collisions that occur can be 

used as an indicator of traffic safety (Wang & Stamatiadis, 2013). This study focused only on rear-

end collisions since they are the most prevalent collision type at signalized intersections and can 

result from hard-braking, a condition addressed herein. 

Specific thresholds are applied to measurable traffic indicators, such as time to collision 

(TTC) and post encroachment time (PET), to obtain quantitative data of traffic conflicts. The 

Surrogate Safety Assessment Model (SSAM), a software application provided by the Federal 

Highway Administration (FHWA), enables the identification of traffic conflicts by using a 

statistical analysis of vehicle trajectory files generated from microscopic simulations. Several 

conflict indicators are provided by the SSAM software based on the trajectory files developed from 

each scenario run. 

For this study, the results from the SSAM did not prove to be useful for several reasons. 

First, this study specifically focused on the safety evaluation of vehicles that are coming to a stop 

at the intersection, of which SSAM provided a vast amount of conflict data that was difficult to 

filter to obtain the required data. Traffic conflicts also occur at different locations, and due to the 

very specific objective of this study, some attributes were not available in SSAM output to pin 
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point conflicts resulting from stopping vehicles. As a result, a separate algorithm which uses a 

maximum deceleration (MaxD)-based event as a surrogate safety measure had to be developed. 

A study by Songchitruksa (Songchitruksa & Zha, 2014) proposed a methodological 

framework designed to extract and compute safety indicators from vehicle movement, intersection 

description, and signal data available within the RSU at an isolated signalized intersection. The 

study classified the safety indicators as either single-OBU or dual-OBU, depending on the number 

of OBU equipped vehicles that needed to be monitored. One potential measure of the single-OBU, 

listed by the study, was the MaxD-based event – the maximum deceleration of a vehicle during an 

event of continuous braking (Allen, Shin, & Cooper, 1978). The frequency of these events on a 

particular roadway section can be related to disturbances in traffic flow, and can indicate the risk 

of rear-end crash occurrence. According to Songchitruksa (Songchitruksa & Zha, 2014), MaxD-

based events are not always a precursor for rear-end crashes. Mixed results of potential indicators 

can occur with unsafe scenarios. MaxD-based events are triggered by a number of factors and 

require careful examination to avoid mixed results. This research work adopted this safety 

indicator, the MaxD-based event, and refined it to suit the objectives of this study. 

VISSIM uses a stochastic, time-step based, microscopic traffic flow model that treats 

driver-vehicle units as basic entities. It uses the Wiedemann’s traffic flow model which is based 

on the assumption that there are basically four different driving states for a driver: free driving, 

approaching, following, and braking (PTV AG., 2015). The braking state occurs when a driver 

applies medium to high deceleration rates if the distance to the preceding vehicle falls below the 

desired safety distance. This happens if the driver of the preceding vehicle abruptly changes speed 

or the driver of a third vehicle changes lanes to squeeze between two vehicles in the adjacent lane. 

Additionally, the built-in driver behavior component in VISSIM has four main states that can be 
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used to determine the driving states of the vehicles in the network. The closeup state describes 

vehicles closing the distance to a stationary vehicle infront or a hindrance, such as signal heads, 

stop signs, priority rule, and conflict areas. Since this study focused on a signalized intersection 

approach, the closeup state could only result due to a preceding stationary vehicle or a signal head 

hindrance. 

A threshold for recording a MaxD-based event was set to 14.8 ft/s2, the emergency 

deceleration rate in accordance with the AASHTO Green Book (AASHTO, 2001). Vehicles 

braking harder than 14.8 ft/s2 were tracked to the maximum value of deceleration reached, and the 

value was recorded along with vehicle speed, position, and driving state. The data of hard-braking 

vehicles, closing up at the intersection approach, were obtained together with the driving state of 

the vehicles. In the next step, the data were normalized by the total number of vehicles stopped at 

the intersection. 

Results and Discussion 

Speed Profiles 

Speed profiles, illustrated in Figure 3.4, were developed using the average speed from each 

speed detector at a 95% confidence interval. The speed profiles show a clear difference between 

the base condition (0% penetration or 0% of vehicles with OBU) and when ASAS is implemented 

at 100% saturation of OBUs. When advisory speed messages were provided to drivers, 

deceleration started at about 740 ft. (225 m) from the stop bar, nearly 328 ft. (125 m) earlier when 

compared to the base condition. All of these vehicles will stop at the intersection, but having 

advance information would help the drivers in smoothening their brake action as they approach 

the stop bar.  
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Figure 3.4 Speed profiles at different penetration rates. 

The speed profiles shown in Figure 3.4 do not include speed at 0 mph as the detectors placed near 

the stop bar, also recorded speeds of accelerating vehicles during the discharge of the formed queue 

at the intersection. 

Statistical Comparison of Safety Measures 

The safety indicator used for statistical comparison was the number of vehicles 

experiencing hard-braking towards the end of the intersection approach, termed a MaxD-based 

event. To obtain a valid comparison between the baseline (0% saturation of OBUs) and the 100% 
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saturation of OBUs scenarios, normalization was done by using a selected exposure variable. The 

exposure variable selected was the number of vehicles within 765 ft. (communication range of 

C2X vehicles) of the intersection stop bar during a green signal with no queue formed, but came 

to a stop upon arrival at the intersection due to a red signal indication. The statistical test procedure 

suggested by Griffin et al. (Griffin & Flowers, 1997) was performed to determine if significant 

differences between the recorded safety indicators were present. Simulation results and statistical 

comparison results are summarized in Table 3.3. 

