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ABSTRACT

Deccision support system often requires the combined knowledge of multiple domains. A knowledge-based
approach is proposed to include not only the process modelling knowledge but also the descriptive
knowledge in the integration. Descriptive knowledge such as survey statistics and expert opinions forms the
core of a study on the uncertainty of the combined knowledge. It was found that the usc of expert systems,
ncural network and belief causal network assist greatly in the implementation of these concepts. Examples
are drawn from the combination of scientific and economic knowledge to solve some acid rain problems.
Keywords: decision support system, knowledge-based system, expert systemn, causal network

INTRODUCTION

Environmental problems often involve many branches of sciences including physics, chemistry and biology
for various media such as air, soil and water. Their solutions require the integration of knowledge from these
scientific disciplines, sometimes in the form of simple semi-empirical regression relationships and at ather
times as complex mathematical models. Environmental problems also invelve cost benefit analysis.
Decision makers look for solutions that could protect the environment at a minimum cost to industry and
society.

To find these solutions, we need highly sophisticated software tools not only for analyzing numeric data, but
also for utilizing the non-numeric or descriptive knowledge in both the scientific and economic domains. In
the past, while the descriptive knowledge was deetned essential, they were often overlooked until the advent
of knowledge-based systems (Lam et al., 1996). These decision support tools can access and integrate
numeric dats, map mformation, mathematical models and kuowledge-bases, and can optimize the economic
costs under given constraints of environmental guidelines or ecological standards. Recently, we have
embedded the development of knowledge-based systems with the requirements of environmental decision
support systems (Lam et al., 1996). The models and expert system rule-bases are interconnected, through
a built-in database and an intermal geographical information system (GIS), with the capability to select
models and data using artificial intelligent tools such as expert systems and neural network. In this paper,
we further review such technological advances in the context of environmental and economic analysis and
the associated uncertainty.

KNOWLEDGE FOR DECISION SUPPORT: A NEW PARADIGM

Traditionally, the treatment of scientific knowledge has mainly been focussed on the numencal aspects of

Published in Proc. 8" Int. Conf., InterSymp “96, Systems Research, Informatics and Cybernetics,
IIAS, Baden-Baden, Germany, (1996).
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data. By constructing temporal trends and spatial patterns from data, one usually gains the insight and
explanation through such tools as statistics, modclling and simulation. When these models are calibrated,
verified and validated, they are then uscd for making environmental predictions. To make use of the process
knowledge in these models, however, such as the selection of appropriate models for a given set of data or
the assignment of appropriate values for model coefficients for given initial or boundary conditions, we
require additional knowledge. This extra knowledge is usually descriptive and may be based on information

gained through

—

Domain

Extemal

Process

Figure 1 Knowledge framework in knowledge-based systems.

experience or familiarity with the domain knowledge (Fig. 1). Thus, the domain knowledge includes the
process knowledge and the knowledge to utilize it.

The requirement for descriptive or qualitative knowledge is also essential when one needs to connect the
knowledge of an external domain (e.g. economics) to the scientific domain to solve a problem. The external
domain (Fig. 1) may have numeric process knowledge such as economic cost functions or economic
forecasting models. In order to connect process models of one domain to process models of another, the
descriptive knowledge of the two domains nced to be combined. There may be overlapping areas in these
two domains, but the overlapped areas are likely to be few (Fig. 1) because, for disciplines that are relatively
far apart, experts in both field would seldom work together. Therefore the knowledge of the overlapped
areas (Fig. 1) is small. If the common knowledge between these two domain is limited, the uncertainty in
the combined models and descriptive knowledge will be even more so. On the other hand, this limitation
should not prevent experts from postulating or guessing the uncerainty, based not so much on available data
but on expert beliefs or opinions. While it may sound unusual for scientific disciplines, beliefs or survey
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opinions are uscd frequently in socio-economics. Recently, belief causal network analysis (Jens';en et al.,
1990) has been applied for environmental problems and is a new powertfil tool to investigate lcnowleflge d'omams where
available knowledge is weuk but the expert opinions can be counted on as a good, first guess. This belief Imqwledge
is oftcn not part of, but is peripheral to, the combined knowledge (F ig. 1), unless the belief is proven to be valid.

EXAMPLE I: COST OPTIMIZATION AND THE GENETIC ALGORITHM

in Lam ct al. (1996), we presented the intcgrated assessment modclling approach to combining scientific knowledge for
processes in air, waler, soil and ccology to predict the cavironmental impact due to acidifying emissions. These tools
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Figure 2 Clockwise from top left: critical load scenario curve, cost optimization results, map showing
source regions affected in optimization and cost function curve.

were implemented as part of the RAISON (Regional Analysis by Intelligent Systems ON microcomputers) for Windows
systemn (Lam et 2, 1996) designed for decision support applications. In this paper, we centinue to yse the RAISON
system to further illustrate the knowledge-based paradigm (Fig. 1) by linking these scientific results to economic analysis.
Figure 2 shows the critical load curve for wet sulphate deposition at the Montmorency receptor site near Quebec City,
Canada. This curve represents a summary of the knowledge of the scientific domain. It was constructed by first running
several geochcmistry models and then the modcl results were screened by an expert system to find the most appropriate
predicted vatues of pH for a given set of soil sensitivity and water quality data (Lam ct al, 1996). When this expert system
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model was run repeatedly with incremental sulphate deposition values, different predicted levels of pH and hencc lake
damage were obtained. By graphing the damage versus the deposition, the critical load curve was constructed. For
example, from Figure 2, at the 10% Jake damage level, the estimated sulphate deposition was 11.89 kg/Hacres/year.

