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Abstract

In this paper we analyze a tax evasion game with taxpayers learning by

imitation. If the authority commits to a fixed auditing probability, a positive

share of cheating is obtained in equilibrium. This stands in contrast to the

existing literature that yields full compliance of audited taxpayers who are

rational, have a lot of information and thus do not need to interact. When

the authority adjusts auditing probability every period, cycling in cheating-

auditing occurs. Thus, the real life phenomenon of compliance fluctuations is

explained within the model rather than by exogenous parameter shifts. JEL

Classification: C79, H26

Keywords: tax evasion, imitation, learning

1 Introduction

The magnitude and importance of shadow sector is hard to overestimate. Just to

mention one case, the official estimate of informal GDP for Russia is about 1/3 of

formal GDP in the recent years1. A fundamental aspect of the informal activities is

tax evasion, which is usually defined as an effort to lower one’s tax liability in the

way prohibited by law. The paper considers exclusively this phenomenon, leaving

∗I am grateful to Gregor Langus, David Perez-Castrillo, Rick van der Ploeg and Karl Schlag for

valuable comments.
1A summary of recent attempts to estimate the size of tax evasion, avoidance and other informal

activities is given in Schneider and Enste (2000). The results vary a lot with method and country

considered; one common finding is that the shadow sector is growing over time.
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tax avoidance and criminal activities aside. Specifically, it is devoted to the income

tax evasion, which has received the most attention in the theoretical modeling of

tax evasion. Such attention can be partially attributed to the existence of relatively

reliable data on this matter (Tax Compliance Measurement Program (TCMP) in the

US). Another reason might be tradition founded by the seminal model of Allingham

and Sandmo in 1972.

A detailed survey of the models of income tax evasion can be found in Andreoni,

Erard and Feinstein (1998). They identify two directions in the modeling of strategic

interaction between taxpayers and tax authorities: principal-agent approach (e. g.,

Vasin and Vasina (2002)) and game theoretic approach (e. g., Reinganum and Wilde

(1986), Erard and Feinstein (1994), Peter Bardsley (1997), Waly Wane (2000)). Both

approaches treat the taxpayers as a single player maximizing expected payoff of cheat-

ing. All the literature in tax evasion we are aware of maintains the assumption of

no communication among the taxpayers. In reality however a taxpayer is not an

isolated decision maker, she/he lives in a society and constantly interacts with other

taxpayers.

This paper is an attempt to relax the assumption of no social interaction among

the taxpayers, hence its main feature is an explicit characterization of taxpayers’

communication. This is achieved by using the framework of learning in games. The

type of learning we use is imitation. Our taxpayers are boundedly rational, and they

decide whether to cheat or not cheat depending on payoffs from cheating obtained

in the previous period by themselves and by those whom they meet. This can be

contrasted with more rational Bayesian updating, for instance when the agents have

priors on the probability distribution of auditing intensity and learn more about this

distribution through their own play and interaction with others. Our model matches

a number of stylized facts about evasion.

First, in reality taxpayers possess poor knowledge of audit rules, usually overes-

timating the probability of audit (Andreoni et al. 1998). In the model they do not

know it, but rather imitate actions of other individuals. Other possible sources of

information, such as media, are not considered for the sake of simplicity. Second,

another feature of reality - heterogenous information taxpayers possess - is reflected

in the initial distribution of strategies between cheating and not cheating. Third,

the real world tax authority is an organization that acts in a substantially different

way than an individual taxpayer. This organization has resources and incentives to
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gather all available information, whereas every individual prefers not to incur costs of

information collection. The model reflects this asymmetry directly: the tax authority

is updating its belief about the distribution of the taxpayers, whereas each of the

taxpayers just imitates. Fourth, tax evasion is an intertemporal decision. This is

supported among others by the Engel and Hines’ study (1999). In our framework the

individuals have one-period memory that allows them to choose a strategy tomor-

row on the basis of today’s observation of the behavior of the others and their own.

As the income reporting is a rare (annual) event, short memory can be a plausible

assumption.

These four features are considered in a simple version of tax evasion relation with

two levels of income and homogenous population of low-income taxpayers. Learn-

ing rule used by the members of this population is a simple imitation of a better-

performing strategy. We consider three scenarios that vary according to the amount

of information of taxpayers and their attitude towards punishment.

The main result of the model is the cycling dynamics it generates. In all scenarios

considered, both the share of evading taxpayers and the auditing intensity of tax

authority exhibit fluctuations giving rise to stable cycles. The system is cycling

around an unstable steady state, in which the share of cheaters (people evading their

tax) is the same as in the Nash equilibrium of one-shot game, whereas the auditing

probability is not related to its Nash equilibrium value. This happens because in

the game the cheating is effectively determined by the rationality of tax authority,

whereas the intensity of auditing is actually established by the learning rule and

parameters of the game.

From the dynamics generated we can see that in presence of boundedly rational

agents the equilibrium play does not actually occur. Therefore, the dynamics is

necessary to be taken into account in order to make accurate inference about the

welfare effects of various policies. The estimation of such effects, however, requires

calibration of the parameters of the model, which is a separate issue.

Our model replicates a number of stylized facts. Firstly, non-zero cheating of

audited taxpayers is obtained for the commitment case, which is certainly more plau-

sible than absolute honesty of the most of the conventional principle-agent models

(for example, Sanchez and Sobel 1993, Andreoni et al.1998). Secondly, in the non-

commitment case the following features of dynamics are explained: decreasing compli-

ance (Graetz, Reinganum and Wilde 1986) and auditing probability (Dubin, Graetz
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and Wilde 1990, Adreoni at al. 1998, p.820) observed in the US in the second half

of XX century, as well as the recent increase in auditing probability with continuing

decrease of compliance (Slemrod 2004, p.1). These patterns could not be explained

by the literature to date since only static models were used.

Additionally, an alternative explanation for the puzzle of too much compliance is

offered. It is largely discussed in the literature that people comply much more than

a simple lottery model of evasion predicts. Our results suggest that the reason might

not be in the presence of intrinsically honest taxpayers2, but in the fact that the

system is far from the equilibrium. This is best illustrated in the commitment case:

if the share of cheating taxpayers is below its equilibrium value, it stays so forever,

and it looks as if taxpayers were cheating too little.

The rest of the paper is organized in the following way. Section 2 outlines the

simple static game which is then played repeatedly. Dynamics of such play is analyzed

in section 3, where different learning rules are considered. Underlying the baseline

average payoff rule is the norm of high tolerance of evasion and the assumption

that taxpayers share among themselves a lot of information about evasion. The

effective punishment rule is less favorable to the cheating, but keeps high informational

requirement. The popularity rule is least encouraging for evasion, it also assumes

minimum information communicated between taxpayers. Concluding section stresses

limitations of the model and outlines its possible extensions and applications. All

propositions in the paper bear a letter corresponding to a learning rule: ”A” for the

average payoff, ”E” for effective punishment, and ”M” for m agents meeting.

2 Classical game theory: a simple model

As a starting point for modeling dynamics we take a simple one-shot game of tax

evasion, based on Graetz, Reinganum and Wilde (1986). Intrinsically honest taxpay-

ers (who can not evade for moral reasons) are eliminated from that model, as their

presence does not change the results in the given setup. The timing is as follows:

1. The nature chooses income for each individual from two levels, high H with

probability γ and low L with probability 1− γ;

2. Taxpayers report their income, choosing whether to evade or not;

2This is how the puzzle is usually resolved in the literature (for references see, e.g., Slemrod

(2000)).