Table 3.3 Summary of Simulation Results 

Measure Baseline Scenario 1 

Number of MaxD-based conflicts 74 39 

Number of stopped vehiclesa 4460 4450 

Statistical Comparison of Safety Indicator 

Measure Baseline Scenario 1 Z1 p-

value 

Change 

(%) 

Statistically 

Significant 

MaxD-based 

conflict rate2 

16.59 8.76 -3.19 <.01 -47.2 Yes 

NOTE: 

a  Number of vehicles within 765 ft. (communication range of C2X vehicles) of the intersection 

stop bar during a green signal with no queue formed, but came to a stop upon arrival at the 

intersection due to a red signal indication. 

1Computed as: Z = 
(

A + 0.5

EA
 −  

 B − 0.5

EB
 )

√
𝐴+𝐵

(𝐸𝐴+𝐸𝐵)𝐸𝐴
+ 

𝐴+𝐵

(𝐸𝐴+𝐸𝐵)𝐸𝐵
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Where A = Total count in after period; B = Total count in before period; EA = Exposure in after 

period; EB = Exposure in before period. 

2Computed as: ∑ 𝐶𝑜𝑢𝑛𝑡
∑ 𝑣𝑒ℎ

1000

, in count per 1,000 vehicles. The denominator represents exposure. 

The difference in the number of observed MaxD-based conflicts was found to be 

statistically significant at 95% confidence level. The number of vehicles experiencing hard braking 

was reduced by about 50% as a result of the advisory speed messages. This shows that a connected-

vehicle application is a viable solution for reducing the number of rear-end conflicts and possible 

crashes resulting from the change of signal indication as vehicles come to a stop at the intersection. 

Sensitivity Analysis of Market Penetration Rates 

Speed Profiles 

The effectiveness of the connected vehicles’ deployment depends on the market 

penetration rate (the overall percentage of vehicles equipped with OBU). Application of ASAS 

requires vehicles to be equipped with OBU so that they can be receive messages through I2V and 

V2V communications. Since 100% saturation of OBUs installation is not expected in the near 

future, a sensitivity analysis on the effectiveness and reliability of the proposed application was 

done at different penetration rates in increments of 20% ranging from 0% to 100%. Figure 3.4 

demonstrates how the speed profiles vary with market penetration rates. The profiles indicate that 

as the number of vehicles that respond to speed advisory messaging increases, the average 

approach speed of the vehicles decreases. 
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Figure 3.5 Variation of MaxD-based conflicts with market penetration rate. 

Safety Measures 

The proposed application was also examined at different saturation rates of the OBUs to 

obtain a general trend on how the adopted safety indicator varied with varying penetration rates. 

The results and statistical comparison are shown in Table 3.4.   
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Table 3.4 Summary of Simulation Results at Different Penetration Rates 

Penetration 

Rate 

Number of MaxD-Based 

Conflicts 

Number of Stopped Vehicles 

Baseline 74 4460 

20% 115 4441 

40% 94 4462 

60% 62 4438 

80% 48 4459 

100% 39 4450 

   Statistical Comparison of Safety Indicator at Different Penetration Rates 

Penetration 

Rate 

MaxD-Based Conflict 

Ratea 

Zb p-Value Change 

(%)c 

Statistically 

Significant @ 

95% CL 

0% 16.59     

20% 25.89 3.08 <.01 56.1 Yes 

40% 21.07 1.62 0.105 27.0 No 

60% 13.97 -0.91 0.362 -15.8 No 

80% 10.76 -2.26 0.024 -35.1 Yes 

100% 8.76 -3.19 <.01 -47.2 Yes 

NOTE: 

aComputed as in Table 3.3 

bComputed as in Table 3.3 with reference to the base condition 

cComputed with reference to the base condition. 
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The results, as shown in Figure 3.5, indicate that there is a degradation in the level of safety 

up to 40% penetration rate when ASAS is implemented at the intersection. The mixture of normal 

vehicles and C2X-equipped vehicles following the speed advisory messages, which produced 

more variations in the approach speed of vehicles, is most likely the cause of this degradation. 

Results indicate that at least 60% saturation of OBUs is required to observe tangible improvements.  

Conclusions and Recommendations 

This study proposed a connected vehicle application which utilizes I2V and V2V 

communications at signalized intersections. The application aims at reducing the risk of rear-end 

crashes at signalized intersections caused by the indecision of drivers when a signal indication 

changes. The proposed application makes use of the information received at the OBU from other 

vehicles’ OBUs through V2V communications in the form of BSM, as well as Map and SPaT 

information from the RSU. An algorithm was developed to provide advance speed advisory 

messages to drivers in C2X equipped vehicles projected to arrive at the intersection on a red signal 

indication. 

A microscopic simulation approach was used for evaluating the effectiveness of the 

proposed system. VISSIM, a microscopic simulation software and the built-in C2X module was 

used in the analysis. The script was written in VB to implement I2V and V2V communications. 

First, two simulation scenarios were designed, one without the application of ASAS, and one with 

the application of ASAS at 100% market penetration rate (saturation of OBUs). Speeds of vehicles 

approaching the intersection, as well as the number of vehicles closing in that experienced hard-

braking towards the end of the intersection approach, were recorded. This provided data used to 

evaluate the effectiveness of the proposed application. The evaluation results indicate that ASAS 

has a potential of reducing the number of MaxD-Based conflicts considerably. The results also 
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revealed a reduction of about 50% in number of MaxD-Based conflicts resulting from drivers 

receiving advance speed advisory messages. 

Since full market penetration of OBUs is not expected soon, a sensitivity analysis of market 

penetration rates was performed and showed a degradation in safety conditions at low penetration 

rates. The results demonstrated that at least 60% saturation of OBUs installation is required to 

observe a reduction in the number of MaxD-Based conflicts. 

