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Giuseppe Dari-Mattiacci,yEric Langlais,zBruno Lovat,xand Francesco Parisi{

November 14, 2006

Abstract

This paper presents a general rent-seeking model in which participants
decide on entry before choosing their levels of e¤orts. The conventional
wisdom in the rent-seeking literature suggests that the rent dissipation
increases with the number of potential participants and with their pro-
ductivity of e¤ort. In this paper, we show that this result of the rent-
seeking literature is far from general and applies only when participants
are relatively weak and enter the game with certainty. In the presence
of strong competitors, the expected total dissipation actually decreases,
since participation in the game is less frequent. We further consider the
impact of competitors�exit option, distinguishing between �redistributive
rent-seeking� and �productive rent-seeking� situations. In redistributive
rent-seeking, no social loss results from the fact that all competitors exit
the race. In productive rent-seeking, instead, lack of participation creates
a social loss (the �lost treasure�e¤ect), since valuable rents are left unex-
ploited. We show that the lost-treasure e¤ect perfectly counterbalances
the reduction in rent dissipation due to competitors�exit. Hence, unlike
redistributive rent-seeking, in productive rent-seeking the total social loss
remains equal to the entire rent even when parties grow stronger or the
number of players increases.
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1 Introduction

When resources are not �or not yet �subject to clear ownership, private players
tend to expend e¤ort in order to gain control over them. Settlers occupy land
in newly discovered regions, producers strive for monopoly power, pharmaceu-
tical companies race for the acquisition of patents, and researchers compete for
new scienti�c �ndings. The rent-seeking literature initiated by Tullock (1967),
Krueger (1974) and Posner (1975) and the private-interest theory of regulation
starting with Stigler (1971), Peltzman (1976), Hirshleifer (1976) and Becker
(1983) have long analyzed these types of problems, emphasizing the incentives
for private parties to invest in rent-seeking activities.1 Scholars have occasion-
ally criticized rent-seeking models for bringing about too negative a view of
reality. Proponents of alternative views argue that rent-seeking models neglect
the fact that rent dissipation is often the by-product of valuable competition in
socially bene�cial activities, such as scienti�c or technological research.2

In the following, we formulate a general rent-seeking model in order to
capture the di¤erent welfare e¤ects of redistributive rent-seeking (unproductive
competition aimed at the mere reallocation or appropriation of a rent) and pro-
ductive rent-seeking (where the competitors�expenditures are also instrumental
to the discovery or creation of new resources), as distinguished by Demsetz
(1976) and Buchanan (1980).3 In this study, we formulate a general model of
redistributive v. productive rent-seeking with N identical players, challenging
a previously uncontested result in the literature, namely, that total rent dissi-
pation increases with the players�productivity of e¤ort and with the number of
contestants.
In our model, players �rst decide whether to enter the game and then, if

participating, they choose their e¤ort levels. Players act independently, making
both participation and e¤ort choices without observing each other�s moves. As
in most real-life situations, we postulate that, if a player decides to participate
in a rent-seeking contest he needs to undertake a non-nominal initial investment.
This assumption brings our analysis in line with the existing literature, where
the minimum initial investment is considered as an entry requirement in the
competitive race (Yang, 1993; Schoonbeek and Kooreman, 1997).
In line with the traditional setup in the literature, we further assume that in

redistributive rent-seeking, the only relevant social cost is given by the parties�
dissipation of e¤ort. We identify an interesting relationship between the number
of contestants, the parties�strength, and total rent dissipation. When players
are relatively weak (i.e., they exhibit low productivity of e¤ort relative to the
number of players) the rent dissipation increases with the number of players and
with the productivity of e¤ort. In those situations, our results con�rm the con-
ventional wisdom in the rent seeking literature: total rent dissipation ultimately

1Recent literature applying the notion of rent-seeking investment focuses on campaign
�nance (Grossman and Helpman, 1996; Coate, 2004).

2See for example the introduction to Barzel (1997).
3The notions of productive rivalry used by Demsetz and of rent-creation employed by

Buchanan are analogous to our concept of productive rent-seeking.
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approaches the entire value of the rent. The subsequent analysis, however, shows
that when players are relatively strong, an increase in the number of contestants
and/or in their productivity of e¤ort does not increase total rent dissipation.
This is because unlike weak contestants who always �nd it pro�table to partic-
ipate in the game (pure-strategy equilibrium), strong competitors may choose
to randomize with respect to their participation in the game (mixed-strategy
equilibrium). When there is an increase in the number or in the strength of
potential contestants, each of them will rationally choose to play less often.
This brings to light an interesting, and previously unnoticed crowding-out

e¤ect. When players have high returns to e¤ort, they will rationally make larger
rent-seeking investments. But, surprisingly, the total amount of rent dissipation
may actually decrease, because strong players may end up participating less of-
ten, in spite of their natural rent-seeking advantage. Similarly, in the presence
of a large number of competitors, dissipation may decrease because each player
anticipates lower returns from the race and reduces his participation rate. This
crowding-out e¤ect dominates the escalation of rent-seeking e¤orts triggered by
higher returns to e¤ort and counteracts the increase in the number of potential
participants. Consequently, our results depart substantially from the conven-
tional results in the literature: higher returns to e¤ort do not always lead to an
increase in rent dissipation, as generally believed, but may actually lead to a
reduction in total rent dissipation.
We extend our analysis to consider the impact of such crowding-out e¤ect

in productive rent-seeking situations. Unlike redistributive rent-seeking, lack of
participation may lead to a social cost when rent-seeking e¤orts are conducive
to a socially productive outcome. We refer to this additional cost of rent-seeking
as the lost treasure e¤ect. This cost occurs when no one engages in the race,
leaving valuable rents unexploited. We study how lost treasure costs vary in
relation to other rent-seeking costs.
Lost treasure e¤ects only appear when strong players are involved and mixed

strategies are consequently undertaken. Only in this case, in fact, the proba-
bility of participation for each player is lower than 1, creating the possibility
that no one joins the contest.4 When players undertake mixed participation
strategies, the total social cost of rent-seeking is thus given by the sum of rent
dissipation and lost-treasure costs. Interestingly, the sum of rent dissipation
and lost treasure costs is shown to be constant and equal to the entire value
of the rent, irrespective of the number of players and their productivity of ef-
fort. This result brings to mind the claim by early scholars, according to which
in equilibrium the entire value of a rent would always be competed away �a
claim that was subsequently dismissed (in light of our results, mistakenly) by
the prevailing rent-seeking literature. Our framework also enables us to discuss
the e¤ects that di¤erent categories of rent-seeking activities with varying de-
grees of productivity have on social welfare. We come to interesting conclusions
concerning the desirability of competition among rent-seekers under di¤erent

4When players are relatively weak, their participation is ensured, such that the only social
loss is given by the rent dissipation (which increases in the number of players and in the
player�s productivity of e¤ort).
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circumstances. Our results are easily comparable with the qualitative analysis
in Bhagwati (1982).
In section 2, we put the current study in the context of the existing liter-

ature. Section 3 provides the formal analysis; some of the proofs are in the
appendix. Section 4 discusses the social cost of several categories of productive
and redistributive rent-seeking activities. Section 5 concludes discussing po-
tential extensions of our results and implications of our �ndings for social and
industrial policy.

2 Rent Dissipation and Lost Treasures in Tul-
lock�s Paradox

Tullock�s (1967) seminal paper examined how rational individuals expend re-
sources in the pursuit of rents. This contribution provides the basic frame-
work for rent-seeking models, showing how the degree of rent dissipation varies
with the value of the prize, the number of contestants and the allocation rules.
Parallel analyses by Becker (1968), Krueger (1974), Posner (1975), Demsetz
(1976), Bhagwati (1982), among others, hypothesized a full-dissipation equilib-
rium, similar to that generated by competitive markets.5 In a long-run equi-
librium, rents would be competed away by the contestants and rent-seeking
investments would thus yield the normal market rate of return.
In his seminal work on �E¢ cient Rent-seeking,�Tullock (1980) developed

the insight that the marginal return to rent-seeking expenditures in�uences the
total expenditures on rent-seeking activities. Tullock�s (1980) results shook the
conventional wisdom in the literature, suggesting that competitive rent-seeking
could lead to under- or over-dissipation. Tullock�s analysis suggested that, when
investments in rent-seeking exhibit increasing returns, aggregate expenditures
could exceed the contested prize. This could lead to negative expected returns
for the players, making it rational for players to exit the game. But, if no player
entered the rent-seeking contest, the prize would remain unclaimed.6 Hence,
Tullock�s well-known paradox.7

5Studying the criminal market, Becker (1968) notes that crime �would not pay�, as crim-
inal gains are competed away by (illegal) market forces. Most notably, Posner�s (1975) full
dissipation hypothesis became popular in the empirical literature and also had a strong ap-
peal in the theoretical one. For a survey of the literature see Buchanan, Tollison and Tullock,
(1980), Congleton and Tollison (1995), Lockard and Tullock (2000), Rowley, Tollison and
Tullock (1988), and Tollison (2003).