4



3. Tax agency decides whether to audit or not.

It is obvious, that low income people never choose to evade, because they are

audited for sure, if they report anything lower than L. At the same time, the high

income people can evade, since with a report L tax agency does not know, whether

it faces a truthful report by the lower income people, or cheating from the higher

income ones. Then the game simplifies to the one between higher income people and

tax agency:

audit not audit

cheat (1− t)H − st(H − L), tH + st(H − L)− c H − tL, tL

not cheat (1− t)H, tH − c (1− t)H, tH

where t is an income tax rate, s is a surcharge rate, determining fine for the given

amount of tax evaded, c is audit cost; all of them are assumed to be constant and

exogenously given for the tax-raising body3.

Then the tax authority maximizes its expected revenue choosing the probability

to audit p given probability of cheating q:

p(
qγ

qγ + 1− γ
(tH + st(H − L)) +

1− γ

qγ + 1− γ
tL− c) + (1− p)tL (1)

which is linear in probability due to linearity of audit cost function. The multipliers

for the payoffs are probabilities to come across high income cheaters (qγ) or low

income honest taxpayers (1− γ) given that only low income reports are audited.

First order condition holds with equality for the value of

q =
1− γ

γ

c

t(1 + s)(H − L)− c

This is the value of cheating probability in the unique mixed strategies Nash equilib-

rium.

A high income individual maximizes its expected payoff given probability of audit:

pq ((1− t)H − st(H − L)) + (1− p)q(H − tL) + (1− q)(1− t)H (2)

3Endogenous determination of tax and penalty rate is an interesting task, but it constitutes the

problem of a government rather than a tax authority. Moreover, it has been largely discussed in the

literature, see, for example, Cowell (1990).
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which is also linear in probability because of the nature of expected utility. The

equilibrium value of p is 1
1+s

.

Simple comparative statics shows that auditing probability is decreasing with fine;

the extent of evasion is increasing with costs of auditing and decreasing with fine, tax

rate, income differential and share of high income people. Among others, we implicitly

assumed here linear tax and penalty schemes, risk neutral individuals, and linear cost

function for the tax authority. Even with these strong assumptions, considering the

dynamics generated by the game allows to get some non-trivial insights of what could

be going on in reality.

3 Dynamics

Now consider the game presented in the previous section played every period from

0 to infinity. As before, the populations of high income and low income taxpayers

are infinite size with measures of γ and 1 − γ respectively, and this is a common

knowledge. The proportion qτ of high income population is cheating by reporting low

income at time τ , the agency is auditing the low income reports with probability pτ .

Since we consider two aggregated levels of income, it is plausible to assume that

the people know the income of those whom they interact with. In reality the precise

amount of income is not known, but whether a given person has high or low income is

easily guessed from observable by other taxpayers characteristics. But the authority

does not observe these characteristics, so the type of income is private knowledge of

the agents who meet. On the other hand, the probability of auditing p is a private

knowledge of the authority. Between the rounds the tax agency updates its belief

about the distribution of taxpayers between cheating and not cheating, the high

income agents are learning whose strategy performs better.

Irrespective of the rule, at time τ there are the following types of high income

taxpayers: (i) honest, comprising proportion 1−qτ of population and receiving payoff
(1− t)H; (ii) caught cheating, qτpτ of population with payoff (1− t)H − st(H − L);

(iii) not caught cheating, qτ(1− pτ) of population with payoff H − tL.

Note that the payoff when not cheating is bigger than when cheating and caught,

but smaller than when cheating and not caught. The tax agency is maximizing its

long-run expected revenue by choosing auditing probability for all periods (commit-

ment), or its expected revenue in the next period by choosing auditing probability
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for the next period (no commitment).

As it has already been mentioned, we can not take a ready aggregate dynamics

for the population of taxpayers because of the asymmetric nature of the players: in

the no commitment case the tax authority is using miopic best response, whereas tax-

payers imitate each other. Without such asymmetry, our game resembles emulation

dynamics as it is defined by Fudenberg and Levine (1998), which is known to converge

to replicator dynamics under some assumptions. However, these assumptions are not

satisfied in our setup: most strikingly, each individual communicates with more than

one other. Due to this feature, even payoff monotonicity of the aggregate dynamics

can not be established. Thus, we have to derive aggregate dynamics every time from

the elementary imitation rules.

In order to proceed we have to specify these learning rules.

3.1 Meeting two others: Average payoff principle

An agent A meets agents B and C, each of them has played strategies sA, sB, sC . If

sA �= sB = sC, and average payoff of B and C is greater than the payoff of A, he/she

switches to their strategy. If sC = sA �= sB, A switches in case the payoff of B is

greater. The average of caught and not caught payoffs is bigger than the payoff of

honest ((1− t)H − st(H −L)+H − tL > 2(1− t)H) for plausible value of fine s < 1.
As a result, an honest taxpayer (recall that we have 1 − q of them) switches to

cheating, if it faces either two non-caught cheaters (this happens with probability

((1− p) q)2) or a non-caught cheater and an honest taxpayer ((1− p) q (1− q)). It

remains honest with a complementary probability (1−((1− p) q)2−(1− p) q (1− q)).

A caught taxpayer (there are pq) switches to honest, if it observes either two honest

taxpayers ((1− q)2) or an honest and a caught taxpayer (2pq(1− q)). A not caught

taxpayer never switches.

Summing up, between rounds (1 − q + qp)2 of honest agents remain honest, and

(1− q)(1− q + 2qp) of caught taxpayers become honest. Thus,

1− qτ+1 = (1− qτ)
[
(1− qτ + qτpτ )

2 + pτqτ (1− qτ + 2pτqτ)
]

(3)

This equation defines the aggregate dynamics of the population we were interested in.

As can be seen, the proportion of honest taxpayers tomorrow is completely determined

by the proportion of honest taxpayers today and the probability of auditing today4.

4Notice that it has nothing in common with discrete time approximations of replicator dynamics
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Wewant to see what features this dynamics possess, namely, we want to know whether

the proportion of honest taxpayers is shrinking or expanding as time passes. For this

purpose it proves useful to define a threshold level of cheating q̄ as

q̄ :=
2− 3p

1− 3p+ 3p2

The following proposition shows that the evolution of the cheating share crucially

depend on the level of auditing probability. We drop the time subscript τ for con-

vinience wherever all the variables belong to the same period.

Proposition 1A Consider the dynamics of the share of evaders q for the average

payoff principle defined by (3). The share of honest taxpayers in the next

period is lower than that in this period if auditing probability in this period is

p ∈ [0, 1√
3
). It is higher in the next period if p ∈ (2

3
, 1]. For p ∈ ( 1√

3
, 2
3
) it is

lower, if q < q̄ and higher, if q > q̄.

All proofs are left to the appendix. Unexpectedly, in the small middle interval,

change in the proportion of honest taxpayers is negatively related to the number

of the honest taxpayers. This ”anti-scale” effect is explained by the high enough

detection probability, for which the caught cheaters contribute more to the increase

of proportion of the honest, than the honest themselves.

Further we consider two cases for the behavior of tax authority. If it is unable to

announce its auditing probability and keep it forever, we are in the "game theoretic"

framework, and the our dynamics has two dimensions: already derived one for q and

another one for p. We start, however, with a more simple case, when the auditors

can credibly commit to a certain constant in time strategy (probability), and hence

the dynamics is collapsing to one dimension.

3.1.1 Commitment

Assume that the authority commits to a certain auditing probability p once and

forever (this corresponds to the principle-agent framework defined by Andreoni et al,

1998). Letting q0 �= 0 and q0 �= 1 we obtain from the proposition 1A the following

corollary:

or any other well-known dynamics, as was expected.
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Corollary In the evasion game with the average payoff dynamics defined by (3)are

lim
τ→∞

qτ = 1 when p ∈
[
0, 1√

3

]
, lim
τ→∞

qτ = 0 when p ∈
[
2
3
, 1
]
, and lim

τ→∞
qτ = q̄

when p ∈
(
1√
3
, 2
3

)
.