In future work, more research is needed to investigate the response of drivers to the speed 

advisory messages received. This study assumed 100% compliance rate of the received messages. 

The algorithm could also be modified to work with actuated signal control as this study only dealt 

with pre-timed signals. A mechanism of communicating messages from C2X equipped vehicles to 

non-equipped vehicles visually at lower market penetration rates respectively can be researched to 

potentially observe safety improvements. 
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CHAPTER 4  

Enhancing the Green Light Optimized Speed Advisory System to Incorporate Queue 

Formation 
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Introduction 

Achieving smooth urban traffic flow requires the reduction of excessive stop-and-go 

driving on urban arterials. Smooth traffic flow provides several benefits including improved safety, 

less fuel consumption, and improved intersection throughput by reducing lost times generated by 

stopped queues (Erdmann, 2013). The transportation sector is the second largest source of 

Greenhouse Gas (GHG) emissions in the United States (U.S.), according to the Environmental 

Protection Agency (EPA) (U.S. Environmental Protection Agency, 2010). More than 60 percent 

of the energy used in the U.S. transportation sector, an equivalent of 7.97 million barrels of oil per 

day, is due to light-duty vehicles (EIA, 2010). As a result, improving fuel economy and reducing 

emissions have drawn more attention of transportation researchers in recent years. Some of these 

research efforts are directed towards advanced traffic signal control. 

Early developments in traffic control devices involved the use of conventional traffic signal 

systems that operate with pre-programmed timing schedules (Koone et al., 2008). Further 

improvements include signal coordination and signal actuation. More sophisticated forms of 

control have been developed in areas with unpredictable or rapidly changing traffic volumes. In 

these areas, adaptive traffic signals which rely on real-time traffic measurements to accommodate 

changing traffic patterns are suitable (FHWA, n.d.). All of these efforts share a common goal of 

reducing intersection delays and creating smoother traffic flows. 

A recent development in intersection control, referred to as Green Light Optimal Speed 

Advisory (GLOSA), attempts to coordinate vehicles with a known and usually fixed signal plan, 

instead of adapting the signal plan to incoming vehicles (FHWA, n.d.; Koone et al., 2008). 

Through Connected Vehicle (CV) technology, which provides Infrastructure-to-Vehicle (V2I) and 

Vehicle-to-Vehicle (V2V) wireless communications, individual drivers are provided with 
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information on the traffic signal phase and given advisory speeds to arrive at the intersection when 

the signal is green. Several previous studies have proposed different GLOSA algorithms (Tielert 

et al., 2010; Asadi & Vahidi, 2011; Katsaros et al., 2011; Erdmann, 2013; Seredynski, Dorronsoro, 

& Khadraoui, 2013; Xu, Zhang, Wang, & Li, 2015). However, only a few have investigated the 

impacts of formed vehicle queues at intersections. 

The primary objective of GLOSA systems is to reduce stop-and-go driving on urban 

arterials by providing advisory speed messages to the driver to obtain an optimum speed trajectory. 

In addition to signal timing, the presence of vehicle queues introduces another temporal constraint, 

time required to dissipate formed queues. Failure to consider this variable may limit the efficiency 

of GLOSA systems. An algorithm that accounts for queue length and discharge headways for each 

position in the queue is needed to effectively compute advisory speeds.  

Objective 

The objective of this study was to develop a modified GLOSA algorithm that considers the 

formed intersection queues and queue discharge headways for each vehicle position. Therefore, 

this study used calibrated values of discharge headways in a simulation to better estimate queue 

dissipation time. A comparison was performed to evaluate the impact of disregarding the queue 

dissipation time. The proposed GLOSA algorithm was implemented and evaluated using VISSIM 

microscopic simulation software with the Car-to-Devices (C2X) simulation module.   
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Literature Review 

V2I and I2V applications have been developed for intersections and their effectiveness 

tested through simulation studies and prototype field test-beds. One such application is the GLOSA 

system, which utilizes broadcasted signal scheduling information over a wireless medium to the 

equipped vehicles in the vicinity, and subsequently computes the required speed to arrive on a 

green phase (Tielert et al., 2010). The system provides information to the drivers who can then 

adapt their speed accordingly. The effectiveness of GLOSA in reducing intersection delay, travel 

time, and emissions has been investigated in several previous studies. A study by Katsaros et al. 

(Katsaros et al., 2011) examined the impacts of GLOSA on fuel and traffic efficiency, average fuel 

consumption, and average stopped time at traffic signals. From this study, it was observed that 

lower penetration rates produced lower benefits; however, more improvement was obtained at 

higher penetration rates. The study also established an optimal activation distance of 300 m from 

the traffic lights, with slight variation depending on the road network. Rakha and 

Kamalanathsharma (Rakha & Kamalanathsharma, 2011) used VT-Micro to develop an eco-

driving model to identify the optimal speed trajectory for approaching vehicles with the signal 

timing information available through I2V communications. The eco-driving model was integrated 

into a network wide simulator by Kamalanathsharma et al. (Kamalanathsharma, Rakha, & Yang, 

2015). Similar studies have been conducted by Widodo et al. (Widodo, Hasegawa, & Tsugawa, 

2000), Sanchez et al. (Sanchez, Cano, & Kim, 2006) and Wegener et al. (Wegener, Hellbruck, & 

Wewetzer, 2008). In addition to using signal timing information, a study by Dobre (Dobre, 2012) 

developed an algorithm that predicts the amount of emissions from a vehicle before an advisory 

speed is given to the driver. The driver is presented with an optional advisory speed that would 

result in less emissions. Tielert et al. (Tielert et al., 2010) coupled the Passenger car and Heavy 
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duty Emission Model (PHEM) with VISSIM to investigate how gear choice and GLOSA 

activation distance from the traffic lights affected fuel consumption and emissions. Results 

indicated that sub-optimal gear choice can void the benefits of speed adaptation. In a more recent 

study, Jiang et al. (Jiang, Hu, An, Wang, & Park, 2017) proposed an eco-driving system for an 

isolated intersection under partially Connected and Autonomous Vehicles (CAV) environment to 

prioritize mobility and optimize traffic flow by optimizing speed profiles of the CAVs. All of the 

aforementioned studies have investigated different ways in which GLOSA can be activated in an 

arterial network, and the savings, in terms of fuel consumption, that may be realized from the use 

of GLOSA systems. 