6See also Rowley (1991) on the importance of this problem for the development of the idea
of rent-seeking.

7With rational expectations, parties would realize that the rent-seeking contest would
generate negative expected returns, and would consequently choose to exit the contest, if
given an opportunity to do so. Tullock (1980) points out the paradoxical result that if no one
enters the contest, any one contestant that enters the race would win the prize, regardless of the
e¤ort level he chooses. Therefore there is an incentive to enter, destabilizing the hypothesized
no-participation equilibrium. Tullock thus concluded that the existence of negative expected
returns when all parties participate cannot be used to infer that the equilibrium level of
participation will always be zero.
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An important stream of the literature seeks a solution to Tullock�s paradox
by allowing for randomization of e¤orts. Baye, Kovenock and de Vries (1994)
introduced a mixed-strategy solution, allowing players to randomize over a �nite
set of e¤orts, and studied explicit solutions for some speci�c cases (with respect
to the number of players and the returns on the success function). Our approach
is di¤erent because it allows players to randomize their participation to the
rent-seeking contest before choosing their e¤ort level. In other words, we allow
players to choose mixed strategies, randomizing between exerting e¤ort equal
to zero (i.e., not entering the game) or entering with a positive e¤ort, which
has to be larger than a given �xed entry requirement. This approach captures
the reality of many economic activities in which there are entry costs or where
participation with a very small investment is not viable. The activities to which
our framework applies, as for instance lobbying for a permit or R&D activities,
typically require a minimum level of e¤ort before they can yield any return at
all. This framework has also the advantage of being tractable and allows us to
characterize the equilibria explicitly.
Hillman and Samet (1987) and Baye, Kovenock and de Vries (1999) analyze

a �rst-price all-pay auction, a limiting case of Tullock�s game.8 The latter show
that over-dissipation does not result in expectation but may result in particular
realizations of the equilibrium. Higgins, Shughart and Tollison (1985) and Pérez-
Castrillo and Verdier (1992) have sought a solution to Tullock�s paradox by
transforming the game into a dynamic one and studying the e¤ect of entry
on the dissipation of the rent. In this paper, we have a new look at both
issues of randomization and entry. We revisit the results reached by two of us
(Dari-Mattiacci and Parisi, 2005), discussing the problems of participation and
optimal e¤ort when there is an entry requirement (minimum participation e¤ort)
and when N instead of 2 identical players compete for a rent. Previous studies
have considered the impact of minimum e¤ort requirements in a sequential two-
player rent-seeking game (Yang, 1993) or in a simultaneous one with constant
returns to e¤ort (Schoonbeek and Kooreman, 1997), without addressing the lost
treasure problem discussed here. Appelbaum and Katz (1986) analyze entry
when there are �xed entry costs and parties have constant returns to scale
(thus, Tullock�s paradox does not arise). Gradstein (1995) analyzes a contest
with parties of di¤erent strength, which results in strong parties crowding out
weak parties; in our model, parties are all equal. Amegashie (1999) argues that
rent dissipation may decrease in the number of parties but his result derives
from the fact that the rent increases in the parties� individual e¤ort;9 in our
model, the rent is constant.
Contrary to previous literature considering randomization strategies, we per-

form an explicit and complete comparative statics analysis, not only based on
calibrations of the model. Our analysis yields symmetric equilibria and discusses
their existence and uniqueness.

8As the returns to e¤ort in the success function go to in�nity, the basic Tullock�s game
becomes analogous to a �rst-price all-pay auction.

9Clark (2000) argues to the contrary that rent-seeking expenditures should not be counted
as rent dissipation when they result in an increase in the value of the rent.
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3 Analysis

3.1 Model

We consider N � 2 identical, risk-neutral individuals who may participate in
a contest with a prize equal to 1.10 Parties act as to maximize their expected
payo¤s from the game, conditional on the other players� decisions on entry
and e¤ort Xi 2 [0; 1], which they do not observe.11 Consequently, the strat-
egy space of each player i may be described from the set of possible actions:
fEnter;Exitg [ fif Enter; invest Xi 2 [0; 1]g. In order to determine the pay-
o¤s, it is necessary to specify the sharing rule for the prize and the way in which
each participant anticipates the moves of the others. Let us �rst focus on the
sharing rule. To begin with, (i) if an individual enters the game and exerts
e¤ort Xi, he or she is awarded a share of the prize equal to

Xr
i

Xr
i +

nP
h=0

Xr
h

, where

h 6= i and n � N�1 is the number of opponents who have e¤ectively entered the
game together with player i. Thus, player i�s share in the prize depends on his
investment Xi, the number n of opponents and their e¤orts Xh. This fraction
can be interpreted either as a real sharing of the prize or as the probability of
winning the entire prize. Since players are risk-neutral, both interpretations are
formally equivalent. It is easy to see that the exponent r > 0 (the same for all
individuals) represents, as it is usual in the literature, an index of the players�
return to e¤ort in the success function, which can be decreasing (r < 1), con-
stant (r = 1) or increasing (r > 1).12 (ii) If player i does not enter the game,
he obtains 0. Finally, (iii) if no player enters the game the prize is not awarded.
It follows that the payo¤ function of player i who has entered the game can be
written as:

gi(Xi; fXhgh6=i) =

8><>:
0 if Xi = 0

Xr
i

Xr
i +

nP
h=0

Xr
h

�Xi if Xi > 0 and Xh � 0 8h 6= i

This interpretation allows us to describe the players�behavioral strategies;
player i makes the following decisions as illustrated in �gure 1 below:

� The player assigns a probability pi to Enter and a probability 1 � pi to
Exit;

10The assumption that the prize is equal to 1 is a choice made for merely methodological
convenience and it is equivalent to measuring the parties�investments Xi as a fraction of the
value of the prize, rather than in absolute terms, as it is more common in the literature. In
this way it is easier to evaluate the rent dissipation.
11This is in contrast to Higgins, Shughart and Tollison (1985), in whose two-stage rent-

seeking game the individual investment is undertaken knowing exactly the number of partic-
ipants (a player�s decision to participate is obsvervable).
12Tullock (1980) �rst proposed this formulation. See Baye, Kovenock and de Vries (1994)

for an account of the use of Tullok�s success function in the literature.
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� Given entry, the player randomizes on his e¤ort according to the cumula-
tive probability function F (Xi) on [0; 1].13

INSERT FIGURE 1

Introducing a minimum e¤ort requirement X0 > 0, we can show that the
post-entry randomization of e¤ort decisions does not occur in equilibrium, that
is, players assign a probability equal to 1 to a certain e¤ort level and 0 to all
others.14 Focusing the analysis on this behavioral strategy leads to a tractable
analytical expression for the players�expected payo¤s and to several interesting
results. X0 is the exogenous minimum level of e¤ort required to participate in
the game.15

Concerning the way in which players anticipate each others�moves, as usual
in a Nash-equilibrium analysis, we consider that the strategy choice of each
individual is associated with a reasonable belief concerning the other players�
strategies. There is an obvious way to formalize these beliefs: since no player
can in�uence the decision of the others but takes them as given, and since the
problem is symmetric, it is reasonable for each player to expect all of the others
to play the same strategy. That is, we can postulate that all the opponents to
player i enter the game with the same probability ph = q, and exert the same
e¤ort Xh = Y , for any h 6= i. Consequently, we can rewrite player i�s share in
the prize simply as Xr

i

Xr
i +nY

r . Recalling that player i does not observe how many
other players enter the game, the number n of opponents he may possibly face
is randomly distributed according to a binomial distribution with:

P (n = j) � �j

=

�
N � 1
j

�
qj(1� q)N�1�j

=
(N � 1)!

j!(N � 1� j)!q
j(1� q)N�1�j

corresponding to the probability that the number of opponents playing (Y; q)
be equal to 0 � j � N � 1.
13Baye, Kovenock and de Vries (1994 and 1999) shows how randomizing over the set of all

possible e¤orts may solve Tullock�s paradox. In our framework, this solution is precluded by
the minimum e¤ort requirement, as shown below in the text. They also allow for multiple
equilibria. A particular case of the original Tullock game has been extensively tested, namely
the limiting case when r ! +1 (a �rst-price all-pay auction). For N > 2, Baye, Kovenoch
and de Vries (1996, 1999) show that there exists a continuum of asymmetric equilibria and a
unique symmetric one.
14This result sharply di¤erentiates our analysis from previous randomization solutions to

Tullock�s paradox.
15Schoonbeek and Kooreman (1997) discuss in details the e¤ect of minimum e¤ort require-

ments in a di¤erent context from ours. The �xed cost of entry is set equal to zero for ease of
exposition and without loss of generality.
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Thus, the expected payo¤ of a representative player associated to the strat-
egy (X; p) when his opponents play (Y; q) can be now written as follows:

Eu(gi(Xi; Y )) = U(X; p;Y; q)

= p
N�1X
j=0

�j

�
Xr

Xr + jY r
�X

�
+ (1� p) 0 (1)

The individually e¢ cient behavioral strategy is de�ned as the pair (X; p)
that maximizes the expected payo¤ in Exp. (1), under the constraint p � 1.16
Using the Lagrangian coe¢ cient � for the constraint, we have the following

�rst order condition on p:

N�1X
j=0

�j

�
Xr

Xr + jY r

�
�X = � (2)

with � = 0 if p < 1 and � � 0 if p = 1. Exp. (2) yields that when
players enter the game with a probability p < 1, the expected payo¤ from
participating in the game must be equal to 0, as it is the exit payo¤. This is
a standard condition for mixed strategies, stating that the opponents enter the
game with such probability 0 < q < 1 and e¤ort Y > 0 that make player i
indi¤erent between entering and not entering the game (� = 0). Otherwise,
players participating in the game in a deterministic way (p = 1) obtain a non-
negative payo¤ (� � 0).
The �rst order condition on X is:

p

24N�1X
j=0

�j

 
rXr�1jY r

(Xr + jY r)
2

!
� 1

35 = 0 (3)

Exp. (3) yields that either the bracketed term
hPN�1

j=0 �j

�
rXr�1jY r

(Xr+jY r)2

�
� 1
i

is positive and thus p = 0 (but this cannot be a Nash equilibrium) or:

N�1X
j=0

�j

 
rXr�1jY r

(Xr + jY r)
2

!
= 1 (4)

Exp. (4) simply states that the marginal increase in the expected share in
the prize must equal the marginal cost of e¤ort. This is also a usual condition,
implying that the individually e¢ cient level of e¤ort when participating is such
that a player weighs an increase in his expected return to e¤ort against an
increase in his cost of e¤ort.
In the following paragraph, we show under what conditions a symmetric

Nash equilibrium occurs in pure strategies or in mixed strategies. The reader
16 Introducing the additional constraint 0 � p is technically possible but p = 0 cannot be

part of a Nash Equilibrium; this is the essence of Tullock�s paradox. Thus, we explicitly
consider only p > 0.
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not interested in the technical details of the analysis may read proposition 1
and proceed to sections 3.3 ¤., which provide a non technical discussion of our
main results.

3.2 Equilibrium

We can now de�ne the set of all possible solutions supporting a symmetrical
Nash equilibrium for this rent-seeking game where players play the strategies
described above.

Proposition 1:
(i) Pure-strategy equilibrium: if r � N

N�1 , the unique symmetrical Nash
equilibrium is such that all N players enter the game with a probability p� = 1,
and exert a positive level of e¤ort equal to X� = N�1

N2 r.
(ii) Mixed-strategy equilibrium: if r > N

N�1 , there exists a minimum e¤ort
requirement X0 > 0, such that there exists a unique symmetrical Nash equilib-
rium where the N players choose to enter with a positive probability p�� < 1
and after entry exert a positive level of e¤ort X�� > X0. Moreover, X�� > X�.

Let us consider these two cases separately.

3.2.1 Pure-strategy equilibrium

Consider �rst the solution with p = 1, which is associated with a level of X
satisfying Exp. (4). In a symmetric Nash equilibrium, we must have X = Y
and p = 1 = q: Then, Exp. (2) gives us the value of �, which is the expected
payo¤ in equilibrium, also de�ned in Exp. (1); now, substituting X = Y and
p = 1 = q in Exp.(4) and rearranging, we obtain X� = N�1

N2 r.
The solution p� = 1 and X� = N�1

N2 r must also verify the complementary
slackness condition; thus, substituting in Exp. (2), we obtain � = U

�
N�1
N2 r; 1

�
=

1
N

�
1� r

�
N�1
N

��
� 0. It is easy to see that this condition is veri�ed only if

r � N
N�1 .
Note also that

�
X� = N�1

N2 r; p
� = 1

�
satis�es the second order condition if

r � N
N�1 (see also Baye, Kovenock and de Vries, 1994). It is evident that, given

p� = 1, X� = N�1
N2 r is the unique level of e¤ort satisfying Exp. (4).

Remark 1: It is easy to see that X� � 1
N if r � N

N�1 .

3.2.2 Mixed-strategy equilibrium

If r > N
N�1 , the strategy (X = N�1

N2 r; p = 1) cannot support a Nash equilibrium.
In fact, in this case we would have � < 0, implying that players obtain negative
expected payo¤s. This cannot be an equilibrium because each player could
improve his payo¤ by not entering the game at all and earning 0. If r > N

N�1 is
the case, let us consider a solution where p < 1. Consequently, from Exp. (2)
we have:

9



N�1X
j=0

�j

�
Xr

Xr + jY r

�
= X (5)

which has to be solved together with Exp. (4). Once more, in a symmetrical
Nash equilibrium, we must have X = Y and p = q < 1: As a result, the system
consisting of Expressions (4) and (5) can equivalently be written as:

X =
N�1X
j=0

�j

�
1

1 + j

�
(6)

X = r
N�1X
j=0

�j

"
j

(1 + j)
2

#
(7)

Thus, when r > N
N�1 , a candidate for a symmetric Nash equilibrium is a

behavioral strategy corresponding to a pair (p��; X��) which solves (6)-(7) such
that 0 < p�� < 1 and X�� � X�. The latter claim can be formally proven
after some tedious manipulations as follows. Note that for any j satisfying
0 < j � N � 1 the following inequality holds: 1

1+j �
1
N ; �rst multiplying by

�j > 0 and then summing over j, we obtain the following inequalities:

�j
1

1 + j
� 1

N
�j

N�1X
j=0

�j
1

1 + j
� 1

N

N�1X
j=0

�j =
1

N

It is easy to see that the left-hand side is Eq. (6), implying that X�� � 1
N �

X�.
In appendix A, it is shown that the system (6)-(7) has a global maximum

corresponding to (p��; X��) only for a minimum value of the e¤ort requirement
X0. Otherwise, this strategy is not a Nash equilibrium, because an alternative
strategy with (p < 1; X 0 < X0) gives the player a positive payo¤. It is im-
portant to emphasize that X0 represents a lower bound for the minimum entry
requirement and that (p��; X��) is a global maximum for any minimum entry
requirement XR 2 [X0; X��]. For simplicity, in the rest of the paper we will
only refer to X0.17

To prove that (p��; X��) is a Nash equilibrium, assume that the N �1 other
players choose the behavioral strategy which solves (6)-(7); and consider an
alternative behavioral strategy for the N th player where he chooses to set a
probability mass p on Enter and a probability mass 1� p on Exit and to ran-
domize over all possible levels of e¤orts on [X0; 1] with a cumulative probability
function F (Z).

