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ABSTRACT 

 

Available security standards for RFID networks (e.g. ISO/IEC 29167) are designed to 

secure individual tag-reader sessions and do not protect against active attacks that could 

also compromise the system as a whole (e.g. tag cloning or replay attacks). Proper traffic 

characterization models of the communication within an RFID network can lead to better 

understanding of operation under “normal” system state conditions and can consequently 

help identify security breaches not addressed by current standards. This study of RFID 

traffic characterization considers two piecewise-constant data smoothing techniques, 

namely Bayesian blocks and Knuth’s algorithms, over time-tagged events and compares 

them in the context of rate-based anomaly detection.  

 

This was accomplished using data from experimental RFID readings and comparing (1) 

the event counts versus time if using the smoothed curves versus empirical histograms of 

the raw data and (2) the threshold-dependent alert-rates based on inter-arrival times 

obtained if using the smoothed curves versus that of the raw data itself. Results indicate 

that both algorithms adequately model RFID traffic in which inter-event time statistics 

are stationary but that Bayesian blocks become superior for traffic in which such statistics 

experience abrupt changes.
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Chapter 1 

INTRODUCTION 

 

1.1    Motivation  

 

The development of Radio Frequency Identification (RFID) technology has changed the 

process of electronic identification in previously unimagined ways. Although RFID was 

initially developed over 50 years ago, its spread was inhibited until now by high cost and 

non-uniform industry standards. RFID technology is used in more products than ever 

today and is relied on to identify numerous items in our consumer intensive activities. 

While many individuals may not realize the direct impact of RFID technology on their 

lives, it is of immense value and is utilized by hospitals, airports, department stores, 

schools, warehouses and many others. With thousands of RFID transactions taking place 

on a daily basis an important question arises. Are RFID transactions immune to malicious 

attacks? Is the platform secure enough and does it provide a method to detect and reject 

anomalies? This study is motivated by the need to provide answers to these questions.  

 

1.2    Background of the Study  

 

The concept of detecting anomalies in network traffic is not entirely new as considerable 

research has already been done in that area. Typically, network anomaly detection is done 

through real-time classification of trends using various algorithms [Haselsteiner06]. 
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These trends are analyzed and based on these algorithms a conclusion is drawn on 

whether an anomaly is present. A forecasting algorithm is often utilized to draw an 

expected baseline. Examples of such include the Holt-Winters method [Beach04]. Since 

not all anomalies are attacks or intrusions, a typical network traffic characterization 

method may rely on historical events and statistics to draw differences between 

detections. Behavior-based anomaly detection methods such as the maximum entropy 

estimation method have also been researched with relative success [Gu05]. This study, 

however, introduces new approaches to detecting such anomalies. These approaches are 

the Bayesian Blocks method and the Knuth Rule method. These algorithms will be 

briefly discussed.   

 

1.3    Bayesian Blocks 

 

The Bayesian blocks technique was developed to correct shortfalls in previous statistical 

methods. Originally developed for the analysis of photon arrival behavior, the Bayesian 

blocks method was developed to capture local variability which previously was near 

impossible in classical statistical methods. Initially proposed by [Scargle98], the aim of 

Bayesian Blocks modeling is to select, per some fitness function, the model that best fits 

patterns in the raw data. The Bayesian Blocks method is applied using an iterative 

procedure that finds approximate multiple change points: start with the whole observation 

interval, decide between single segment vs. two segments via an analytical method (i.e. 

via evaluating the closed form expression for the fitness function), pick the “winner” 

model and recursively apply the same procedure to its resulting subintervals [Alkadi16]. 
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A halting condition is defined as no change points being detected by the analytical 

method in the “winner” subinterval of the data, where the threshold parameter 𝜌 is used 

to put a lower limit on the subinterval length: 

𝜌 ≈
 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑡𝑖𝑚𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
. 

