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Optimal hedging strategies for multi-period guarantees
in the presence of transaction costs: A stochastic

programming approach q
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a Norwegian University of Science and Technology, Department of Industrial Economics and Technology Management,

Alfred Getzvei 3, 7491 Trondheim, Norway
b Trondheim Business School, HIST avdeling TØH, 7004 Trondheim, Norway

Abstract

Multi-period guarantees are often embedded in life insurance contracts. In this paper we consider the problem of hedg-
ing these multi-period guarantees in the presence of transaction costs. We derive the hedging strategies for the cheapest

hedge portfolio for a multi-period guarantee that with certainty makes the insurance company able to meet the obligations
from the insurance policies it has issued. We find that by imposing transaction costs, the insurance company reduces the
rebalancing of the hedge portfolio. The cost of establishing the hedge portfolio also increases as the transaction cost
increases. For the multi-period guarantee there is a rather large rebalancing of the hedge portfolio as we go from one per-
iod to the next. By introducing transaction costs we find the size of this rebalancing to be reduced. Transaction costs may
therefore be one possible explanation for why we do not see the insurance companies performing a large rebalancing of
their investment portfolio at the end of each year.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Multi-period guarantee; Optimal hedging strategies; Transaction costs; Stochastic programming

1. Introduction

A life insurance company is mainly exposed to
two types of risks; mortality risk and financial risk.

Mortality risk is the risk that a policyholder lives
longer or dies earlier than what is expected. This is
a risk that can, by the law of large numbers, be
diversified away by issuing many similar policies.
The premiums collected by a life insurance company
are typically invested in the financial market. A typ-
ical investment portfolio for an insurance company
consists of bonds, stocks, and in some cases also real
estate. The return on a life insurance policy is often
a function of the return on the insurer’s investment
portfolio. Since many policies have a minimum
guaranteed rate of return included, the uncertain
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return on the investment portfolio exposes the
insurers to financial risk. In contrast to mortality
risk, financial risk increases in the number of poli-
cies issued. Thus, the financial risk is undiversifiable.

To reduce the probability of bankruptcy, the
financial risk should be integrated in the company’s
overall risk management systems. In particular, the
company should have a solid knowledge about how
to hedge the financial risk inherent in the minimum
rate of return guarantees.

Abstracting from mortality risk, a life insurance
policy is basically a financial derivative that is writ-
ten (on the return) on the life insurance company’s
investment portfolio. In a complete market, all
financial derivatives can be replicated by self-financ-
ing trading strategies, the market value of the life
insurance contract included. In the absence of arbi-
trage, it is clear that the market value of the insur-
ance policy has to equal the initial cost of the
replicating portfolio.

In this paper we focus on the hedging or replica-
tion of a policy with a so-called multi-period guaran-
tee embedded.2 In some countries the return on a
life insurance contract is subject to an annual mini-
mum guaranteed rate of return. For instance, if the
annual minimum guaranteed rate of return is 4%,
and the return on the insurance company’s invest-
ment portfolio in year one and two are �10% and
15%, respectively, the return on and the cash flow
from the insurance policy develop as in Fig. 1
(assuming one unit of account is invested with the
guarantee embedded).

The multi-period guarantee has a sort of ‘‘rat-
cheting-effect’’, i.e., any good return in earlier peri-
ods will not be lost in a period with a ‘‘low’’
return on the investment portfolio. It turns out that
this type of guarantee is rather expensive and
exposes the life insurance companies to a consider-

able amount of financial risk. The ‘‘delta’’ of the
guarantee can be rather large and can be much lar-
ger than one. It is therefore important that the issu-
ers of such guarantees are aware of how to hedge
them.