Let us define a function q̂ (p) : [0, 1] → [0, 1] that maps a set of possible auditing

probabilities into a set of long-run outcomes of q. As the corollary states, this function

has a following form:

q̂ (p) =






1, p ∈
[
0, 1√

3

]

q̄, p ∈
(
1√
3
, 2
3

)

0, p ∈
[
2
3
, 1
]

The authority chooses p to maximize its payoff

γ(1− q̂(p))tH + p(q̂(p)γ(tH + st(H − L)) + (1− γ)tL)

−cp(q̂(p)γ + 1− γ) + (1− p)(q̂(p)γ + 1− γ)tL
(4)

Let us call the probability that maximizes thsis expression the optimal auditing

probability p∗. If p∗ ∈
(
1√
3
, 2
3

)
, it satisfies the first order condition

(1 + s)(q̄ + pq̄′)− q̄′ = µ [1− γ + γ(q̄ + pq̄′)] (5)

where µ := c
t(H−L) .

Note that p∗ /∈
(
0, 1√

3

)
and p∗ /∈

(
2
3
, 1
)
because for constant q the objective

function is linear in p. Furthermore, p = 1 is never optimal because the objective

function is non-increasing on the interval
(
2
3
, 1
)
. Hence, the only two possibilities

for optimal p are p∗ = 0 and p∗ given by the first order conditions. This is true

for all learning rules considered in this paper, since the argument does not use any

properties of q(p) apart from differentiability. In the following proposition we look at

a condition, which is satisfied whenever the optimal p is positive (this will be called

interior solution henceforth).

Proposition 2A With the average payoff learning rule, the necessary condition for

interior solution is

−1/p∗ + (2− 3p∗) s + 2
1− 3p∗2 + 1

γ
(1− 3p∗ + 3p∗2) > µ

Notice that p∗ in the proposition is by itself depending on the paprameters on the

model. Since we know, however, that it is limited by the interval
(
1√
3
, 2
3

)
in the case
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of interior solution, we can still infer from this proposition the direction of parameter

changes that would bring about interior solution.

Namely, for high values of c and low values of γ, s, t,H (and hence high rhs and

low lhs) ”no auditing - all cheating” equilibrium is chosen. Notice that at p = 1√
3

this condition translates into γ(1 + s) > µ; for p = 2
3
into 4.5 γ

1−γ > µ. From both

inequalities it can be seen that the interior solution does not arise, if γ is small relative

to µ. This is easy to interpret: with small share of high income people (γ) and low

benefit from auditing (stH) it is better not to audit anybody, given that it is costly

(c).

The comparative statics for the interior solution5 gives the following relations

(they hold for other learning rules considered as well):

dp∗

ds
=

q + p∗q̄′

q̄′′ − (1 + s− µ) (2q̄′ + p∗q̄′′)
; (6)

dp∗

dµ
= −

q̄ + p∗q̄′ + 1
γ
− 1

q̄′′ − (1 + s− µ) (2q̄′ + p∗q̄′′)
; (7)

dp∗

dγ
=

µ/γ2

q̄′′ − (1 + s− µ) (2q̄′ + p∗q̄′′)
. (8)

where the notation is q̄ = q̄ (p∗) , q̄′ = q̄′ (p∗) , q̄′′ = q̄′′ (p∗). We keep this notation

henceforth.

The sign of any of these derivatives is ambiguous, and first we derive the condi-

tions for these derivatives to have expected signs. By ’expected’ we mean that the

parameter changes act in the same direction for the cases of continuous adjustment in

the interior and discontinuous jump on the border. For example, since increase in γ

brings about, ceteris paribus, the interior solution to be more likely, we expect it also

to increase auditing probability in this solution, that is, we expect dp
∗

dγ
> 0. Similarly,

we expect dp
∗

ds
> 0 and dp∗

dµ
< 0.

Then, for the auditing probability to increase in the proportion of high income

people we need q̄′′ − (1 + s − µ)(2q̄′ + p∗q̄′′) > 0; for it to increase in the surcharge

rate we need in addition q̄ + p∗q̄′ > 0; to decrease in cost - tax collection ratio µ the

two conditions above suffice. So, jointly for the expected signs we need

5Note that these conditions do not hold on the border, e.g. for p = 2

3
.
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−2(1 + s− µ)q̄′ > q̄′′ ((1 + s− µ) p∗ − 1); (9)

q̄ > −p∗q̄′. (10)

To elaborate more on these relations, we have to use the knowledge of the partic-

ular function q̄(p), which is specific to each learning principle.

Proposition 3A For the average payoff principle, the share of cheaters q̄ in the

interior steady state is a decreasing and strictly convex function of p, e.g. q̄′(p) <

0, q̄′′(p) > 0.

Using this proposition, from 9 we can immediately say that under the best average

principle dp∗

dγ
> 0 for our baseline parameter values (the generalization of this result

is presented in the appendix), s = 0.8, t = 0.3, c
H−L = 0.06 (µ = 0.2), γ = 0.5.

The fine is usually up to the amount of tax evaded, and I take 20% less than the

whole. The income tax rate ranges from 0.1 to 0.5 across developed countries; the

measures for both c
H−L and γ are bound to be arbitrary, since in reality the auditing

function depends on many more variables than just income, and there is a continuum

of income levels rather than two. A convenient way to think of the first measure is as

of what share of audited income has to be foregone for the auditing itself. Andreoni

et al. (1998, p. 834) take 0.05 as an example, I think of 0.01 to 0.1 as a possible

range. Finally, γ to certain extent reflects the income distribution, and 0.5 gives an

extreme case where there is equal number of rich and poor.

The resulting p∗ = 0.62 brings about dp∗

dγ
= 0.02 > 0. This states that with

increase of the share of high income taxpayers (the only ones who can cheat!) the

auditing probability in steady state rises, since marginal revenue from auditing goes

up, whereas marginal costs stay the same. For baseline parameter values auditing

is also increasing in the cost - tax bill ratio µ (dp
∗

dµ
= 0.15 > 0) and decreasing in

the amount of fine (dp
∗

ds
= −0.18 < 0), which is contrary to what was expected.

Algebraically, this happens because q̄ < −p∗q̄′ is always satisfied (the proof is in the
appendix).

Intuitively, faced with higher fine or lower auditing costs, the taxpayers will cheat

less in steady state, hence there is no need for the tax authority to commit to a higher

auditing probability. In fact, this stems from the strong asymmetry in the behavior of

tax authority and individuals: the authority is very "smart" in the sense that it can

11



predict the level to which the cheating converges for given auditing probability; the

individuals are, to the opposite, very naive, since they just imitate a strategy with

higher payoff.

To get a quantitative feeling about the influence of parameters, I plot the auditing

probability as a function s for the baseline parameter values t = 0.3, c/H = 0.06,

γ = 0.5.

Figure 1. Optimal auditing probability depending on s, baseline parameter values (µ = 0.2).

Comparison with classical game theory The solution obtained can be com-

pared with the Stackelberg-like equilibrium of the classical evasion game, when the

tax authority moves first (much weaker asymmetry). Recall, that in this setup q = 1

if p < 1
1+s

, q = 0 if p > 1
1+s

, and undetermined for the equality. Since auditing is

costly, the authority will choose either p = 0, q = 1, or p = 1
1+s

, q = 0. The latter is

preferred whenever the auditing is not too costly, namely c < γ

1−γ (1+ s)t(H −L), or,
in other terms, µ < γ

1−γ (1 + s) (analogous to the expression in the dynamic version).

Comparative statics is trivial in this setup: zero cheating result is independent of

parameter changes as long as they do not violate rather mild condition of relatively

not too expensive auditing. Auditing probability is decreasing in the surcharge rate,

just as in the previous model. The solution of the static model is discrete, and the

probability of audit jumps to zero for high enough µ or low s.

