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An Estimation of Residential Water Demand Using Co-Integration
and Error Correction Techniques

Abstract

In this paper short- and long-run price elasticities of residential water demand are
estimated using co-integration and error-correction methods. Unit root tests reveal that
water use series and series of other variables affecting use are non-stationary. However,
a long-run co-integrating relationship is found in the water demand model, which makes
it possible to obtain a partial correction term and to estimate an error correction model.
The empirical application uses monthly time-series observations from Seville (Spain). The
price-elasticity of demand is estimated as around -0.1 in the short run and -0.5 in the long
run. These results are robust to the use of different specifications.

JEL Classification: C22, D12, Q25.

Keywords: seasonal unit roots, residential water demand, price elasticity, time-series,
co-integration, Error Correction Model.
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Introduction

While it is generally agreed that residential water users’ short-run and long-run reactions

to price changes might be substantially different, long-run water demand elasticities have

been rarely estimated for European users. The main purpose of this paper is to estimate

and compare short-run and long-run price elasticities of residential water demand using

data from Seville (Spain). A secondary objective is to assess the usefulness of the tech-

niques of co-integration (see Engle and Granger, 1987; Johansen, 1988, among others)

and error correction (Hendry, Pagan, and Sargan, 1984) in the analysis of these price-

elasticities of water demand. To the author’s knowledge, no previous published work has

applied this econometric methodology to the study of water demand, while it has proved

very useful to estimate the demand for other types of transformed natural resources, such

as gasoline and electricity. The analysis in this paper is similar to these previous studies

in that it deals with a resource whose price could affect purchase patterns of capital stock

(water-using appliances) and whose consumption might respond partly to habit.

Monthly time-series data on price and aggregate residential consumption over a ten-

year period are matched with climatic data, data on non-price demand policies, and av-

erage income. The availability of monthly data allows not only for the use of much more

accurate measures of consumption but also to test for seasonal effects in consumption

and the peculiarities of dynamic effects that cannot be captured when using yearly data.

The city of Seville was chosen as a case study because it has been already the subject of

several analyses based on a variety of econometric specifications. This makes it possible

to compare the results of the present study with alternative ones.

The econometric estimation proceeds in two steps. First, unit root tests are conducted

to determine the degree of integration of the main variables. Then, a long-run equilibrium
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relationship between price and consumption is estimated. The stationarity of the different

time-series involved is investigated using seasonal unit root tests and tests that consider

structural breaks in the series . The long-run equilibrium relationship is then used as an

error correction term in an error correction model (ECM henceforth). These techniques

provide measures of the short- and long-run elasticities as well as the speed of adjustment

towards long-run values. The elasticities estimated suggest, as it has been found in the

literature, that household water demand is inelastic with respect to its own price but not

perfectly so. The results show remarkable consistency between the different techniques

used to analyze the dynamics of the relationships.

This paper is organized as follows. Section 1 lists some previous studies dealing with

the estimation of residential water demand and applied works that use the techniques

of co-integration and error correction. The characteristics of water demand in Seville are

described in Section 2 and the data set is described in Section 3. The econometric methods

and the results are presented in Sections 4 and 5 respectively. Section 6 concludes.

1 Background

Residential water demand has been extensively analyzed during the last decades. The

main objective of this research is to estimate price elasticities of water demand from wa-

ter demand functions where either individual or aggregate residential water use is made

dependent on water price and other variables such as income, climatic conditions and

type of residence. Water demand appears as inelastic but not perfectly inelastic. Most

applied studies focus on areas of the USA (e.g. Schefter and David, 1985; Chicoine

and Ramamurthy, 1986; Nieswiadomy and Molina, 1989; Renwick and Green, 2000).

Some exceptions that use European data are Hansen (1996), Höglund (1999), Nauges
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and Thomas (2000), and Martínez-Espiñeira (2002). Due to differences in the way water

is used and the way in which it is priced, there are sharp geographic variations in the

size of price elasticities of water demand, especially between Europe and North America

(Arbués et al., 2003; Dalhuisen et al., 2003). Therefore, it is important that European

policy makers be provided with the results from analyses based on European data that

consider long-run versus short-run usage responses to price changes.

A number of previous studies have found short-run elasticities smaller than their long-

run counterparts. This suggests that consumers might need time to adjust their water-

using capital stock and to learn about the effects of their use on their bills. These studies

use some type of flow-adjustment model, where lagged consumption is included as an

explanatory variable. The latter assumes that the actual adjustment to consumption is a

fixed ratio of the total desired or equilibrium adjustment. The short-run elasticity is then

given by a choice of utilization rate of the water-using capital stock, while the long-run is

defined as the choice of both the size of this capital stock and the intensity of its use. Past

consumption is introduced in the model with lags of different length and shape. Agthe et

al. (1986), Moncur (1987), Lyman (1992), Dandy et al. (1997) are examples of this type of

approach, while somewhat more sophisticated econometric techniques have recently been

applied, including the use of dynamic panel data methods (Nauges and Thomas, 2001).

Lack of data on water-using capital stock usually prevents the use of stock-adjustment

models, although in some cases (Agthe et al., 1986) a time variable proxies the evolution

of the capital stock. Renwick and Archibald (1998) introduce information available on

water related technology in a model that explicitly analyzes endogenous technical change.

These studies find that, in agreement with economic theory, short-run responses to price

changes are weaker than long-run ones. However, Agthe and Billings (1980) find, using a

linear flow adjustment model, the short-run elasticity value (-2.226) much higher than the
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long-run value (-0.672), suggesting that, with monthly data, there could be a short-run

overreaction to price changes and that alternative techniques of time-series analysis might

help solve these inconsistencies.

None of these studies has used co-integration and/or error correction techniques to

estimate short-run and long-run price effects. These methods have been extensively used

since Engle and Granger’s 1987 seminal paper. Electricity demand forecasting is among

the earliest applications of co-integration (Engle et al., 1989). More recently, co-integration

and error correction have been applied to the estimation of energy and gasoline demand.

For example, Bentzen (1994), Eltony and Al-Mutairi (1995), and Ramanathan (1999)

study the behavior of gasoline consumption. Fouquet (1995) investigates the impact of

VAT introduction on residential fuel (coal, petrol, gas, and electricity) demand in the

United Kingdom, while Beenstock et al. (1999) address the issue of seasonality in electricity

consumption. Using co-integration analysis to estimate demand functions avoids problems

of spurious relationships that bias the results and provides a convenient and rigorous way

to discern between short-run and long-run effects of pricing policies.

2 Water demand in Seville

Residential water use represents about 74% of the demand for drinking water in the Seville

and its metropolitan area. This proportion remained fairly constant during the nineties,

except in 1992-93, when the Universal Exposition increased the share of institutional use

(EMASESA, 2000, pp. 2-3). The total number of families living in the city of Seville in 1998

was 226,692 and the water supplier, EMASESA, had a total of 190,759 domestic customers

at the end of 1998. The number of customers has increased significantly since 1997. This

is because the water supplier implemented a campaign (Plan Cinco) of replacement of
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collective meters by individual meters, causing an increase in the average yearly growth

of the number of domestic customers from 7% to %10-11 (EMASESA, 2000, p. 4).

According to company’s estimates, Sevillan households use 53% of the water in the

toilet, in the kitchen, and for washing clothes. These components could be significantly

affected by the efficiency of water-using equipment and the frequency of its renewal. An

extra 39% is used in showers, which could be determined by both habits and the charac-

teristics of water-use equipment. Outdoor use is minimal (EMASESA, 2000, p. 7).