 

1.4    Knuth’s Rule 

 

Knuth’s rule algorithm is similar to the Bayesian framework. Its aim is to determine an 

optimal number of bins (blocks) given the data, where bin lengths are equal in size 

(unlike variable length blocks in Bayesian Blocks) [Knuth13]. The algorithm works over 

multimodal data as it is designed to accept data of any distribution types [Alkadi16].  An 

advantage of Knuth’s Rule over other methods is that it is not based on an optimization 

criterion that relies on the error between the density model and the actual density. The 

output of the Knuth’s rule algorithm is a similar plot of a piecewise-constant function as 

the one produced by Bayesian Blocks. The significant difference between the two 

algorithms is that bin sizes are variable in Bayesian blocks and are fixed in Knuth’s 

algorithm, hence the condition that bin lengths need to be of fixed size for the output 

model produced in an iteration. The execution starts by computing a probability mass for 

each bin in the raw data histogram through the integration of the height of the bin (block) 

over its width. Hence, the input is empirical, and no prior knowledge of the sampled 

probability density function is used. Therefore, the algorithm is designed to accept data of 

any distribution type [Knuth13].  In each iteration, the goal is to produce the posterior 
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probability for the model with a given number of bins. The optimal model over all 

iterations is selected by maximizing the logarithm of the posterior probability.  

 

1.5    Problem Statement  

 

Most of the proposed models for RFID networks use channel modeling techniques with 

the goal of quantifying network performance in terms of lower layers’ channel properties: 

antenna diversity gain, signal-to-noise ratio, bit error rate, path loss and others [Arnitz10, 

Chen11, Choudhury14, Li11, Malison08, Smietanka12]. Unfortunately, such metrics are 

not very useful for the purpose of detecting patterns and anomalies as user-level traffic 

behavior cannot be assessed through their use.  One example of more useful 

quantification would be to consider the application-layer traffic patterns in terms of the 

statistical frame arrival process at the RFID reader. Protecting the air interface between 

ultra-high frequency RFID tags and a reader has been adequately solved by 

standardization efforts through the development of latest lightweight cryptography 

standards [Alkadi16]. The International Standards Organization (ISO) / International 

Electrotechnical Commission (IEC) 29167 defines several crypto suites: AES 128, 

PRESENT80, ECC-DH, Grain 128-A, AES-OFB, XOR, ECDSA-ECDH, cryptoGPS, 

RAMON (Part 10 through Part 19) [ISO11].  

 

These available crypto suite choices include a range of widely adopted techniques 

including block and stream ciphers with 128-bit key length, elliptic curve cryptography 

based on Diffie-Hellman key agreement method, low-cost public key cryptography, and 
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Rabin-Montgomery cryptography.  In addition, NIST SP 800-57 recommendations on the 

security strength of lightweight crypto suites require that after 2030 symmetric cipher 

encryptions with key lengths shorter than 128-bits be disallowed.  Yet, commercial 

implementations of RFID systems compliant with various ISO/IEC air-interface 

standards do not often offer security through ISO/IEC 29167 [Alkadi16].  

 

In addition, the ISO/IEC 29167 standard does not address protection for High Frequency 

(HF) RFID networks using standards such as ISO/IEC 14443 and ISO/IEC 15693, or 

international standards, e.g. FeliCa. The main reason for this void is the fact that HF 

RFID networks are short range since power is transferred to and from the tag by means of 

the inductive coupling of reactive near-field energy. As inductive coupling takes place in 

the antenna’s near-field region, no power is being radiated outside the near-field. Ultra-

High Frequency (UHF) RFID tags have to be better secured because of their longer read 

range as power transfer to and from the tag is realized through capacitive coupling and 

involves the reader emitting a propagating electromagnetic wave. Nevertheless, known 

Near-Field Communication (NFC) attacks exist and have been documented. Some of 

them include eavesdropping, data corruption, man-in-the-middle attack, and data 

insertion and modification [Alkadi16].  

 

1.6    Objective of the Study  

 

The aim of this study is to evaluate the performance of Bayesian Blocks and Knuth’s 

Rule algorithms for the purposes of modeling HF RFID traffic and their use in anomaly 
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detection, where an anomaly is a sudden change of the flow of the network traffic. This 

would allow traffic characterization of the RFID transaction to take place. It is believed 

that this characterization would allow for the better understanding of systems under 

“normal” conditions, and consequentially help in identifying security breaches not 

addressed by current standards.   
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Chapter 2  

RFID BACKGROUND 

 

2.1    What are RFID Devices? 

 

RFID devices are wireless communication devices used in RFID networks for tagging 

and identification. Typically, RFID devices can be categorized into readers and tags.  