The prediction of the dynamic model appears to be more plausible, since non-zero

cheating is not observed in reality. As it is known from the literature, the result

of zero cheating in commitment case generalizes for more complicated models with

continuum of taxpayers and presence of intrinsically honest taxpayers. Moreover, the

commitment models are usually criticized on the basis of this unrealistic prediction.
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The model presented eliminates this fault, and allows us to reconsider the view of

commitment as something implausible. Then it just boils down to the classical case

of dynamic inconsistency, and the willingness to commit is equivalent to the planning

horizon of the authorities.

The comparison of the payoffs of tax authority in evolutionary and classical set-

tings is ambiguous (R(q, p) is the tax revenue):

R(0,
1

1 + s
) = γtH + (1− γ)tL− 1− γ

1 + s

R(q̄(p), p) = γ
3p2 − 1

1− 3p+ 3p2 tH + p(
2− 3p

1− 3p+ 3p2γ(tH + st(H − L))+

+ (1− γ)tL)− cp(
1− 3p2

1− 3p+ 3p2γ + 1) + (1− p)(
1− 3p2

1− 3p+ 3p2γ + 1)tL

For the parameter values chosen (γ = 0.5, µ = 1
3
), it is better-off with imitating

taxpayers for the magnitude of fine smaller than 0.5 and worse off for the magnitude

larger than 0.5. This is quite intuitive, since low (high) values of s result in large

(small) auditing probability of static no cheating equilibrium; auditing, in turn, is

costly to implement. In dynamic setting the auditing probability for given parameter

values hits the upper bound of 2
3
, and hence is independent of the surcharge rate,

except for the values of s close to 1. Consequently, "static" revenue is increasing with

the fine, whereas the "dynamic" is staying constant.

For the high values of γ the picture remains the same, except that now for very

large values of fine the "dynamic" revenue rises so much that it exceeds the "static"

one. Finally, with decrease in µ the solution with p strictly less than 2
3
is obtained

for larger and larger set of s values, approaching s ∈ (1
2
, 1]. Correspondingly, the

superiority of "static" revenue is preserved only at s = 1
2
in the limit (µ close to 0).

An average taxpayer with high income in Stackelberg setting can only cheat or

not cheat with probability one; in the dynamic case there is a possibility of a mixed

equilibrium:

I(0,
1

1 + s
) = (1− t)H

I(q̄(p), p) = (1− q̄ (p)) (1− t)H + pq̄ (p) ((1− t)H − st(H − L)) + (1− p)q̄ (p) (H − tL)

This brings about higher "dynamic" payoff for the individual, if p < 1
1+s

, and

lower payoff otherwise6. This simple result is straightforward: in the classical setup

6Evaluating I(q̄(p), p)− I(0, 1

1+s
), we get expression the sign of which depends only on the sign
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the equilibrium payoff of taxpayers does not depend on the auditing probability or

the magnitude of fine. Hence, the expected payoff in the dynamic model is greater,

if the audit probability is lower than in the static model, and visa versa. Note that

this does not depend on the learning rule.

Convergence We talk here about dynamic model without explicitly considering

the dynamics itself. It is important that even in steady state the picture is very

different from Nash (Stackelberg) equilibrium. The question of how long it takes to

converge to a steady state escaped our attention so far. As could be expected, the

speed of convergence depends on the particularity of the imitation rule. In the present

case, the learning procedure is in a sense favorable to the cheaters: it takes a long

time to approach no cheating equilibrium, and relatively short time - all cheating one.

Starting from the middle (q = 1
2
), getting as close as 0.001 to the steady state takes

597 periods for honesty case and only 14 periods for cheating case.

This result was obtained analytically by iterating the function qτ+1(qτ , p) respec-

tive number of times. For the honesty case then p = 2
3
, q597 = 0.001; for the case of

cheating p = 1√
3
, q14 = 0.999, whereas q1 = 0.5 in both cases.

3.1.2 No commitment

The authority decides on the optimal auditing rule in every period, assuming that the

distribution of the taxpayers has not changed from the last period qτ+1 = qτ (myopic

best response). Then the payoff of the authority is

γ(1− q)tH + p(qγ(tH + st(H − L)) + (1− γ)tL)

−c(p(qγ + 1− γ)) + (1− p)(qγ + 1− γ)tL
(11)

Further I consider a linear cost function for the sake of tractability, so that c(p(qγ +

1− γ)) = cp(qγ + 1− γ).

Then the best response strategy is

BR (qτ) =

{
0, if c > c̄ := qτγt(1+s)(H−L)

1−γ+γqτ

1, if c < c̄

As the tax authority is very unlikely to jump from not auditing anybody to auditing

everybody and back, we explicitly augment the choice of tax agency with inertia

of 1− p− ps.
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variable:

pτ+1 = αBR(qτ) + (1− α)pτ (12)

where α determines speed of adjustment; BR is the best response function, which

is defined above as revenue maximizing p given the belief about the distribution of

taxpayers. With α→ 1, we are back to the case of jumping from 0 to 1 probability;

with α → 0, the probability of audit stays very close to an initial level forever. The

dynamics is best seen on the picture.

10.750.50.250

1

0.75

0.5

0.25

0

p

q

p

q

Figure 2. Phase diagram
Figure 3. Discrete time dynamics, µ1= 0.125

Let µ1 be the level of cheating that induces switch of best response from zero to

one or back:

µ1 :=
1− γ

γ

c

t(1 + s)(H − L)− c

It is interesting whether the dynamics we are considering brings about convergence

of the system to a steady state with

qss = µ1

pss =
µ1 − 1 +

√
−1
3
(µ21 − 2µ1 − 3)

2µ1

or the cycling around this point is possible. Simulation results show that in dis-

crete time setup the cycles are observed, whereas in the continuous time the system

converges. The latter fact is also shown analytically in the appendix.

Comparative static result for the steady state is possible to obtain because all the

parameters are indexed to single µ1, which is bounded by unit interval.
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dpss

dµ1
=

1

2µ21

(

1−
(
1

µ21
+

2

3µ1
− 1
3

)−1

2

(
1

µ1
+
1

3

))

,

which is always negative. Hence, probability of audit in steady state is decreasing

in costs of auditing and increasing in the share of high income taxpayers, the tax rate,

the magnitude of fine, and the income differential. Compared to the Nash equilibrium,

where probability to audit only depends on the surcharge rate, our result looks more

plausible.

Still, for all parameters but s and γ the effects are the opposite of those in the

commitment model. Whereas it is an open question what horizon a particular tax

authority has, we can compare predictions of the two models by their conformability

with stylized facts. First, it is almost uniformly accepted that evasion is increasing in

the tax rate (See, for example, Clotfelter (1983), Poterba (1987), Giles and Caragata

(1999)), so here the commitment model seems to make a better job. Second, there

is also a weak evidence that evasion is rising with the income (Witte and Woodbury

1985), and in this sense the long horizon authority is also superior. There is no

convincing evidence on the influence of auditing costs on the auditing probability,

and it is really difficult to say which model is closer to reality on this point.

Comparison with Nash

In the rest point of the evolutionary game q is the same as in the Nash equilibrium

of one shot game, since it is derived from the same maximizing revenue decision of

tax authority. Auditing probability p can be greater or smaller depending on the

parameter values, because it is determined by the behavior of the individuals, which

is modelled differently. The variation in steady state p is very small: from 1√
3
to 2

3
,

compared to (1
2
, 1) in static case for s < 1. Hence, the difference in p for these two

models is primarily dependent on s: for large values of fine Nash equilibrium gives

less intensive auditing, and for small fines our model results in lower auditing.

As for the payoffs, since q is set so that the tax authority is indifferent between

auditing and not auditing, its revenue is exactly the same in static and dynamic

setups. With fixed q the payoff of the average high income taxpayer is unambiguously

decreasing with p, so that for high penalties the average income is larger in static

model.