Seville suffered a serious draught between 1992 and 1995, during which important

savings were achieved through measures such as media campaigns, municipal edicts and the

ban of certain uses, water restrictions, and consumption control inspections. At the height

of the drought, savings of around 25% with respect to previous years were achieved. In

mid-1992, imbalances between supply and demand started to arise. Media campaigns were

launched to ask for voluntary water conservation. Then this was made compulsory, since

from September water supply was reduced to 20 hours daily, inducing savings of 15%. Daily

water supply was reduced to 16 hours and at the end of 1992 consumption began to reflect

a 25% reduction. At the beginning of 1993 the company had to resort to the emergency

intakes as the only source of supply. During the first half of 1995, a 28% reduction with

respect to the consumption previous to the drought was achieved. Restrictions increased to

10 hours a day. Eventually, the rain came at the end of 1995 and the drought was overcome

thanks to the savings achieved in that period. The awareness campaign continued (in

spite of the reservoirs having enough water) to maintain the population’s saving habits

(EMASESA, 2000, pp. 6-7). A more detailed description of the measures implemented to

reduce demand can be found in the Appendix. See also García-Valiñas (2002).
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Table 1: Evolution of pricing-block sizes.

1991-1995 1996-1999

Block 1 0-7 m3 0-7 m3

Block 2 0-20 m3 0-17 m3

Block 3 >20 m3 > 17 m3

3 Dataset description

EMASESA, the private company in charge of supplying water and sewage collection ser-

vices in Seville provided the main data used for the estimations. They include information

for the period 1991-1999 on tariffs, number of domestic accounts, and total domestic use.

The tariff consists of a fixed quota and an increasing three-block rate. Table 1 shows

the evolution of the block sizes. The price for the first seven-unit block applies only to

those users who use a total of less than seven cubic meters. If the consumer exceeds this

level of use, the price of the second block applies also to these first seven cubic meters. This

type of step-rate structure is in this case explicitly aimed at rewarding water conservation

efforts. The rest of the tariff is based on conventional increasing blocks. The tariff includes

a water supply fee, a sewage collection fee, and a treatment fee, and, from 1994, a waste-

water infrastructure fee (canon) was collected on behalf of the Andalusian government.

Finally, from 1993 to 1997, a temporary extra fee was charged for the company’s finances

to recover from the impact of the drought. The value of the fixed quota depends on the

size of the meter, but the most common one for domestic users (13 mm) was adopted. The

evolution of the prices in each block between 1991 and 1999, including all the elements

of the water and sewage bill, is detailed in Table 2. All prices are expressed in constant

pesetas (ESP) of 1992, translated into EURO equivalents (1 EURO = 166.386 ESP).

The original data were manipulated into the following variables (where the subscript
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Table 2: Tariff evolution (1992 EURO equivalents, excluding VAT).

Water Sewage and Treatment
Year Fixed PBL∗1 PBL2 PBL3 Canon TEC∗∗ Fixed Sewage Treat. Canon

1991 1.063 0.139 0.214 0.386 0.000 0.000 0.000 0.075 0.130 0.000
1992 1.010 0.138 0.212 0.384 0.000 0.000 0.000 0.082 0.123 0.000
1993 1.133 0.132 0.206 0.378 0.000 0.020 0.000 0.089 0.120 0.000
1994 1.187 0.126 0.204 0.398 0.016 0.019 0.270 0.088 0.118 0.016
1995 1.246 0.125 0.213 0.421 0.016 0.021 0.285 0.092 0.124 0.016
1996 1.443 0.126 0.252 0.505 0.015 0.093 0.505 0.111 0.131 0.015
1997 1.524 0.130 0.260 0.609 0.015 0.093 0.550 0.125 0.140 0.015
1998 1.540 0.131 0.263 0.616 0.050 0.000 0.555 0.126 0.141 0.040
1999 1.533 0.131 0.262 0.614 0.048 0.000 0.553 0.126 0.141 0.039

* PBLi = water price in block i.
**TEC = Temporary Extra Charge

t refers to Month t):

• Qt (m3/capita month) is average per capita domestic water use. The raw data con-
sist of 108 monthly values for total use. The company reads meters continuously at

quarterly intervals for each individual meter and estimates monthly use in the follow-

ing manner. For each individual, the average daily use during the reading period is

calculated, then this average use is allocated to each month according to the number

of days corresponding to that month in that particular reading period.1 Although

this procedure smooths off all intermonthly variation at the individual level, the

estimated aggregate use mimics the actual pattern of intermonthly variation, since

there is a large number of individual meters and they are read continuously. Annual

data on the number of accounts were also collected. However, instead of using this

variable to calculate average water use per account, values of total population in
1For example, if the reading period goes from 28-04-00 to 03-08-00 and the reading is 91 m3, since the

length of the period is 97 days, average daily use is 0.93 m3. This average daily use would be multiplied
by 2 to obtain April’s consumption, by 31 for May, by 30 for June, by 31 for July and by 3 for August.
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Figure 1: Evolution of the water use (Q), water marginal price (P ), virtual income (V I)
and water restrictions (RES) variables.

Seville were used to calculate monthly average use per capita. The reason is that

during the study period the water company substantially increased the number of

individual meters. The evolution of the values of both consumption per account and

inhabitants per account strikingly show this effect of the introduction of individual

meters described in Section 2. Figure 1 shows the evolution of the values of Qt,

including the effect of the drought during the first half of the decade. Conservation

efforts persisted after the end of the drought, as described in Section 2, and water

use levels did not fully return to pre-drought levels

• Pt (1992 EURO equivalents/m3) is the marginal price of water. It corresponds to

a variation on the Taylor-Nordin specification (Taylor, 1975; Nordin, 1976) for mul-

tipart tariff structures. Following Billings (1982), an instrumental marginal price
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and difference are derived from an artificial linearization of the tariff structure by

regressing the constructed bill amounts associated with each integer value of poten-

tial (between 1 m3 and 25 m3) monthly water use per account on these water use

values. This instrumental marginal price is the slope of that estimated regression.

The estimated intercept provides an estimate for the Taylor-Nordin difference. This

price formulation avoids problems of price endogeneity and reflects the fact that con-

sumers have only an imperfect knowledge of the tariff structure and the block they

are consuming in at each point in time. The strict application of the Nordin-Taylor’s

original specification has been the subject of debate (discussed in Arbués et al. ,

2003). A perfectly informed consumer would react to the marginal price and the

rate premium, but most consumers will not carefully study the tariff structure or

changes in inframarginal rates because of information costs. Alternative approaches

include the use of the average price, or both average and marginal price in the

same or different models. The modified Nordin-Taylor specification was chosen for

this study in light of the results obtained with different specifications by Martínez-

Espiñeira (2002) in other Spanish regions and because it was successfully applied

by Martínez-Espiñeira and Nauges (2004) in a previous study in Seville, which also

makes it possible to compare results based on the same price specification but dif-

ferent econometric models. Additionally, the recent analysis by Taylor et al. (2004)

casts doubts on the alleged empirical superiority of the average price specification.

Monetary values were deflated using the official provincial-wise retail price index.