 

2.2    RFID Tags  

 

RFID tags are devices capable of holding identification information in their memory and 

transmitting this information over a distance in response to a query from a reading 

apparatus. RFID tags are usually made up of integrated circuits coupled to an antenna 

that is typically printed, etched, stamped or vapor-deposited on a paper substrate or 

Polyethylene Terephthalate (PET) surface. The integrated circuit (IC) and antenna 

combo, also referred to as an inlay, is placed on a printed label and inserted into a more 

durable structure. RFID IC’s perform the functions of storing and processing information 

as well as modulating and demodulating radio frequency signals [ISO11].  

 

By design, RFID tags can be passive, active or battery assisted passive (BAP). Passive 

tags are smaller and do not require a battery to supply their energy needs. However 

passive tags derive their energy from the radio energy transmitted by the reader. Active 
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tags usually require a battery to supply their energy needs. Since they have an active 

source of energy, they may be programmed to transmit their ID signal periodically 

[ISO11]. Tags may be single channel (read only) or dual channel accessible (read and 

write). The manufacturer frequently assigns tags a serial number. It is also noteworthy to 

recognize that tags may contain more than a serial number and may include stock 

numbers, production dates or other specific information. The serial number, also known 

as an electronic product code (EPC), is written to the tag by an RFID printer and is 

usually a 96-bit string of data [ISO11]. The first eight bits represent the header section 

which identifies the version of the protocol. The next 28 bits represent the organization 

that manages the data for the tag. The next 24 bits indicate its object class which 

identifies the type of product, with the last 36 bits representing a serial number that is 

unique. The last two fields are usually determined by the manufacturer that issued the tag 

[ISO11].  

 

2.3    RFID Readers 

 

A radio frequency identification reader (RFID reader), also known as an interrogator, is a 

device used to interface and communicate with RFID tags. This is made possible by radio 

waves that facilitate the transfer of data between tags and the reader through an antenna 

that captures tag information. Readers perform the tasks of continuous inventorying, 

filtering (searching for compatible tags) and writing and encoding tags. Various kinds of 

RFID readers are available and can be classified by the type of tags they can interact with 

[ISO11].  
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Passive Reader Active Tags (PRAT) systems are capable of receiving signals from active 

tags, and they are operable within a radial distance of up to 600m from the tag. This 

allows for flexibility in an application such as asset protection [ISO11].  

 

Active Reader Passive Tag (ARPT) systems utilize an active reader component that sends 

interrogative signals as well as responses from a passive tag. Active Reader Active Tag 

(ARAT) systems include an active tag which can be awoken by signals sent from the 

active reader. These are also fixed readers that are set up within a tightly controlled zone 

[ISO11].  

 

In order to communicate with tags, readers require the use of an antenna. RFID antennas 

serve as a link between readers and tags by effectively converting electric current into 

radiated waves. The choice of reader and tag antenna is influenced by the factors such as 

the application and environment as there are different types of antennas [ISO11].   

 

Like reader systems, there are various types of RFID antennas which are best suited for 

various applications and environments. The most popular types of antenna systems are 

the linear and circular polarized antennas. Linear antennas are best deployed in instances 

where long ranges are desirable, and high powers are applicable. This enables signals to 

possess high penetrative powers. They are however sensitive to tag orientation and may 

exhibit difficulty in reading tag information. Conversely, circular polarized antennas have 

less penetrative power as well as range but are less susceptible to tag orientation. The 

operational range usually influences the choice of antennas. Operational instances less 
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than 30cm utilize magnetic coupling as readability is usually uninfluenced by the 

introduction of potential dielectrics such as metal, wood, and water. In remote 

applications, communication between reader and tag is affected by the presence of 

dielectrics. Therefore, electromagnetic couplings are not recommended [ISO11].  

