
University of North Florida University of North Florida

UNF Digital Commons UNF Digital Commons

UNF Graduate Theses and Dissertations Student Scholarship

2018

Mobile Cloud Computing: A Comparison Study of Cuckoo and Mobile Cloud Computing: A Comparison Study of Cuckoo and

AIOLOS Offloading Frameworks AIOLOS Offloading Frameworks

Inan Kaddour
University of North Florida, n00669880@ospreys.unf.edu

Follow this and additional works at: https://digitalcommons.unf.edu/etd

 Part of the Other Computer Engineering Commons, Software Engineering Commons, and the Systems

Architecture Commons

Suggested Citation Suggested Citation
Kaddour, Inan, "Mobile Cloud Computing: A Comparison Study of Cuckoo and AIOLOS Offloading
Frameworks" (2018). UNF Graduate Theses and Dissertations. 785.
https://digitalcommons.unf.edu/etd/785

This Master's Thesis is brought to you for free and open
access by the Student Scholarship at UNF Digital
Commons. It has been accepted for inclusion in UNF
Graduate Theses and Dissertations by an authorized
administrator of UNF Digital Commons. For more
information, please contact Digital Projects.
© 2018 All Rights Reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNF Digital Commons

https://core.ac.uk/display/213886082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/
https://digitalcommons.unf.edu/etd
https://digitalcommons.unf.edu/student_scholars
https://digitalcommons.unf.edu/etd?utm_source=digitalcommons.unf.edu%2Fetd%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.unf.edu%2Fetd%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.unf.edu%2Fetd%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.unf.edu%2Fetd%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=digitalcommons.unf.edu%2Fetd%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unf.edu/etd/785?utm_source=digitalcommons.unf.edu%2Fetd%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-digital@unf.edu
http://digitalcommons.unf.edu/
http://digitalcommons.unf.edu/

MOBILE CLOUD COMPUTING:
A COMPARISON STUDY OF CUCKOO AND AIOLOS OFFLOADING

FRAMEWORKS

by

Inan Kaddour

A Thesis Submitted to the
School of Computing

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer and Information Sciences

UNIVERSITY OF NORTH FLORIDA
SCHOOL OF COMPUTING

April 2018

ii

Copyright  2018 by Inan Kaddour

All rights reserved. Reproduction in whole or in part in any form requires the prior
written permission of Inan Kaddour or designated representative.

iii

The Thesis "Mobile Cloud Computing: A Comparison Study of Cuckoo and Aiolos
Offloading Frameworks” submitted by Inan Kaddour in partial fulfillment of the
requirements for the degree of Master of Science in Computer and Information Sciences
has been

Approved by the thesis committee: Date

_____________________________________ ____________________
Dr. Sanjay P. Ahuja
Thesis Advisor and Committee Chairperson

_____________________________________ ____________________
Dr. Roger Eggen

_____________________________________ ____________________
Dr. Behrooz Seyed-Abbassi

Accepted for the School of Computing:

_____________________________________ ___________________
Dr. Sherif Elfayoumy
Director of the School

Accepted for the College of Computing, Engineering, and Construction:

_____________________________________ __________________
Dr. Mark A. Tumeo
Dean of the College

Accepted for the University:

_____________________________________ _________________
Dr. John Kantner
Dean of the Graduate School

iv

ACKNOWLEDGEMENT

I want to thank my parents for always being my greatest motivation and pushing me to

get where I am today, this achievement is yours.

I would also like to take this opportunity to thank my Thesis Advisor Dr. Sanjay Ahuja

for his valuable guidance, support, and time he dedicated to me through all this process;

thank you Dr. Ahuja. I also thank Dr. Roger Eggen and Dr. Behrooz Seyed-Abbassi who

agreed to be on my thesis committee. I also want to thank Tim Verbelen for his valuable

help and guidance in building the Aiolos based application. I also want to thank Roelof

Kemp for helping me build the Cuckoo based application. I also thank School of

Computing and the ISA for all the support.

v

CONTENTS

ACKNOWLEDGEMENT ... iv

CONTENTS .. v

LIST OF FIGURES .. vii

LIST OF TABLES ... ix

ABSTRACT .. x

Chapter 1 Introduction ... 1

1.1 Android .. 4

1.2 Android Interface Definition Language (AIDL) ... 5

1.3 Open Services Gateway Initiatives (OSGi) ... 7

Chapter 2 Literture Review .. 11

2.1 Cuckoo ... 11

2.2 Aiolos ... 13

2.3 Related Work ... 15

Chapter 3 Research Methodology .. 19

3.1 Breadth First Search Algorithm ... 20

3.1.1 Light Computation Breadth First Search Task .. 21

3.1.2 Heavy Computation Breadth First Search Task ... 21

3.2 Setting up the Android Development Environment .. 21

3.3 Creating Virtual Machines on the Amazon EC2 Cloud Service 22

3.4 Software Specifications ... 23

3.5 Hardware Specifications .. 23

Chapter 4 Results and Discussion .. 25

vi

4.1 Cuckoo vs Aiolos ... 266

4.1.1 Light Computation Task .. 266

4.1.2 Heavy Computation Task .. 29

4.1.3 Performance Comparison for Different File Sizes 333

4.1.4 Break-Even Points ... 35

4.2 Aiolos: Local vs Wi-Fi vs 4G .. 37

4.2.1 Light Computation Task .. 37

4.2.2 Heavy Computation Task .. 38

4.3 Cuckoo: Local vs Wi-Fi vs 4G .. 400

4.3.1 Light Computation Task .. 400

4.3.2 Heavy Computation Task .. 411

4.3.3 Service Jar Installation ... 433

Chapter 5 Conclusions ... 44

5.1 Tasks Studies ... 44

5.1.1 Light Computation Task .. 44

5.1.2 Heavy Computation Task .. 46

5.2 Finding of the Development Effort .. 48

5.3 Future Research ... 48

REFERENCES ... 50

VITA ... 54

vii

LIST OF FIGURES

Figure 1: Hardware Comparison between Servers and Mobile Devices. 2

Figure 2: Android Activity Service Communication. Error! Bookmark not defined.

Figure 3: Activity Service Communication through AIDL. ... 6

Figure 4: IPC through Proxy-Stub Architecture. .. 7

Figure 5: OSGi Model. ... 8

Figure 6: OSGi Module Layer Components ... 9

Figure 7: OSGi Service Module - Service Oriented Interaction. 10

Figure 8: Cuckoo Components. .. 11

Figure 9: Cuckoo Build Process. .. 12

Figure 10: Aiolos Three Main Layers. .. 14

Figure 11: Aiolos vs Cuckoo: Amazon EC2 Execution Time using 4G for Light
Computation Task. .. 27

Figure 12: Aiolos vs Cuckoo: Amazon EC2 Execution Time using Wi-Fi for Light
Computation Task. .. 26

Figure 13: Aiolos vs Cuckoo: Local Execution Time for Light Computation Task. 27

Figure 14: Aiolos vs Cuckoo: Battery Consumption when Light Computation Task is run
locally. ... 28

Figure 15: Aiolos vs Cuckoo: Battery Consumption when Offloading Light Computation
Task using Wi-Fi... 28

Figure 16: Aiolos vs Cuckoo: Battery Consumption when Offloading Light Computation
Task using 4G. .. 29

Figure 17: Aiolos vs Cuckoo: Amazon EC2 Execution Time using Wi-Fi for Heavy
Computation Task. .. 31

Figure 18: Aiolos vs Cuckoo: Amazon EC2 Execution Time using 4G for Light
Computation Task. .. 30

Figure 19: Aiolos vs Cuckoo: Local Execution Time for Heavy Computation Task. 30

viii

Figure 20: Aiolos vs Cuckoo: Battery Consumption when Offloading a Heavy
Computation Task using Wi-Fi. .. 33

Figure 21: Aiolos vs Cuckoo: Battery Consumption when Offloading Heavy
Computation Task using 4G. .. 32

Figure 22: Aiolos vs Cuckoo: Battery Consumption when Heavy Computation Task is
Run Locally. .. 32

Figure 23: Aiolos vs Cuckoo: Amazon EC2 Execution Time for Different File Sizes
using 4G. ... 34