The majority of the GLOSA approaches developed provide speed advisory messages to 

drivers approaching the intersection by treating different segments independently. A study by 

Seredynski et al. (Seredynski, Mazurczyk, & Khadraoui, 2013) introduced the multi-segment 

GLOSA approach that considers several signals along a route. The study employed a genetic 

algorithm to obtain the advisory speeds for each segment. In a similar study, Seredynski et al. 

(Seredynski, Dorronsoro, et al., 2013) showed that in free flow conditions, multi-segment GLOSA 

performed better than the single-segment approach. 

Unfortunately, GLOSA systems require advanced knowledge of signal switching times in 

order to work (Erdmann, 2013). The effectiveness of GLOSA is thus limited to the pre-timed 

signals. A study by Stevanovic et al. (Stevanovic et al., 2013) attempted to address this issue by 

implementing GLOSA in actuated-coordinated signal timings using average values of green, red, 

and amber times. Effects of the GLOSA, in the actuated-coordinated traffic control, were found to 

be negligible and even negative due to lack of accurate information for green intervals. The system 

is more complicated when the GLOSA is applied along with adaptive traffic control, which adjusts 
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signal splits depending on real-time traffic demand. In an effort to solve this problem, a study by 

Erdmann (Erdmann, 2013) proposed the  (AGLOSA) algorithm by combining Adaptive Junction 

Control simultaneously with GLOSA. With AGLOSA, vehicles announce their presence in 

advance to the traffic signals via V2I wireless communication, allowing optimization of an 

adaptive signal plan that is sufficiently stable for the GLOSA application. At 100% penetration, 

the study showed that the algorithm performed up to 72% better than other algorithms in similar 

situations. 

Most GLOSA algorithms that use Dedicated Short Range Communication (DSRC) are 

constrained to the maximum range of wireless communication, the maximum and minimum speeds 

which can be provided as an advisory message to the driver. It will also take some time before all 

vehicles on the road are equipped with devices that allow V2I and V2V wireless communication. 

As a result, not all vehicles in the intersection approach, including equipped and non-equipped, 

will be able to arrive on a green phase. Queues will therefore be formed at the intersection. From 

the review of available literature, only a few GLOSA algorithms have incorporated the discharge 

headways of queues formed at the intersection approach when advisory speeds are computed. The 

algorithm proposed by Stevanovic et al. (Stevanovic et al., 2013) incorporated values of the 

discharge headways proposed by Greenshields (Greenshields et al., 1947); however, values of 

discharge headways vary from intersection to intersection. Moreover, the authors did not identify 

whether the simulation model used was calibrated to give discharge headways similar to the values 

used in the present study. A study by He et al. (He, Liu, & Liu, 2015) developed a more advanced 

multi-stage optimal control formulation that considers vehicle queue and traffic light status in 

obtaining the optimal vehicle trajectory. The study used numerical examples to demonstrate the 

effectiveness of the proposed control model. A recent study by Yang et al. (Yang, Rakha, & Ala, 
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2017) tried to incorporate queue effects in an Eco-Cooperative Adaptive Cruise Control (Eco-

CACC) through  computation of the fuel-optimum vehicle trajectories. The study assumed a flow 

and density relationship as the basis for queue estimation. The present study investigates the impact 

of better discharge headway prediction on the performance of GLOSA systems using a micro-

simulator. Actual discharge headway, retrieved from field data, of each position in the queue is 

used to calibrate the simulation model on which the GLOSA system is then applied. Additionally, 

the effects of using an algorithm that does not incorporate discharge headways is investigated. 

Methodology 

The methodological detail of the research study is presented in this section. Microscopic 

simulation modeling, the study site, and data input are discussed. Information on discharge 

headway calibration, simulation test-bed model, and estimation of queue dissipation time also are 

provided, as well as a detailed explanation of the proposed GLOSA algorithm. 

Microscopic Simulation 

Researchers and practitioners have widely used simulation applications for several 

purposes such as comparison of alternatives, analyzing the impact of developments, and estimating 

costs. Simulation offers an economic and efficient way of conducting these types of studies 

(Lownes & Machemehl, 2006). In this study, VISSIM microscopic simulation software was used, 

and the GLOSA algorithm was developed through Component Object Model (COM) interface 

available in the software. The I2V and V2V wireless communication between vehicles and signals 

were modeled using Car2X (C2X) Application Programming Interface (API) following an 

algorithm developed through COM interface.  
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Study Site 

After researching available data on the driving behavior of different age groups, the Bruce 

B Downs corridor, located in Tampa, Florida was selected for study. The segment selected is a one 

mile stretch with four major signalized intersections (Figure 4.1). Additionally, naturalistic driving 

data, needed for microscopic simulation, was available for the corridor.  

 
Figure 4.1 Bruce B Downs Corridor. 

Data Input 

Data  used for simulations was collected from the Strategic Highway Research Program 2 

(SHRP2) Naturalistic Driving Study (NDS), through the Virginia Polytechnic Institute website, 

for the Bruce B Downs corridor, in Tampa, Florida (Virginia Tech Transportation Institute, 2016). 