No single available series of the price-index would be long enough to cover the whole

price series, so the published series with base 1983 was adapted to merge with the

series with base 1992. The evolution of this series is shown in Figure 1
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• V It (1992 EURO equivalents) is virtual income. It is the difference between the

average salaries (Wt) and Dt, the instrument for the Nordin-difference (Nordin,

1976) variable. It is the intercept of the estimated linear function used to derive P

and it can be included as part of the virtual income definition, since it only exerts

an income effect caused by the nonlinearity of the tariff structure (Billings, 1982),

so, theoretically, its coefficient would have the same magnitude and opposite sign

as the one of income.2 The average salaries series (from the Instituto Nacional de

Estadística) is used to proxy for household income. It had originally a quarterly

frequency, so it was linearly interpolated to get monthly values. The values for

Pt and Dt were calculated using the tariff schedules applied in each period. The

evolution of this series is shown in Figure 1

• RAINt is the current level of precipitation. Unit: mm/month.

• TEMPt is the average of the daily maximum temperatures in Month t. Unit: ◦C/10

• RESt (hours/day) refers to the number of daily hours of supply restrictions applied
as part of the emergency control measures during the worst drought periods. The

number of hours of restriction a day is weighted by the number of days in the month

to which that number applied. This variable has been calculated directly from the

relevant city council drought-emergency decrees (EMASESA, 1997).The evolution of

this series is shown in Figure 1

• BANt is a binary variable with value 1 when temporary outdoor-use bans were
applied during the drought.

2By lumping D together with income the theoretical prediction is imposed as a restriction. In practice
the effect of this variable on its own would not be significant, since the water bill amounts to such a small
proportion of Sevillan households’ disposable income.
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Table 3: Summary Statistics.
Variable N Min Max Mean Std. Dev.

ABONS 108 109,082 201,385 148,310 27,671
POP 108 683,028 719,588 702,529 9684
Q 108 5.054 8.201 6.352 0.648
P 108 0.472 0.700 0.571 0.080
W 108 1128 1410 1235 71,379
D 108 0.522 1.413 0.999 0.369
RES 108 0 12.00 1.40 2.99
BAN 108 0 1 0.273 0.445
SUM 108 0 1 0.333 0.474
TEMP 108 152 385 255.259 68.965
RAIN 108 0 3105 421.926 605.559
INF 108 0 1 0.319 0.466

• INFt is a binary variable with value 1 if water conservation information campaigns
were being applied during the drought

• SUMt is a binary variable with value 1 in May, June, July, and August

The evolution of the BAN , SUM , TEMP and RAIN series is shown in Figure 2.

Summary statistics for all variables are provided in Table 3. Evolution of the outdoor-use

bans (BAN), summer dummy (SUM), average maximum daily temperatures (TEMP )

and monthly precipitation (RAIN) variables.

4 Econometric methods

The techniques of co-integration (see Engle and Granger, 1987) and error correction (see

Hendry et al., 1984, among others) are used to investigate the dynamics of household

water consumption and to measure the short-run and long-run effects of the price of water

on household demand.
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Figure 2: Evolution of the outdoor-use bans (BAN), summer dummy (SUM), average
maximum daily temperatures (TEMP ) and monthly precipitaion (RAIN) variables.

Let us consider the simple form of a dynamic model:

yt = µ+ γ1yt−1 + β0xt + β1xt−1 + εt, t = 1, . . . , T, (1)

where yt and xt could represent respectively consumption and price at time t. The error

term (εt) is assumed independently and identically distributed. We will assume in the

following that xt is a one-dimensional vector for ease of exposition. µ, γ1,β0,β1 are un-

known parameters. In Model 1 the short-run and long-run effects of x on y are measured

respectively by β0 and (β0+β1)/(1−γ1). Re-arranging terms, we obtain the usual ECM :

∆yt = µ+ β0∆xt − (1− γ1)(yt−1 − θxt−1) + εt, t = 1, . . . , T, (2)

where∆ represents the difference operator (e.g. ∆yt = yt−yt−1) and θ = (β0+β1)/(1−γ1).
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Thus, the estimation of the ECM gives directly a measure of the short-run and long-run

effects of x on y through the estimates of β0 and θ. The term (yt−1−θxt−1) in Model 2 can
be seen as a partial correction for the extent to which yt−1 deviated from the equilibrium

value corresponding to xt−1. That is, this representation assumes that any short-run shock

to y that pushes it off the long-run equilibrium growth rate will gradually be corrected, and

an equilibrium rate will be restored. The expression (yt−1 − θxt−1) is the residual of the

long-run equilibrium relationship between x and y.3 Therefore, this error correction term

will be included in the model if there exists a long-run equilibrium relationship between

x and y or, in other words, if both series are co-integrated in the sense of Granger (see

Engle and Granger, 1987). If the series are co-integrated they will, in the long run, tend to

grow at similar rates, because their data generating processes may be following the same

stochastic trend, or may share an underlying common factor.

For any 0 < γ1 < 1, the absolute value of θ will exceed the absolute value of β0 as long

as β0 and β1 have the same sign. Under such likely conditions, the long-run adjustment

to a change in the price of water will be weaker than the short-run adjustment. Although

it would be a rare occurrence in practice, households might instead overreact in the short

run to changes in prices. This effect has been observed in applications focusing on other

commodities (Fouquet, 1995).

The econometric analysis will proceed in two steps. In the first step, we test if x

and y are co-integrated series, by testing for the stationarity of the series. If the series

are integrated of the same order, a co-integrating vector might be then found such that

a linear combination of the non-stationary variables obtained with that vector is itself

stationary. If this proves to be the case, the estimation of the Granger co-integration
3For this reason, it is commonly said that (1−γ1) provides a measure of the speed of adjustment towards

the long run values.
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relationship will give a measure of the long-run effect of x on y. In a second step, the

co-integration residuals are used as an error correction term in the ECM above and the

short-run effect and the speed of adjustment can be estimated.

4.1 Tests for order of integration

A time series is I(i) (integrated of order i) if it becomes stationary after differencing it

i-times. A non-stationary series can be represented by an autoregressive process of order

p, so unit-root tests for a variable yt usually rely on transformed equations of the form:

∆yt = µ+ λt+ (γ − 1)yt−1 +
p−1X
i=1

γj∆yt−i + εt (3)

This test, known as the Augmented Dickey Fuller, ADF , (Dickey and Fuller, 1981) allows

for an AR(p) process that may include a nonzero overall mean for the series and a trend

variable (t). The inclusion of the term
p−1P
i=1

γj∆yt−i simply allows for the consideration of

a p > 1 in AR(p). The special case where p = 1 corresponds to the Dickey-Fuller (DF )

test. Its test statistics would be invalidated if the residuals of the reduced form equation

∆yt = µ+ λt+ (γ − 1)yt−1 + εt

were autocorrelated.

To test the null hypothesis of nonstationarity, the t-statistic of the estimate of (γ − 1)
is compared with the corresponding critical values, calculated by Dickey and Fuller (1979

and 1981). A key consideration is how many lags of variable y to include in Equation 3 and

whether to include a constant and a trend variable. The choice can be based on the R
2
, the

Akaike Information Criterion (AIC), the Schwartz (1978) Bayesian Information Criterion,
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or the Schwert (1989) criterion. These criteria might lead to conflicting recommendations,

so, for consistency, the sequential-t test proposed by Ng and Perron (1995) was used.

If the null of a unit root cannot be rejected, a second test is conducted to check

whether the series are integrated of order one or more than one. The ADF test serves

this purpose. It consists of testing for the null hypothesis of a unit root in the residual

series of a regression in which the series has been differenced once. If the null of unit root

is now rejected, the series is deemed I(1) or integrated of order one.