Note on the dynamics feature

It is worth noting that the south-west and north-west parts of the picture is

consistent with stylized facts presented in the introduction: both audit probabil-
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ity and the proportion of honest taxpayers decrease (second part of XXth century),

and then eventually audit probability starts increasing, while non-compliance is still

increasing (recent years). According to this explanation, the observed behavior is

out-of-equilibrium adjustment, and sooner or later the tax evasion will have to go

down.

The south-west of generated dynamics also produces values of non-compliance

significantly lower than the Nash equilibrium. This can be taken as an alternative

explanation to the puzzle of too high compliance, usually resolved by introduction of

intrinsically honest taxpayers (Andreoni et al. 1998, Slemrod 2002).

To see whether this kind of dynamics is not idiosyncratic for the learning rule

under consideration, let us proceed to the other specifications of interactions between

the taxpayers.

3.2 Meeting two others: Effective punishment principle

An agent meets two others, and the following (more favorable to the flourishing

of honesty) procedure, in which we go even further away from the expected utility

maximizing agents, takes place. If 3 honest people meet, they will all stay honest for

the next round. If 2 honest and 1 caught cheater (or 1 honest and 2 caught cheaters)

meet, they will all play honest next time. If 2 honest and 1 not caught cheater (or

1 honest and 2 not caught cheaters) meet, they are all cheating next time. If 3 not

caught people meet, they play cheat next time. If 2 caught cheaters and 1 not caught

cheater (or 2 not caught cheaters and 1 caught cheater), they all play honest in the

next round. If all three types meet (or 3 caught people), they play honest next round.

The first four rules are standard; the last two result from the assumption that to

observe punished people (or to be punished) is enough to deter one from cheating for

the next year, and that the cheaters are aware of the option to be honest.

Between rounds q (1− p) (2 (1− q)+q(1−p)) of honest taxpayers switch to cheat-
ing, (1− q + (1− p) q)2 of not caught taxpayers continue cheating, caught taxpayers

do not cheat in the next round. The derivation of the respective probabilities is left

to the appendix. As a result, the law of motion for q is given by

qτ+1 = qτ (1− pτ)
(
3 (1− qτ )

2 + 3 (1− qτ) (1− pτ) qτ + (1− pτ)
2 q2τ
)

(13)

This is aggregate population dynamics, notice that it does not differ qualitatively

from the previous learning rule. We show this in the following proposition, first
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defining a threshold share of cheating as

q̄ :=
3(1− p2)−

√
1 + 12p− 18p2 + 8p3 − 3p4
2(1− p3)

Proposition 1E Consider the law of motion of q for the effective punishment prin-

ciple given by (13). If p ∈ [0, 2
3
) in this period, then the share of cheating

taxpayers increases in the next period for q < q̄ and decreases for q > q̄. If

p ≥ 2
3
, cheating in the next period decreases.

Further we do not make special subsections for the cases of commitment and

absence of it, as well as for comparison with Nash equilibrium. The logic of the

exposition is the same as for the average payoff learning principle, and the results are

similar.

We start with the commitment case: the dynamic converges to p∗ ∈
[
0, 2

3

]

compared with the same as before Stackelberg outcome. The comparative statics is

very much the same (recall that the results (6)-(8) hold for all the rules considered)

as for the previous learning rule, since the relation between p and q is still negative.

The effective punishment rule is contributing more to the honest reporting, and it

is of no surprise that the optimal probability of auditing is lower here for the same

parameter values:

Figure 4. Optimal auditing probability depending on s, baseline parameter values.

However, the following proposition establishes an important result of similarity of

the two learning rules. Namely, the steady state values of the variables are affected

in the same manner by small parameter changes.

Proposition 2E Effective punishment principle results in the same comparative sta-

tics as the average payoff principle, i.e.

dp∗

dγ
> 0,

dp∗

dµ
> 0,

dp∗

ds
< 0.
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From this we can conclude that the one-dimentional dynamics generated by two

rules do not qualitatively differ. Comparison with the static equilibrium is exactly

the same as before. The payoffs of the tax authority for the effective punishment

are increasing in the magnitude of fine slower than for the best average. As a result,

the interval of s for which the tax revenue of static game exceeds that of dynamic

is larger for the effective punishment rule, holding all the parameters constant. The

result for the payoffs of individuals does not change, as it does not depend on the

learning principle.

Convergence features are not altered either: to reach no cheating state from the

middle takes 594 periods now (compared with 597 before); to get to all cheating takes

3 periods (14 before). The latter, however, can not be compared directly, as for the

best average all cheating was attainable at p ∈
[
0, 1√

3

]
and computed for p = 1√

3
; for

the present rule it can only happen for p = 0.

In the no commitment case the system converges (in continuous time) to the

steady state with lower probability of auditing than with the previous rule. The

discrete time cycling has very small amplitude, so that steady state is actually a very

good approximation in this case. The steady state value for q certainly remains the

same, as it does not depend on the learning principle and actually coincide with the

Nash equilibrium value. The steady state value of p comes from (13) as a solution of

the third-order polynomial −µ21p3 + 3µ1p2 − 3p + µ21 − 3µ1 + 2 = 0. From the phase

portrait it is clear that this value is lower than for the best average principle.
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Figure 5. Phase diagram Figure 6. Discrete time dynamics

For the baseline parameter values (µ1 = 0.07) the steady state value of p is equal

to 0.625 (compared with 0.659 for the previous rule). The values of dq

dx
, where x is

19



any parameter of the model (s, γ, t,H, L) are completely unchanged, and the sign of
dpss

dx
= dpss

dqss
dqss

dx
is unchanged, since dpss

dq
is non-positive for both rules, as we confirm

in the following proposition.

Proposition 3E For the effective punishment principle, the share of cheaters in

interior steady state q̄ is a decreasing function of auditing probability p, e.g.

q̄′ (p) ≤ 0.

As far as the comparison with the Nash equilibrium of the static game is concerned,

everything said for the best average rule remains valid. Among others, the ”dynamic”

auditing probability is normally smaller than the ”static” one ( p ∈
(
0, 2

3

)
in dynamic

case and p ∈
(
1
2
, 1
)
in the static case). Finally, the dynamic feature of cycling is also

very similar and is consistent with the evidence.

In total, all the main conclusions of best average imitation are preserved under

the effective punishment principle. There is more averse attitude towards the risk of

being punished embodied in this rule. This results in lower cheating in commitment

case, and lower auditing probability for both cases.

3.3 Meeting m others: Popularity principle

Whenm others are observed (and m is substantially larger than 2), we can specify an

imitation rule that requires minimal information about the individual, and namely

only whether he/she was caught cheating. Assume that the availability of this infor-

mation is assured by the tax authority for the purpose of deterring the others. This

seems plausible in the self-employment sector, especially for the professionals like

doctors, auditors, etc. Let k∗ be the maximal number of observed caught individuals

that does not induce switching to honesty. The rule is then the following. For a not

caught taxpayer: if more than k∗ caught individuals are observed, play honest in the

next round, if less or equal - play cheat; for a caught taxpayer: play honest.

The probability to observe less or k∗ caught individuals is defined by

Pr(k ≤ k∗) =
k∗∑

i=0

(
m

i

)
(pq)i (1− pq)m−i

Then the cheating is evolving according to

qτ+1 = (1− qτpτ) Pr(k ≤ k∗)
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The problem with this dynamic is that once the systems comes close to extreme

values of q (0 or 1), it is jumping between "almost all cheating" and "almost all

honest" states in every period. This problem obviously states from an ’epidemic’

nature of the specified principle: once there are very many cheaters, almost everybody

meets a caught cheater, and then all those switch to playing honest. But once almost

everybody is playing honest, almost nobody meets a caught cheater, and then almost

everybody is playing cheat.