Figure 24: Aiolos vs Cuckoo: Amazon EC2 Execution Time for Different File Sizes
using Wi-Fi. .. 34

Figure 25: Aiolos vs Cuckoo – Amazon EC2 Execution Time for Different File Sizes
using Local. ... 35

Figure 26: Aiolos vs Cuckoo: Break-Even Point for Amazon EC2 Execution Time for
Different File Sizes using 4G. ... 36

Figure 27: Aiolos vs Cuckoo: Break-Even Point for Amazon EC2 Execution Time for
Different File Sizes using 4G. ... 36

Figure 28: Local vs Wi-Fi vs 4G: Aiolos Execution Time for Light Computation Task. 37

Figure 29: Local vs Wi-Fi vs 4G: Aiolos Battery Consumption for Light Computation
Task. .. 38

Figure 31: Local vs Wi-Fi vs 4G: Aiolos Battery Consumption for Heavy Computation
Task. .. 39

Figure 32: Local vs Wi-Fi vs 4G: Cuckoo Execution Time for Light Computation Task.
... 40

Figure 33: Local vs Wi-Fi vs 4G: Cuckoo Battery Consumption for Light Computation
Task. .. 41

Figure 34: Local vs Wi-Fi vs 4G: Cuckoo Execution Time for Heavy Computation Task.
... 42

Figure 35: Local vs Wi-Fi vs 4G: Cuckoo Battery Consumption for Heavy Computation
Task. .. 42

Figure 36: Cuckoo Performance for a Light Computation Task over the Period of 6 Days
... 43

ix

LIST OF TABLES

Table 1: Mobile client specifications. .. 23

Table 2: Amazon EC2 Specifications. ... 24

Table 3: Comparison between Wi-Fi and 4G Internet service. .. 24

x

ABSTRACT

Currently, smart mobile devices are used for more than just calling and texting. They can

run complex applications such as GPS, antivirus, and photo editor applications. Smart

devices today offer mobility, flexibility, and portability, but they have limited resources

and a relatively weak battery. As companies began creating mobile resource intensive

and power intensive applications, they have realized that cloud computing was one of the

solutions that they could utilize to overcome smart device constraints. Cloud computing

helps decrease memory usage and improve battery life. Mobile cloud computing is a

current and expanding research area focusing on methods that allow smart mobile

devices to take full advantage of cloud computing. Code offloading is one of the

techniques employed in cloud computing with mobile devices. This research compares

two dynamic offloading frameworks to determine which one is better in terms of

execution time and battery life improvement.

1

Chapter 1

INTRODUCTION

Offloading, also called augmented execution, is the method of sending a resource

intensive task to a remote server; an old technique that has been rediscovered to reduce

power consumption and speed up computation tasks. Since the beginning of mobile

computing in the early 1990s, the lack of resources of mobile devices has been identified

as a major constraint.

Mobile elements are resource-poor relative to static elements. Regardless of future

technological advances, a mobile unit’s weight, power, size, and ergonomics will always

render it less computationally capable than its static counterpart. While mobile elements

will undoubtedly improve in absolute ability, they will always be at a relative

disadvantage [Satyanarayanan14]. The data shown in Figure 1 illustrates that the previous

statement remains correct even with technological advances in mobile devices, as their

resources remain limited when compared to a typical server.

In 1997, to improve execution time, offloading was first introduced in mobile computing

by Noble et al. in the Janus speech recognition application [Noble97]. The application

was modified to operate in three modes in Odyssey. The latter is a platform for mobile

data access, it monitors mobile device resources such as bandwidth, battery power and

2

Figure 1: Hardware Comparison between Servers and Mobile Devices.

CPU cycles, and then notifies running mobile applications when it detects a change to

those resources. The first mode was local execution of the application, the second mode

was remote execution of the application. The last mode was a hybrid, where the first

phase, which is the conversion of raw speech to a more structured representation of the

speech processing application was executed locally, and the second phase, which is the

reminder of the speech recognition process, was executed on the server. Odyssey had the

ability to dynamically decide the optimal execution mode based on many factors such as

network bandwidth. Flinn demonstrated that remote execution could save battery energy

[Flinn99].

The appearance of cloud computing in 2008 addressed a very important question around

offloading which was “where should remote execution take place?” The success of

3

Apple’s cloud-based Siri speech recognition service validates the use of clouds at

commercial levels and opened a new era of cloud offloading. Offloading is considered a

better option than online applications for two main reasons [Kovachev11]. The first is

that users do not always have access to the Internet. The second is that online applications

cannot gain access to the phone’s features such as camera or motion detection. There are

two types of offloading: static and dynamic. Static offloading is when the tasks to be

executed on the cloud are identified at compile time or runtime. Dynamic offloading is

when an external resource manager determines whether to run a specific task locally or

on a remote server to achieve better performance and longer battery life. There are two

main offloading approaches. The first approach requires a framework on the top of the

existing runtime system, for example Mobile Assistance Using Infrastructure (MAUI),

Cuckoo, ThinkAir, Aiolos, and Mobile Cloud Middleware (MCM) framework. The

second approach requires a modification to the operating system (OS) or virtual machine

on which the process is running [Verbelen12A]. As a result, this modification makes it

hard for this approach to be a real-world approach for offloading, due to security

concerns associated with modifying the OS. CloneCloud is an example for the second

approach [Paramvir12]. Chun and Al developed an architecture that supports five types

of augmented execution [Chun09]:

1. Primary functionality outsourcing: offloading computational intensive tasks.

2. Background augmentation: offloading background processes.

3. Mainline augmentation: offloading light-weight computation for heavy weight

analysis.

4

4. Hardware augmentation: offloading of computation because of hardware

limitation.

5. Augmentation though multiplicity: parallel execution of offloaded tasks.

Many of today’s mobile applications such as augmented reality applications, do

expensive computations locally which affects response time and energy consumption. On

the other hand, applications should not be fully dependent on the Internet or Wi-Fi

connection. Users should be able to run their resource intensive applications regardless of

whether the Internet can be accessed or not. The use of a dynamic offloading framework

will help to resolve these issues by executing extensive computation tasks on the cloud

whenever it is possible, instead of executing them locally. However, if the cloud is

unreachable, then a dynamic offloading framework will execute extensive computation

tasks locally. Cuckoo and Aiolos are two open source dynamic offloading frameworks

that can be used by companies to enhance the performance of heavy computation

applications. They follow a client/server model since both frameworks come with client

and server components. They support all five execution types indicated above [Kemp10]

and they are pioneers in the mobile-cloud offloading domain. This research compares

those two frameworks using a commercial cloud provider, Amazon EC2, to determine

which one offers better performance in terms of battery life and execution time.

1.1 Android

Android is an open-source operating system that runs on top of Linux and is dedicated to

mobile devices. Applications in Android are written in Java and then compiled to Dalvik

5

bytecode. Every application runs on a distinct virtual machine called a Dalvik Virtual

Machine (DVM) to avoid interference between applications [Bouzefrane11].

Android has four main components: activities, services, content providers, and broadcast

receivers. Activities interact with users through their self- contained user interface.

Services are used for CPU or network intensive operations [Kemp12] and they do not

have a user interface. Services run in the background where activities and services

communicate through inter process communication (IPC) as shown in Figure 2. Content

providers handle data access and data sharing between applications. Finally, broadcast

receivers are applications that respond to broadcast messages from other applications or

other components in the system.

Figure 2: Android Activity Service Communication.

6

1.2 Android Interface Definition Language (AIDL)

AIDL is an approach used for Inter-Process Communication (IPC). AIDL generates code

that enables two android processes to communicate, since one process cannot access the

memory of another process [Android18B]. For example, if a developer has a process that

needs to call a method in another process (service for example), AIDL is implemented to

generate code that allows access to that method [Android18B]. Implementing AIDL

requires an update to both processes. AIDL is a light version of COM or Common Object

Request Broker Architecture (CORBA) [Aleksandar13] and uses proxy class to pass

values between processes. As shown in Figure 3, AIDL is used so that an activity in

process A can call methods in process B using an interface defined inside the AIDL file.

Eclipse generates a proxy and stub based on the interface. Stub is used to implement all

methods defined in AIDL file, and proxy is used in process A to call the remote methods

in process B.

Figure 3: Activity Service Communication through AIDL.