 

2.4    Application of NFC in Today’s World  

 

Today, most daily activities inevitably involve the use of digital communications. With 

the increase in integration of Near Field Communication (NFC) in mobile devices, 

various opportunities abound for the application of this technology. Evolving from Radio 

Frequency Identification (RFID) technology, NFC is developed from short-range radio 

communication technology which brings two NFC compatible devices together in less 

than four centimeters [Hongwei13]. Developed by Sony and Philips in 2012, NFC is 

rapidly becoming popular and will soon be in common devices [Hongwei13]. NFC 

development is vigorously being pursued by big corporations such as Apple, Google, and 

Blackberry. With these companies announcing plans to fully deploy NFC in e-commerce 

and health care organizations [Hongwei13]. NFC is already being applied in various 

instances some of which are further discussed in this paper.  

 

2.4.1    Financial Transactions  

 

One of the most prominent uses of NFC today is the facilitation of financial transactions 

as holding significant amounts of cash could be bothersome as well as pose significant 
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risks. This has led to the development of secure, convenient, peer to peer as well as peer 

to business transactional platforms based entirely on contactless NFC technology. A 

recent study conducted by PayPal in Canada suggests that as much as 34% of people now 

prefer electronic payments over cash payments [Hongwei13].   

 

2.4.2    Transportation  

 

NFC technology is also applicable to the transportation sector. Transportation companies, 

especially in railway and train services, have begun to use NFC technology to ease user 

stress and increase comfort. Transportation industries in the United States of America 

(US) and Germany announced in 2011 that plans were underway to make available NFC-

based ticketing systems and information systems on board trains [Hongwei13].  

 

2.4.3    Entertainment and Hospitality   

 

NFC technology is also extensively deployed in the hospitality sector where it is used in 

various instances such as security key cards and payment systems. Users are also able to 

“check in” their locations on social media using NFC technology [Hongwei13].   

 

2.5    RFID Standards 

 

Several organizations such as the International Standards Organization (ISO), Auto-ID 

Center and EPCglobal have developed various RFID standards for standardization and 

easy implementation across the board. RFID standards cover air interface protocols, 
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product compatibility, applications and data content. EPCglobal developed a tag 

classification system that is recognized by the World Trade Organization (WTO) and the 

ISO. The classification scheme is presented in Figure 1.  [ISO11] is an air interface 

protocol describing tag and reader specifications. Figure 1 also highlights the major 

classifications of the ISO 18000 protocol. Anti-collision protocols such Q and the 

adaptive Q algorithm have been developed for use in UHF Class 1 Gen 2 tags.  Without 

these algorithms, it would be impossible to have two tags communicate with a single 

reader at the same instant. 

 

 

Figure 1: ISO 18000 Standards and EPCglobal Tag Classes [Farooq12] 
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2.6    Performance of RFID Systems  

 

[Wang09] conducted a study investigating the performance of UHF passive RFID 

systems. The test was carried out with the aim of analyzing and establishing the loss of 

performance under varied conditions of free space, materials, and Line of Sight (LOS) 

environments. Performance analysis in open space was carried out using the expression,  

𝑃0 = 𝑄 (√2
𝐸𝑏

𝑁𝑜
 ) with 𝑄(𝑦) = (2𝜋)−1

2⁄  ∫ 𝑒−
𝑥2

2
∞

𝑦
𝑑𝑥 

With x and y denoting Cartesian co-ordinates.  Figure 2 shows a plot of the degradation 

of power with distance using some assumed values.  

 

 

Figure 2: Degradation of Reader/Tag Power with Radial Distance [Wang09] 
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When [Wang09] tested for performance near various materials, the power gain 𝐿𝑔𝑎𝑖𝑛 was 

defined as the gain/loss of tag antenna due to materials. This was evaluated as, 

𝐴0 =  
𝜆2𝐺𝑡𝑎𝑔

4𝜋𝐿𝑔𝑎𝑖𝑛 
 

Where 𝐴0 is the effective area of the antenna, and 𝐺𝑡𝑎𝑔 is the antenna gain. The result 

presented in Figure 3 and Figure 4 shows the degradation of information transfer rate. 

Table 1 shows 𝐿𝑔𝑎𝑖𝑛 for different materials.  