17Numerical simulations yield that X0 increases both in r and in N at a decreasing rate
and that the ratio � = X0

X�� also increases in r and in N at a decreasing rate, suggesting that
the range [X0; X��] shrinks as r or N increases.
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The deviation is pro�table for him if and only if:

U(F (Z); p;X��; p��) = p

Z 1

X0

0@N�1X
j=0

�j

�
Zr

Zr + jX��r � Z
�1A dF (Z)

> U(X��; p��;X��; p��) = 0

But this contradicts the de�nition of X��, since in the post-entry phase we

must have
PN�1

j=0 �j

�
Zr

Zr+jXr � z
�
� U(X��; p��;X��; p��) = 0, for any Z > X0

and so U(F (Z); p;X��; p��) � 0. Hence, the N th player has no incentives to
deviate.
To prove the uniqueness of the Nash equilibrium where players set a proba-

bility mass on Enter, and unitary probability mass on a unique level of e¤ort
after entry, it is su¢ cient to remark that, given p��, the level of X that solves
the system (6)-(7) is by de�nition the unique level of X that maximizes the
post-entry expected payo¤ of a player.

3.3 Discussion and comparative statics

Proposition 1 suggests that the individuals� choice between pure and mixed
strategies only depends on the value of the index r relative to the number of
players N . De�ning as the strength factor of a competitor the term r � N

N�1 ,
we will call �strong� players those with a positive strength factor (r > N

N�1 ,
requiring for example high returns to e¤ort and/or many competitors), and
�weak�players those with a negative (or zero) strength factor (r � N

N�1 ; for
example low returns to e¤ort and/or few competitors).

In proposition 1, it is shown that for weak competitors
�
r � N

N�1

�
the nat-

ural way to play the game is to adopt pure strategies, that is, it is optimal for all
of the players always to enter the game. On the contrary, for strong competitors�
r > N

N�1

�
, it is rational to play mixed strategies and enter the game with a

probability lower than 1. It is easy to see that in this case, we also have r > N
N�1

> 1, that is, strong competitors necessarily have increasing marginal returns to
e¤ort. This implies that, as N increases, N

N�1 becomes close to 1, that is, play-
ers play mixed strategies even when there are nearly constant marginal returns
to e¤ort (r close to 1), as shown in �gure 2.

INSERT FIGURE 2

This means that players ought to be considered strong competitors at lower
levels of r as N increases. Loosely speaking, proposition 1 establishes that the
rent-seeking contest becomes less appealing for each contestant when there is
an increase in the number of potential competitors (which implies a smaller
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share in the prize) and/or when there is an increase in the players�return to
e¤ort (larger equilibrium expenditures). While relatively weak competitors are
always ready to enter the contest, relatively strong ones prefer to reduce their
participation rate. In the next two paragraphs we separately discuss the case
of weak competitors and the case of strong competitors and investigate the
properties of the equilibrium behavior of the players through a comparative
statics analysis.

3.3.1 Weak players play pure strategies

We have seen that when the rent-seeking contest involves weak players
�
r � N

N�1

�
,

it is always optimal for each player to participate in the game, p� = 1, with a
positive e¤ort level, X� = N�1

N2 r. Optimal e¤ort levels increase in the return
to e¤ort r (@X

�

@r = N�1
N2 > 0), up to the point where the threshold r̂ = N

N�1
is reached, for which the equilibrium level of e¤ort is X� = 1

N . Moreover, the
individual e¤ort level is decreasing in the number of players N (since N�1

N2 is
decreasing in N). In pure strategy, the payo¤ of each participant is equal to:

U (X�; 1;X�; 1) =
1

N

�
1� r

�
N � 1
N

��
This payo¤ is non-negative when r � N

N�1 and it can be easily shown to be
decreasing both in r and N .
It is interesting to see that, even though players tend to exert more e¤ort

when r increases, their payo¤ actually decreases when their returns to e¤ort
increase. An increase in the number of potential competitors N instead has an
analogous impact, reducing the parties�e¤orts as well as their payo¤s.

3.3.2 Strong players play mixed strategies

When the rent-seeking contest involves strong competitors
�
r > N

N�1

�
, the

adoption of pure strategies would yield negative payo¤s for all players. Tullock�s
paradox arises precisely from this occurrence. It is thus optimal for players to
randomize over entry and participate in the rent-seeking contest with a prob-
ability that is positive but lower than 1. Each player enters the game with a
probability that makes the other players indi¤erent between playing and not
playing, which implies that the equilibrium expected payo¤ for each participant
is equal to 0, as it is the payo¤ obtained when not entering the game.
The study of the comparative statics18 shows that, when the marginal return

to e¤ort increases, the equilibrium value of the probability of participation in

the game decreases
�
@p��

@r < 0
�
, while the equilibrium level of e¤ort increases�

@X��

@r > 0
�
.

18The proofs supporting the comparative statics analysis are in appendix B.
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Surprisingly enough, in a Nash equilibrium involving mixed strategies, par-
ticipants choose a higher e¤ort level than the level chosen in a Nash equilibrium
in pure strategies. In a sense, randomization gives incentives to invest more in
the game (to make more e¤ort, when choosing to play) than a deterministic
behavior. The intuition behind this result can be easily explained as follows.
A higher return to e¤ort induces each player to exert a higher level of e¤ort
in order to retain a larger share of the prize. However, when all players invest
more in the game, their equilibrium shares in the prize remain constant, since
the prize is equally shared among them, in spite of their larger expenditures.
Thus, all players bear a higher cost of e¤ort which is not compensated by an
increase in their shares of the rent and hence results in a decrease in their net
payo¤s.19 As a result, since with a higher productivity of e¤ort players increase
their risk of receiving a negative payo¤, they will tend to compensate such risk
by reducing their probability of participation.
On the contrary, when the number of players increases, both the probability

of playing and the optimal e¤ort level for each player tend to decrease. This
is due to the fact that the impact of one player�s e¤ort is diluted when the
number of players increases (larger denominator), and each player may end up
sharing the prize with a larger number of parties. An increase in the number
of players thus makes the game less attractive for the players exacerbating the
risk associated with participation in the contest. To compensate, players reduce
both their probability of participation, and their levels of e¤orts.

INSERT FIGURE 3

4 The social cost of productive and redistribu-
tive rent-seeking

In this Section, we use the results of the previous analysis to study redistributive
and productive rent-seeking. The social costs associated with each of these two
forms of rent-seeking are quite di¤erent. In a redistributive rent-seeking game,
players compete for the reallocation or appropriation of a �xed rent. There is
no socially valuable by-product of the rent-seeking contest and the social cost
equals D, the aggregate value of resources dissipated by the parties in the race.
Unlike redistributive rent-seeking games, productive rent-seeking games are

characterized by the fact that the players� expenditures are instrumental to
the discovery or creation of new resources. For simplicity, we assume that the
social value of the sought-after resource is the same as its private value for
the players, which we have normalized to 1. In these cases, the social cost

19Notice that the equilibrium value of the share in the prize is Xr

Xr+nXr =
1

1+n
in a round

of the game with n actual participants. Hence, in equilibrium, when each participant exerts
the same level of e¤ort, the prize is shared equally among them. But, the payo¤ in the event
of n parties entering the game is 1

1+n
�X, and clearly decreases if X increases.
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of rent-seeking should include an additional factor, which should be added to
the rent dissipation D. When players play mixed strategies, there is a positive
probability that no player participates in the game, and that valuable resources
will remain unexploited. This lost treasure e¤ect T is to be added to D in the
calculus of the social cost, which, in the case of productive rent-seeking games
becomes equal to D + T .
The actual measure of the social cost in the two cases depends on whether

players play pure strategies (the case of relatively weak contestants) or mixed
strategies (the case of relatively strong contestants), and thus depends on the
return to investment in e¤ort, r, and on the number of players, N . We shall
consider these cases in turn.