7

IPC uses a Remote Procedure Call (RPCs) mechanism so that an activity can make a

direct call to a remote method. Android uses binder as its RPC mechanism [Android18C].

It decomposes method calls and their data to a level that an operating system can

understand, transmitting them from the local process to the remote process, and

reassembling and reenacting the calls there [Android18C]. As shown in Figure 4, binder

kernel driver allows the communication between proxy and stub.

Figure 4: IPC through Proxy-Stub Architecture.

1.3 Open Services Gateway Initiatives (OSGi)

OSGi, which first appeared in 1999, is a framework for a dynamic modular architecture

in which an application is composed of multiple reusable components that communicate

via services. OSGi has been used in Eclipse Equinox, Apache Felix, GlassFish v3, and

other projects [OSGi12].

8

The purpose of using OSGi is to reduce the complexity of code development. In addition,

OSGi fully supports a test-driven development (TDD), which makes it easy to test all

components locally. It also enables companies to reuse existing components with minor

code modifications [OSGi12]. Additionally, OSGi provides a module cycling/updating

capability in order to increase availability and decrease system outages [Hall11]. Finally,

OSGi framework comes with an interface that can be used by system administrators or

developers to get an insight into current task execution [Aiolos15].

As shown in Figure 5, OSGi consists of three main layers: module, lifecycle, and service

layer. The module layer is the core of OSGi because it enables modularity. The OSGi

module concept is called a bundle.

Figure 5: OSGi Model.

9

OSGi bundle is a JAR file with extra metadata as shown in Figure 6. Unlike a typical

Java JAR file, not everything inside a bundle is visible to all other bundles. Embedded

metadata contains information about which packages in the bundle are visible to the

outside world [OSGi12]. It also contains information about which packages within in the

same bundle, and other bundles, it is dependent upon in order to function properly

[Aiolos15].

Figure 6: OSGi Module Layer Components

The lifecycle layer provides the ability to dynamically install and manage bundles in the

OSGi framework [Hall11]. It also allows bundles to communicate with each other by

giving them access to the runtime environment.

The service layer’s main goal is to allow communication among modules. It enables a

single JVM Service-Oriented Architecture (SOA). OSGi services follow a publish, find,

10

and bind paradigm [Hall11], where service providers publish services to the service

registry and service clients search the registry to find available services to use, as shown

in Figure 7.

Figure 7: OSGi Service Module - Service Oriented Interaction.

This paper is organized as follows: Chapter 2 defines Aiolos and Cuckoo. It also

describes a brief history of existing mobile dynamic offloading research. Chapter 3

explains research methodology, and describes testbed setup. Chapter 4 discusses the

results of the experiments. Finally, Chapter 5 concludes the paper.

11

Chapter 2

LITERATURE REVIEW

2.1 Cuckoo

Cuckoo is a client/server framework for dynamic offloading. It only targets Android

devices and takes advantage of how android’s main components, activities, and services,

communicate. As shown in Figure 8, Cuckoo comes with the following components: a

very simple programming model and environment (Eclipse plugin), a runtime, oracle, a

resource manage application, and server application.

Figure 8: Cuckoo Components.

Cuckoo has many advantages. It bundles local and remote code in the same package so

that the offloaded code can be installed from smart devices at runtime. It allows different

implementations of local and remote code of the same function to better utilize cloud

resources. As shown in Figure 9, Cuckoo comes with an Eclipse plugin to integrate with

12

Eclipse to facilitate the creation of computation offloading applications. Once an AIDL

file is created by developers, Cuckoo Service Rewriter (4) adds code to generated java

files so that Cuckoo can intercept service method calls and run an offloading algorithm

against each method call to decide whether to execute the method locally or on the server.

Cuckoo Remote Service Deriver (2) generates dummy service implementations which

need to be overwritten by developers. Ant Compiler (3) is used to create an apk file that

will be installed and run on the server.

Figure 9: Cuckoo Build Process.

Oracle is the decision maker component of Cuckoo. Decisions are based on the strategy

chosen by developers, which can be “local”, “remote”, “energy”, “speed” or “parallel”

13

[Kemp12]. The strategy can also be a combination of “energy” and “speed”. In this case,

Cuckoo offloads the execution of the method if it will save more energy or speed-up the

execution time. By default, the strategy is “speed/energy”. Oracle uses an algorithm that

combines context information, heuristics, and history to decide whether to a run a method

locally or remotely. Based on the developer strategy, Oracle estimates execution time,

transfer time, round trip time, connection setup overhead, and power consumption on the

local and remote servers to decide where to run the method [Kemp12]. The role of the

resource manager component of Cuckoo is to make remote resources known to the smart

device.

2.2 Aiolos

Aiolos is client/server model framework that is built on the top of OSGi and R-OSGi

[Verbelen12A]. The main purpose of using OSGi is to split up the application into

components. Those components are independent from each other, which facilitates the

offloading process. Aiolos comes with an Eclipse plugin to help developers build off-

loadable mobile applications. They are only required to annotate classes they want to

consider for offloading, and the framework will generate OSGi bundles for them and

publish them as OSGi services.

To decide whether to run a method locally or remotely, Aiolos uses two optimization

models; optimize execution time and optimize energy [Verbelen12B]. To optimize the

execution time, the framework calculates the expected execution time locally and

14

remotely based on many factors: speedup factor, network bandwidth, latency, and

argument size. A simple decision model is used to optimize the energy consumed. This

model always assumes that energy consumed by sending and receiving bytes to and from

the server is smaller than the energy saved by offloading the computation [Verbelen12B].

Aiolos also uses a history-based profile for each service method to speed up the decision

process. As shown in Figure 10, Aiolos is split up into three layers [Aiolos15]:

• Core: contains Proxy Manager, Remote Service Admin, and Topology Manager.

• Monitoring: collects information about service and node level. It contains a

Service Monitor, and Note Monitor.

• Deployment: finds and deploys components to the cloud. It contains Repository,

Deployment Manager, and Cloud Manager.

Figure 10: Aiolos Three Main Layers.

15

2.3 Related Work

The intention of this section is to focus on documenting the contribution of other

researchers and to expand the understanding of concepts, models, and patterns of

computation on mobile devices. The most important references surveyed are listed below.

There are many studies that talk about the benefits of offloading, but most studies to date

only compare available frameworks theoretically without specific examples. A theoretical

example is research by Kovachev et al. that compared Alfred O, MAUI, and cloudlets

[Kovachev11]. Their work involved comparing various offloading

techniques/frameworks in terms of how their architectures work. Research by Kemp et al.

in [Kemp10] only discussed the architecture of Cuckoo and its performance using

eyeDentify and Photoshoot applications. Their research proved that Cuckoo, as an

offloading framework, increases performance of slower phones using an indoor server.

Another framework called Aiolos was introduced by Verbelen et al. [Verbelen12B]. This

group’s research described the architecture of Aiolos and how it’s offloading logic works.

It also evaluated Aiolos’s performance using Honza’s Chess and a photo editor

application. They concluded that offloading always improves performance, particularly if

the server is local. Also, a user-centric MCC approach was taken by Huang et al. in

[Huang13]. In their research, they described context aware applications as the next

generation of mobile applications. Those mobile applications are able to collect user’s

behaviors and attributes [Huang13] in real time to analyze the user’s situation and act

proactively. It is vital for context aware applications to have an offloading engine to be

16

able to analyze user’s data in a powerful machine. Their research introduced the

MobiCloud framework to help developers build context aware applications.

In addition, a few studies explored the possibility of offloading intensive CPU tasks to

nearby mobile devices. An example is the work done by Marinelli [Marinelli09], in

which the author explored the possibility of executing computational tasks on mobile

device networks and heterogeneous networks of phones and servers. Finally, other

studies introduced a cloudlet layer between mobile devices and cloud. In a study by

Bhatnagar [Bhatnagar13], the author introduced the advantages of using cloudlets by

building a face recognition application on the top of the Mobile Cloud Hybrid

Architecture (MOCHA) framework.