 

 

Figure 3: Degradation of Reader/Tag Power for Various Materials [Wang09] 
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Figure 4: Degradation of Reader/Tag Information Transfer Rate for Different Materials 
[Wang09]  

 

 

Table 1: Lgain for Different Materials [Wang09] 

 

2.7    Importance of Anomaly Detection in RFID Networks  

 

The detection of anomalies in RFID networks is of enormous importance due to the 

financial, social, as well as, security implications of compromised RFID transactions. The 

widespread implementation of RFID means that very grave consequences could arise if 

anomaly detection is not adequately tackled. As explained earlier, current RFID standards 

such as the ISO 29167 protect and encrypt the individual transactions from successful 

attacks such as Man in the Middle (MITM). It is, however, necessary to secure and detect 
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network attacks as early detection of attacks could be advantageous. [Faruqui08] states 

that although most tags are capable of some limited symmetric key cryptography, there 

are still continuing threats in several areas. The use of RFID in healthcare presents an 

excellent example of situations where there could be profound effects of anomaly 

detection. 

 

[Dunnebeil11] proposed an electronic health card system (eHC) which incorporates RFID 

with the aim of acquiring patient data from the card even in an unconscious state. This 

system with its proposed benefits could conversely have adverse effects if measures such 

as anomaly detection are not adequately taken. Possible adverse consequences in this 

instance include health insurance fraud, identity theft, and violation of medical privacy or 

in the worst case, death. Other applications of RFID such as supply chain management, 

aviation, and hospitality also pose a significant risk in the area of corporate espionage, 

loss of inventory, security, and privacy [Angeles05]. However, only a few RFID anomaly 

and intrusion detection studies have been published to date [Farooq12, Gaitan12, 

Yang11]. 

 

2.8    Bayesian Statistics  

 

The world of statistics is commonly classified into two paradigms which are the 

frequentist and the Bayesian schools. The Bayesian paradigm believes that probability is 

a rational, conditional measure of uncertainty which closely mirrors the actual state of 

affairs of an event. Named after Thomas Bayes, Bayesian theory in contrast to the 
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frequentist school does not assume that probabilities are outcomes of long repeated trial 

but rather information which can be updated in the light of new evidence. Bayesian 

statistics utilizes non-negative degrees of belief also known as priors and uses these 

priors to predict posterior beliefs or probabilities.  

 

 Mathematically, Bayesian probability for discrete events can be represented as,  

𝑃(𝜃|𝑦) =  𝑃(𝑦|𝜃)
𝑃(𝜃)

P(𝑦)
 

With 𝑃(𝜃|𝑦) read as the probability that an event 𝜃 occurs given the event y has occurred 

and is known as the posterior probability while 𝑃(𝑦|𝜃) represents the likelihood of an 

event. 𝑃(𝜃) and P(𝑦)  represent the probability of prior events. The expression above can 

also be applied to continuous events and distributions with minimal differences 

[David09]. 

 

2.9    Applications of Bayesian Statistics  

 

Typically, Bayesian methods are used in three instances [David09]. These instances are 

described in the following three sections. 

 

2.9.1    Lack of Accurate Prior Data  

 

This is explained as situations where the only viable method is to include quantitative 

prior judgment as a result of certain inadequacies of a model or data. Instances of this 

include policy determination given incomplete data from a range of sources. Examples 
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include the use of Bayesian methods by the Food and Drug Administration (FDA) in the 

drug trials [David09].   

 

2.9.2    Mid- Sized Problems with Multiple Sources of Evidence 

 

In moderately sized problems, featuring various sources of evidence (data) such that 

hierarchical models can be constructed by assuming a prior shared distribution whose 

parameters can be estimated from the data, Bayesian methods may be employed. 

Instances of this include multi-center studies, meta-analysis, diseases mapping and 

accident mapping. Although results may be similar to results obtained using classical 

techniques, interpretations are different [David09].  

 

2.9.3    Joint Huge Probability Models  

 

Bayesian techniques are also applied to the construction of the joint probability model. 

This model is constructed sometimes using thousands of observations and parameters 

where the only feasible way of predicting and making inferences of unknown quantities 

is by Bayesian techniques. Popular applications include signal analysis, image 

processing, spam filtering, and gene expression data [David09].  