The hedging strategy for the multi-period guar-
antee distinguishes it self quite a bit from the hedg-
ing strategy for, say, a standard call option. From
the Black and Scholes (1973) analysis we know that
the hedging strategy for a call option is a portfolio
of the underlying stock and the risk free asset. The
exact holdings of the two assets are given by Ito pro-
cesses with continuous trajectories over the life time
of the option. This is not the case for the strategy
for the multi-period guarantee. This strategy experi-
ences a discontinuity, or jump, as one goes from one
period to the next. That is, there is either a signifi-
cant sell-off of the investment portfolio or the risk
free asset, this depending on whether the guarantee
is binding or not. Of course, since the replicating
portfolio is self-financing, a sell-off of the risk free
asset leads to an increased holding of the investment
portfolio, and vice versa.

In practice, one does not observe the insurance
companies performing such a major rebalancing of
their balance sheet at the end of each year. There
can be several reasons for this. One is that the pol-
icies they have issued are more complex than the
one described above; another is that they do not cre-
ate a perfect hedge for the guarantees they have
issued. A third explanation, which is the one we
investigate in this paper, is the presence of transac-
tion costs. It is reasonable to expect that the volume
of trading will diminish as the cost of trading
increases. In particular, the focus in this paper is
on the impact transaction costs have on the large
rebalancing that is undertaken as we go from one
period to the next.

The paper is organized as follows: in Section 2 we
present assumptions underlying our economic
model and the insurance policy. In Section 3 we
review results regarding the hedging of the multi-
period guarantee in the absence of transaction costs.
In Section 4 we analyze the hedging strategies in the
presence of transaction costs. Section 5 concludes.

2. The economic model and the insurance policy

As argued in Section 1, mortality risk can be
diversified by issuing many similar policies. We
therefore abstract from this type of risk and instead
concentrate on financial risk.

Fig. 1. The figure shows the return on and the cash flow from the
insurance policy when one unit of account is invested in the
insurer’s investment portfolio and a two-period guarantee is
embedded.

2 Sometimes we refer to the insurance policy with a guarantee
embedded as simply the guarantee.
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We assume a very simple model for the financial
market. Only two ‘‘assets’’ are considered; the insur-
ance company’s investment portfolio and a risk free
asset. We assume that a binomial process gives the
portfolio value. The market value of the investment
portfolio is Si in node i. In node i + 1, the portfolio
value has either increased to

Siþ1 ¼ Siu ð1Þ
or decreased to

Siþ1 ¼ Sid; ð2Þ
where

d ¼ 1

u
; ð3Þ

see e.g., Cox et al. (1979). This is also illustrated in
Fig. 2 (here S0 is abbreviated to S). Let r be the
instantaneous standard deviation of the return on
the investment portfolio in a continuous time model
and let Dt be the time interval between node i and
i + 1. We then define the factor u as

u ¼ er
ffiffiffiffi
Dt
p
:

The risk free asset is a bank account accruing the
constant short term interest rate r = lnR, from one
node to the next, thus

Biþ1 ¼ BiR; ð4Þ
where B0 = 1.

For simplicity we assume the company only has
issued one contract. The contract lasts for two peri-
ods (each will typically be of one year). Let I be an
even number. We divide each period into I/2 time
steps, i.e., node I/2 is the end of the first period (also
the beginning of the second period), while node I is
the last node in the second period. Let i be the num-
ber of up-moves in the first period and j the number
of up-moves in the second period. The return on the
investment portfolio in the first period is then
defined as

d1 ¼ uidI=2�i � 1 ð5Þ

and for the second period

d2 ¼ ujdI=2�j � 1: ð6Þ

In each period the policyholder is guaranteed a
minimum rate of return equal to g. This is known
as a multi-period guarantee, or in this case a two-
period guarantee. There are several interpretations
of this type of guarantee, but we choose the same
interpretation as in e.g., Miltersen and Persson
(1999), i.e., the contract with the two-period guaran-
tee embedded has a terminal cash-flow at the end of
the second period of (i.e., in node I)

p2 ¼ maxðD1;GÞ �maxðD2;GÞ; ð7Þ

where Di = 1 + di, i 2 {1,2}, and G = 1 + g. To
emphasize the fact that the policy has a guarantee
embedded, we will throughout denote the policy
the guarantee.