To make the dynamics more smooth, the usual method is to introduce some kind of

inertia into the system, just like it was already done from the side of the tax authority.

So, let us say that with probability β every unpunished individual changes his/her

strategy according to already specified rule, and, correspondingly, with probability

1− β plays the same strategy as in the previous period. As before, punished people

switch to no cheating with probability 1.

Then in every period (1−β)(1−p)q+βq(1−p)P (k ≤ k∗) cheaters remain cheaters

plus β(1− q)P (k ≤ k∗) honest people switch to cheating. The dynamics is described

by

qτ+1 = qτ(1− pτ)(1− β) + β(1− qτpτ)P (k ≤ k∗) (14)

For small enough values of β it converges to a steady state (cycle in discrete time)

rather than jumps between two extreme values. The weakness of this formulation

is that steady state value of p depends on the inertia parameter, and this gives an

additional ’degree of arbitrariness’ to our model. For baseline parameter values p is

increasing in β, which is understandable: tax authority has to control more, if larger

part of individuals is reconsidering their decision at every period. Formally, in steady

state (p+ β − pβ)q = β(1− qp)P (k ≤ k∗). Then dp

dβ
= P (1−qp)+pq−q

q−qβ−β( ∂P∂p (1−qp)−Pq)
, which has

an arbitrary sign.

It is very hard to analyze the m-dynamic analytically, since for variable k∗ it

involves operating with sums of variable length. That is why I for the moment

restrict my attention to the case where observing one caught individual is enough to

deter from evasion (k∗ = 0), just like it was specified in the effective punishment rule.

The dynamics is then

qτ+1 = qτ(1− pτ)(1− β) + β(1− qτpτ)
m+1 (15)

For obvious reasons the closed form solution is impossible to obtain even for this
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simplified problem. So, I simulate steady state for β = 0.1 and m = 19. Obviously,

the other line is still q = µ1. In no commitment case we again observe small cycles

around the steady state with the implications similar to the previous rules.

Figure 7. Steady state line for m-rule, qτ+1= qτ Figure 8. Discrete time dynamics

Compared to the previous imitation rules, the line qτ+1 = qτ is shifted to low

cheating - low auditing corner, meaning that steady state is more likely to have low

probability of auditing. This comes from 2 factors: inertia in decision making β and

number of people to meet m. Notice, however, that even for p → 1 cheating is

not eliminated completely. Indeed, for pτ = 1 qτ+1 = β(1 − qτ)
m+1, so that q = 0

only for β = 0, which is impossible. Hence, for large auditing probabilities m-rule

results in larger cheating than 2-rules. This seemingly strange result stems from poor

information set of the individuals: if nobody is cheating, nobody is caught, so in the

next period β of individuals will cheat.

In the commitment case, then, cheating can be decreasing or increasing depend-

ing on whether qτ > q̂ (p∗) or the opposite. This is true for any value of p chosen by

the tax authority. Comparative statics is again similar to the previous rules, since

the relation between p and q is negative. Since honest reporting is favored even more

by this m-rule, we expect optimal auditing to be lower for the same parameters. The

magnitude of fine is almost irrelevant under the present imitation rule, since there

is no information about payoffs, and people are deterred from evasion by observing

caught cheaters regardless of financial costs of being caught.

This intuition is supported by simulation results: for our parameter values the

change of surcharge rate is not changing optimal p, and the equilibrium auditing

is lower than before: 0.43 compared with 0.65 and 0.64 for the first two rules (the
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difference between rules is increasing with the cost of auditing). Note that this stems

mostly from higher number of people who interact, rather than from the different

information structure of the rule. Indeed, for m = 2 optimal probability is 0.61,

not substantially lower than for the other two rules. The auditing probability is

rising with the proportion of high income taxpayers, just like in two previous cases.

However, it is decreasing in the cost of auditing, and hence in µ.

Figure 9. Optimal probability depending on γ.Figure 10. Optimal probability depending on c.

So, with the minimum information learning rule the difference in comparative

statics between commitment and no commitment cases disappears. Such astounding

difference in comparison with first two learning rules is fully attributed to the form

of steady state relation between q and p. Recall that dp
∗

ds
, dp

∗

dγ
, dp

∗

dµ
vary across the rules

only in q̂′ = q̂′ (p) and q̂′′ = q̂′′ (p) . Thus, the reversed result for the present rule is

due to

q̂ + p̂q′ > 1− 1

γ
(16)

To further characterize the steady state with popularity principle, we take m = 1

still keeping k∗ = 0 to arrive at the following proposition.

Proposition 1M With population dynamics of poor information (popularity) rule

given by (15) and m = 1, the relation between share of cheaters and auditing

probability q̂ (p∗) in steady state is a non-increasing and convex function. At

the same time, q̂ + pq̂′ ≥ 0 holds.

Taking into account this proposition and (16) we have 1− 1
γ
< 0 ≤ q̂ + p∗q̂′, and

hence the result of dp
∗

dµ
< 0 holds for any parameter values in our example.
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In total, the poor information rule shows that the unusual results for commitment

case is due to high informativeness of the taxpayers about each others. When there

is no information about payoffs contained in communication, the individuals abstain

from evasion on even more "irrational" grounds than before. Then, for not too high

auditing, more honesty results. Increasing the number of people met in this rule

also brings about less cheating, because seeing more people means higher chance of

observing a caught one.

The main conclusions from previous imitation rule are still valid for m people

meeting. Namely, there is still non-zero cheating with commitment and the dynamics

in the western part which is consistent with observations.

4 Conclusion

The model presented in the paper is designed to capture a number features of reality,

which were largely neglected in the literature on tax evasion, and especially in the

game-theoretic approach to the problem. These features are social interaction, poor

knowledge of auditing probability, asymmetry in the behavior of two parties under

consideration, and intertemporal nature of the tax evasion decision. The interaction

in the model is learning each others’ strategies and payoffs. This allows individuals to

make decisions without acquiring information about auditing probability. Moreover,

with simple imitation rules specified in the game, people also avoid costs of processing

information, as they effectively know what decision to take without solving compli-

cated maximization problems.

The model rationalizes decrease of auditing probability and compliance observed

in the US over past decades as out-of-equilibrium dynamics. The same is true for the

recent continuing increase of evasion along with tightening auditing. The model can

also explain ”too little” cheating by taxpayers: having initially overestimated auditing

probability, they ”undercheat” for a long time due to the inertia and imperfections

of the learning rules. All these results hold with three different specifications of the

learning rule (our rules differ in how much people are afraid of being caught and how

much information they can learn from each other).

When we allow the tax agency to commit to a certain probability of auditing,

positive cheating may arise in equilibrium. This is seems more plausible than the

result obtained in the most of static commitment models. Such models usually have
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zero cheating of audited taxpayers in equilibrium. Moreover, the comparative statics

with respect to tax rate does not contradict empirical evidence (cheating is increasing

with tax), as opposed to the models in the literature. However, the model has its

obvious limitations. For instance, nothing can be said about the extent of inertia in

auditing decision, though this could probably be empirically testable. Without good

feeling about the inertia parameter and the learning rule we can not say much about

the precise form the dynamics takes.

In general, the dynamic approach to tax compliance games reopens a whole bunch

of policy issues. Are the recommendations of equilibrium theory valid, if the systems

never comes to equilibrium? Are some changes in the existing taxation worth un-

dertaking, if we take into consideration not only difference in benefits between initial

and final states, but also the costs of transition? Can the decision rules of the tax au-

thorities and the learning mechanisms governing taxpayers behavior be manipulated

in the way to achieve maximal social welfare?

As a building block for more general models, the evolutionary approach can be

employed in the studies on how the government can ensure higher degree of trust in

society (and less evasion as a result), how it can provide optimal (from the point of

view of social welfare) level of public goods, how it can bring about faster growth of

an economy. For this it would be necessary to consider more complicated government

(and hence tax authorities) strategies, involving more than one period memory, and

possibly heterogenous taxpayers.