4.1.1 Further unit root tests

In small samples, the most common Dickey-Fuller tests above can suffer from lack of

power to reject the null hypothesis of non-stationarity (Baum, 2001; Eguía and Echevarría,

2004). Several complementary tests can be used that alleviate this problem. For example,

the Dickey—Fuller Generalised Least Squares (DFGLS) approach proposed by Elliott,

Rothenberg, and Stock (1996) is likely to be more robust than the first—generation tests

(Baum, 2001).

An alternative to the DF-type of tests above is the KPSS test (Kwiatkowski, Phil-

lips, Schmidt and Shin, 1992),4 which uses the perhaps more natural null hypothesis of

stationarity rather than the DF style null hypothesis of I(1) or nonstationarity in levels.

A KPSS may be applied together with a DF-style test, hoping that their verdicts will be

consistent.

Finally, DF-style tests potentially lead to confusing structural breaks with evidence of

nonstationarity, while recent unit root tests allow for structural instability in an otherwise

deterministic model (Perron, 1989, 1990; Banerjee et al., 1992; Perron and Vogelsang,

1992; Andrews and Zivot, 1992). It is therefore wise to conduct the latter when the
4 Implemented as kpss for STATA by Baum (2000).
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former do not reject the null of nonstationarity. For example, Andrews and Zivot (1992)

propose a method that allows for a single structural break in the intercept and/or the

trend of the series, as determined by a grid search over possible breakpoints. Contrary

to the case of Perron (1990)’s test, a priori knowledge of the location of the break is not

needed. Subsequently, the procedure conducts a DF style unit root test conditional on

the series inclusive of the estimated optimal breaks. Clemente et al. (1998)’s tests allow

for two events within the observed history of a time series. Following the taxonomy of

structural breaks in Perron and Vogelsang (1992), either additive outliers (the AO model,

which captures a sudden change in a series) or innovational outliers (the IO model, which

allows for a gradual shift in the mean of the series) can be considered.

4.1.2 Seasonal unit root tests

The tests described above for the stationarity of the series are not sufficient when the data

exhibit a seasonal character, since seasonal unit roots must be investigated. A number of

seasonal unit root tests have been proposed for the case of monthly data (Franses, 1991;

Beaulieu and Miron, 1993) as an extension to the one suggested by Hylleberg et al. (1990).

Seasonal unit root tests often exhibit poor power performance in small samples5 and

that the power deteriorates as the number of unit roots under examination increases. For

example, in a simple test regression with no deterministic variables, the HEGY (Hylleberg

et al., 1990) test procedure in the quarterly context requires the estimation of four para-

meters, whereas in a monthly context this number increases to twelve. In addition, the

algebra underlying monthly seasonal unit root tests is more involved than in the quarterly

case and the associated computational burden non-negligible. To circumvent these prob-

lems, the analysis of seasonal unit roots draws on the results found by Rodrigues and
5Rodrigues and Osborn (1999) provide Monte Carlo evidence on the monthly seasonal unit root tests.
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Franses (2003). These authors find out which unit roots affecting monthly data can also

be detected by applying tests on quarterly data and, in particular, they show that ‘with

regard to the zero frequency unit root, there is a direct relationship between the monthly

and quarterly root’. This means that the problem of non-stationarity of the series can

be highly simplified by collapsing the monthly data into quarterly data (obtaining N/3

quarterly observations on all relevant variables by summing the monthly values or aver-

aging them, depending on the nature of the variable) and then using the original HEGY

test. If all the null hypotheses of any type of seasonal roots can be rejected based on the

quarterly test, the monthly series can be also deemed free of seasonal unit roots.

To test for a seasonal unit root in the {yt, t = 1, . . . , T} series, HEGY propose to apply

OLS on the following model:

yt − yt−4 = π0 + π1z1,t−1 + π2z2,t−1 + π3z3,t−2 + π4z3,t−1 + εt, (4)

where z1t = (1 + L+ L2 + L3)yt,

z2t = −(1− L+ L2 − L3)yt,

z3t = −(1− L2)yt,

with L, the lag operator. To find that yt has no unit root at all and is therefore stationary,

we must establish that each of the πi(i = 1, . . . 4) is different from zero. Moreover, we will

reject the hypothesis of a seasonal unit root if π2 and either π3 or π4 are different from

zero, which therefore requires the rejection of both a test for π2 and a joint test for π3

and π4. HEGY derive critical values for the tests corresponding to each of the following

null hypothesis: H01 : π1 = 0, H02 : π2 = 0, H03 : π3 = 0, H04 : π4 = 0, H03+04 : π3 = 0
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and π4 = 0. The tests statistics are based on Student-statistics (t-stat) for the first four

tests and on a Fisher-statistic (F -stat) for the last one.

4.2 Co-integration

If these unit root tests suggest that the series are integrated of the same order, their

long-run relationship is then investigated applying OLS on the simple model:

yt = θxt + µt (5)

Series x and y are said to be co-integrated if there exists a linear combination of those

non-stationary series that is itself stationary. This means that their linear combination

yields a stationary deviation (the residuals series (bεt) is stationary). Following Engle and
Granger (1987)’s approach, a unit root test6 is applied whereby the resulting t-statistic is

compared with the critical values provided by Engle and Yoo (1987).7 The null hypothesis

in this case is that of non-cointegration, so rejecting a unit root in the residuals in a DF

type of test will constitute evidence of a co-integrating relationship among the variables.

If the series are proved to be co-integrated, θ̂ in Equation 5 provides a measure of the

long-run effect of x on y. Therefore, the long-run estimates of the price-elasticities are cal-

culated using the estimated coefficients of the price variables in this equation. Additionally

ût can be used as an error correction term in the ECM :

4yt = µ+ β04xt − (1− γ1)ût−1 + εt, t = 1, . . . , T, (6)
6The ADF test applied in this instance does not contain neither a trend nor a constant term, since the

OLS residuals will be mean zero with a constant included in the co-integration regression.
7The critical values calculated by Dickey and Fuller are not appropriate, since the t-statistic’s distribu-

tion is affected by the number of variables in the co-integration regression (Engle and Yoo, 1987).
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from which bβ0 and (1 − γ̂1) would represent estimates of the short-run effect and the

speed of adjustment towards the long-run values respectively. Short-run price elasticities

are then derived from the estimates of price variables in this model.

5 Results

5.1 Unit root tests

First, the order of integration of all relevant series was investigated, using a test of seasonal

integration (see Section 4.1.2) and the ADF test 4.1. Table 4 summarizes the seasonal

tests applied on the series collapsed into quarterly data. The non-rejection ofH01, together

with the rejection of both H02 and the joint hypothesis H03+04, suggests the presence of a

unit root at the zero frequency and no seasonal unit roots. Since there is a correspondence

between the quarterly and the monthly root at the zero frequency, not detecting seasonal

unit roots at the quarterly level is enough to consider that the series is affected only by

unit roots at the zero level and no testing at the monthly level is necessary. The table

shows that the null of seasonal unit roots can be rejected for all series,8 with the not very

surprising exception of TEMP .