As is evident from Eq. (7), the multi-period guar-
antee is a path dependent derivative asset. The ter-
minal payoff is dependent on the return on the
investment portfolio in the different periods. This
is illustrated in Fig. 3 for the two-period guarantee
when the investment portfolio evolves as in Fig. 2
and each period is of two time steps.

In a real world financial market, the trading of
financial assets comes at a cost. Stockbrokers and
other financial intermediaries charge their custom-
ers a fee when selling and buying financial assets.
For simplicity we assume that there is only a cost
associated with trading the investment portfolio,
not the risk free asset. As will become clear later,
to hedge the guarantee, the company has to con-
struct a hedge portfolio consisting of the investment
portfolio and the risk free asset. The proceedings
from a sale of part of the investment portfolio, net
of transaction costs, will be invested in the risk free
asset and cash needed to increase the holding in the
investment portfolio will have to be raised by a
reduction in the holding of the risk free asset. No
infusion or withdrawal of cash from the hedge port-
folio is allowed for.

Let ai�1 be the number of units of the investment
portfolio in the hedge portfolio that we ‘‘arrive’’ in
node i with, and ai the number we ‘‘leave’’ with.
The corresponding quantities for the risk free asset
are given by bi�1 and bi, respectively. Total transac-
tion cost in node i is given by

Ci ¼ jai � ai�1jSic;
Fig. 2. Illustration of the development in the value of the
investment portfolio for four time steps.
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for some parameter 0 6 c < 1. Here c represents a
proportional transaction cost. Thus, there are no
fixed costs associated with rebalancing the hedge
portfolio.

3. Hedging with zero transaction costs

The motivation for this paper is partially an
observation in Lindset (2003). It is there observed,
although in a continuous time setting, that there is
a large rebalancing of the hedge portfolio as we go
from one period to the next. This discontinuity is
illustrated in Fig. 4.

In the case of zero transaction costs, it is straight-
forward to create a perfect hedge of the guarantee.
Let f(u) be the value of the guarantee in case the

investment portfolio has had an up-move from node
i to i + 1 and f(d) for a down-move. We then need a
hedging strategy satisfying Eqs. (8) and (9)

aiSiuþ biBiR ¼ f ðuÞ ð8Þ

and

aiSid þ biBiR ¼ f ðdÞ: ð9Þ

The solution to these two equations is

ai ¼
f ðuÞ � f ðdÞ

Siðu� dÞ ð10Þ

and

bi ¼
f ðdÞ � ðf ðuÞ � f ðdÞÞd

u� d
BiR

: ð11Þ
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0.8

1

1.2

1.4

Value investment portfolio Units of risk free asset period #2

Units of investment portfolio period #1 Units of investment portfolio period #2

Units of risk free asset period #1

Fig. 4. Illustration of the discontinuity in the replicating portfolio (for a continuous time model) as we go from the first to the second
period.

Fig. 3. Illustration of the gross return on the two-period guarantee given the development in the value of the investment portfolio in Fig. 2.
(a _ b) = max(a,b).
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Consider the situation where the investment
portfolio has been performing badly in most of
the first period, and any up-movements cannot pro-
hibit the guarantee from becoming binding in the
first period. This implies that3 f(u) � f(d) = 0, thus,

ai ¼ 0 and bi ¼
f ðdÞ
BiR

:

Similarly, if the investment portfolio has been per-
forming well and any down-movements cannot
make the guarantee become binding in the first per-
iod, we have that f(u) � f(d) = Si(u � d)h, thus,

ai ¼ h and bi ¼ 0:

Here h is the time 1 market value of a guarantee
with time 2 payoff pm

2 ¼ maxðD2;GÞ. This basically
follows since D1 and D2 are statistically independent.