This corridor had the highest traversal density of NDS participants, about 400-600 people. The 



`   
 

63 
 

acquired data consisted of vehicle speeds and acceleration/deceleration rates, summarized by age 

group. 

 Additional traffic data were obtained from the City of Tampa. For the purpose of analysis, 

traffic data were categorized in three categories: traffic data, signal timing and geometric 

information, and calibration and validation data. 

  

Traffic Data 

Traffic volume data were provided by the City of Tampa traffic office in the form of 

intersection turning movement counts. Network balancing was performed, and the Origin-

Destination (OD) matrix covering the morning peak hour was developed as shown in Table 4.1. 

 

Signal Timings & Geometric Information  

Signal timing data also were provided by the City of Tampa traffic office. Modeling was 

based on the AM peak hour. Geometric information, such as number of lanes, lane widths, and 

turning radii were extracted from Google Maps (“bruce B Downs - Google Maps,” n.d.). 

 

Calibration and Validation Data 

Travel time and queue length data were used to calibrate and validate the model following 

the Florida Department of Transportation (FDOT) simulation guidelines (Florida Department of 

Transportation, 2014). Travel time data were determined by using the floating car technique with a 

Global Positioning System (GPS) receiver that logged data at one second intervals. Queue length 

data were obtained from video data of the intersections along the corridor. To account for day-to-

day variability, video data were collected during the morning peak hours between 8:00 and 10:00 
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AM for three consecutive days, March 20 to March 22, 2017. Discharge headway data were 

extracted using the same procedure, and later calibrated. 

Table 4.1 Origin-Destination Matrix 
 

Destinations 
 

Origins 

East 

131st 

Ave 

East 

Fletcher 

East 

Fowler 

East 

Pine 

North 

Bruce 

B 

South 

Bruce 

B 

West 

131st 

Ave 

West 

Fletcher 

West 

Fowler 

West 

Pine 

 

East 131st Ave 0 4 9 3 19 12 91 8 4 1 151 
East Fletcher 34 0 74 21 102 94 11 358 30 10 734 
East Fowler 232 61 0 127 274 126 60 116 1032 46 2074 

East Pine 13 4 11 0 16 14 3 7 4 16 88 
North Bruce B 173 201 381 107 0 485 58 218 156 49 1828 
South Bruce B 201 53 159 110 237 0 52 100 62 40 1014 

West 131st 

Ave 

482 11 49 14 48 63 0 20 20 6 713 
West Fletcher 33 355 72 20 141 92 11 0 30 9 763 
West Fowler 182 48 1568 100 215 176 47 91 0 36 2463 

West Pine 65 17 34 164 76 43 17 32 14 0 462 
 

1415 754 2357 666 1128 1105 350 950 1352 213 10290 

 

Discharge Headway Calibration 

Discharge headway data were first calibrated using the extracted video data to obtain the 

parameters used in VISSIM (see Table 4.2).  Figure 4.2 shows an example of the calibration results 

for one of the four intersections along the study segment. 
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Table 4.2 VISSIM Parameter Sets 

Parameter Default Calibrated 

Average standstill distance (ft.) 6.56 7.4 

Additive part of desired safety distance 2 2.95 

Multiplicative part of desired safety distance  3 3 

Safety distance reduction factora 0.6 0.9 

  NOTE: 

   aReduces the safety distance of vehicles close to the stop line. 

 
 

(a) Before calibration (b) After calibration 

Figure 4.2 Discharge headway calibration results. 

Simulation Test-Bed 

A simulation model for the corridor was developed in VISSIM. For demonstration 

purposes, the proposed GLOSA algorithm was implemented only for the North-Bound direction 

of the study segment. Wireless communications between the traffic signal system and the equipped 

vehicles were modeled using the C2X module available in the VISSIM through the COM API. 
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Scripting was done using Visual Basic programming language (VBScript). The resolution was set 

to 10 time steps/Sim.sec, which is equivalent to a transmission frequency of 10 Hz for the Basic 

Safety Message (BSM). 

The four intersections along the study corridor were modeled with coordinated signal 

control using the weekday AM signal plan. This facilitated the tracking of Signal Phasing and 

Timing (SPaT) information. To model the V2I communications, the following operational 

assumptions were made: 

 The GLOSA activation frequency was set at 10 Hz. That is, every 1

10
𝑡ℎ of a second, the 

algorithm checks for vehicles which are in the communication range and have not yet 

received SPaT data and computed an advisory speed message. The algorithm then runs for 

these vehicles to provide their drivers with advisory speed messages. 

 DSRC was used as the communication mode. Although the effective range of V2I 

communications is over 2000 ft. (Songchitruksa & Zha, 2014), the range of effective 

communication in this study was fixed depending on the segment length between 

intersections along the corridor. 

 Communication was maintained between vehicles and the closest traffic signal ahead of 

the vehicle. Once the vehicle crossed an intersection, the communication between the 

vehicle and that intersection was terminated. Therefore, a traffic signal could not influence 

vehicles which are ahead of it or more than one intersection before it, a concept referred to 

as single-segment GLOSA. 

 The method used for queue length estimation is different from that proposed by Stevanovic 

et al. (Stevanovic et al., 2013). Instead of only counting vehicles which are already in the 

queue, the algorithm derives the queue length from vehicles that are predicted to arrive on 
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a red signal indication when required advisory speed messages are lower than the minimum 

or higher than the maximum allowable speed. The advantage of using this method is that 

vehicles that are predicted to come to a stop at the intersection, but have not yet joined the 

queue, are considered in establishing the queue length ahead of the vehicle. 