Web applications today are more complex than ever before, they require more

computation resources than mobile devices can supply. To overcome this issue, Wang et

al. in [Wang12] developed a JavaScript offloading framework called ExtremeJS

(Extensive Transformation and Elastic Migration and Exection of JavaScript). ExtremeJS

only works on javascript code. ExtremeJS creates a cloned context of the application on

the cloud, and then ships computation intensive functions to it [Wang12]. ExtremeJS

comes with three components; profiler, code analyzer, and migrator. Profiler’s job is to

identify computation intensive functions by creating a cost model for each function.

Then, code analyzer decides which function can be migrated to the cloud. Finally, the

migrator is responsible of synchronizing the application contexts and ships the

computation intensive functions to the cloud. The framework makes JavaScript websites

17

10 times faster [Wang12]. This research showed that mobile devices cannot handle

modern website so there is a need for a dynamic offloading framework for user to have a

flawless experience

Wang et al. in [Wang17] created a cross instruction set architectures (ISAs) offloading

framework that is not dependent to any programming language, runtime system or the

availability of source code. The framework was built on the top of HQEMU system

[Wang17]. It comes with three components; offline profiler, dynamic binary optimizer

and dynamic binary translator. Offline profiler resides on the client side, and its job is to

analyze binary code to identify which function should be sent to the server. Dynamic

binary optimizer resides on the client side. The role of dynamic binary optimizer is to

send a function to the server, wait for the results to be returned and then resume the

execution of the mobile application. When a request is received, dynamic binary

translator, which resides on the server, initializes its internal emulation state according to

the received execution state of the target [Wang17]. After the emulation is done, dynamic

binary translator sends back the results with the emulation state to the client before

entering a wait mode. The framework achieves a 1.93x speedup with 48.66% reduction in

energy consumption [Wang17]. That research demonstrated that mobile dynamic

offloading is crucial for mobile applications to speedup application’s performance and

also to reduce energy consumption.

Kim et al. in [Kim16] proposed a dynamic offloading framework for a drone-based

mobile system to overcome both limited resources and limited battery power in a drone.

18

The framework consists of four sub-modules; offloading decision module, image

processing, drone positioning & camera control, and remote agency module. The

offloading decision module is responsible for determining whether a module should be

offloaded or not to reduce response time. The decision is based on mobility information

of the target and network conditions. If a module is going to be offloaded, remote agency

module sends the input data required for offloading to control center, waiting the

execution time for the offloaded computation and then receives the resulting data back

[Kim16]. The framework is able to reduce energy consumption and execution time

required for recognizing and tracking of moving targets. That research showed that smart

machines (such as drone, autonomous cars, and robots) are also in need of dynamic

offloading frameworks.

Like the studies mentioned above, this research focuses on calculating energy

consumption and execution time when comparing Cuckoo to Aiolos framework. On the

other hand, this is the first study that is comparing two open source offloading

frameworks that are available for any person or organization to use. The methodology

used in this research is adopted from [Wang14] in which a process is executed 30 times

on the cloud and locally on the phone. The execution time is measured each time the

process is executed. To compare battery consumption, a given task is executed 100 times

after the battery is fully charged, and then the remaining percentage of battery energy is

checked using KingSoft Battery Doctor application.

19

Chapter 3

RESEARCH METHODOLOGY

This research evaluates the performance on an LG Leon mobile device with Amazon

EC2 as an offloading platform. The study performs and analyzes a series of experiments

for Cuckoo and Aiolos frameworks to obtain execution time and power consumption on

the mobile device with the mobile device connected to the Internet through either Wi-Fi

or 4G or when the phone is offline. Testing involved the device performing two different

kinds of computation tasks: heavy computation task, and light computation task. The

study also ran several tasks on Cuckoo and Aiolos using different file sizes to find out the

impact of file size on performance, and to find the break-even point where both Aiolos

and Cuckoo frameworks have the same performance in terms of execution time.

The objectives of using Cuckoo and Aiolos are to shorten the execution time and save the

power of mobile devices because computation intensive tasks run quicker on a powerful

cloud server. In this study, a resource intensive application and a non-resource intensive

application were created using both Cuckoo and Aiolos frameworks. Two key factors

were monitored: execution time, and percentage of remaining battery power. For the

resource intensive application, we compared the performance of both frameworks when a

phone is connected to the Internet through 4G or Wi-Fi, and also when the phone is

offline or offloading servers are not available. For the non-resource intensive application,

we compared the performance on the cloud versus local. This study also determines the

20

preferred environment for each framework when running each kind of computation task

in order to conclude which framework is more efficient.

To compare execution time of the two frameworks, the application ran 50 times on each

framework, and each time we captured the time required for the application to finish. As

part of this research, a framework was occasionally forced to use a certain environment

by making the other environment unavailable. For example, Aiolos prefers to offload a

heavy computation task. However, if the offloading server is not available, it forces

Aiolos to run the task locally.

To compare the two frameworks in terms of power consumption, the application ran 50

times immediately after the battery was fully charged, then the remaining percentage of

battery power was captured. The consumed battery percentage was calculated as follows:

Power Consumed = Initial Power – Remaining Power

3.1 Breadth First Search Algorithm

Breadth first search is a search algorithm where the root node is expanded first and then

all successors of the root node are expanded next, then their successors, and so on. Every

node is expanded at each depth before moving to the next level. The breadth first search

algorithm can be costly in terms of space and time taken to find the target node. If each

node generates b more nodes, then to get to a node at depth d, the algorithm must

generate O(bd) nodes [Russell10]. The breadth first search algorithm stores every

21

expanded node, so in a worst-case scenario the space complexity is O(b^d) [Russell10].

In this experiment, breadth first search is used to find the shortest path in terms of

number of edges from a given source vertex to every other vertex in an undirected graph.

3.1.1 Light Computation Breadth First Search Task

A “light” task was employed to generate a graph of 250 vertices and 1,273 edges, then

find a path from a given source node to every other node in the graph. The source node

chosen for this experiment was node number 100.

3.1.2 Heavy Computation Breadth First Search Task

A “heavy” task was employed to generate a graph of 1,000,000 vertices and 7,586,063

edges, then find a path from a given source node to every other node in the graph. The

source node chosen for this experiment is node number 200.

3.2 Setting up the Android Development Environment

The Android development environment is composed of six different software

components:

Eclipse Kepler 4.3.2 Edition

• Android SDK (Software Development Kit)

• ADT Plugin for Eclipse (Android Development Tool)

22

• Git (Open Source Version Control)

• Apache Ant (build tool)

• BNDTools (OSGi plugin)

The test development framework uses Eclipse, the Android SDK, and the ADT plug-in.

The Android SDK provides API libraries and development tools necessary to build, test

and debug apps for Android [Android18A]. The ADT plug-in for Eclipse facilitates

setting up Android projects, creating an application UI, adding packages based on the

Android Framework API, and providing an emulator to test the Android apps locally in

the development machine.

Git is an open source version control that is used to export Cuckoo and Aiolos

frameworks locally. Apache Ant is a Java-based build tool from Apache Foundation. Ant

files are .xml files that enable developers to compile a set of projects at the same time

[Apache12] because OSGi projects contain at least four projects. Finally, Bndtools plugin

allows developers to create OSGi applications [BndTools12].

3.3 Creating Virtual Machines on the Amazon EC2 Cloud Service

By using the Amazon Web Services web-based console, it is possible to configure and

create a virtual machine on the EC2 platform. Additionally, the JRE 6 or 7 must be

installed on each Cuckoo virtual machine in order for the Cuckoo server to run.

23

3.4 Software Specifications

• Eclipse Kepler 4.3.2 Edition as development framework with Java Runtime

Environment JRE 7.

• The Android Software Development Kit (SDK).

• Android Development Tools (ADT).

• Ant build tool to build jar files.

• BndTools to create OSGi components.

• SSH software to connect to Amazon VM.

• KingSoft Battery Doctor to calculate the percentage of remaining power.

3.5 Hardware Specifications

• LG Leon as a mobile client described in Table 1.

• One VM configuration, M3 medium instance, on Amazon cloud provider

described in Table 2.

• Wi-Fi and 4G characteristics as described in Table 3.

LG Leon

Operating System Android 4.0.1 (Lollipop)
Memory 1 GB
Storage 8 GB
Battery 1820 mAh

Table 1: Mobile client specifications.

24

Table 2: Amazon EC2 Specifications.