However, in the beginning of the second period,
both ai and bi will be strictly positive if we exclude
contract specifications where G > uI/2 (the guarantee
is always binding) or G < dI/2 (the guarantee is never
binding). We therefore conclude that there will also
be a ‘‘large’’ change in the hedge portfolio as we go
from the last node in the first period to the begin-
ning of the second period.

4. Hedging with transaction costs

In this section we want to analyze the situation
where we have a proportional transaction cost. It
is reasonable to assume that it is more costly to
rebalance the investment portfolio than it is to
buy or sell the risk free asset. The costs may be both
direct and indirect. The direct costs are such as com-
mission fees to brokers and so on. For an insurance
company with a large investment portfolio, the
rebalancing of the investment portfolio may also
have an influence on the liquidity in the market
and represent an indirect cost. The total transaction
cost may therefore be rather large.

That no transaction costs are imposed on selling
or buying the risk free asset can also be justified by
the fact that, for instance, any proceedings from
selling parts of the investment portfolio, net of
transaction costs, is used to buy the risk free asset.
Therefore, c can be interpreted as also incorporating
the costs associated with buying or selling the risk
free asset. Also, as pointed out by Boyle and Vorst
(1992), including transaction costs on the trading of

the risk free asset, ‘‘. . . the model becomes much
more complicated without providing new insight.’’

By imposing this transaction cost on the rebalanc-
ing of the hedge portfolio, we expect that less trading
will take place than with zero transaction costs. In
particular, what we would like to investigate in this
paper is if the heavy rebalancing of the hedge portfo-
lio at the end of the first period is still present when
such a rebalancing is costly. And if so, does an
increase in the cost of trading affect the hedge portfo-
lio, and in particular, the size of the rebalancing at the
end of the first period. When the management of the
insurance company is trying to maximize the profit of
the company, the cost of this rebalancing should be
taken into account in their risk management routines.

From standard corporate finance literature we
know that the only goal that should be pursued by
the management is to maximize the value of the share-
holders’ stocks. Insurance companies are also subject
to rather strict regulations. Here we assume that the
insurer has to be able to meet the obligations imposed
by the guarantee in every state of the world. The
insurer does therefore have to create a hedge portfolio
that will prevent it from defaulting on its obligations
with certainty.4 To maximize the market value of the
share holders stocks, the management has to mini-
mize the costs of establishing the hedge portfolio.5

Let H be the set of all possible trading strategies.
We take a and b to be the trading strategy for the
investment portfolio and the risk free asset,
respectively.

The insurer’s hedging strategy is the solution to
the following optimization problem (for an introduc-
tion to stochastic programming, see e.g., Kall and
Wallace, 1994).

min
a;b2H
ða0S þ b0Þ

subject to

aI�1SI þ bI�1BI P fI

aiSi þ biBi ¼ ai�1Si þ bi�1Bi � Ci; 0 < i < I ;

where fI is the final payoff from the guarantee in
node I.

Note that it is the portfolio we ‘‘arrive’’ in node I
with, i.e., the portfolio constructed in node I � 1,

3 This follows since the terminal payoff at time t2 (i.e., in node I)
is the same both if the investment portfolio moves up or down.

4 A buffer capital in form of equity would reduce the need for
hedging. We do not take this into account.

5 We assume that no funds are added or subtracted from the
hedge portfolio between time zero and the end time (except for
the transaction costs), i.e., we assume a ‘‘quasi’’ self-financing
hedge portfolio.
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that has to have a value greater or equal to the pay-
off from the guarantee (i.e., the insurance policy).
There is no point in rebalancing this portfolio in
node I, since this only would impose unnecessary
transaction costs. The value of the portfolio we
‘‘leave’’ with in node i must be the same as the value
of the portfolio we ‘‘arrive’’ with, subtracted the
cost of rebalancing the hedge portfolio. Also, we
have not included any transaction costs on the cre-
ation of the hedge portfolio at time 0 since we
assume that the insurance company already is in
possession of the investment portfolio.