 The study assumed 100% compliance rate to the speed advisory messages sent by the 

traffic signal system. 

  A market penetration rate of 100% was assumed. 

Estimation of Queue Dissipation Time 

Speed thresholds used to determine if vehicles are in a queue state vary considerably for 

arterial roadways. In a study by Stevanovic et al. (Stevanovic et al., 2013) a vehicle was considered 

to be part of the queue when the speed drops lower than 3.6 km/h (2.2 mph). Different definitions 

can be extracted from the default parameters of commercial simulation software. For example, in 

CORSIM, a vehicle is considered to be in the queue when its speed falls below 1 m/s (2 mph) 

(Mystkowski & Khan, 1999). Default parameters in VISSIM consider the queue state to start when 

the vehicle speed drops below 3.1 mph (5 km/h), with a maximum headway of 65.6 ft. The queue 

state ends when the speed of the vehicle goes above 6.2 mph (PTV AG., 2015). In this study, the 

default VISSIM parameters were adopted for defining the queue state of the vehicles. 

The dynamics of queues can be complex as a result of shockwaves that propagate upstream, 

making it difficult to estimate the queue discharge time. The stochastic nature of discharge 

headways provides an additional challenge in obtaining accurate estimates of queue dissipation 

time. To simplify the evaluation of queue impact on the efficiency of GLOSA systems, two stages 

were considered:  

1. Estimation of Queue length (number of vehicles). 
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Queue length was derived from vehicles that are predicted to arrive on a red signal 

indication when required advisory speed messages are lower than the minimum or higher 

than the maximum allowable speed. 

2. Estimation of queue dissipation time. 

After multiple simulation runs, the discharge headway distribution for each queue position 

was obtained. Average discharge headway values for each queue position were used in 

estimating the queue discharge time. 

GLOSA Algorithm 

The objective of the algorithm was to provide speed advisory messages to assist drivers to 

arrive at the intersection during a green phase. The proposed algorithm differs from previous 

GLOSA algorithms by considering the time required to dissipate a formed queue at the 

intersection, ahead of the driver receiving the advisory message. 

The algorithm first determines if vehicles are present in the DSRC area that have not 

computed advisory messages. If this condition is true, the algorithm performs computations for 

these vehicles. Data required for computations related to signal phasing and timing include: cycle 

length, cycle running time, and cycle time at both the start and end of the green phase. Vehicle 

data required for computations include: vehicle type, speed, acceleration/ deceleration status, 

position at the intersection, lane movement, as well as the C2X status of C2X equipped vehicles. 

Additionally, the stop bar location and the origin location of the wireless communication signals 

in the traffic signal system are required for the algorithm. The focus of this study was on vehicles 

that were required to slow down to arrive on a green signal indication, as indicated by the rectangle 

in Figure 4.3. 
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Although similar, previous studies have not suggested a suitable value for the minimum 

allowable advisory speed (𝑉𝑚𝑖𝑛). Therefore, a value of 10 mph was adopted for this study. Since 

the posted speed limit for the study corridor is 45 mph, the maximum allowable advisory speed 

(𝑉𝑚𝑎𝑥) that can be provided was set at 45 mph. 
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Figure 4.3 GLOSA Algorithm.  
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For slowing vehicles approaching the intersection, the advisory speed was computed as follows: 

Following the instability of acceleration/deceleration values in simulation, the 

acceleration/deceleration rate was not considered in the computation of the predicted time to arrive 

( 𝑡𝑎𝑟𝑟 ), as shown by Equation (4.1). 

𝑡𝑎𝑟𝑟 =  
𝑑

𝑉
 (4.1) 

 

 

                                     If  𝑡𝑎𝑟𝑟 + 𝐶𝑟𝑡 < 𝐶𝐿 then 

                                              𝐶𝑀 = 𝒕𝒂𝒓𝒓 + 𝑪𝒓𝒕                  (Arrival in the same signal cycle)   

                                     Else 

                                             𝐶𝑀 = 𝑡𝑎𝑟𝑟 + 𝐶𝑟𝑡 − 𝐶𝐿   (Arrival in the next signal cycle) 

                                     End if 

 

The value of 𝐶𝑀 is used to check the signal state at the predicted arrival time. If the signal 

state is red, and the vehicle qualifies to compute an advisory speed message to slow down, as 

shown in Figure 4.3, the advisory speed is computed using Equations (4.2) and (4.3), depending 

on whether the targeted arrival is in the current or next signal cycle, respectively. 

 

 𝐴𝑑𝑣. 𝑆𝑝𝑒𝑒𝑑 =
𝑑

𝐶𝑔 − 𝐶𝑟 + 𝑡𝑞
 (4.2) 

 

 𝐴𝑑𝑣. 𝑆𝑝𝑒𝑒𝑑 =
𝑑

𝐶𝐿 + 𝐶𝑔 − 𝐶𝑟 + 𝑡𝑞
 (4.3) 
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Where: 

𝐶𝑳= Cycle length 

𝐶𝒓𝒕= Cycle running time 

𝐶𝑔= Cycle time at start of green 

𝑡𝑞= Queue dissipation time 

𝐶𝑴 = Predicted cycle time at arrival 

𝑑 = Distance to intersection stop bar 

𝑡𝑎𝑟𝑟 = Predicted time to arrival 

𝐴𝑑𝑣.  𝑆𝑝𝑒𝑒𝑑 = Computed advisory speed 

𝑉 = Current vehicle speed 

Results and Discussion 

The primary objective of GLOSA systems is to reduce stop-and-go driving on urban 

arterials using advisory speed messages to drivers as they approach the intersection. Therefore, a 

time-space diagram provides a good illustration of how well this objective is met.  