After detecting with the seasonal approach the presence of only unit roots at the zero

frequency, the order of integration of the series was further tested using Dickey-Fuller-type

tests. Two auxiliary DF regressions with and without a trend were used, and the optimal

lag was chosen by an automatic sequential t-test. The results, shown in Table 5, reveal

that the trend component is not relevant in most cases. Table 5 shows that most variables

proved to be I(1). The hypothesis tests permit the rejection of the null of non-stationarity

of the differenced series at the 99% level of confidence. Once again, there are some doubts
8The test also permitted to reject the null hypothesis of seasonal unit roots in the INF series, although

the estimates are not shown, since this variable is not used in most of the main final water demand models.
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Table 4: Quarterly seasonal unit root test.
Variable Test HEGY model specification(a)

SEAS TREND STREND CONST
t-stat(b) Lags(c) t-stat Lags t-stat Lags t-stat Lags

Q H01 -1.947 8 -2.379 0 -1.199 8 -2.929∗ 0
H02 -3.998∗∗ -3.684∗∗ -3.867∗∗ -3.848∗∗

H03+04 17.857∗∗ 6.176∗∗ 16.407∗∗ 6.485∗∗

P H01 -0.033 1,4,5 -1.136 0 -1.528 0 -1.108 0
H02 -4.116∗∗ -2.708∗∗ -2.795∗ -2.708∗∗

H03+04 12.143∗∗ 11.666 13.407∗∗ 11.701∗∗

P 2 H01 0.044 1,4,5 -1.237 0 -4.016∗∗ 4 -1.124 0
H02 -4.455∗∗ -2.750∗∗ -3.475∗∗ -2.743∗∗

H03+04 14.219∗∗ 12.233∗∗ 20.187∗∗ 12.194∗∗

V I H01 1.181 0 -0.787 1 0.311 0 -0.791 1,5
H02 -3.172∗∗ -0.418 -3.051 -0.829
H03+04 6.711∗∗ 0.332 6.604 0.744

RES H01 -2.970∗ 6 -2.643 3,5,7 -3.549∗ 0 -2.732∗ 5,6
H02 -3.177∗∗ -4.419∗∗ -4.299∗∗ -3.291∗∗

H03+04 15.982∗∗ 2.785∗ 7.027∗∗ 13.050∗∗

TEMP H01 -2.419 0 -3.401∗ 2,3,8 -2.399 0 -3.800∗∗ 2,3,6,7,8
H02 -2.133 -1.281 -2.111 -1.057
H03+04 8.117∗∗ 0.040 7.850∗∗ 0.280

RAIN H01 -2.062 4 -1.888 0 -2.775 2,4,8 -1.779 0
H02 -1.674∗ -1.674∗ -3.193∗∗ -1.677∗

H03+04 2.437∗ 2.437∗ 7.753∗∗ 2.400∗

(a) Test specifications: SEAS (Seasonal dummies + constant) TREND (Constant + trend) STREND
(Seasonal dummies + constant + trend) CONST (constant only)
(b) HEGY estimates, ∗∗ and ∗ denote a t-ratio significant at the 5% and 10%
(c) lag length and lags of the fourth difference of the time-series to be included in the auxiliary regression
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Table 5: Augmented Dickey-Fuller unit root tests.
Variable No trend With trend

t-stat(a) Lags(b) B-stat(c) t-stat Lags B-stat Trend t-ratio

Q -2.527 4 0.64 -2.922 4 0.64 -2.00
∗∗∗
, 2.01

∗∗∗(d)

∆Q -6.276
∗∗∗

5 0.73 -6.966
∗∗∗

8 1.00 2.48
∗∗

P -1.165 0 0.26 -1.888
∗∗

0 0.26 1.50
∆P -3.801

∗∗∗
7 0.22 -10.550

∗∗∗
0 0.25 -0.26

P 2 -1.202 0 0.23 -1.847 0 0.27 1.42
∆P 2 -10.569

∗∗∗
0 0.23 -10.525

∗∗∗
0 0.23 -0.28

V I 0.333 8 1.47
∗∗

-3.970∗∗ 8 1.46
∗∗

-4.15
∗∗∗
, 4.18

∗∗∗(d)

∆V I -12.709
∗∗∗

8 1.29
∗

-13.800
∗∗∗

8 1.07 3.35
∗∗∗

RES -2.547 1 0.99 -3.369
∗

2 0.47 -1.23
∆RES -5.472

∗∗∗
1 0.48 -5.454

∗∗∗
1 0.48 -0.28

TEMP -8.921
∗∗∗

8 1.45
∗∗

-9.016
∗∗∗

8 1.44
∗∗

1.17
∆TEMP -12.192

∗∗∗
8 1.43

∗∗
-12.041

∗∗∗
8 1.43

∗∗
-0.22

RAIN -6.849
∗∗∗

0 0.89 -5.100
∗∗∗

4 0.37 0.43
∆RAIN -5.946

∗∗∗
0 1.13 -12.273

∗∗∗
0 1.14 0.09

(a) t-ratio of estimates *** ,∗∗ and ∗ denote a t-ratio significant at the 1%, 5% and 10%
(b) The number of lags (with a maximum of 8) to be included was selected using the Ng-Perron
sequential-t test
(c) Bartlett’s (B) statistic of a cumulative periodogram white-noise test (H0: error is white noise)
(d) This series exhibited a quadratic trend rather than a linear trend.

about the climate variables. TEMP appears to be stationary, but the seasonal unit root

tests did not reject the hypothesis of seasonal roots, so this variable should be considered

with caution, since it might be I(0, 1). In the case of RAIN , we also see that the series

might actually be stationary in levels also at all frequencies, I(0). Since a definite claim

cannot be made that the climatic variables are nonstationary, their introduction in the

co-integration relationship and error-correction model cannot be understood in the same

way as the remaining variables. For this reason, an alternative model that accounts for

seasonality using only the binary variable SUM is also reported.9

The augmentation of the basic DF regression with extra lags (in Section 4.1) was
9A model (not reported but available upon request) based on a co-integration equation that did not

include neither SUM nor the climatic variables (TEMP and RAIN) resulted in very similar price elast-
icities (see Section 5.5) but slightly worse fit than the models that include seasonal variables. This, of
course, confirms the intuition that the seasonal variables do not substantially affect the long-run dynamics
of the water demand.
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motivated by the need to generate iid errors. The number of lags was selected using

an Ng-Perron (1995) sequential-t test. A maximum of 8 lags was considered, given the

small sample size. A cumulative periodogram white-noise test was used to check that the

error was white noise in the unit root test regressions.10 An alternative solution is the

Phillips and Perron (1988) test (PP ), which uses the same models as DF but, instead of

lagged variables, employs a non-parametric correction (Newey and West, 1987) for serial

correlation. The critical values for both the Dickey Fuller and Phillips Perron tests have

the same distributions (critical levels are reproduced in Hamilton, 1994). In principle,

the PP tests should be more powerful than the ADF ones, so the unit root tests were

conducted using both. The results of the PP test are not reported, but available upon

request.

5.2 Further unit root tests

As described in Section 4.1.1, the conclusions of the Dickey-Fuller type tests can be suspect

in small samples and when the possibility of structural breaks has to be considered. A

DFGLS (ERS) test was used to confirm the nonstationarity of the main series in the

model. Since it is more powerful than the basic Dickey Fuller tests, this test will more

easily reject the null of nonstationarity. A KPSS test was also conducted to test the

alternative hypothesis of stationarity of the series. The results of both types of tests, in

Table 6, show no relevant differences with respect to those described in Section 5.1.

Similarly, structural breaks in the model’s series could affect the conclusions of the unit

root tests, above all because of the effects of the drought and the conservation measures

adopted by the water utility. For this reason the Clemente et al. (1998)’s tests, which
10 In the case of TEMP and V I there were some doubts about whether the error had been whitened.