 

Another application of Bayesian methods in a not so strict sense involves the construction 

of joint prior distributions where parameters of inputs are uncertain in a deterministic 

prediction model. By placing a joint distribution on these parameters, a predictive 
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probability distribution can be formulated using techniques such as Monte Carlo methods 

[David09].  This is commonly employed in risk analysis, economic health modeling and 

climate projections and is commonly referred to as probabilistic sensitivity analysis 

[David09].  

 

2.9.4    Bayesian Blocks  

 

Bayesian blocks is a statistical analysis technique developed to detect local variability as 

well as function as a characterization algorithm. Motivated by limitations in existing 

characterization techniques, Bayesian blocks seeks a novel approach to the statistical 

problem of binning and clustering such that the statistic is considered constant within a 

sub-interval which in related literature are referred to as “Blocks.” Initially developed by 

[Scargle98] to detect and characterize photon behavior in gamma bursts, the objective of 

the analysis was to find the optimal binning that identified blocks such that the photon 

arrival rate is consistent with being constant. According to [Scargle98], classical 

characterization and binning fallacies such as equal bin lengths and minimum size often 

erase vital observational information, which is often found in gamma bursts which are 

smoothed over in classical methods.  

 

Bayesian blocks as proposed by [Scargle98] are suited to analyze:  

• Time-Tagged Event (TTE)   

• Count of events in bins.  
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• The measurement of a quasi-continuous observables at a sequence of events in 

time. 

 

For the first two cases, the signal of interest is the event rate which is proportional to the 

probability distribution regulating events and is relevant to this study. Since the Poisson 

distribution closely models the probabilities of photon arrival or non-arrival, it forms the 

core building block for the resulting formulation.  Mathematically, the probability of an 

event P occurring according to the Poisson distribution is given as,  

𝑃𝑘 =
(𝜆𝛿𝑡)𝑘 𝑒−𝜆𝛿𝑡   

𝑘!
 

Consider a time series event of length T, divided into M sub-interval of 𝛿𝑡 = T/ M. The 

sub-interval 𝛿𝑡 is selected such as any block is multiples of 𝛿𝑡. From the above 

expression, the probability of an event not occurring (i.e. no photon arrival) reduces to: 

𝑃0 =  𝑒 − 𝜆𝛿𝑡 

Therefore, the probability that an event occurs (𝑃 ≤ 1) equals: 

1 −  𝑃0 = 1 −  𝑒−𝜆𝛿𝑡 

Hence the likelihood function (i.e. the probability of obtaining the data) that N out of M 

blocks have photons in them is:  

𝑃(𝐷| 𝜃, 𝑀) =  ∏ 𝑝0
𝑀−𝑁 (1 −  𝑝1)𝑀−𝑁

𝑗

 

It is, however, desirable to obtain the global likelihood over the time series i.e. 𝑃(𝐷| 𝑀). 

By assuming 𝑝1 as a parameter that is uniformly distributed between 0 and 1, the global 

likelihood 𝑃(𝐷| 𝑀) is then evaluated as: 

𝑃(𝐷| 𝑀) = ∫ 𝑑𝜃 𝑃(𝐷|𝜃, 𝑀)𝑃(𝜃|𝑀) 
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𝑃(𝐷| 𝑀) = ∫ 𝑑𝑝1 𝑝0
𝑀−𝑁 (1 −  𝑝1)𝑀−𝑁1

0
 

The above expression can be re-written as:  

𝑃(𝐷| 𝑀) = 𝐵(𝑁 + 1, 𝑀 − 𝑁 + 1) 

Which is the beta function and can also be written as: 

Γ(𝑁 + 1)Γ(𝑀 − 𝑁 + 1)

Γ(𝑀 + 2)
 

Therefore, from a Bayesian perspective, the global posterior probability 𝑃(𝑀| 𝐷) can be 

determined as:  

𝑃(𝑀| 𝐷) = 𝑃(𝐷| 𝑀) 𝑃(𝑀) 

Where 𝑃(𝑀)  is the prior probability of the model [Scargle98].   

 

To find blocks, the Bayesian blocks method compares two models (fitness functions) as a 

function of their global likelihoods. The two models are described as,  

• Model 1: The dataset is contained in one block  

• Model 2: The dataset is segmented into two blocks at some change point that 

maximizes the global likelihood of model 2.  