To better evaluate how formed intersection queues affect the performance of GLOSA 

systems, three scenarios were created. The first scenario served as the base scenario using normal 

operations, with GLOSA not activated, and no advisory speed messages provided to the 

approaching vehicles. For the second scenario, GLOSA was activated, but the time to dissipate 

formed queues was not considered in the calculation of advisory speeds for slowing vehicles. In 

the third scenario, the time taken to discharge formed queues at the intersection was considered in 

computing the advisory speeds. 

  The time-space diagrams for selected cycles are depicted in Figure 4.4. Each scenario 

diagram consists of four independent segments because single-segment GLOSA was used. The 
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advisory speed messages were computed independently for each segment. Only vehicles that 

computed advisory speeds to slow down to arrive on green are plotted. It is worth mentioning that 

the vehicles that appear in the diagrams are not the same for each segment. With single-segment 

GLOSA, a vehicle computes different kinds of advisory messages in each segment. 

 A general decreasing trend in stop delay is observed when scenarios 2 and 3 are compared 

with the base scenario. In scenario 2, most of the vehicles that computed an advisory speed to slow 

down still had to come to a full stop at the intersection. This effect is more pronounced in the 

shorter segments, shown in Figure 4.4(b), and illustrates how formed queues at the intersection 

can have a significant impact on GLOSA system efficiency.  

 Results from scenario 3 (Figure 4.4(c)) indicate a significant reduction in the number of 

stopping vehicles and amount of stopping time for vehicles that computed an advisory speed to 

slow down. Additionally, a significant reduction in the number of vehicles that qualified to 

compute a slowing down advisory speed was noted in the E Fowler Avenue-Uni. Square Drive 

segment. After the queue dissipation time was considered, the majority of computed advisory 

speeds fell below the allowable minimum speed for this segment. 

Some vehicles were still observed to stop in scenario 3 because the advisory speeds were 

provided in the form of desired speeds during simulation. Reaction to the provided messages was 

not immediate, and the speeds of the vehicles in which drivers received the message oscillated 

around the provided advisory speed. Additionally, some simplifying assumptions were made in 

the queue dissipation time estimation which resulted in an underestimation of time to discharge 

the formed queue during some signal cycles. 

More insight into the effect of queue discharge time is provided by the speed-time diagrams 

shown in Figure 4.5. Speeds of stopping vehicles were recorded as they approach the intersection 
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starting at 2000 ft. from the stop bar, south of E Fowler Ave. Drivers with no advisory messages 

were observed to approach the intersection at high speeds and spend more time stopped in the 

queue (Figure 4.5(a)), and some drivers appeared to accelerate before slowing. Scenario 2 (Figure 

4.5(b)), where drivers are provided with advisory speeds, shows a reduction in time spent in the 

queue; however, many of the speeds still drop to zero. For this case, vehicles in which drivers are 

given advisory messages arrived when the queue had not cleared because queue discharge time 

was not considered. It is worth mentioning that the recording of vehicle speeds began after drivers 

had adjusted the speeds of the vehicles to the provided advisory speeds. In scenario 3 (Figure 

4.5(c)), queue discharge time was considered in the computation of advisory speeds. Following 

the simplifying assumptions made in obtaining the queue dissipation time, vehicles still slowed 

down as they approached the intersections; however, few vehicles came to a complete stop.  
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(a) (b) (c)  

   Figure 4.4 Time-space diagrams: (a) base scenario (b) scenario 2 (c) scenario 3.
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(a) (b) (c) 

 

 Figure 4.5 Intersection approach speeds: (a) base scenario (b) scenario 2 (c) scenario 3.
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          A record was kept for at least one segment of the time spent in the queue and the number 

of stops along the corridor for vehicles that computed an advisory message to slow down. For 

the base scenario, data for the same vehicle type were recorded, although no advisory speed 

was given to the drivers. Simulation results, summarized in Table 4.3, show the number of 

vehicles that qualified to compute advisory speeds decreased progressively through the 

scenarios. This is due to the minimum allowable advisory speed of 10 mph. A summary for all 

vehicles is also provided in Table 4.3. 

 

Table 4.3 A Summary of Simulation Results 

Scenario Total 

Number of 

Vehicles 

Average time 

spent in queue 

(s) 

Average 

number of 

stops 

Average time 

spent in queue 

(s) 

(All Vehicles) 

Average 

number of 

stops 

(All Vehicles) 

Baseline 658 203.33 2.31 212.16 3.22 

Scenario 2 580 155.38 2.24 210.36 2.9 

Scenario 3 365 99.65 1.42 182.84 2.27 

 

A statistical comparison was performed across the scenarios to determine if the 

difference in the measured parameters was statistically significant. A one tailed t-test with 𝛼 =

0.05 was performed for the base scenario against scenario 2, and scenario 2 against scenario 3. 