However, we do not suspect that this results in a bias of the unit root tests coefficients substantial enough
to affect their conclusions.
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Table 6: DFGLS and KPSS unit root tests.
DFGLS (no trend) DFGLS (trend) KPSS (no trend) KPSS (trend)
t-stat Lags t-stat Lags t-stat Lags t-stat Lags

Q -2.511∗∗ 6 -2.565 6 0.620∗∗ 3 0.427∗∗∗ 3
∆Q -2.082∗∗ 4 -5.287∗∗∗ 3 0.045 3 0.038 3
P -0.559 1 -1.737 1 2.320∗∗∗ 3 0.274∗∗∗ 3
∆P -7.234∗∗∗ 1 -7.297∗∗∗ 1 0.106 3 0.099 3
P2 -0.619 1 -1.715 1 2.250∗∗∗ 3 0.270∗∗∗ 3
∆P2 -7.210∗∗∗ 1 -7.260∗∗∗ 1 0.107 3 0.099 3
VI 1.151 8 -1.612 8 0.630∗∗ 3 0.209∗∗ 3
∆VI -12.183∗∗∗ 8 -12.269∗∗∗ 8 0.035 3 0.028 3
RES -2.932∗∗∗ 6 -3.134∗∗∗ 6 0.387∗ 3 0.129∗ 3
∆RES -4.303∗∗∗ 7 -4.317∗∗∗ 7 0.049 3 0.038 3
TEMP -0.938 8 -2.594 7 0.019 3 0.014 3
∆TEMP -7.190∗∗∗ 8 -8.960∗∗∗ 8 0.339 3 0.016 3
RAIN -6.253∗∗∗ 1 -6.548∗∗∗ 1 0.111 3 0.059 3
∆RAIN -0.963 6 -2.554 5 0.020 3 0.018 3

allow for either one (CLEMAO1 and CLEMIO1) or two (CLEMAO2 and CLEMIO2)

structural breaks in the time series,11 were used to obtain further confirmation of the

nonstationarity of the main series considered. The results (Tables 7 and 8) confirm that

most series exhibit evidence of structural breaks. However, even when these are considered,

there is not enough evidence to reject the null of nonstationarity.12

Since the additional unit root testing supports the notion that, with the exception of

the climatic variables, the series used in the demand model are nonstationary, the next

step is to analyze the co-integrating relationships among those variables.

5.3 Co-integration regression analysis

All the series in first-differences are stationary, so the next step is to check that there is a

long-run equilibrium relationship between the variables. This requires an extension of the
11These were implemented in Stata using clemao2 and clemio2, respectively (Baum, 2005).
12Although the case of nonstationarity for the Q series is less clear now that what the tests in Section

5.1 suggested.

24



Table 7: CLEMAO1 and CLEMIO1 unit root tests.
CLEMAO1 CLEMIO1

Variable t-statd1 t-statρ−1 Lags t-statd1 t-statρ−1 Lags

Q -8.345∗∗∗ -1.407 8 -4.274 -5.579∗∗ 3
∆Q -1.008 -6.447∗∗ 3 1.790∗ -6.767 8
P 26.786∗∗∗ -2.121 2 5.236∗∗∗ -5.376∗∗ 0
∆P 0.411 -12.216∗∗ 1 -0.763 -17.668∗∗ 0
P2 25.907∗∗∗ -1.993 2 5.215∗∗∗ -5.364∗∗ 0
∆P2 0.420 -12.094∗∗ 1 -0.738 -17.508∗∗ 0
VI 5.789∗∗∗ -3.499 6 2.567∗∗ -2.028 8
∆VI -0.839 -10.819∗∗ 8 -0.577 -12.731∗∗ 8
RES -2.979 -3.137 6 -2.074∗∗ -3.852 2
∆RES -0.970 -3.469 7 -0.326 -9.861∗∗ 0
TEMP 0.786 -7.373∗∗ 8 1.193 -7.874∗∗ 8
∆TEMP -0.838 -9.729∗∗ 8 0.628 -11.562∗∗ 8
RAIN 2.061∗∗ -7.822∗∗ 1 -0.006 -7.836∗∗ 0
∆RAIN 0.034 -9.308∗∗ 2 -0.421 -6.650∗∗ 8

Table 8: CLEMAO2 and CLEMIO2 unit root tests.
CLEMAO2 CLEMIO2

Variable t-statd1 t-statd2 t-statρ−1 Lags t-statd1 t-statd2 t-statρ−1 Lags

Q -10.349∗∗∗ 4.274∗∗∗ -5.726∗∗ 9 -4.296∗∗∗ 4.333∗∗∗ -5.412 9
∆Q -2.155∗∗ 2.192∗∗ -5.425 10 -3.052∗∗∗ 4.750∗∗∗ -7.620∗∗ 10
P 26.019∗∗∗ -4.053∗∗∗ -2.571 2 8.298 ∗∗∗ -5.808∗∗∗ -8.080∗∗ 8
∆P 1.557 -2.037∗∗ -14.196∗∗ 1 0.375 -0.805 -21.296∗∗ 8
P2 26.141∗∗∗ -4.707∗∗∗ -2.576 2 9.130∗∗∗ -6.744∗∗∗ -8.900∗∗ 0
∆P2 1.617 -2.124∗∗ -14.744 1 0.530 -0.924 -22.293∗∗ 0
VI -1.193 5.886 -5.121 7 -1.651 3.344∗∗∗ -2.231 8
∆VI -1.248 0.135 -12.335∗∗ 8 -2.349∗∗ 2.782∗∗∗ -13.851∗∗ 8
RES 10.478∗∗∗ -11.215∗∗∗ -2.933 5 5.257∗∗∗ -5.872∗∗∗ -5.150 0
∆RES -2.072∗∗ 0.212 -3.355 8 -1.528 -0.067 -11.981 0
TEMP 0.621 0.184 -7.019∗∗ 8 0.791 0.880 -8.104∗∗ 8
∆TEMP -0.969 0.621 -9.698∗∗ 8 0.567 -0.201 -11.324∗∗ 8
RAIN 1.909∗ -0.863 -8.616 8 -0.438 0.581 -8.846∗∗ 0
∆RAIN 0.169 -0.189 -9.684 2 -1.650 1.236 -8.637∗∗ 4
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linear relationship between water consumption and a series of variables that the economic

theory suggests appropriate. The model given by Equation (5) was extended into two

alternative models (time subscripts have been dropped to simplify the exposition):

Q = α+ P + P 2 +RES + V I +BAN + SUM + µ (7)

including the binary variable SUM instead of the climatic variables (see Section 3) and:

Q = α0 + P + P 2 +RES + V I +BAN + TEMP +RAIN + µ0 (8)

Table 9 shows the OLS estimated coefficients of each of the variables and their t-

statistics in these estimations. The ADF test shows that the hypothesis that the residuals

in Model 7 are non-stationary can be rejected. The relevant t-ratio is −5.62513 in the usual
test of a unit root and must be compared with the critical values provided by Engle and Yoo

(1987), which depend on the dimension of the time-series and on the number of variables

included in the model. The DW statistic is also higher than the R2, which suggests the

existence of the co-integration relationship.14 The long run price-elasticity calculated at

the means of price and quantity according to Model 7 is −0.491. All the variables present
the expected signs and are highly significant.