The models are compared using the ratio,  

𝑃(𝑀2| 𝐷)

𝑃(𝑀1| 𝐷) 
  = 𝜊21 

The ratio 𝜊21 is also called the Bayes factor and depending on the ratio, the segmented 

model (model 2) or the un-segmented model is selected.  
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2.9.5    Scargle’s Algorithm  

 

As earlier explained, the objective of the Bayesian blocks technique is to find the optimal 

block segmentation of the data into a piecewise constant representation, with the case for 

two segments demonstrated. However, when the number of segments becomes more than 

N = 2, the earlier stated method become computationally burdensome and is rather 

impractical. It is, therefore, desirable to develop a simple iterative approach to determine 

the point of segmentation. This simple iterative technique is known as Scargle’s 

Algorithm named after [Scargle98].  

 

The Algorithm begins with the whole observation. The Bayesian blocks technique is then 

applied to the interval to determine whether it should be segmented or not.  If 

segmentation is favored, the procedure is then re-applied to all the created intervals. If the 

computed ratio favors segmentation, the resulting sub-intervals are then subjected to the 

Bayesian blocks technique until the computed ratio over any interval does not favor 

segmentation. This might seem as a logical sequence of events and conditions however, 

when it is considered that the computed Bayes ratio commonly has a value slightly 

greater than 1, it becomes desirable to propose an alternative condition. A solution to this 

by [Scargle98] is to impose a prior ratio where insignificant segmenting is discouraged. 

This prior ratio is computed as,  

𝑝 ≈
𝑙𝑒𝑛𝑔ℎ𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑡𝑖𝑚𝑒 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
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2.9.6    Application to Astronomy  

 

For demonstrative purposes, this section shows the application of Bayesian blocks in the 

analysis of Burst and Transient Source Experiment (BATSE) (Trigger 551) gamma rays. 

This being an example of TTE it also serves as a good example due to its modulating 

structure. By applying Scargle’s algorithm to four gamma ray TTEs, using a MATLAB 

program which is provided in the appendix section, the following plots were obtained. 

The plots show the characterization as performed by Scargle’s algorithm on the left while 

the characterization using 32 evenly spaced bins is shown on the right. Figure 5 shows 

the resultant plot when all the 4 TTEs are superimposed onto 1 time series, while Figure 

6 shows the individual TTEs [Scargle98]. 

 

 

Figure 5: The Characterization of the Superimposed TTEs [Scargle98] 
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Figure 6: The Characterization of the Four Individual TTEs [Scargle98] 
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2.9.7    Knuth’s Algorithm 

 

The output of the Knuth’s rule algorithm is a similar plot of a piecewise-constant function 

as the one produced by Bayesian Blocks. It is similarly based on the Bayesian statistics 

framework. The goal is to find the optimal number of bins (blocks) given the total 

observation interval length and the raw data time series. A condition is imposed that bin 

lengths need to be of fixed size for the output model produced in an iteration. The 

execution starts by computing a probability mass for each bin in the raw data histogram 

through the integration of the height of the bin (block) over its width. Hence, the input is 

empirical, and no prior knowledge of the sampled probability density function is used. 

This is why the algorithm is designed to accept data of any distribution type.  In each 

iteration, the goal is to produce the posterior probability for the model with a given 

number of bins. The optimal model over all iterations is selected by maximizing the 

logarithm of the posterior. Further details on the derivations for the piecewise constant 

model can be found in [Knuth13].  

 

2.9.8    Related Works  

 

[Alkadi16] conducted an initial study in which piecewise linear models were used to 

characterize RFID traffic data using both Scargle’s and Knuth’s algorithm. The dataset 

consisted of 650 RFID tag transactions carried over the ISO/IEC 14443 half duplex block 

transmission protocol.  Figure 7 shows the output plot of the characterization algorithms. 

A visual inspection of the plots reveals a good fit by both models suggesting that both 
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Bayesian blocks and Knuth’s algorithm can be potentially used in the design of network 

intrusion detection systems.  