The results are presented in Table 4.4. 
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Table 4.4 Comparison 1: Baseline against Scenario 2 

Scenario Baseline Scenario 2 T-stat P-Value 

Statistically 

Significant 

Average time spent in 

queue (s) 
203.33 155.38 5.46 < 0.05 Yes 

Average number of 

stops 
2.31 2.24 0.92 0.18 No 

Comparison 2: Scenario 2 against Scenario 3 

Scenario Scenario 2 Scenario 3 T-stat P-Value 

Statistically 

Significant 

Average time spent in 

queue (s) 

155.38 99.65 6.91 < 0.05 Yes 

Average number of 

stops 

2.24 1.42 10.03 < 0.05 Yes 
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Table 4.5 Comparison 1: Baseline against Scenario 2 (All Vehicles) 

Scenario Baseline Scenario 2 T-stat P-Value 

Statistically 

Significant 

Average time spent in 

queue (s) 
212.16 210.36 3.699 < 0.05 Yes 

Average number of 

stops 
3.22 2.9 9.404 < 0.05 Yes 

Comparison 2: Scenario 2 against Scenario 3 (All Vehicles) 

Scenario Scenario 2 Scenario 3 T-stat P-Value 

Statistically 

Significant 

Average time spent in 

queue (s) 

210.36 182.84 56.561 < 0.05 Yes 

Average number of 

stops 

2.9 2.27 18.504 < 0.05 Yes 

 

 Statistical tests indicate that the reduction in the time spent in the queue is significant 

even when GLOSA is activated without considering the queue discharge time (scenario 2). The 

change in the average number of stops along the corridor was found not to be significant when 

the base scenario was compared against scenario 2. This suggests that formed queues can 

significantly impact the efficiency of GLOSA systems. Comparison between scenarios 2 and 

3 shows a significant change in the average number of stops along the corridor and the time 

spent waiting in queues. The overall impact on all vehicles is shown in Table 4.5 which shows 

significant improvements in both the average number of stops and average time spent in queue.  
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Conclusions and Recommendations 

This study investigated the influence of formed intersection queues on the performance 

of GLOSA systems. A GLOSA algorithm was developed to address an issue not considered by 

existing algorithms. Actual discharge headway, retrieved from field data, for each position in 

the queue was used to calibrate the simulation model, on which the GLOSA system was 

applied. The algorithm was developed for coordinated signal control using the weekday AM 

signal plan. 

A microscopic simulation approach was used for evaluating the effectiveness of the 

proposed algorithm. VISSIM microscopic simulation software and accompanying C2X module 

was used in the study. The corridor was modeled, and VBScript was used to implement the 

proposed GLOSA algorithm. Three simulation scenarios were designed; the baseline with no 

GLOSA in place, scenario 2 with GLOSA activated and queue discharge time not considered, 

and scenario 3 where queue dissipation time was used to compute advisory speeds. The time-

space diagrams, time spent in queue state and number of stops were used as measures of 

performance of the proposed algorithm. 

Findings reveal that the reduction in the time spent in the queue is significant even when 

GLOSA is activated without considering the queue discharge time. The change in the average 

number of stops along the corridor was found not to be significant when the base scenario was 

compared against scenario 2. This shows that formed intersection queues can impair the 

performance of GLOSA systems. Comparison between scenarios 2 and 3 shows a significant 

change in the average number of stops along the corridor and the time spent waiting in queues. 

This study applied a single-segment GLOSA approach. In future work, similar 

investigations can be conducted on the performance of multi-segment GLOSA. Further studies 

can examine how fuel consumption and emissions are affected by queues in areas where 

GLOSA is activated. This study was also limited to only passenger cars. The study can be 
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extended to mixed traffic in future studies. The present study assumed a 100% compliance rate 

of the received advisory speed messages. More research is needed to investigate the response 

of drivers to the speed advisory messages received. 
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CHAPTER 5 OVERALL CONCLUSIONS AND RECOMMENDATIONS 

There has been increased research in the use of CV technology to address safety, 

mobility and environmental challenges that face the transportation sector. Most of the research 

efforts use simulation test beds as a way to test the functionality and feasibility of different 

applications of connected vehicles before actual field tests are conducted. This study used the 

VISSIM simulation software to assess the safety and mobility applications of SPaT information 

in a connected vehicle environment. This chapter lists the main findings of this study, mentions 

limitations of the study, and provides recommendations for future work. 

Calibration of VISSIM Discharge Headways  

Calibration in VISSIM produced mean discharge headways close to the values observed 

in the field but was not able to replicate the dispersion of the discharge headways obtained by 

the field measurements. Even by using high values of 𝑏𝑥𝑚𝑢𝑙𝑡, the parameter that controls 

dispersion of the headways, the dispersion of the distributions of the simulated headways could 

not come closer to those of the field observations. 

Safety Evaluation of the ASAS in a Connected Vehicle Environment 

  A reduction of about 50% in number of MaxD-Based conflicts resulting from drivers 

receiving advance speed advisory messages. The results demonstrated that at least 60% 

saturation of OBUs is required to observe a reduction in the number of MaxD-Based conflicts. 

Enhancing the GLOSA System to Incorporate Queue Formation 

Findings reveal that the reduction in the time spent in the queue is significant even when 

GLOSA is activated without considering the queue discharge time. The change in the average 

number of stops along the corridor was found not to be significant when the base scenario was 

compared against scenario 2. This shows that formed intersection queues can impair the 
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performance of GLOSA systems. Comparison between scenarios 2 and 3 shows a significant 

change in the average number of stops along the corridor and the time spent waiting in queues. 

Limitations of the Study and Recommendations for Future Work 

This study was limited to only passenger cars. The study can be extended to mixed 

traffic in future studies. In future work, more research is needed to investigate the response of 

drivers to the speed advisory messages provided. This study assumed 100% compliance rate of 

the received messages. The algorithms could also be modified to work with actuated signal 

control as this study only dealt with pre-timed signals. A mechanism of communicating 

messages received by C2X equipped vehicles to non-equipped vehicles visually at lower 

market penetration rates respectively can be researched to potentially observe safety 

improvements. Also, the inability of the calibration process to account for the dispersion 

of headway data requires special attention.  VISSIM developers could modify the way 

discharge headways are modeled. Allowing discharge headway data to be entered as a 

distribution similar to how it is done for speeds, reaction time, and stopping distance before the 

stop bar, would enable analysts to define discharge headways in terms of the distributions 

observed in the field. 
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