4.1. A strictly dominating strategy

If there is a strategy dominating the dynamic
hedge portfolio in the sense that the end value of
the strategy is always greater or equal to the payoff
from the guarantee, we say that this is a dominating

strategy. If, in addition, the initial cost of the strat-
egy is less than the cost of the dynamic hedge port-
folio, we say that this strategy is a strictly

dominating strategy. For instance, for a call option
with terminal payoff max(ST � X, 0), buying the
stock at the time the option is written is a dominat-
ing strategy since it always gives a greater payoff
than the call option (cf. Soner et al., 1995). For a
maturity guarantee with payoff max(ST,X), a port-
folio consisting of the stock and the present value
of X is a dominating portfolio.

For the two-period guarantee we have that the
time 2 payoff is given by

p2 ¼ max
SI=2

S0

;G
� �

�max
SI

SI=2

;G
� �

: ð12Þ

This yields the possibility of four different payoffs
(these are also illustrated in Fig. 5).

Payoff 1 SI
S0

: This payoff can be replicated by buy-
ing 1

S0
units of the underlying asset at time 0 and

holding on to the position until time 2. This situa-
tion corresponds to the case where the guarantee
is not binding in any of the two periods.

Payoff 2 G2: This payoff can be replicated by
depositing G2

R2 in the bank (i.e., buying the risk free
asset) at time 0 and holding on to the position until

Fig. 5. The figure illustrates the four different parts of the
dominating hedging strategy for a two-period guarantee. The first
two parts are buy-and-hold strategies, while the last two require a
reinvestment after the first period.

0

0.2

0.4

0.6

0.8

1

1.2

c = 0.00 c = 0.02 c = 0.10 c = 0.25 Value investment portfolio

Fig. 6. The number of units of the investment portfolio to include in the hedge portfolio for a given scenario for different levels of the
proportional transaction cost c.
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time 2. This corresponds to the case where the guar-
antees are binding in both periods.

Payoff 3 G SI
SI=2

: This payoff can be replicated by
depositing G

R in the bank at time 0 and holding on
to the position until time 1. The amount has grown
to G at time 1. We use this money to buy G 1

SI=2
units

of the underlying asset and hold on to the position
until time 2. This corresponds to the case where
the guarantee is binding in the first period.

Payoff 4
SI=2

S0
G: This payoff can be replicated by

buying 1
S0

G
R units of the underlying asset at time 0

and holding on to the position until time 1. The
position has grown to

SI=2

S0

G
R at time 1. We sell the

underlying asset and deposit the money in the bank
and hold on to this position until time 2. This corre-
sponds to the case where the guarantee is binding in
the second period.

The cost of this strategy for S0 = 1 is (without
including transaction costs for the rebalancing at
time 1 for payoff 3 and 4)

pD
0 ¼ 1þ G2

R2
þ G

R
þ G

R
¼ 1þ G

R

� �2

� 4: ð13Þ

As we can see, this is a rather expensive strategy.
The ratio G

R will typically not be very far from 1, thus
pD

0 � 4. By including transaction costs for the rebal-
ancing at time 1 for payoff 3 and 4, the strategy be-
comes even more expensive.

If we find this strategy to be strictly dominating,
we would prefer this strategy over the dynamic
hedge since it is cheaper to establish and secures that
the insurer is able to cover the liabilities imposed by
the guarantee with certainty.

4.2. Example of two replicating strategies

In Figs. 6–9 we have illustrated the optimal hedg-
ing strategies for two given realizations of the devel-
opment in the investment portfolio. The following
parameters are used: r = 0.05, g = e0.04 � 1,
r = 0.20, and Dt = 1/30, i.e., each year is divided
into 30 time steps. The initial investment to be sub-
ject to the guaranteed return is normalized to one.
Figs. 6 and 8 show how the holdings of the invest-
ment portfolio changes as time passes by and the
value of the investment portfolio changes. Figs. 7
and 9 show the corresponding holdings in the risk
free asset. Although not easy to see from the figures,
it appears that less trading takes place when the
transaction cost increases. We can also see that
there is a significant rebalancing in the middle of
the figure (i.e., when we go from the first to the sec-
ond period).