Finally, the approach taken by no means limits us to consideration of income tax

evasion. Even more interesting and exciting task would be to look at all other taxes,

especially those levied on enterprises. In this case learning is probably more intensive,

as well as interaction with tax authorities. Moreover, the absolute size of evasion is

very likely to be higher than in case with individuals. The modeling of enterprise

cheating would probably allow us to understand better how the shadow sector in

general is functioning.
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5 Appendix

Proof of proposition 1A Solving 3 for the steady state, we get q = 2−3p
1−3p+3p2 .

Knowing that 0 ≤ q ≤ 1, we obtain 1√
3
≤ p ≤ 2

3
for this steady state re-

lation to hold. For p < 1√
3
and p > 2

3
the steady state solutions are corner

ones, with q = 1 and q = 0 respectively. For the interior solution, solving 3 as

inequality gives the statements of proposition.
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Proof of proposition 2A In order to get interior solution, we have to get more tax

revenue at p = p∗ than at p = 0. That is, the following inequality should hold:

γ(1− q)tH + p(qγ(tH + st(H − L)) + (1− γ)tL)

−c(p(qγ + 1− γ)) + (1− p)(qγ + 1− γ)tL > tL
(17)

γt(H − L)[1− q + pq(1 + s)] > cp(1− γ + qγ) (18)

1− q + pq(1 + s)

p( 1
γ
− 1 + qγ)

> µ (19)

−1/p+ (2− 3p)s+ 2
1− 3p2 + 1

γ
(1− 3p+ 3p) > µ, (20)

which is just the statement of the proposition.

Proof of proposition 3A Directly differentiating q(p) gives the expression 3(3p2−4p+1)
(1−3p+3p2)2

with

positive denominator. The nominator is negative for p ∈ (1
3
, 1). Since our p is

defined on
[
1√
3
, 2
3

]
, q′ < 0, q(p) is decreasing.

Differentiating q(p) twice, we get 3
[

3p2−1
1−3p+3p2 +

1−4p+3p2
1−3p+3p2

3−6p
(1−3p+3p2)2

]
. All the de-

nominators are again positive; the first nominator is positive for p > 1√
3
, the second

nominator is negative for p ∈ (1
3
, 1), the third one is negative for p > 1

2
. Hence,

q′′ > 0, q(p) is strictly convex on the interval where it is defined.

Generalization of comparative statics results A sufficient condition for the signs

of this and other derivatives to be the same as at the baseline is

1 + s > µ and p∗ <
1

1 + s− µ

To see that this condition is not very restrictive, notice that first inequality cer-

tainly holds for any values of s and µ we think of as plausible. The second expression

is satisfied for any p∗, if it is for p∗max =
2
3
. In other words, it certainly holds for any

combination of s and µ such that s− µ < 1
2
. Referring back to our plausible ranges,

for any µ this condition holds for s ≤ 1
2
.

Finally, for dp

dµ
> 0 we have to add γ > 1

7
to gueranty that the term 1

γ
− 1 does

not outweigh the negative q + pq′.
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Proof of the statement q̄ < −p∗q̄′ Plugging in expressions for q and q′ into the

inequality claimed, we get

(2− 3p) (1− 3p+ 3p2)
3 (1− 4p+ 3p2) < −p

(2− 3p)
(
1− 3p + 3p2

)
< −3p

(
1− 4p+ 3p2

)

3p2 − 6p+ 2 < 0,

which holds for p ∈ (1 − 1√
2
, 1 + 1√

2
), and hence for the relevant for us interval[

1√
3
, 2
3

]
.

Stability of the steady state in continuous time To investigate stability of the

steady state analytically, we have to make two approximations. First, consider

the system in continuous time: this makes sense, if we imagine that both the

tax authority and individuals update their evasion or auditing decisions every

day, rather than fixing it once for a whole year. We can rewrite our system of

equations as

qτ+∆ = qτ +∆f(qτ , pτ),

pτ+∆ = pτ +∆g(qτ , pτ);

and letting ∆ be very small ( 1
365
, if we think of daily updating), in the limit we

obtain

q̇ = f(q, p),

ṗ = g(q, p);

Explicitly,

q̇ = 2q − 3q2 + q3 − 3pq + 6pq2 − 3pq3 − 3p2q2 + 3p2q3,
ṗ = α (BR(q)− p) ;

The stability matrix of this system is

(
∂q̇

∂q

∂q̇

∂p

∂ṗ

∂q

∂ṗ

∂p

)

=

(
a11 a12

a21 a22

)

, where
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a11x = 2− 6q − 3p+ 12pq + 3q2 − 6p2q − 9pq2 + 9p2q2,
a12 = −3q + 6q2 − 6pq2 − 3q3 + 6pq3,
a21 = αBR′(q),

a22 = −α.

The problem with this formulation is that the best response function is not con-

tinuous at the point of steady state, so we can not compute BR′(qss). To go around it,

we can make the second approximation: instead of the discontinuous best response

we take a continuous function ABR(q) = Φ
(
c̄(q)−c
σ

)
, which approaches BR(q) =

{
0, if c̄ < c

1, if c̄ > c
with σ → 0. Conventionally, Φ is cumulative distribution function of

a standard normal random variable. Then ABR′(q) = φ
(
c̄(q)−c
σ

)
c̄′(q)
σ
. Recalling the

expression for c̄(q) and evaluating at steady state (c̄(qss) = c), we get

ABR′(qss) = φ (0)
(1− γ) c

σq (1− γ + qγ)
⇒ a21 ≈

α (1− γ) c√
2πσ2q (1− γ + qγ)

.

Note that we can make a21 (since it is positive) arbitrary large by making σ small

enough and thus getting better approximation of initial best response function.

Now we are ready to adress the question of stability of the steady state. If the

real parts of both eigenvalues of the stability matrix are negative, the steady state is

stable (see, for example, Hirsch and Smale (1974). The eigenvalues of our system are

λ1,2 =
1

2

(
a11 + a22 ±

√
(a11 − a22)

2 + 4a12a21

)
.

First we show that the real parts of the two eigenvalues are identical. This is

equivalent to showing that the square root is an imaginary number, or that the

expression under the square root is negative. Indeed, since a11 − a22 is bounded and

a21 is arbitrary large, the square root is imaginary, if a12 < 0. Let us plot it as a

function of q, using the fact that in steady state p =
3q−3+

√
9(1−q)2−12q(q−2)

6q
:
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As q is determined on the interval [0, 1] , a12 ≤ 0 (with equality in the corners),
so that the real parts of the both eigenvalues are identical and equal to a11 + a22.

It is left to determine the sign of a11, since a22 = −α. We plot it as a function of
p, using the fact that in steady state q = 2−3p

1−3p+3p2 :
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As p is determined on the interval
[
1√
3
, 2
3

]
, and is zero at the corners, a11 < 0
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for all interior points. Hence, both eigenvalues have negative real parts7 - our steady

state is stable in continuous time.

Probabilities of switching Recall that there are (1− q) honest taxpayers, each of

which meet another honest and not caught cheater with probability 2 (1− q) (1− p) q,

or two not caught cheaters with probability (1− p)2 q2. Summing this gives

probability of switching.

There are also (1− p) q not caught cheaters. (1− q)2 of themmeet 2 honest peo-

ple, 2 (1− q) (1− p) q meet another not caught and an honest, and (1− p)2 q2

meet 2 not caught cheaters. The sum is probability to remain a cheater.

Proof of proposition 1E Solving (13) for the steady state, we get q =
3(1−p2)−

√
1+12p−18p2+8p3−3p4

2(1−p3) .

Knowing that 0 ≤ q ≤ 1, we obtain p ≤ 2
3
for this steady state relation to hold.