 Wi-Fi 4G HSPA
Service Provider Comcast T-Mobile
Download 50 Mbps 10 Mbps
Upload 10 Mbps 1 Mbps

Table 3: Comparison between Wi-Fi and 4G Internet service.

Amazon EC2 – M3 Medium Instance
Number of cores 1 Core

Processor Intel Xeon E5-2670
Compute Unit 3 C.U

Operative System Ubuntu Server 14.04 LTS
Memory 3.75 GiB

Internal Storage 8 GiB

25

Chapter 4

RESULTS AND DISCUSSION

This study evaluates and compares the performance and power consumption of

processing a light computation task and a heavy computation task, both locally on the

mobile device and remotely on Amazon EC2 cloud.

The phone application used in this experiment had two parts. The first part was to read a

file that contained a set of node pairs locally. The second part, to build a graph, was

performed either locally or on the cloud; then using the breadth first search algorithm, the

objective was to find a path from a given source node to every other node in the graph. A

light task involves building a graph of 250 vertices and 1,273 edges and finding a path

from a given node to every other node. A heavy task involves building a graph of

1,000,000 vertices and 7,586,063 edges and finding a path from a given node to every

other node. Each task ran 50 times using each offloading framework (Aiolos and

Cuckoo). The execution time was recorded when the application finished running. The

power consumption was recorded after running the whole application 50 times.

The strategy used in Aiolos favors offloading, which means that an Aiolos application

will offload whenever possible. A Cuckoo application is built with a speed/energy

strategy which means that the framework will decide at runtime where to run the dynamic

part of the application based on many factors. Unlike the conclusions of Tim et al. in

26

[Verbelen12B], Aiolos does not have an engine that determines at runtime where to run

the dynamic part of the phone application. It comes with three strategies. The first

strategy prefers offloading, while the second strategy prefers local execution. The third

strategy prefers a randomly chosen environment. In addition, Aiolos allows developers to

implement their own decision-making strategy, if desired.

4.1 Cuckoo vs Aiolos

4.1.1 Light Computation Task

As shown in Figures 11 and 12, Aiolos tends to faster than Cuckoo when running the

application on the cloud for both 4G and Wi-Fi. However, Cuckoo is faster when the

application runs locally, as shown in Figure 13. Cuckoo is always slow the first time the

application is executed because it needs to send the remote JAR file to the server and get

it installed. Both frameworks perform better using a Wi-Fi link than 4G.

Figure 11: Aiolos vs Cuckoo: Amazon EC2 Execution Time using 4G for Light
Computation Task.

800

1300

1800

2300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ti
m

e
 in

 m
s

Number of executions

Cloud Execution Through 4G

Cuckoo

Aiolos

27

Figure 12: Aiolos vs Cuckoo: Amazon EC2 Execution Time using Wi-Fi for Light

Computation Task.

Figure 13: Aiolos vs Cuckoo: Local Execution Time for Light Computation Task.

500

700

900

1100

1300

1500

1700

1900

2100

2300

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ti
m

e
 in

 m
s

Number of executions

Cloud Execution Through Wi-Fi

Cuckoo

Aiolos

200

400

600

800

1000

1200

1400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ti
m

e
 in

 m
s

Number of executions

Local Execution

Cuckoo

Aiolos

28

There is no difference in battery consumption as both frameworks yield the same results

(Figures 14, 15 and 16).

Figure 14: Aiolos vs Cuckoo: Battery Consumption when Light Computation Task is run
locally.

Figure 15: Aiolos vs Cuckoo: Battery Consumption when Offloading Light Computation
Task using Wi-Fi.

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

aiolos cuckoo

Local: Battery Consumption

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

aiolos cuckoo

Wi-Fi: Battery Consumption

29

Figure 16: Aiolos vs Cuckoo: Battery Consumption when Offloading Light Computation
Task using 4G.

4.1.2 Heavy Computation Task

As shown in Figures 17 and 18, Aiolos tends to be faster than Cuckoo in handling a

computation intensive task on the cloud using either both 4G and Wi-Fi. In contrast, there

is no difference between the two frameworks when the whole application runs locally, as

shown in Figure 19. Although the process must send a large set of data through either a

4G or Wi-Fi link to run the search algorithm on the cloud, due to limited mobile

resources it is a lot faster than running the heavy computation task locally using either

framework. Again, Cuckoo is always slow the first time the application is executed

because it needs to send the remote JAR file to the server and get it installed. In addition,

it is worth noting that the performance of either framework is slower when using 4G

instead of a Wi-Fi link simply because Wi-Fi is faster than 4G.

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

aiolos cuckoo

4G: Battery Consumption

30

Figure 17: Aiolos vs Cuckoo: Amazon EC2 Execution Time using Wi-Fi for Heavy

Computation Task.

Figure 18: Aiolos vs Cuckoo: Amazon EC2 Execution Time using 4G for Light
Computation Task.

20000

40000

60000

80000

100000

120000

140000

160000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ti
m

e
 in

 m
s

Number of executions

Cloud Execution Through Wi-Fi

Cuckoo

Aiolos

60000

70000

80000

90000

100000

110000

120000

130000

140000

150000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ti
m

e
 in

 m
s

Number of executions

Cloud Execution Through 4G

Cuckoo

Aiolos

31

Figure 19: Aiolos vs Cuckoo: Local Execution Time for Heavy Computation Task.

Regarding battery consumption, there is not a significant difference when running the

search algorithm on the cloud using a 4G or Wi-Fi link. Using Wi-Fi, Aiolos consumes

4% and Cuckoo consumes 5%, as seen in Figure 20. Using 4G, Aiolos consumes 5%

while Cuckoo consumes 7%, as seen in Figure 21. It is a result of Aiolos being faster than

Cuckoo in execution time. In addition, running the whole process locally consumes 45%

of battery power for both frameworks, as shown in Figure 22.

400000

450000

500000

550000

600000

650000

700000

750000

800000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ti
m

e
 in

 m
s

Number of executions

Local Execution

Cuckoo

Aiolos

32

Figure 20: Aiolos vs Cuckoo: Battery Consumption when Offloading a Heavy
Computation Task using Wi-Fi.

Figure 21: Aiolos vs Cuckoo: Battery Consumption when Offloading Heavy
Computation Task using 4G.

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

aiolos cuckoo

Wi-Fi: Battery Consumption

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

aiolos cuckoo

4G: Battery Consumption

33

Figure 22: Aiolos vs Cuckoo: Battery Consumption when Heavy Computation Task is

run locally.

4.1.3 Performance Comparison for Different File Sizes

Figures 23 and 24 illustrate that Aiolos tends to perform faster than Cuckoo as file size

gets bigger using either Wi-Fi or 4G. This experiment did not include the data from the

first time we ran a task with each file size using Cuckoo, since it takes longer to install a

new service on the EC2 machine. Aiolos performs the same as Cuckoo when running

locally, as shown in Figure 25.

34

Figure 23: Aiolos vs Cuckoo: Amazon EC2 Execution Time for Different File Sizes

using 4G.

Figure 24: Aiolos vs Cuckoo: Amazon EC2 Execution Time for Different File Sizes

using Wi-Fi.

0

10000

20000

30000

40000

50000

60000

70000

80000

0.04 0.05 0.06 0.13 0.33 0.7 1 1.5 2.5 5 10 20 50 100

Ti
m

e
 in

 m
s

File size in mb

4G: Performance Comparison for Different
File Sizes

Aiolos

Cuckoo

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0.04 0.05 0.06 0.13 0.33 0.7 1 1.5 2.5 5 10 20 50 100

Ti
m

e
 in

 m
s

File size in mb

Wi-Fi: Performance Comparison for
Different File Sizes

Aiolos

Cuckoo

35

Figure 25: Aiolos vs Cuckoo – Amazon EC2 Execution Time for Different File Sizes

using Local.

4.1.4 Break-Even Points

As shown in Figures 26 and 27, there is a break-even point in execution time where

Cuckoo and Aiolos perform equally well. When using 4G, it is between file size 0.06 MB

and 0.13 MB. When using Wi-Fi, it is between file size 0.05 MB and 0.06 MB.