The ADF test shows that the hypothesis that the residuals in Model 8 are non-

stationary can be rejected too. The relevant t-ratio is −5.36415. The DW statistic is again
13This value permits the rejection of the null of no co-integration at a 99% confidence level, but it is

achieved when the auxiliary regression includes no lags. Five lags are selected by Ng Perron’s sequential
t-ratio and the Akaike Information Criterion test, yielding a t-statistic of -3.053 and one lag is selected by
the Hannan-Quinn (1979) criterion, yielding a t-statistic of -3.804.
14An alternative co-integrating regression test (Sargan and Bhargava, 1983) uses the DW statistic from

the co-integrating regression. If the residuals are non-stationary, the DW statistic will approach zero as the
sample size increases, so large values of the DW statistic suggest that a cointegrating relationship exists.
15This value permits the rejection of the null of no co-integration at a 99% confidence level, but it is

achieved when the auxiliary regression includes no lags. If the auxiliary regression is run with the optimal
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Table 9: Cointegration Models 7 and 8 and Error Correction equations ECM7 and ECM8.
Variable Model 7 ECM7 Model 8 ECM8

P -78.629∗∗∗ -76.950∗∗∗

P 2 64.070∗∗∗ 62.569∗∗∗

RES -0.066∗∗ -0.067∗∗

V I 0.003∗∗∗ 0.002∗∗∗

BAN -0.451∗∗ -0.473∗∗

SUM 0.317∗∗∗

RAIN 0.000
TEMP 0.002∗∗∗

∆P t -37.437 -32.609bεt−1 -0.218∗ -0.249∗∗

∆P 2t 31.264 27.572
∆RESt -0.076∗∗ -0.098∗∗∗

∆SUM t 0.317∗∗∗

∆P t−1 -71.006∗∗∗ -79.555∗∗∗

∆P 2t−1 54.729∗∗ 61.881∗∗∗

∆Qt−1 -0.273∗∗ -0.276∗∗

∆TEMP t 0.004∗∗∗

∆RAIN t 0.000
cons 26.489∗∗∗ 0.019 26.197∗∗∗ 0.019
ll -47.07 -7.233 -50.1 -3.197
N 108 106 108 106

R
2

0.644 0.386 0.619 0.425
Durbin-Watson 0.919 0.856
Jarque-Bera (κ(2) =) 2.044 2.059
ARCH-LM, order( 1) (κ2(1)) 2.913∗ 0.001
Breusch-Godfrey LM (κ2(1)) 16.917∗∗∗ 1.876
White’s general test (κ2(1)(44)) 44.025 75.721∗∗

Cook-Weisberg (κ2(1)) 3.26∗ 0.78
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higher than the R2. The corresponding long run price-elasticity according to Model 8 is

−0.494, basically the same as the one obtained with Model 7. Once again, all variables
have the expected signs and are highly significant. The exception is RAIN , which presents

a positive sign, while we would normally expect more precipitation to reduce water use.

However, it cannot be rejected that its coefficient is null. According to the ADF tests, the

null of no co-integration can only be rejected if the lag length of the auxiliary regression is

not optimally chosen. However, the value of the DW test and economic intuition suggest

that a long-run relationship would govern the variables concerned.

Since there are more than two nonstationary series involved in the model, there could

exist more than one co-integrating relationship. For this reason and in order to obtain

more definite evidence on the existence of a co-integrating regression, the Johansen and

Juselius maximum likelihood method for co-integration (see Johansen, 1988; Johansen and

Juselius, 1990; and Osterwald-Lenum, 1992, for details) was used to determine the number

of co-integrating relationships. The summarized results are shown in Tables 10 and 11.

The eigenvalues and the maximal eigenvalue and trace statistics for the VAR matrix are

shown as well as the relevant critical values. The null hypothesis of more than one co-

integrating relationship was rejected at the 1% level of significance in all cases, except in

the case of the trace test for Model 7, which rejects the null of no-cointegration only at

about the 15%. Likelihood-ratio and Wald test statistics for the exclusion of variables

from that co-integrating relationship were also conducted, and all variables included in

the co-integration tests were found relevant. Therefore, the Johansen tests support the

assumption of co-integration for both models.

number of lags (three) the t-ratio is −4.192.
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Table 10: Model 7 Johansen-Juselius co-integration rank test.
H1:

H0: Max-lambda Trace
Eigenvalues rank<=(r) statistics statistics
(lambda) r (rank<=(r+1)) (rank<=(p=7))
.40067781 0 54.779285 115.46473
.2222569 1 26.895414 60.685446
.16540982 2 19.347149 33.790032
Osterwald-Lenum Critical values (99% interval):
Table/Case: 1∗ (assumption: intercept in co-integrating Equation)

H0: Max-lambda Trace
0 51.91 143.09
1 46.82 111.01
2 39.79 84.45

Table/Case: 1 (assumption: intercept in VAR)
H0: Max-lambda Trace
0 51.57 133.57
1 45.10 103.18
2 38.77 76.07

Sample: 1 to 108 N= 107

5.4 Error correction models

Since most of the evidence points towards the stationarity of the residuals of the co-

integrating regressions, their residuals can be introduced as error correction terms in two

error correction models. The xt variables in Equation 6 are substituted by first differences

and lagged differences16 of the co-integrating variables. The first error correction specific-

ation, ECM7 includes a summer variable, whereas the second model, ECM8 includes

TEMP and RAIN (although TEMP might suffer problems of seasonal unit roots and

it is dubious that TEMP and RAIN are nonstationary, so this second model should be

considered with caution). Table 9 reports the results of these OLS estimations. These

include lagged values of the differences of some variables. V I was left out of the ECM
16The significance of lagged values was also tested.
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Table 11: Model 8 Johansen-Juselius co-integration rank test.
H1:

H0: Max-lambda Trace
Eigenvalues rank<=(r) statistics statistics
(lambda) r (rank<=(r+1)) (rank<=(p=8))
.58686628 0 94.586283 185.98108
.2725507 1 34.048574 91.394798
.23272295 2 28.345084 57.346224
Osterwald-Lenum Critical values (99% interval):
Table/Case: 1∗ (assumption: intercept in co-integrating Equation)

H0: Max-lambda Trace
0 57.95 177.20
1 51.91 143.09
2 46.82 111.01

Table/Case: 1 (assumption: intercept in VAR)
H0: Max-lambda Trace
0 57.69 168.36
1 51.57 133.57
2 45.10 103.18

Sample: 1 to 108 N= 107

models, since it showed problems of multicollinearity with the price variables and its in-

troduction made them non-significant. It is reasonable to assume that changes in income

tend to affect water use only in the long run, most likely through impacts on the compos-

ition of the capital stock. BAN was found non-significant too and it was removed from

the ECM regressions. The speed of adjustment towards equilibrium (bεt−1 in Table 9,
corresponding to (yt−1− θxt−1) in the notation used in Equation 2) is given by −0.218 in
ECM7 and −0.249 in ECM8. It can be seen that these error correction terms have the

expected negative sign and are both significant, which further supports the acceptance of

the co-integration hypothesis.

The Ramsey RESET-test (using powers of the fitted values of ∆Qt) shows that the

null hypothesis that Models ECM7 and ECM8 have no omitted variables cannot be re-

jected. Table 9 includes a battery of diagnostic tests used to check that the residuals

30



are normally distributed and are neither autocorrelated nor heteroskedastic in the error

correction equations. These include a Jarque-Bera (1980) test for normality of the resid-

uals; White’s (1980) general test statistic and Cook-Weisberg (1983) test,17 which uses

fitted values of ∆Qt, for heteroskedasticity; a Lagrange multiplier test for autoregressive

conditional heteroskedasticity (ARCH), based on Engle (1982); and a Breusch (1978)-

Godfrey (1978) LM test. They all present acceptable values, with the exception of the

Breusch-Godfrey LM test, which leads to the rejection of the null of non-autocorrelation

in ECM7. An alternative model with extra lagged values of the price variables solves this

problem and yields a short-run elasticity of −0.073, as reported below. The results of this
additional augmented regression do not differ significantly from the ones reported and are

available upon request.