For p > 2
3
the steady state solution is corner with q = 0. For the interior

solution, solving (13) as inequality gives the statements of proposition.

Proof of proposition 2E We have to get explicit expressions for q′ and q′′, plug

them into the formulas (6)-(8) and evaluate those at the baseline parameter val-

ues (for them p∗ ≈ 2
3
). Thus, q′= p2

4p6−8p3+4

(
18− 6

√
12p− 18p2+8p3−3p4+1−18p2

)
−

1
2p3−2

(
18p−12p2+6p3−6√
12p−18p2+8p3−3p4+1

− 6p
)
; q′′ = p

4p6−8p3+4

(
36− 12

√
12p− 18p2+8p3−3p4+1− 36p2

)
+

3 p4

6p3−6p6+2p9−2

(
18p2+6

√
12p− 18p2+8p3−3p4+1− 18

)
+ p2

4p6−8p3+4

(
6 18p−12p2+6p3−6√

12p−18p2+8p3−3p4+1
−36p

)
+

p2

4p6−8p3+4

(
−36p− 3 24p2−36p−12p3+12√

12p−18p2+8p3−3p4+1

)
+ 1
2p3−2

(
24p−18p2−18√

12p−18p2+8p3−3p4+1
+ √

12p−18p2+8p3−3p4+1+12p
√

Plugging in parameters, we get dp

ds
= −0.258 26 < 0, dp

dµ
= 0.043 > 0, dp

dγ
= 0.08

6 > 0.

Proof of proposition 3E Taking the derivative of q(p) gives

12(1−p3)
(
−p−(1+12p−18p2+8p3−3p4)

−
1
2 (1−3p+2p2−p3)

)
+p2

(
3(1−p2)−

√
1+12p−18p2+8p3−3p4

)

(2(1−p3))2
.The de-

nominator is always positive; plotting the nominator shows that it is negative

on the interval
[
0, 2

3

]
. This yields the statement of proposition.

Proof of proposition 1M The function determining steady-sate realation between

q and p is implicitly given by

7For the corners ( 1√
3
, 1) and

(
2

3
, 0
)
both eigenvalues are real, λ1 = 0, λ2 = −α, which can be

checked directly by direct substitution of p and q with these particular values. In any case, the

corner solutions are not of interest to us, since they are not observed in reality.
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q = q(1− p)(1− β) + β(1− qp)2 (A1)

From this we can see that on the domain (0, 1) and with the image (0, 1), q(p) is

twice continuously differentiable. By totally differentiating the steady state expression

with respect to q and p, we get dq

dp
= q(2βpq−1−β)

p+β+pβ(1−2pq) . As 1− 2pq > −1 and pβ < p, the

denominator is non-negative. As 2βpq < 2β < 1 + β, the nominator is non-positive.

Hence, q is non-increasing function of p.

Differentiating the slope of q(p) with respect to p, we get a ratio with positive de-

nominator (p + β + pβ(1− 2pq))2 and nominator q′
[
4qpβ(p+ β + pβ − qp2β)− (p+ β + pβ + β2 + pβ2

4q2pβ(qpβ − β − 1) + q(2qβ2 + 2β + β2 + 1),

which is claimed to be non-positive. To prove this, I first show that qp ≤ 2
5
.

Solving the equation A1 for qp we get qp = 1
2

(
1
β
+ 1−

√(
1
β
+ 1
)2
− 4 (1− q)

)

.

To establish the inequality, then, we have to show that 1
β
+1−

√(
1
β
+ 1
)2
− 4 (1− q) ≤

4
5

This expression is increasing in q, so we have to find minimal value of q, which by

the first part of the present proposition is achieved at p = 1. Plugging in this value

into A1 we get q = β(1 − q)2 and hence q = 1 + 1
2β
− 1

2

√(
2 + 1

β

)2
− 4. Combining

two expressions, one gets

1

β
+ 1−

√√√√√
(
1

β
+ 1

)2
− 4



 1

2β
− 1
2

√(
2 +

1

β

)2
− 4



 ≤ 4

5

(
1

β
+
1

5

)2
≤
(
1

β
+ 1

)2
− 4



 1

2β
− 1
2

√(
2 +

1

β

)2
− 4





2

5β
+
1

25
≤ 4

β
+ 1− 2

√(
2 +

1

β

)2
− 4

18

5β
+
24

25
− 2

√(
2 +

1

β

)2
− 4 ≥ 0

(
9

5β
+
12

25

)2
≥
(
2 +

1

β

)2
− 4

56

25β2
− 71

125β
+
144

625
≥ 0
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The last expression is a parabola in 1
β
as an argument; it is always above the x

axis, hence the expression holds even with a strict sign. Thus, we actually showed

that qp < 2
5
.

Now, to establish the sign of the second derivative, it is enough to show that

4qpβ(p+ β + pβ − qp2β)− (p+ β + pβ + β2+ pβ2) ≤ 0 and 4q2pβ(qpβ − β − 1) +
q(2qβ2 + 2β + β2 + 1) ≥ 0.

First, rewrite the first condition as p + β + pβ + β2 + pβ2 + 4q2p3β2 ≥ 4qp2β +
4qpβ2+4qp2β2. Notice that the right hand side is smaller than 8

5
β(p+β+ pβ). Then

it is enough to show that p+ β + 4q2p3β2 ≥ 3
5
β(p+ β + pβ). Even without the term

containing q, the inequality holds. To see that, minimize p+ β − 3
5
β(p+ β + pβ) wrt

p. Since there is a global maximum at p|0 < p < 1, the minimum on this interval

should be on the one of the borders. All we have to do then is to check the inequality

at the borders, namely for p = 0 and p = 1. For the former, β − 3
5
β2 ≥ 0 obviously;

for the latter, 1 + β − 3
5
β(1 + 2β) = 1 + 2

5
β − 6

5
β2. Here, again, the global maximum

is at β = 1
6
, the minimum is reached at β = 1; it is 1

5
> 0. Thus, we have proven that

the first condition is satisfied.

Second, rewrite the second condition as q(2qβ2+2β+β2+1+4q3p2β2) ≥ 4q2pβ(β+
1). This holds straightforwardly. So, q′′ ≥ 0, and hence in steady state the share of
cheating as a function of auditing probability is convex.

To show that q + pq′ ≥ 0 holds we plot this expression: y = q + p q(0.2pq−1.1)
p+0.1+0.1p(1−2pq)
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Proportional imitation

To apply proportional imitation rule (PIR), which was proposed and shown to be

optimal by Schlag (1998), we have to modify our setup slightly. The problem with

this rule is the need to know the highest and the lowest payoffs of the agents, which

was assumed away so far. This does not seem to be a very strong assumption to

make: people may know the payoff and still not pursue certain strategy, just because

they do not know how to do it.

According to the rule, each agent meets only one other and imitate its strategy

with probability proportionate to the payoff difference, if this other performed better.

Recall that three payoffs of our game are (1 − t)H − st(H − L) if caught, (1 − t)H

if honest, and H − tL if not caught. The difference between the highest and the

lowest is (1 + s)t(H − L), evaded tax plus a fine. Then not caught cheater never

switches; honest taxpayer meeting not caught one switches with probability 1
1+s
; a

caught cheater meeting an honest agent switches with probability s
1+s

.

Then the law of motion for q is given by

1− q(τ + 1) = (1− q)[1− q(1− p) 1
1+s

+ qp s
1+s
],

where the right hand side is again at time τ .

From this expression, the proportion of cheaters increases, if p < 1
1+s

, and de-

creases otherwise. Thus, we get the circling around p = 1
1+s

and q = q(c) again.

Interestingly, only with proportional imitation rule the interior rest point is precisely

the Nash equilibrium of the static game. It happens because in the present specifica-

tion the agents possess more information (about payoffs) and have rather sophisticated

learning technique.
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