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000
550000
600000
650000

0.04 0.05 0.06 0.13 0.33 0.7 1 1.5 2.5 5 10 20 50 100

Ti
m

e
 in

 m
s

File size in mb

Local: Performance Comparison for
Different File Sizes

Aiolos

Cuckoo

36

Figure 26: Aiolos vs Cuckoo: Break-Even Point for Amazon EC2 Execution Time for

Different File Sizes using 4G.

Figure 27: Aiolos vs Cuckoo: Break-Even Point for Amazon EC2 Execution Time for
Different File Sizes using 4G.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0.04 0.05 0.06 0.13 0.33 0.7 1 1.5

Ti
m

e
 in

 m
s

File size in mb

Wi-Fi: Break-Even Point

Aiolos

Cuckoo

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.04 0.05 0.06 0.13 0.33 0.7 1 1.5

Ti
m

e
 in

 m
s

File size in mb

4G: Break-Even Point

Aiolos

Cuckoo

37

4.2 Aiolos: Local vs Wi-Fi vs 4G

4.2.1 Light Computation Task

As illustrated in Figure 28, Aiolos tends to be faster using Wi-Fi and slower locally or

using a 4G link. The Aiolos framework prefers to run a light computation task on the

cloud whenever possible.

Figure 28: Local vs Wi-Fi vs 4G: Aiolos Execution Time for Light Computation Task.

Battery consumption is almost the same across different environments. As shown in

Figures 29, 4G consumes 1% more of battery power compared to local and Wi-Fi.

0

200

400

600

800

1000

1200

1400

1600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ti
m

e
 in

 m
s

Number of executions

Aiolos: Environment Performance
Comparison

Local

Wifi

4G

38

Figure 29: Local vs Wi-Fi vs 4G: Aiolos Battery Consumption for Light Computation
Task.

4.2.2 Heavy Computation Task

As shown in Figure 30, Aiolos performance is slower locally compared to either 4G or

Wi-Fi due to limited resources in the mobile device. The Aiolos framework prefers to run

a heavy task on the cloud whenever possible.

Running the whole process locally drains the battery power compared to the cloud, as

seen in Figure 31. Aiolos consumes 45% locally, 4% when using a Wi-Fi link, and 5%

when using a 4G link. In this case, it is beneficial to send a large set of data through the

Internet and perform the search on the cloud.

90%
91%
92%
93%
94%
95%
96%
97%
98%
99%

100%

4G Local Wifi

Aiolos Battery Consumption

39

Figure 30: Local vs Wi-Fi vs 4G: Aiolos Execution Time for Heavy Computation
Task.

Figure 31: Local vs Wi-Fi vs 4G: Aiolos Battery Consumption for Heavy Computation
Task.

0

100000

200000

300000

400000

500000

600000

700000

800000

1 3 5 7 9 1113151719212325272931333537394143454749

Ti
m

e
 in

 m
s

Number of executions

Aiolos: Environment Performance
Comparison

Local

Wifi

4G

40%

50%

60%

70%

80%

90%

100%

4G Local Wifi

Aiolos Battery Consumption

40

4.3 Cuckoo: Local vs Wi-Fi vs 4G

4.3.1 Light Computation Task

As shown in Figure 32, Cuckoo seems to be faster running the search algorithm locally

than on the cloud. 4G tends to be the slowest means of communication if the framework

decides to run the algorithm on the cloud. Based on this study, the Cuckoo framework

prefers to run a light computation task locally.

Figure 32: Local vs Wi-Fi vs 4G: Cuckoo Execution Time for Light Computation Task.

As shown in Figure 33, there is not much difference when it comes to power

consumption with a slight advantage to local and Wi-Fi link. Cuckoo consumes 2% when

using 4G, and 1% locally and when using Wi-Fi.

0

500

1000

1500

2000

2500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Ti
m

e
 in

 m
s

Number of executions

Cuckoo: Environment Performance
Comparison

Local

Wifi

4G

41

Figure 33: Local vs Wi-Fi vs 4G: Cuckoo Battery Consumption for Light Computation
Task.

4.3.2 Heavy Computation Task

Just like Aiolos, Cuckoo is slower when running a heavy computation task locally, due to

limited resources in the mobile device, as shown in Figure 34. Running the task on the

cloud improves the performance of the application. However, using Wi-Fi as a means of

communication with the cloud makes the application even faster than using a 4G link. In

this case, Cuckoo prefers to run a heavy computation task on the cloud.

Figure 35 illustrates that running the whole application locally drains the battery by 45%.

In this case, offloading a heavy computation task using either Wi-Fi or 4G saves a lot of

power. Cuckoo consumes 5% when using Wi-Fi and 7% when using 4G.

90%

91%

92%

93%

94%

95%

96%

97%

98%

99%

100%

4G Local Wifi

Cuckoo Battery Consumption

42

Figure 34: Local vs Wi-Fi vs 4G: Cuckoo Execution Time for Heavy Computation Task.

Figure 35: Local vs Wi-Fi vs 4G: Cuckoo Battery Consumption for Heavy Computation
Task.

0

100000

200000

300000

400000

500000

600000

700000

800000

1 3 5 7 9 1113151719212325272931333537394143454749

Ti
m

e
 in

 m
s

Number of executions

Cuckoo: Environment Performance
Comparison

Local

Wifi

4G

50%

60%

70%

80%

90%

100%

4G Local Wifi

Cuckoo Battery Consumption

43

4.3.3 Service Jar Installation

The purpose of this experiment is to confirm that Cuckoo framework installs Jar file only

the first time it remotely runs a particular task. To confirm that, a phone application is

built using Cuckoo to remotely run the same light computation task every day for six

days. Figure 36 shows that a light computation task usually takes longer the first time it

runs. The reason for the overhead is that Cuckoo has to send a whole JAR file to the

server in order to install and initialize a service. Once the JAR file is installed and is

initialized successfully, the client can invoke the service directly from an EC2 machine.

Figure 36: Cuckoo Performance for a Light Computation Task over the Period of 6 Days

0

500

1000

1500

2000

2500

3000

day 1 day 2 day 3 day 4 day 5 day 6

Cuckoo - Light Computation Task

44

Chapter 5

CONCLUSIONS

The following is a discussion of the results presented in Chapter 4 where two dynamic

offloading frameworks were used to handle both a light computation task and a heavy

computation task, as well as to determine the strength of each framework. Amazon EC2

was chosen to host Aiolos and Cuckoo servers.

5.1 Task Studies

5.1.1 Light Computation Task

The goal of this experiment was to determine which framework, Cuckoo or Aiolos,

handles a light computation task better than the other. The task was to build a graph of

250 vertices and 1,273 edges, then employ the breadth first search algorithm to find a

path from a given source node (node 100) to every other node. The research included

running the task locally as well as on an EC2 instance.

Cuckoo tends to be faster locally while Aiolos performs faster than Cuckoo when

offloading the light task to the cloud. The Aiolos strategy prefers offloading, so it tries to

offload a task first, but if Aiolos fails to establish a connection to the server then it runs

the task locally. As a result, Aiolos is slower when running a light task locally because it

45

wastes time trying to offload. Power consumption tends to be the same using either

framework.

Cuckoo tends to be faster locally compared to on the cloud. In addition, if Cuckoo

offloads a light task then Wi-Fi is the fastest link. Cuckoo oracle, and specifically the

Cuckoo decision maker component, is the main reason behind the slower performance of

Cuckoo when it offloads a light task. Oracle makes a decision based on an algorithm that

includes bandwidth estimation, execution time estimation, round trip time estimation, and

power estimation. Based on the test results, this process introduces some overhead to the

execution time of a light task. In a real-world application, where Cuckoo is not forced to

utilize a particular environment, Cuckoo oracle runs a light task locally, which is the

environment with the fastest execution time. Regarding battery consumption, 4G

consumes 1% more power than other environments because of the extra effort needed to

transmit all data to the EC2 instance.

Aiolos seems to perform faster when offloading a task through Wi-Fi. Unlike Cuckoo,

Aiolos prefers offloading whenever it is possible. As a result, it does not waste time

comparing different environments before running a light task. However, Aiolos depends

on the method of communication with the offloading server. This research shows that

Aiolos is slower when offloading through 4G. In real world application, where Aiolos is

not forced to utilize a particular environment, it runs a light task on the cloud. To sum up,

in a real-world application Cuckoo performs faster because its local average execution

time is 458ms, while Aiolos utilizing Wi-Fi averages 769ms.