To demonstrate the cost optimization procedure, suppose that we accept this lake damage level and critical load as the
target objective. The next question is: what is the least-cost emission reduction swrategy that would enable the attainment
of predetermincd ecological targets? To do so, we need first the information on reduction costs. These costs were
estimated for all forty emission source regions in Northern America (Fig. 2). An example of the cost function estimated
for the source regjon of Michigan, was shown in Figure 2. Note that the cost function, as in most cases, was a nonlinear
function which incrcases rapidly when further reduction may require more castly technologies. To relate the lake damage
curves obtained from the environmental domain to the cost function obtained from the econortic (i.e., external, Fig. 1)
domain, one needs to connect the process models. In the integrated modelling approach, these vital pieces of infermation
were stored in the knowledge base and can be retrieved through the graphic interfaces as shown. Once they are
connected, one can call for the optimizarion procedurce via the option button provided at the bottom of the eritical load
scenario interface (Fig. 2). This would then invoke another interface (not shown) that deals with optimization. It will
ask for an upper bound for the percentage reduction at cach source region. Sometimes, the choice of the target objective,
i.c. lake darnage level, may be so low that optimization is not possible. The interface will issue a descriptive warning
about it and ask for another trial, possibly by relaxing the target objective, increasing the upper bound for reduction or
both. It is this communication about the descriptive knowledge that makes this knowledge-based approach more
informative and effective than other approaches. Since the cost function is nonlinear, ordinary linear programming will
not be applicable and nonlinear programming techniques are required. The algorithm used for the cost optimization was
the genetic algorithm (Goldberg, 1989) which apparently has a better searching strategy than most nonlinear
programming procedures.  To bridge the target objective specified as lake damage level and least-cost emission
abarement option, however, a source-receptor matrix (Lam ct al., 1997) was used. From the specified lzke damage level,
the corresponding sulphate deposition was determined (Fig. 2). For this sulphate deposition, the source-receptor matrix
was uscd in the genetic algorithm to generate the required emission reduction levels. Normally the source-receptor
matrix was used w predict the deposition ar a receptor site for a given array of emission sources. Since the matrix was
linear, it could be used to predict the total emission reduction required for a decrease in deposition at a given site. The
genetic algorithm was used to assure thart this total reduction amount was correct, while searching for the optimal
individual amount 1o be reduced at each of the source regions. Figure 2 shows an example of the outcame of the cost
optimization. For a 10% lake daunage level, which represented a substantial improvement from the current level of about
2284 (Fig. 2), the total optimal cost is about $4.73 billian U.S. dollars (1995 dollar value) per year for a total sulphur
dioxidc cmission reduction of about 7260 kT/year. The individual reductions and their costs were also estimated as
shown in the cost aptimization results wble (Fig. 2), with the Michigan source region (sec cost curve, Fig. 2) bearing the
highest cost (US $775.7 millions) in this example (the results shown here were for illustrative purposes anly).

EXAMPLE II: MODEL UNCERTAINTY AND THE CAUSAL BELIEF NETWORK

Within the integrated assessment model, there are uncertainries associated with model input and coeflicients, as well
as unccrtaintics in the observed data. While techniques such as expert systemn (Lam et al., 1396) may help minimize the
uncertaintics in the model choice, there exists an even more complcx problem when component models from different
disciplines are combined. The uncerainty propagation through the linkage can at best be treated as a probability
exercise, given that there are many unknown proccsses governing the combination of uncertainties. Conventional
uncertainty analysis methods such as Monte Carlo process can be computationally prohibitive, Therefore, we propose
to usc the cuusal network approach (Jensen et al.,, 1950), since it can be based model variables or inputs and a set of
dirceted links between then, a situation well suited for the various linked models as discussed in Example 1.

For cxample, consider the uncertainty in the source-receptor marrix that linked the lake damage level to the cost function
in Example 1. This link was affected by three types of unccrtainties: inpur uncertainty (I), inter-variable process
uncertainty (V) and uncertainties associated with spatial interpolation (K). The uncertainty for deposition prediction
al any recepior has the combined uncertainty (M) of these threc factors, as well as the umcertamty of background and dry

-4 -



09-25-00 09:29 FAX 905 336 4430 NWRI SOFTWARE [d o6

deposition (S). Figurc 3 shows the causal nerwark for the receptor site at Kejimkujik, Nova Scotia, as an example, with
five main source regions considered in Canada, five in the U.S. and one for other areas. Note that for each m'fijor source
region, there were five variable nodes (I, V, K, M, S) linking cvenmually to the receptor site. The probability for high
wncertainty was, from statistics and expert opinion, in the range between 10% to 30% for the varigbles I, Vand K. We
combincd probabilities by using the relation P(A[B).P(B) = P(A,B), where P(A,B) is the joint probability of events A
and B. Thus, I, V and K were combined into an aggregate probability (M) of about 26 to 30% for high uncerminty from
these source regions to the receptor site at Kejimkujik. When the probability for high background uncertainty S (15%
to 25%) was added, the probability for high uncertainty was combined to about 30% for the five main Canadian source
regions, 31% for the five U.S. source regions and 29% for the other source regions. These were in turn combined finally
into a 37% prabability for high uncertainty in the predicted total sulphate deposition for Kejimkujik.

R ST e e N R NN AR

Figure 3 Belief causal network for the source-receptor matrix.

CONCLUSIONS

The knowledge domain approach to decision support goes beyond traditional process modelling. It requires the
descriptive knowledge in the linkage of models from different knowledge domains and provides advice to avoid
inconsistency and incompatibility, Preliminary results connecting environmental and economic domains are promising.
Further work is required to explore this new concept, particularly in the area of model uncertainty.
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