5.5 Price elasticities

The computation of short-run price elasticities (eSR) using the average price and water

consumption, yields the following results. Using ECM7 and the co-integration regression

in Model 7, eSR = −0.159 (while the augmented model used to correct for autocorrelation
would yield eSR = −0.073) and the eLR = −0.494. Similarly, ECM7 and Model 7 yield
eSR = −0.101 and eLR = −0.491.18

These estimates of price-elasticities confirm that residential water demand is inelastic

to its price, but not perfectly so. Almost all the papers published on residential water

demand agree on this result. Additionally these results confirm the intuition that long-

run elasticities are higher (in absolute values) than short-run ones (Dandy, et al., 1997;

Nauges and Thomas, 2003; Martínez-Espiñeira and Nauges, 2004) and also than most of
17Also known as Breusch-Pagan (1979) test for heteroskedasticity.
18A model based on a co-integration equation that did not include neither SUM nor the climatic variables

(TEMP and RAIN) yielded eSR = −0.136 and eLR = −0.491.
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the measures that have been obtained in other European countries.19 The use of the co-

integration approach to model the demand for water yields rather sensible results and helps

to distinguish between the short-run effects and the long-run effects of pricing policies.

5.6 Wickens-Breusch one-step approach

The Engle-Granger procedure described above enjoys important attractive asymptotic

properties but it also suffers weaknesses. In finite samples, the parameter estimates are

biased. The extent of this bias can be severe, and will depend on omitted dynamics and

failure of the assumption of weak exogeneity among other things. The reasonable size

of the sample and the fact that the estimates agree with economic theory and previous

empirical research based on alternative econometric techniques suggest in principle that

this might be a minor problem in this case. Another problem, however, is that there is no

possibility to test the long run parameters.20 For these reasons, an additional regression

was run using the one-step Wickens-Breusch (1988) approach. The results are reported in

Table 12. The associated price-elasticities, calculated at the means of price and quantity

are eSR = −0.08 and eLR = −0.405 in the model that uses SUM and eSR = −0.113 and
eLR = −0.514 in the model that uses TEMP and RAIN . The estimates are very close

to the ones calculated with the Engle-Granger approach, which suggests that they can be

accepted with more confidence. They also fall reasonably close to the values previously

obtained using alternative econometric techniques on data from the same city. García-

Valiñas (2002) estimated a price-elasticity of -0.25 for the first block of consumption and

-0.77 for the second block, while García-Valiñas (2005) estimated the price-elasticity as
19See Arbués et al. (2003) for a review of water demand studies with a special focus on European cases.
20The limiting distributions of the β parameters are non-normal and non-standard. Standard hypothesis

testing is invalid as t and F statistics do not have t or F distributions in the context of the co-integrating
regression.
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-0.49. Martínez-Espiñeira and Nauges (2004) found also that the short-run elasticity fell

around the value of -0.10, using a Stone-Geary demand specification.

Note that these values of price-elasticities compare well to those obtained in other

European areas, but are smaller than most values obtained in North America (see Arbués

et al., 2003 or Dalhuisen et al, 2003). In particular, studies based on discrete-continuous

choice models of water demand (Hewitt and Hanemann, 1995; Pint, 1999) obtain much

larger price elasticity estimates.21 This likely has to do with the fact that in Seville the

largest component of residential water use is associated with indoor water use, while,

contrary to many areas in the US, outdoor use is minimal. This confirms the notion that

price elasticities may be very different depending on the area of study, so policies should

be informed by studies based on at least similar areas.

6 Conclusions and suggestions for further research

This study is innovative in two aspects. This is the first time that co-integration and

error correction techniques are employed in the field of water consumption. Moreover,

the estimation of residential water demand using time-series monthly data is still rather

uncommon in Europe. The application of these techniques to monthly data to the case

of Seville leads to satisfactory results. The fit of the Granger co-integration relationship

between water use and the variables that should be expected to influence it in the long

run and of the error correction models is quite good. The dynamic properties of the series

were analyzed using different approaches and two alternative specifications for the water

demand functions were used. However, the results in terms of price elasticities, most of

all in the short run, are remarkably close. This robustness to specification and testing
21However, note that Cavanagh et al. (2002) found smaller elasticities using a similar methodology for

different geographical areas.
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Table 12: Wickens-Breusch one-step cointegration regressions, Models 7 and 8 (dependent
variable: ∆Qt−1).

Model 7 Model 8

Pt−1 -14.826 -12.811
Qt−1 -0.197∗∗ -0.219∗∗∗

P 2t−1 12.205 10.122
∆Qt−2 0.226∗∗

BAN t−1 -0.186∗ -0.286∗∗∗

∆P t−1 -4.904∗∗ -6.274∗∗

∆SUM t 0.236∗∗

∆SUM t−1 -0.228∗∗

∆RESt -0.054∗ -0.071∗∗

∆P t−2 68.637∗∗∗

∆P 2t−2 -53.915∗∗

SUM t−1 0.121
∆Qt−2 -0.417∗∗∗

∆TEMP t−2 0.004∗∗∗

RAIN t−1 0.000∗∗

∆INF t−1 -0.558∗

∆RAIN t 0
∆BAN t 0.363
CONS 5.664∗ 5.354

R2 0.4553 0.4207
N 105 106
F 8.25∗∗∗ 7.35∗∗∗

RESET 0.55 1.75
Jarque-Bera normality test (κ(2)) 21.49∗∗∗ 5.669∗

ARCH-LM test statistic (κ2(1)) 3.154 0.0265371
Breusch-Godfrey LM-statistic (κ2(1)) 8856157 1.717
White’s general test statistic (κ2(1)(44)) 101.277∗ 89.592∗

Cook-Weisberg test (κ2(1) ) 0.75 1.95
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procedures leads to confidently accept the main results.

The estimates of the price effects obtained are less than one in absolute value, which

confirms the inelasticity of household demand with respect to the price of water. As

predicted by the theory, the long-run price elasticities are greater, in absolute value, than

their short-run counterparts.

The measure of the impact of pricing policies on the behavior of households depending

on the changes that these policies introduce in the tariff structure is still an open research

area. The long-run effects of water pricing on water use should be investigated using other

datasets, involving different regions, and, if possible, longer time-series or panel data.

Ideally, studies should be conducted at the individual level, with observations linked to

the ownership and frequency of renewal of capital stock.
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Appendix: Summary of demand measures

Measures taken to reduce demand were of three types:

1. Changes in tariff structure to promote savings (see Tables 1 and 2).

2. Meter Replacement Campaign (Plan Cinco) to increase the reliability of consump-

tion readings. In the year 2000, meters in Seville and its metropolitan area were on

average less than four years old.

3. Promotion of the replacement of collective meters in blocks of dwellings by individual

ones. A total of 18,822 supplies corresponding to 226,034 buildings, 87% of them

located in the city of Seville, was to be included in the project. 50% of these buildings

have between two and eight dwellings, 28.4% have between 9 and 16 dwellings, 10.8%

are buildings with between 17 and 24 dwellings and the same percentage corresponds

to buildings with more than 25 dwellings. The supply company has provided a

series of measures to facilitate the replacement, taking into account the problems

and disadvantages encountered (EMASESA 2000, pp. 9-10) .
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