4.3. Is the ‘‘turn-over’’ in the hedge portfolio

reduced when the cost increases?

To what extent is the total rebalancing of the
hedge portfolio influenced by the transaction costs,
and do the costs really have an influence on the
major rebalancing at the end of the first year?

To answer this, we should take into account that
some of the paths for the realization of the value of
the investment portfolio may lead to more rebalanc-
ing than other paths. As a proxy for the probability
of a given path or the probability for ending up in a
particular node in the tree, we propose to use the

0

0.2

0.4

0.6

0.8

1

1.2

c = 0.00 c = 0.02 c = 0.10 c = 0.25 Value investment portfolio

Fig. 7. The number of units of the risk free asset to include in the hedge portfolio for a given scenario for different levels of the
proportional transaction cost c.
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risk neutral up and down probabilities derived in
Cox et al. (1979). They show that the up probability
is given by

q ¼ u� R
u� d

;

and the down probability by 1 � q. We use these
probabilities to calculate the expected rebalancing
for a given level of the proportional transaction
cost, c. Although this does not represent the real
world probabilities, we think they suffice as a rea-
sonable good approximation when calculating the
effects on the hedge portfolio when introducing
transaction costs.

From Table 1 we see that the expected rebalanc-
ing of the investment portfolio decreases when

increasing the proportional transaction cost (line
7). The major rebalancing from period one to two
is also expected to decrease. However, it is not
decreasing monotonically; for small transaction
costs, there is actually an increase in the expected
rebalancing (line 2). It is interesting to notice that
for large transaction costs, the expected jump
between period one and two is significantly smaller,
as a fraction of the total expected rebalancing (line
8), than for lower transaction costs. This indicates
that the hedge portfolio is constructed so as to
reduce the expensive jump. For reasonable transac-
tion costs for a life insurance company, say, less
than 6%, the jump represents a greater fraction of
the total expected rebalancing than for the case with
zero transaction costs. For both c = 0.01, c = 0.02,

0
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0.8
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1.4

c = 0.00 c = 0.02 c = 0.10 c = 0.25 Value investment portfolio

Fig. 8. The number of units of the investment portfolio to include in the hedge portfolio for a given scenario for different levels of the
proportional transaction cost c.
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c = 0.00 c = 0.02 c = 0.10 c = 0.25 Value investment portfolio

Fig. 9. The number of units of the risk free asset to include in the hedge portfolio for a given scenario for different levels of the
proportional transaction cost c.
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and c = 0.03, the expected jump is in fact greater
than for c = 0.00. This is somewhat surprising and
may be an indication that transaction costs are
not the most likely explanation for why insurance
companies are not performing a major rebalancing
of their investment portfolio at the end/beginning
of each year.

4.4. More advanced price processes

Returns on financial assets in real world financial
markets often have heavier tails than normally dis-
tributed returns and volatilities are typically not
constant over time. Kozubowski and Rachev
(1994) find that the geometric stable distribution fits
empirical returns well. This distribution typically
has heavier tails than the normal distribution. There
are also empirical evidence that volatilites follow
stochastic processes (see e.g., Eraker et al., 2003)
and that there are periods with high and low volatil-
ities, often referred to as volatility clustering. Our
analysis of the hedging strategy for the guarantee
relies heavily on the assumed stochastic process
for the investment portfolio. With more realistic
price processes, e.g. exhibiting heavy tails and vola-

tility clustering, there are no generally accepted
ways of discretizing the processes into scenario
trees. One possible approach is to use Monte Carlo
simulation, and subsequently construct a scenario
tree as in Heitsch and Römisch (2005). We leave
the analysis of the hedging strategies using more
advanced price processes for future research.