4.1 The social cost with weak players

When players are relatively weak
�
r � N

N�1

�
expected returns from rent-seeking

are positive. Thus, players always take part in the game. The total amount of
resources dissipated in a rent-seeking activity is hence equal to the sum of the
players� e¤orts. Since players always participate in the game, resources will
never be left unexploited and the social cost of the game in this productive
rent-seeking situation would be the same as the social cost of a redistributive
rent-seeking game. Therefore, recalling that the individual level of e¤ort is
X� = N�1

N2 r, we can write the social cost rent-seeking as a function of r and N ,
as follows:

D(r;N) = NX� =
N � 1
N

r (8)

It is easy to see that D is increasing in r
�
@D
@r (r;N) =

N�1
N > 0

�
, and increas-

ing in N (for N > 2, the term N�1
N is bounded from above by 1 and increases

with N); moreover, it entails full dissipation for r = N
N�1 .

It is remarkable that, although the individual levels of e¤orts drop when the
number of players increases, the social cost continues to increase as an e¤ect of
more players participating in the game, but it never exceeds the value of the
rent.

4.2 The social cost with strong players

When the rent-seeking contest involves relatively strong players
�
r > N

N�1

�
,

players risk obtaining negative returns from the game. This risk induces them
to undertake mixed strategies, participating in the game with a probability lower
than 1. Since the total number of participants is described by a random variable
with a binomial distribution, the ex ante value of the rent dissipation20 due to
the players� e¤orts is given by the mean value of the number of participants
(which is simply

PN
j=1 j�j = Np

��) times the individual level of e¤ort, X��:

20Baye, Kovenock and De Vries (1999) refer to the ex ante value of the dissipation as
�Expected Aggregate Overdissipation (EAO)�.
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D(r;N) =
NX
j=1

j�jX
�� = Np��X��

In order to analyze the impact of changes in r or N , let us rewrite the rent
dissipation substituting for X��. Developing and rede�ning the factorial terms
of the binomial law, we obtain:

D(r;N) = Np��
NX
j=0

�
N � 1
j

�
p��j(1� p��)N�j

�
1

1 + j

�

=
N�1X
j=0

N(N � 1)!
(j + 1)j!(N � (j + 1))!p

��j+1(1� p��)N�1�j

=
NX
j=1

�
N

j

�
p��j(1� p��)N�j

= 1� (1� p��)N

In redistributive rent-seeking activities, the social cost is equal to the rent
dissipation. In productive rent-seeking activities, an additional loss is found
since players only play with a probability lower than 1. It is possible that
valuable resources will be left unexploited (lost treasures) when no player enters
the game. This �lost treasure�cost can be written as:

T (r;N) = (1� p��)N

Given our normalization of the value of the rent to 1, the expected dissipation
losses are equal to the total probability of participation, while the expected lost
treasure losses are equal to the probability that no player enters the game.
Interestingly, the sum of the rent dissipation and the lost treasure is always

equal to the value of the prize, regardless of actual returns to e¤ort, r, or number
of players, N :

D(r;N) + T (r;N) = 1

From this result it is easy to calculate how rent dissipation and lost treasure
vary when the players�return to e¤ort and the number of competitors increase.
It is worth noting that the analysis is made simpler by the fact that, in equilib-
rium, dissipation and lost treasure can be written as functions of the probability
with which the players enter the game �disregarding their levels of e¤ort.
With respect to changes in the returns to e¤ort, we have already seen that

when mixed strategies are used players with higher returns to e¤ort will tend to
play less often. As a result, lost treasure losses will be exacerbated by an increase
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in the players�returns to e¤ort: @T
@r (r;N) > 0. Consequently the value of the

dissipation must decrease. Interestingly � and somewhat counterintuitively �
stronger players dissipate fewer resources: @D@r (r;N) < 0.
We can conduct a similar comparative statics analysis with respect to the

number of potential contestants. We have previously seen that the probability
of actual participation in the rent-seeking contest decreases when the number of
players increases, even if there are more players who could eventually participate.
Therefore, also in this case, lost treasure losses increase with an increase in N .
Also in this case we have an interesting result. The total amount of resources
dissipated in the rent-seeking race actually decreases with an increase in the
number of contestants.

INSERT FIGURE 4

4.3 The degree of social productivity of rent-seeking ac-
tivities

In the previous analysis, we have considered the limiting cases of purely redis-
tributive and productive rent-seeking activities. In purely redistributive rent-
seeking games no socially bene�cial by-product is generated by the parties�
e¤orts, while in purely productive games the parties�e¤orts are instrumental to
the creation or discovery of new resources (what we call the treasure) the social
value of which is equal to the parties�private valuation of the rent, which we
have assumed to be equal for all parties.
In reality, di¤erent activities may exhibit various degrees of social productiv-

ity, making the distinction between redistributive and productive rent-seeking
rather a matter of degree. Denoting by W the social value of the rent and re-
calling that its private value for the potential participants is normalized to one
in our analysis, it is possible to construct a simple taxonomy of rent-seeking
activities, where W measures their degree of social productivity:21

Destructive rent-seeking (W < 0) These are activities that create a bene�t
for the parties but generate a net social loss for society. This could be the
case of lobbying for the creation of a legal monopoly or the introduction
of other undesirable restrictions to competition. More obviously destruc-
tive rent-seeking activities can be found when criminals compete with one
another in the pursuit of an illegal gain. In these cases, even setting aside
the e¤ort expenditures brought about by the contest, the parties seek to
secure a private gain (in our example, the monopolist�s pro�t or the crimi-
nal�s gain) that would generate a net social loss (the monopoly deadweight
loss or the victim�s loss).

21 If the private value of the rent is indicated by V , as in most articles, the degree of social
productivity of the activity is w = W

V
. Our taxonomy can be straightforwardly applied to

this formulation.
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Purely redistributive rent-seeking (W = 0) These are activities that are
of no value for society, such as the lobbying for the assignment of a per-
mit. Parties�compete to secure a private bene�t that creates no apparent
bene�ts to society.

Quasi-productive rent-seeking (0 < W < 1) In quasi-productive rent-seeking
activities, the parties compete with one another to appropriate a private
bene�t, but in the process of doing so they also generate some bene�ts
to society. The social bene�t is lower than the value captured by the
parties. For example, producers generally invest in advertising to gain a
larger share of the market, but their advertising may have some bene�cial
e¤ect for society at large (e.g., spreading of information about features
and quality of a product). In this category of situations, the bene�cial so-
cial e¤ects (value of advertised information for consumers) might be lower
than what is at stake for the parties (the pro�ts from an increased market
share).

Productive rent-seeking (W = 1 ) In this group of cases, the private and
social value of the sought-after advantage are the same. Parties compete
for the creation or discovery of new resources and fully internalize their
value �the private value of such resources is just the same as their value for
society. An example is R&D research where the commercial value of the
innovation equals the value to society. This happens when the developer
manages to exploit his innovation, capturing the full social value of his
discovery.

Super-productive rent-seeking (W > 1 ) In this category of cases, the so-
cial bene�t exceeds the private bene�t that is sought after by the parties.
Put di¤erently, the parties cannot capture the full social value of their
activity and hence they generate a positive externality to society. An
example may be provided by new scienti�c discoveries that cannot be ef-
fectively patented. It is not di¢ cult to imagine that the researcher might
not be able to capture the full value of his discovery, with a positive ex-
ternal e¤ect for society.