46

5.1.2 Heavy Computation Task

The goal of this experiment was to find which framework, Cuckoo or Aiolos, handles a

heavy computation task more efficiently. The task is to build a graph of 1000000 vertices

and 7586063 edges, then use the breadth first search algorithm to find a path from a given

source node (node 200) to every other node. The experiment includes running the task

locally as well as on an EC2 instance.

Due to limited resources in the mobile device, a heavy computation task running locally

takes more time to be completed regardless of which framework is used. Conversely,

Aiolos performs better than Cuckoo when offloading a heavy computation task to an EC2

instance. This can be due to either of two factors:

• The Cuckoo algorithm uses more time to decide where to run a task, whereas

Aiolos just offloads a task whenever it is possible.

• R-OSGi is faster than Ibis middleware

Cuckoo tends to perform faster when offloading through Wi-Fi. In a real world

application, where Cuckoo is not forced to utilize a particular environment, it runs a

heavy task on the cloud using either Wi-Fi or 4G.

Aiolos seems to be faster when offloading through Wi-Fi. In a real world application,

where Aiolos is not forced to utilize a particular environment, it runs a heavy task on the

cloud using either Wi-Fi or 4G.

47

Regarding battery consumption, offloading using either framework saves 23% more

power than the local environment. Aiolos consumes less battery power than Cuckoo

when offloading a heavy computation task. The increased power consumption is due to

Cuckoo execution time which is longer than Aiolos execution time. In conclusion, Aiolos

outperforms Cuckoo in handling a heavy computation task.

5.1.3 Different File Sizes

Cuckoo tends to perform faster when file size is less than 0.05 MB when communicating

with the EC2 machine through Wi-Fi. In addition, it performs faster when file size is less

than 0.13 MB when communicating with the EC2 machine through 4G. As file size gets

bigger Aiolos seems to be faster using either 4G or Wi-Fi. When communicating to an

EC2 machine through Wi-Fi, Cuckoo performs much slower when file size is 0.33 MB

because it decides to run it locally instead of on the EC2 machine.

The break-even points between the two frameworks are the following:

• Between 0.06 MB and 0.13 MB when using 4G.

• Between 0.06 MB and 0.13 MB when using Wi-Fi.

5.2 Finding of the Development Effort

Creating an application using the Cuckoo framework is straightforward. As soon as a

developer makes an Android project as an off-loadable project, the Cuckoo framework

48

adds a folder called remote to the project. Then, a developer can add the off-loadable

code inside that folder. The main issue with the Cuckoo compiler is that it does not

provide developers enough details about compile time errors or where the errors are.

Another issue with Cuckoo is the lack of documentation and online support.

Creating an application using the Aiolos framework requires developers to have OSGi

experience. An Aiolos application contains four projects that are API, API

Implementation, Servlet, and android project. In addition, Aiolos requires a manual

update to the Android “.bndrun” file, which is the OSGi environment configuration file.

The set up process is complex, especially for developers who do not have much OSGi

experience. Additionally, the Aiolos framework only works in a Linux operating system.

Finally, Aiolos has insufficient documentation and no online support. Based on

experience with both frameworks, Cuckoo applications are easier to build and to set up.

5.3 Future Research

This study is limited to comparing mobile local processing of both light and heavy

computation tasks to Amazon EC2 using Wi-Fi and 4G communication links. An

extension to this study on mobile offloading could include other Android mobile devices,

such as tablets and smart watches, and other cloud providers such as Google Cloud

Engine, IBM SmartCloud or others. Additionally, cloudlets could be included in the

research to determine their influence on the experiment. The main characteristic of

49

cloudlets is low latency. 4G LTE could also be included to determine its impact on cloud

offloading.

Since this study covers two offloading frameworks, it could serve as a reference for

future studies involving the development of a new offloading framework that takes

advantage of both Cuckoo and Aiolos strengths. It could also help developers and

software architects choose either framework based on which one provides the best

functionality.

50

REFERENCES

Print Publications:

[Bhatnagar13]
Bhatnagar, P., R. Jaipur, and I. Rajasthan, “Implementation of Mobile-Cloudlet-Cloud

Architecture for Face Recognition in Cloud Computing using Android Mobile,”
International Journal of Computer Applications Technology and Research 2, 6 (2013),
pp. 671-675.

[Flinn99]
Flinn, J. and M. Satyanarayanan, “Energy Aware Adaptation for Mobile Applications,”

Proceedings of the seventeenth ACM Symposium on Operating Systems and
Principles 33, 5 (December, 1999), pp. 48-63.

[Hall11]
Hall, R., et al., “OSGi in Action: Creating Modular Applications in Java,” Manning

Publications Co., Greenwich, CT, 2011.

[Huang13]
Huang, D., T. Xing, and H. Wu, “Mobile Cloud Computing Service Models: A User-

Centric Approach,” IEEE Network 27, 5 (2013), pp. 6-11.

[Kim16]
Kim, B., et al., “Dynamic Offloading Algorithm for Drone Computation,” Proceedings of

the International Conference on Research in Adaptive and Convergent Systems
(October, 2016), pp. 123-124.

[Noble97]
Noble, B., et al., “Agile Application-Aware Adaptation for Mobility,” Proceedings of the

sixteenth ACM Symposium on Operating Systems Principles 31, 5 (October, 1997),
pp. 276-287.

[Russell10]
Russell, S. and P. Norving, “Artificial Intelligence: Modern Approach,” Prentice Hall,

Upper Saddle River, NJ, 2010.

[Satyanarayanan14]
Satyanarayanan, M., “A Brief History of Cloud Offload: A Personal Journey from

Odyssey Through Cyber Foraging to Cloudlets,” GetMobile: Mobile Computing and
Communications 18, 4 (2014), pp. 19-23.

51

[Verbelen12A]
Verbelen, T., et al., “Cloudlets: Bringing the Cloud to the Mobile User,” Proceedings of

the third ACM Workshop on Mobile Cloud Computing and Services (2012), pp. 29-
36.

[Verbelen12B]
Verbelen, T., et al., “AIOLOS: Middleware for Improving Mobile Application

Performance through Cyber Foraging,” Journal of Systems and Software 85, 11
(2012), pp. 2629-2639.

[Wang12]
Wang, X., et al., “Migration and Execution of JavaScript Applications between Mobile

Devices and Cloud,” Proceedings of the third Annual Conference on Systems,
Programming, and Applications: Software for Humanity (October, 2012), pp. 83-84.

[Wang17]
Wang, W., et al., “Enabling Cross-ISA Offloading for COTS Binaries,” Proceedings of

the fifteen Annual International Conference on Mobile Systems, Applications, and
Services (June, 2017), pp. 319-331.

Electronic Sources:

[AIOLOS15]
“AIOLOS overview”, http://aiolos.intec.ugent.be/, 2015, last accessed February 21, 2018.

[Aleksandar13]
Aleksandar, G., “Deep Dive into Android IPC/Binder Framework at Android Builders

Summit”, https://events.static.linuxfound.org/images/stories/abs2013_gargentas.pdf,
2013, last accessed February 21, 2018.

[Android18A]
“Get the Android SDK”, http://developer.android.com/sdk/index.html, last revision

January 12, 2018, last accessed February 17, 2018.

[Android18B]
“Android Interface Definition Language (AIDL)”,

http://developer.android.com/guide/components/aidl.html, last revision February 21,
2018, last accessed February 23, 2018.

[Android18C]
“Processes and Threads”, https://developer.android.com/guide/components/processes-

and-threads.html, last revision February 21, 2018, last accessed February 23, 2017.

[Apache12]
“Apache Ant 1.9.6 Manual”, http://ant.apache.org/manual/index.html, last revision

January 21, 2012, last accessed September 20, 2015.

http://aiolos.intec.ugent.be/

52

[BndTools12]
“Bndtools Tutorial”, http://bndtools.org/tutorial.html, last revision January 21, 2012, last

accessed January 15, 2016.

[Bouzefrane11]
Bouzefrane, S., D. Huang, and P. Paradinas, “An OSGI-Based Service Oriented

Architecture for Android Software Development Platforms”,
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.411.9733&rep=rep1&type=
pdf, November 2011, last accessed February 21, 2018.