5. Conclusions

We have in this paper derived optimal hedging
strategies for multi-period guarantees in the pres-
ence of transaction costs. We found the cost of
establishing the hedge portfolio to increase as trans-
action costs increased. We also found the large
rebalancing at the end of a period to decrease as a
function of the transaction cost. Total rebalancing
performed over the lifetime of the guarantee was
also found to decrease when the transaction cost
increases. However, for very small transaction cost,
we actually found the total rebalancing to increase.
This may be an indication that the presence of
transaction costs does not explain, or is not the only
explanation, for why life insurance companies are

Table 1
(1) is the proportional transaction cost; (2) is the (risk neutral) expected rebalancing of the investment portfolio between period 1 and 2; (3)
is (2) normalized with c = 0 as the basis; (4) is the (risk neutral) expected rebalancing of the risk free asset between period 1 and 2; (5) is (4)
normalized with c = 0.6 is the expected cost of rebalancing between period 1 and 2; (7) is the expected total rebalancing of the investment
portfolio; (8) is the expected rebalancing between period 1 and 2 as a fraction of the total rebalancing; (9) gives the (smallest) initial cost for
the hedge portfolio

(1) Transaction cost c 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

(2) E jaI
2
� aI

2�1j
h i

0.523 0.534 0.544 0.553 0.481 0.486 0.488 0.418 0.326 0.326 0.312 0.298 0.295

(3) (2) as a fraction of c = 0 1.000 1.020 1.039 1.056 0.920 0.929 0.933 0.798 0.623 0.623 0.597 0.569 0.565

(4) E jbI
2
� bI

2�1j
h i

0.507 0.519 0.529 0.539 0.467 0.472 0.474 0.405 0.323 0.322 0.307 0.295 0.292

(5) (4) as a fraction of c = 0 1.000 1.023 1.043 1.061 0.921 0.930 0.935 0.798 0.636 0.635 0.604 0.581 0.575

(6) E jaI
2
� aI

2�1jSI
2�1c

h i
0.000 0.005 0.011 0.017 0.020 0.025 0.030 0.029 0.027 0.030 0.031 0.033 0.036

(7) E jDaj½ � 5.139 4.737 4.464 4.262 4.025 3.902 3.798 3.628 3.459 3.400 3.329 3.262 3.218
(8) (2)/(7) 0.102 0.113 0.122 0.130 0.120 0.124 0.129 0.115 0.094 0.096 0.094 0.091 0.092
(9) Price hedge portfolio 1.156 1.202 1.243 1.281 1.316 1.350 1.382 1.413 1.443 1.472 1.501 1.530 1.558

(1) Transaction cost c 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25

(2) E jaI
2
� aI

2�1j
h i

0.254 0.251 0.194 0.194 0.191 0.156 0.156 0.155 0.153 0.143 0.117 0.117 0.115

(3) (2) as a fraction of c = 0 0.485 0.480 0.370 0.371 0.366 0.298 0.299 0.296 0.292 0.274 0.223 0.223 0.220

(4) E jbI
2
� bI

2�1j
h i

0.252 0.252 0.200 0.201 0.199 0.165 0.167 0.166 0.164 0.157 0.135 0.135 0.135

(5) (4) as a fraction of c = 0 0.497 0.496 0.394 0.396 0.392 0.326 0.329 0.328 0.324 0.310 0.266 0.267 0.265

(6) E jaI
2
� aI

2�1jSI
2�1c

h i
0.032 0.034 0.029 0.031 0.033 0.027 0.028 0.029 0.030 0.030 0.025 0.026 0.027

(7) E jDaj½ � 3.117 3.083 2.973 2.950 2.915 2.805 2.793 2.772 2.740 2.700 2.576 2.568 2.554

(8) (2)/(7) 0.081 0.081 0.065 0.066 0.066 0.056 0.056 0.056 0.056 0.053 0.045 0.045 0.045
(9) Price hedge portfolio 1.585 1.613 1.640 1.667 1.694 1.720 1.746 1.772 1.798 1.824 1.850 1.875 1.900
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not performing a major rebalancing of their invest-
ment portfolio at the end of each year.
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