These distinctions have interesting consequences for the calculus of the social
cost of rent-seeking. We have previously discussed the cases of purely redistrib-
utive and productive rent-seeking and a few observations should be made at this
point with respect to the three additional cases introduced here.
Let�s begin with the case of quasi-productive rent seeking. This case is

interesting because, when parties are strong and play mixed strategies, the cost
associated with the lost treasure e¤ect is lower than in productive activities,
given the fact that the social value of the sought-after rent is less than 1. As
a result, in these cases the total social cost of rent-seeking is always less than
the private value of the rent and decreases in both r and N � the e¤ect of
stronger and/or more numerous competition lead to a bene�cial decrease in
overall dissipation D that dominates the increase in lost treasure e¤ect T .
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The opposite is true for super-productive rent-seeking activities, in which
the increase in lost treasure e¤ect weighs more heavily than the decrease in
dissipation. In super-productive rent-seeking activities, the social cost of rent-
seeking thus increases in both r and N .
Finally, let us consider the case of destructive rent-seeking, where the play-

ers�activities generate negative externalities, yielding a negative net value for
society. Here, it su¢ ces to notice that whenever the social value of a rent-
seeking activity is negative the lost treasure e¤ect comes in the calculus of the
social cost with a positive sign. A monopoly that is not granted or a crime that
is not committed constitutes a bene�t for society. The lack of participation of
rent-seekers in the game is bene�cial to society. When players undertake mixed
participation strategies, the social loss thus equals D � T .
This yields to two interesting corollaries. From our results it follows that an

increase in the strength of players r reduces the social loss of destructive rent-
seeking in two direct ways. An increase in r has two bene�cial e¤ects �leading
to a decrease in D as well as a decrease in negative T (since T increases). The
same holds for an increase in the number of potential participants, N , leading
to a decrease in both D and negative T , and is therefore desirable in the simple
setting that we consider.
These �ndings yield the general conclusion that more competition among po-

tential participants in a contest is welcome for destructive, purely redistributive
and quasi-productive activities, has no e¤ect for perfectly productive activities
and is detrimental for super-productive activities.
The policy implications are highly relevant and contrary to conventional

wisdom. Setting aside other possibly important variables, and focusing on the
sum of dissipation and lost treasure costs we are led to the counter-intuitive
policy implication that competition is undesirable when the social value of an
activity overcomes its private value, and it thus becomes increasingly desirable
to restrict competition when the degree of social productivity of the activity
increases. Competition is instead desirable in destructive rent-seeking activities
and free entry should paradoxically be promoted to reduce the social cost of
socially undesirable activities. Our analysis reaches results that are consistent
with Bhagwati�s (1982) intuition �although, for quite an opposite reason. In
Bhagwati (1982), rent-seeking is discouraged because pro�ts are competed away
through parties�participation e¤orts; in our analysis, instead, rent dissipation
is limited by lack of participation in the rent-seeking contest. The two analysis
converge in the result that competition in rent-seeking erodes pro�t opportuni-
ties for the parties.

5 Conclusions

In this paper, we consider an important aspect of Tullock�s (1980) rent-seeking
paradox, generating results that run contrary to the conventional wisdom in the
rent-seeking literature. We show an interesting relationship between number of
contestants, returns to rent-seeking investments and total rent dissipation when
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players have an exit option and are allowed to undertake mixed participation
strategies.
When players are endowed with a weakly productive technology of e¤ort,

either with decreasing or constant returns to e¤ort, they always enter the game
and never randomize their participation strategy. In contrast, when they have
increasing returns to e¤ort, the players�choices depend both on the marginal
return to the individual e¤ort and on the number of potential contestants.
The relative strength of the players is measured as a function of these two

variables. In both redistributive and productive rent-seeking games, when the
players�marginal return to e¤ort is low relative to the number of contestants,
they always participate in the contest and the dissipation increases with the
number of participants, ultimately approaching the whole value of the rent.
When players�marginal return to e¤ort is high relative to their number, players
instead tend to invest more in the contest, but tend to participate less often.
As a result, when players are stronger, the dissipation increases steadily up

to the point at which total expenditures approach the full rent, rendering it con-
venient to exit with some positive probability. After this point, in redistributive
rent-seeking activities the overall social cost of rent-seeking actually decreases,
while in productive rent-seeking activities it remains equal to the full value of
the rent. This is because, in productive rent-seeking the reduction in the players
expected expenditures is perfectly counterbalanced by the expected value of the
rent remaining unexploited when no player takes part in the game.
A similar analysis applies with respect to changes in the number of potential

participants. An increase in the number of potential participants reduces the
incentive for each player to enter the race. This has di¤erent welfare implications
in the two cases of redistributive and productive rent-seeking. In the case of
redistributive rent-seeking, the total dissipation of socially valuable resources
corresponds to the sum of the players� investments in rent-seeking activities.
An increase in the number of potential participants, by reducing the incentive
for each player to enter the race, may lead to a bene�cial reduction in the
dissipation of rents.
In the case of productive rent-seeking, the players compete for rents that are

associated with socially valuable activities and hence a social loss arises not only
from the players� rent-seeking expenditures (i.e., the rent-dissipation e¤ect),
but also from the lack of exploitation of available rent (i.e., the lost-treasure
e¤ect). Here, an increase in the number of potential participants produces two
countervailing e¤ects: a reduction in the rent-dissipation e¤ect and an increase
in the lost-treasure e¤ect. We show that the rent-dissipation e¤ect is negatively
related to the number of contenders, while the lost-treasure e¤ect is positively
related to it. Interestingly, the sum of the rent-dissipation e¤ect and the lost-
treasure e¤ect does not depend on the number of contenders and equals the full
value of the rent.
From a welfare point of view, whether unexploited rents should be computed

among the social cost of rent-seeking obviously depends on the nature of the
situation. In redistributive rent-seeking situations, if no player participates, no
redistribution would take place, but no social cost would result from it. In
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productive rent-seeking situations, instead, lack of participation would create a
social cost (the �lost treasure�), since valuable rents would be left unexploited.
The �nding according to which in N -player rent-seeking contests the lost-

treasure e¤ect perfectly counterbalances the reduction in rent dissipation due
to competitors�exit is, in our view, a quite important result. This result revives
and gives formal support to a lost thread in the rent-seeking literature. By
computing how the sum of the players�expenditures and the lost-treasure costs
vary with a change in the number of players and returns to e¤ort, we can in fact
see that the sum of the expected values of these two costs always amounts to
the full value of the rent. This result reconciles the techniques and �ndings of
the most recent rent-seeking literature with the intuitions of the earlier seminal
contributions by Becker (1968), Krueger (1974), Posner (1975), Demsetz (1976),
and Bhagwati (1982), who hypothesized that in equilibrium the entire value of
a rent would always be competed away.
These results have relevant policy implications. In redistributive games, an

increase in the number of potential contestants reduces each player�s incentive
to enter the contest and thus decreases the deadweight loss from dissipation.
The interesting policy corollary is that by opening up entry in a redistributive
game, actual participation may actually be reduced with a resulting reduction
in the social loss.
In productive rent-seeking situations, a change in the number of contestants

alters the balance between the rent-dissipation and the lost-treasure components
of the social cost. An increase in the number of contestants would discourage
participation and leave potential value unexploited. Whenever the social value of
the treasure is higher than the private value (e.g., the case of a scienti�c discovery
that may have a social value greater than the private bene�t captured by the
discoverers), the social cost derived from the lost treasure would exceed the
social bene�t obtainable by a reduction in rent-dissipation. In these situations
a reduction in the number of competitors in the research race may lead to greater
opportunities for scienti�c discovery. These results should also be revisited in
light of the possibility that the parties can previously invest in improving the
e¤ectiveness of their rent-seeking e¤orts, with a potential increase in overall
dissipation. These examples are illustrative of the important implications of
our results and of the need to extend the analysis to additional settings with
asymmetric rent-seeking players and endogenous rent values, in order to assess
their real scope for public policy and institutional design.
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Appendix A
Proof of Proposition 1

Concerning part i) of the proposition, both the existence and the uniqueness
of the results are proven in the paper. Here we provide the complete proof of
part ii) of the proposition. When r > N

N�1 , the NE behavioral strategy (X; p)
is de�ned as the solution to:

X =
N�1X
j=0

�
N � 1
j

�
pj(1� p)N�1�j

�
1

1 + j

�
(A.1)

X = r

24N�1X
j=0

�
N � 1
j

�
pj(1� p)N�1�j

 
j

(1 + j)
2

!35 (A.2)

= r

24N�1X
j=0

�
N � 1
j

�
pj(1� p)N�1�j

 
1

1 + j
� 1

(1 + j)
2

!35
which are the �rst order conditions (labeled (6)-(7) in the paper) associated

to each player�s expected payo¤ maximization.
Setting the RHS of (A.1) equal to the RHS of (A.2), we obtain: A = rA�rB;

or equivalently B = r�1
r A with:

A =
N�1X
j=0

�
N � 1
j

�
pj(1� p)N�1�j

�
1

1 + j

�

B =

N�1X
j=0

�
N � 1
j

�
pj(1� p)N�1�j

 
1

(1 + j)
2

!