[Chun09]
Chun, B. and P. Maniatis, “Augmented Smartphone Applications through Clone Cloud

Execution”,
https://www.usenix.org/legacy/event/hotos09/tech/full_papers/chun/chun.pdf, 2009,
last accessed February 21, 2018.

[Kemp10]
Kemp, R., et al., “Cuckoo: a Computation Offloading Framework for Smartphones”,

http://www.asci.tudelft.nl/media/proceedings_asci_conference_2010/asci2010_submis
sion_9.pdf, 2010, last accessed February 21, 2018.

[Kemp12]
Kemp, R., “Programming Frameworks for Distributed Smartphone Computing”,

http://dare.ubvu.vu.nl/bitstream/handle/1871/50612/dissertation.pdf?sequence=1,
2012, last accessed February 21, 2018.

[Kovachev11]
Kovachev, D., Y. Cao, and R. Klamma, “Mobile Cloud Computing: A Comparison of

Application Models”, https://arxiv.org/ftp/arxiv/papers/1107/1107.4940.pdf, 2011, last
accessed February 21, 2018.

[Marinelli09]
Marinelli, E. E., “Hyrax: Cloud Computing on Mobile Devices using MapReduce”,

https://pdfs.semanticscholar.org/8cd2/11cc816952f036ed65a7022adba063486008.pdf,
2009, last accessed February 21, 2018.

[OSGi12]
“Architecture”, https://www.osgi.org/developer/architecture/, last revision January 21,

2012, last accessed January 15, 2018.

[Paramvir12]
Paramvir, B., et al., “Advancing the State of Mobile Cloud Computing”,

http://www.cs.columbia.edu/~lierranli/publications/mCloud-MCS12.pdf, 2012, last
accessed February 21, 2018.

53

[Wang14]
Wang, M., “Novel Mobile Computation Offloading Framework for Android Devices,”

Washington University in St. Louis (2014),
https://pdfs.semanticscholar.org/3070/0b846d78983b93673fb8fcee8388027910de.pdf,
last accessed February 23, 2018.

54

VITA

Inan Kaddour has a Bachelor of Software Engineering from International Institute of

Higher Education in Morocco in 2008, and expects to receive a Master of Science in

Computer and Information Sciences from the University of North Florida, April 2017.

Dr. Sanjay Ahuja of the University of North Florida is Inan’s thesis advisor. Inan has

been an Application Consultant in web and windows applications at Humana,

Jacksonville, Florida for 8 years. Inan’s academic work has included use of Java,

Microsoft Visual Studio.Net, Oracle, SQL, Javascript, PHP, Jquery, ASP.NET MVC 3,

JSON, Bootstrap, RMI, and networking.

Inan likes to incorporate his computer skills in real life situations requiring the use of

Web and Windows application along with Cloud Computing. His main goal is to become

a respected Software professional who strives to produce excellence in every area useful

for society, and to maintain ethical, high quality standards and respectful approaches to

working with the vast power of computing.

	Mobile Cloud Computing: A Comparison Study of Cuckoo and AIOLOS Offloading Frameworks
	Suggested Citation

	Title Page
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	Abstract
	Chapter 1: Introduction
	Figure 1: Hardware Comparison between Servers and Mobile Devices
	1.1 Android
	Figure 2. Android Activity Service Communication

	1.2 Android Interface Definition Language (AIDL)
	Figure 3. Activity Service Communication through AIDL
	Figure 4. IPC through Proxy-Stub Architecture

	1.3 Open Services GAteway Initiatives (OSGi)
	Figure 5: OSGi Model
	Figure 6: OSGi Module Layer Components
	Figure 7: OSGi Service Module--Service Oriented Interaction

	Chapter 2: Literature Review
	2.1 Cuckoo
	Figure 8: Cuckoo Components
	Figure 9. Cuckoo Build Process

	2.2 Aiolos
	Figure 10. Aiolos Three Main Layers

	2.3 Related Work

	Chapter 3: Research Methodology
	3.1 Breadth First Search Algorithm
	3.1.1 Light Computation Breadth First Search Task
	3.1.2 Heavy Computation Breadth First Search Task

	3.2 Setting up the Android Development Environment
	3.3 Creating Virtual Machines on the Amazon EC2 Cloud Service
	3.4 Software Specifications
	3.5 Hardware Specifications
	Table 1. Mobile client specifications
	Table 2. Amazon EC2 Specifications
	Table 3. Comparison between Wi-Fi and 4G Internet service

	Chapter 4: Results and Discussion
	4.1 Cuckoo vs Aiolos
	4.1.1 Light Computation Task
	Figure 11: Aiolos vs Cuckoo: Amazon EC2 Execution Time using 4G for Light computation Task
	Figure 12: Aiolos vs Cuckoo: Amazon EC2 Execution Time using Wi-Fi for Light Computation Task
	Figure 13: Aiolos vs cuckoo: Local Execution Time for Light Computation Task
	Figure 14: Aiolos vs Cuckoo: Battery Consumption when Light Computation Task is run locally
	Figure 15: Aiolos vs. Cuckoo: Battery Consumption when Offloading Light Computation Task using Wi-Fi
	Figure 16: Aiolos vs Cuckoo: Battery Consumption when Offloading Light Computation Task using 4G

	4.1.2 Heavy Computation Task
	Figure 17: Aiolos vs Cuckoo: Amazon EC2 execution time using Wi-Fi for Heavy Computation Task
	Figure 18: Aiolos vs Cuckoo: Amazon EC2 Execution Time using 4G for light computation task
	Figure 19: Aiolos vs Cuckoo: Local Execution Time for Heavy Computation Task
	Figure 20: Aiolos vs Cuckoo: Battery Consumption when Offloading a Heavy Computation Task using Wi-Fi
	Figure 21: Aiolos vs. Cuckoo: Battery Consumption when Offloading Heavy Computation Task using 4G
	Figure 22: Aiolos vs Cuckoo: Battery Consumption when Heavy Computation Task is run locally

	4.1.3 Performance Comparison for Different File Sizes
	Figure 23: Aiolos vs Cuckoo: Amazon EC2 Execution Time for Different File Sizes using 4G
	Figure 24: Aiolos vs Cuckoo: Amazon EC2 Execution time for different files sizes using Wi-Fi
	Figure 25: Aiolos vs Cuckoo: Amazon EC2 Execution Tiem for Different File Sizes using Local

	4.1.4 Break-Even Points
	Figure 26: Aiolos vs Cuckoo: Break Even Point for Amazon EC2 Execution Time for Different File Sizes using 4G
	Figure 27: Aiolos vs. Cuckoo: Break-Even Point for Amazon EC2 Execution Time for Different File Sizes using 4G

	4.2 Aiolos: Local vs Wi-Fi vs 4G.
	4.2.1 Light Computation Task
	Figure 28: Local vs Wi-Fi vs 4G: Aiolos Execution Time for Light computation Task
	Figure 29: Local vs Wi-Fi vs 4G: Aiolos Battery Consumption for Light Computation Task

	4.2.2 Heavy Computation Task
	Figure 30: Local vs Wi-Fi vs 4G: Aiolos Execution Time for Heavy Computation Task
	Figure 31: Local vs Wi-Fi vs 4G: Aiolos Battery Consumption for Heavy computation Task

	4.3 Cuckoo: Local vs Wi-Fi vs 4G
	4.3.1 Light Computation Task
	Figure 32: Local vs Wi-Fi vs 4G: Cuckoo Execution Time for Light Computation Task
	Figure 33: Local vs Wi-Fi vs 4G: Cuckoo Battery consumption for Light Computation Task

	4.3.2 Heavy Computation Task
	Figure 34: Local vs Wi-Fi vs 4G: Cuckoo Execution Time for Heavy Computation Task
	Figure 35: Local vs Wi-Fi vs 4G: Cuckoo Battery Consumption for Heavy computation Task

	4.3.3. Service Jar Installation
	Figure 36: Cuckoo Performance for a Light Computation Task over the Period of 6 Days

	Chapter 5: Conclusions
	5.1 Task Studies
	5.1.1 Light Computation Task
	5.1.2 Heavy Computation Task
	5.1.3 Different File Sizes

	5.2 Finding of the Development Effort
	5.3 Future Research

	References
	VITA