Thus, more precisely, here we prove the following:

Proposition 2: If r > N
N�1 , there exists a unique p 2]0; 1[ which solves

B = r�1
r A.

The proof is subdivided in three steps.

Step 1. In the �rst stage, we introduce alternative expressions for A and
B:

Lemma 1: A can be written as:

A =
1� (1� p)N

Np
(A.3)

23



Proof: Remark that since
�
N�1
j

�
pj(1� p)N�1�j

�
1
1+j

�
= 1

Np

�
N
1+j

�
p1+j(1�

p)N�(1+j), we have:

A =
1

Np

NX
j=1

�
N

j

�
pj(1� p)N�j

and straightforward manipulations yield (A.3). �

Lemma 2: B can be written as:

B = � (1� p)
N

Np

24N�1X
j=0

1

1 + j

�
1� 1

(1� p)1+j

�35 (A.4)

Proof : To see this, let us develop the polynomial (px + (1 � p))N�1, to
obtain:

(px+ (1� p))N�1 �
N�1X
j=0

�
N � 1
j

�
pjxj(1� p)N�1�j (A.5)

Thus, integrating over x from 0 to t, we have:

Z t

0

(px+ (1� p))N�1dx =
Z t

0

0@N�1X
j=0

�
N � 1
j

�
pjxj�1(1� p)N�1�j

1A dx (A.6)

The RHS of (A.6) is:

0@N�1X
j=0

�
N � 1
j

�
pj(1� p)N�1�j

1A�Z t

0

xjdx

�

=

N�1X
j=0

�
N � 1
j

�
pj(1� p)N�1�j

�
t1+j

1 + j

�
while the LHS is:

1

N

"
(px+ (1� p))N

p

#t
0

=
1

N

(pt+ (1� p))N � (1� p)N
p

As a result, equation (A.6) can be written as:

1

N

(pt+ (1� p))N � (1� p)N
pt

=

N�1X
j=0

�
N � 1
j

�
pj(1� p)N�1�j

�
tj

1 + j

�
(A.7)
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Now, the LHS of (A.7) can be written as:

1

N

(pt+ (1� p))N � (1� p)N
pt

=
1

N

N�1X
j=0

(pt+ (1� p))j(1� p)N�1�j

To see this, let us de�ne the sum:

S =
N�1X
j=0

(pt+ (1� p))j(1� p)N�1�j

Multiplying S by (1� p) yields:

(1� p)S = (1� p)N + (pt+ (1� p))S � (pt+ (1� p))N

Thus:

(pt+ (1� p))S � (1� p)S = (pt+ (1� p))N � (1� p)N

and solving for S yields the result.
Let us now integrate the RHS of (A.7) over t from 0 to 1; this yields:

Z 1

0

0@N�1X
j=0

�
N � 1
j

�
pj(1� p)N�1�j

�
tj

1 + j

�1A dt (A.8)

=
N�1X
j=0

�
N � 1
j

�
pj(1� p)N�1�j

�Z 1

0

tj

1 + j
dt

�

=
N�1X
j=0

�
N � 1
j

�
pj(1� p)N�1�j

 
1

(1 + j)
2

!

Integrating now the LHS of (A.7) over t from 0 to 1, we have:

1

N

Z 1

0

0@N�1X
j=0

(pt+ (1� p))j(1� p)N�1�j
1A dt (A.9)

=
N�1X
j=0

(1� p)N�1�j
�Z 1

0

(pt+ (1� p))jdt
�

=
1

N

24N�1X
j=0

(1� p)N�1�j 1

1 + j

�
1� (1� p)1+j
(1� p)1+j

�35
= � (1� p)

N

Np

24N�1X
j=0

1

1 + j

�
1� 1

(1� p)1+j

�35
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Hence, setting (B.8) equal to (B.9), gives us the result in (B.4). �

Step 2. In the second step, we change the unknown variable. Before that,
note that the equation to be solved B = r�1

r A, using lemma 1 and 2 is now:

� (1� p)
N

Np

24N�1X
j=0

1

1 + j

�
1� 1

(1� p)1+j

�35 = �r � 1
r

��
1� (1� p)N

Np

�
or:

N�1X
j=0

1

1 + j

�
1� 1

(1� p)1+j

�
=

�
r � 1
r

��
(1� p)N � 1
(1� p)N

�
or:

N�1X
j=0

1

1 + j
�
N�1X
j=0

1

1 + j

1

(1� p)1+j =
r � 1
r

�
1� 1

(1� p)N

�
(A.10)

Finally, let us de�ne x = 1
1�p ; such that x > 1 as long as p 2]0; 1[; thus,

(A.10) can be written as:

N�1X
j=0

1

1 + j
�
N�1X
j=0

1

1 + j
x1+j =

r � 1
r

�
1� xN

�
(A.11)

Lemma 3:

N�1X
j=0

1

1 + j
x1+j =

Z x

0

�
1� tN
1� t

�
dt

Proof: It is well known that:

N�1X
j=0

tj =
1� tN
1� t

Thus, integrating over t from 0 to x leads to:

Z x

0

�
1� tN
1� t

�
dt =

Z x

0

N�1X
j=0

tjdt =
N�1X
j=0

Z x

0

tjdt =
N�1X
j=0

1

1 + j
x1+j

which is the result. �
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Step 3. In the third step, we solve (A.11) for the new variable x. Equation
(A.11) can be framed as the implicit function F (x) = 0, where:

F (x) =
r � 1
r

�
1� xN

�
+

Z x

0

�
1� tN
1� t

�
dt�

N�1X
j=0

1

1 + j

whose �rst derivative (for x > 1) is:

F 0(x) =
xN�1[N(r � 1)� (N(r � 1)� r)x]� r

r(x� 1)
The function F reaches an extremum for the set of values of x(> 1) corre-

sponding to: F 0(x) = 0. These are the values that solve:

N(r � 1)� (N(r � 1)� r)x = rx1�N (A.12)

Remark that, on the one hand, the LHS corresponds to a linear function
f(x) = N(r�1)� (N(r�1)�r)x which is increasing when N(r�1)�r < 0 (or
equivalently r < N

N�1 ) but decreasing when N(r � 1) � r > 0 (or equivalently
r > N

N�1 ): On the other hand, the RHS of (A.12) is a quasi-hyperbola g(x) =
rx1�N which is decreasing and convex. If r � N

N�1 these two curves intersect
once (for x = 1) and if r > N

N�1 they intersect twice. Thus, we have a single
relevant case,22 that is N(r � 1)� r > 0 (or equivalently r > N

N�1 ).
We can prove:

Lemma 4: Assume r > N
N�1 ; f(x) and g(x) intersect twice: once for x = 1,

and once for x > 1.

Proof: When r > N
N�1 ; f(x) is monotone decreasing, with f(0) = N(r �

1) > 0. In addition, g(x) = rx1�N ! +1 when x ! 0. For x = 1, it is easy
to see that f(1) = g(1) = r, moreover, for x = 1, g(x) has a steeper slope than
f(x) (since �N(r� 1)+ r > r(1�N)) thus both curves intersect twice and the
�rst time for x = 1. �

Lemma 5: Assume r > N
N�1 ; there exists a unique x > 1 which solves

F (x) = 0.

Proof: Recall that according to lemma 3 limx!1 [F (x)] = 0. When going
to in�nity, any polynomial behaves as its terms with the higher exponent. As
a result, when x ! +1, F (x) looks like

�
1
N �

r�1
r

�
xN ; thus, F (x) ! �1 as

x ! +1, given that 1
N �

r�1
r = r+N�rN

rN < 0 by assumption. Now, according
to lemma 4, the sign of F 0 alternates on ]1;1[, being �rst positive and then
negative. This completes the proof that there exists a unique x > 1 (hence a
unique p 2]0; 1[) which solves F (x) = 0. �
22Recall that, as shown in proposition 1, when N(r� 1)� r < 0 (or equivalently r < N

N�1 ),
there only exists one Nash Equilibrium in pure strategies.
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We have found a unique (X; p) = (X��; p��) solving the �rst order conditions
(A.1)-(A.2).

Finally, steps 1 to 3 together prove proposition 2 if we can show that for a
convenient value of X0, for r > N

N�1 and for any individual who wants to enter
the game, the strategy (X��; p��) is indeed optimal. In other words, we need to
study the function:

K(X) =
N�1X
j=0

�j

�
Xr

Xr + jX��r �X
�
:

Let us consider:

F (�) =

j=N�1X
j=0

�j
�r

�r + j
and X�� = F (1) =

j=N�1X
j=0

�j
1 + j

where �j =
�
N � 1
j

�
p��j(1� p��)N�1�j and r is a given number greater

than N
N�1 .

Writing X = �X��, the equality K(X) = 0 ,
PN�1

j=0 �j

�
Xr

Xr+jX��r

�
= X

becomes:

F (�) =

j=N�1X
j=0

�j
�r + j � j
�r + j

=

j=N�1X
j=0

�j

�
1� j

�r + j

�
= �X��

and then:

1�
j=N�1X
j=1

�
j�j
�r + j

�
= �X�� , 1� �X�� =

j=N�1X
j=1

�
j�j
�r + j

�
:

We can see that the LHS of this equation corresponds to a linear decreasing
function H(�) = 1 � �X�� and the RHS corresponds to a sum of decreasing
classical functions j�j

�r+j .

For every � 2 [0;+1[ ; G(�) =
Pj=N�1

j=1

�
j�j
�r+j

�
is di¤erentiable at � and

the inequality

G0(�) =

j=N�1X
j=1

�j �j

(�r + j)
2 �

r�1r � 0

shows that G is a decreasing function from [0;+1[ to [1� �0; 0[:

8� � 0; 0 � G(�) � 1� �0:
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It is easy to see that:

H(1) = 1�X� = 1�
j=N�1X
j=0

�
�j
1 + j

�
=

j=N�1X
j=0

�j�
j=N�1X
j=0

�
�j
1 + j

�
=

j=N�1X
j=1

�
j�j
1 + j

�
= G(1):

Moreover, according to the de�nition of p�� , G(�) has for � = 1 the same slope
as H(�):

H 0(1) = �X� = �
j=N�1X
j=0

�j
1 + j

= �
j=N�1X
j=0

�j
jr

(1 + j)
2 = G

0(1)

So the graph of the linear function H(�) = 1 � �X�� is tangent at � = 1
to the graph � of y = G(�) and since 1 > 1 � �0; and G00(1) > 0; we can say
that these two curves intersect twice; at �rst time for � = �0 < 1 and then for
� = 1, where the two curves are tangent to each other. After the latter point,
these two curves do not intersect and thus we have: 8� > �0, G(�) � H(�),
with G(�) = H(�) for � = 1.
If we assume that � > �0 or equivalently X > �0X

��; the equation Ui = 0
has only one solution, X = X��, and it is a maximum since for X > �0X

��,
K(X) has always the same sign given by G(�)�H(�) � 0:

8X > X0 � �0X��;K(X) � 0, 8X > X0 � �0X��;K(X) � K(X��):�
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Appendix B
Comparative statics

In order to perform the comparative statics analysis, let us give alternative
expressions for the �rst order conditions in (6) and (7). In appendix A, it has
been shown that condition (6) can be written as:

X =
1

Np

NX
j=1

�
N

j

�
pj(1� p)N�j (B.1)

=
1

Np
(1� (1� p)N )

thus according to (B.1), 8p 2 [0; 1]:

@X

@p
=

1

Np2
�
Np(1� p)N�1 + (1� p)N � 1

�
< 0

Further, it can be shown that the relationship between X and p correspond-
ing to condition (7) can be written as:

X =
r

Np

24 NX
j=1

�
N

j

�
pj(1� p)N�j

�
j � 1
j

�35 (B.2)

=
r

Np

24 NX
j=1

�
N

j

�
pj(1� p)N�j �

NX
j=1

�
N

j

�
pj(1� p)N�j 1

j

35
=

r

Np
(1� (1� p)N )� rH(p)

where H(p) is given by:

H(p) =

Z 0

1

(px+ (1� p))N�1Ln(x)dx

To see this, let us develop the polynomial (px+ (1� p))N , to obtain:

(px+ (1� p))N =
NX
j=0

�
N

j

�
pjxj(1� p)N�j

= (1� p)N + x
NX
j=1

�
N

j

�
pjxj�1(1� p)N�j

Thus, subtracting (1� p)N , dividing by x and integrating in x, we have:
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Z 1

0

(px+ (1� p))N � (1� p)N
x

dx =

Z 1

0

0@ NX
j=1

�
N

j

�
pjxj�1(1� p)N�j

1A dx
The RHS is:

0@ NX
j=1

�
N

j

�
pj(1� p)N�j

1A�Z 1

0

xj�1dx

�
=

NX
j=1

�
N

j

�
pj(1� p)N�j 1

j

while the LHS is:

�Np
Z 1

0

(px+ (1� p))N�j Ln(x)dx = NpH(p)

Notice also that, since

H 0(p) = (N � 1)
Z 0

1

(x� 1)(px+ (1� p))N�2Ln(x)dx

with x taking value on [0; 1], it is clear that H 0(p) < 0; which is used there-
after.

Comparative statics for r

We will �rst prove that @p
@r < 0 and

@X
@r > 0. Totally di¤erentiating (6)-(7)

or equivalently (B.1)-(B.2) leads to the system:

@X

@r
=
@p

@r

1

Np2
�
Np(1� p)N�1 + (1� p)N � 1

�
(B.3)

@X

@r
= r

@p

@r

�
1

Np2
�
Np(1� p)N�1 + (1� p)N � 1

�
�H 0(p)

�
(B.4)

+

�
1

Np
(1� (1� p)N )�H(p)

�
where H(p) and H 0(p) < 0 have been previously de�ned. Substituting (B.3)

in (B.4), we obtain:

@p

@r
=

�
1
Np (1� (1� p)

N )�H(p)
�

(1� r)
�

1
Np2 (Np(1� p)N�1 + (1� p)N � 1)

�
+ rH 0(p)

< 0
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The denominator is negative, while the numerator (which is equal to X=r
according to (B.2)) is positive: as a result @p

@r < 0: Then, given (B.4), it is
obvious that:

sign
@X

@r
= �sign@p

@r
> 0

Now, we show that @T@r (r;N) = �
@D
@r (r;N) > 0.

Consider that T (r;N) = (1� p)N ; the impact of an increase in r on the lost
treasure is thus:

@T

@r
(r;N) = N(1� p)N�1

�
�@p
@r

�
> 0

Thus, by D(r;N) = 1 � T (r;N), an increase in r has a negative impact on
the rent dissipation: @D@r (r;N) � 0:

Comparative statics for N

Since N is discrete, the analysis of its impacts is quite complex. In this case,
an informal argument can be helpful and su¢ cient to describe the e¤ects on
the equilibrium strategy. On the one hand, in proposition 1, we have seen that
there exists a higher bound for the e¤ort X associated with the equilibrium in
mixed strategy, which is 1

N , decreasing in N . Thus, X cannot increase in N .
On the other hand, recall that for each participant, the number of his opponents
is distributed according to a Binomial law, with by de�nition a probability to
face j opponents equal to �j =

�
N�1
j

�
pj(1� p)N�1�j ; it can be shown that:

P (n > k) =
N�1X
j=k+1

�
N � 1
j

�
pj(1�p)N�1�j = (N � 1)!

k!(N � k � 2)!

Z p

0

tk(1�t)N�k�2dt

meaning that P (n > k), the cumulative probability that the number of play-
ers playing the game be higher than a threshold k, is monotonously increasing
in N . As a result, an increase in N means an increase in the risk borne by
each player (in the sense of the �rst stochastic dominance order) to share the
constant prize with a greater number of opponents �the greater the number of

players, the smaller the individual share for each player
�

1
1+j

�
. To compensate,

each player reduces his probability of participation. Thus, the equilibrium value
of p decreases with N .
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FIGURE 1: Party i’s strategy set
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FIGURE 2: Parties’ strength as a function of r and N 
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FIGURE 3: Rent-seeking expenditure X and probability of participation p as a function of 

the number of contestants N (for any r) 
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FIGURE 4: Rent dissipation D and lost treasure T as a function of the number of 

contestants N (for any r) 
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