 

 

Figure 7: Normalized RFID Command Count 
 

 

Figure 7 shows Raw Binned Data (Purple) and Horizontal Piecewise Models (Black): 

Knuth’s Rule (Left), Bayesian Blocks (Right). Note: Vertical Outlines are Also Shown 

for Better Visualization.  
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Chapter 3 

THE EXPERIMENT 

 

3.1    Method of Experimentation 

 

In the preceding chapters, Bayesian blocks, Scargle’s and Knuth’s Algorithm have 

already been described as well as their applicability to the characterization of TTE’s. In 

this section, the Scargle and Knuth algorithms are used in the characterization of 

generated RFID tag data. For experimentation, several tags were read using a single 

reader with each session lasting long enough to transmit 200, 400, 500 and 1000 tag 

responses.  Each response message was carried by a single frame as defined in the 

ISO/IEC 14443 protocol - a half-duplex block transmission protocol.    

 

The experimentation was performed using a single Blackberry Priv RFID/NFC reader, 

running Android 5.1.1 and several NFC tags (IC chips model NTAG213, produced by 

NXP). Tag user area capacity was 144 bytes. 

 

The test bed of our experiment included an application to scan incoming NFC tags, a 

simple database on the Android-based device itself storing every piece of information 

collected about each tag when scanned and a number of standard NFC tags. After a 

dataset (i.e. experimental sample) is collected which includes scans and inter-arrival 
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times added to the internal database, the database is then exported as a CSV file to a 

Windows based PC.  

 

The CSV file’s data are then parsed, normalized and plotted by our Bayesian Blocks and 

Knuth's Rule graph-generating program written in Python. This Python program can be 

found in Appendix A. The program also draws the raw data as the background of each 

plot. This step is useful for visually identifying the difference between the constant bins' 

size of Knuth's Rule and the variable bin sizes of the Bayesian Blocks algorithm. The 

program is also capable of keeping other metrics during execution, such as the set of 

change points of each Bayesian Blocks graph as well as the constant bin size rendered by 

Knuth’s Rule graphs.   
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Chapter 4 

THE OUTCOME  

 

4.1    Results and Discussion 

 

The input to the two piecewise-constant models used in this study was in the form of time 

series extracted from the experimentation log file, the produced CSV file. A statistical 

description of the samples that we generated from actual experimentation is shown in 

Table 2.  Those five samples consisted of 200, 400, 500, and 1000 frame arrivals, 

respectively.  

 

Statistic / Counts 200 400 500 1000 

Mean 3.66 2.23 7.30 5.28 
Standard Error 0.04 0.05 0.07 0.09 
Median 3.94 2.41 7.67 5.44 
Mode 3.94 3.85 6.51 2.14 
Standard Deviation 0.54 1.01 1.64 2.89 
Sample Variance 0.30 1.02 2.67 8.37 
Kurtosis 0.22 -1.11 -0.39 -1.31 
Skewness -1.49 0.31 0.01 0.07 
Range 1.36 2.8 5.56 8.83 
Minimum 2.58 1.05 4.31 1.05 
Maximum 3.94 3.85 9.87 9.88 
Count 198 398 498 998 

 
Table 2: Descriptive Statistics for Study Samples 
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The scans within each dataset were collected and gathered manually. The time between 

each scan was loosely kept constant during every dataset entirely. For the 200 and 400 

sample sets, the time between scans was approximately 3 seconds, 10 seconds for the 500 

and 1000 sample sets. Figures 8 through 11 present the output from the execution of 

Knuth’s Rule and Bayesian Blocks algorithms (Knuth’s on top, Bayesian’s on the 

bottom) on the sets. Shown in purple, is the raw data format with total command counts 

recorded in bins. Each bin is a time interval of fixed length (25 seconds). The models are 

depicted in black, where vertical outlines are added to the piecewise-constant plots for 

better visualization.  
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Figure 8: Output of Bayesian Blocks and Knuth’s Algorithm for the 200 Sample Set 
 

 

 

Figure 9: Output of Bayesian Blocks and Knuth’s Algorithm for the 400 Sample Set 
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Figure 10: Output of Bayesian Blocks and Knuth’s Algorithm for the 500 Sample Set 
 

 

 

Figure 11: Blocks and Knuth’s Algorithm for the 1000 Sample Set 
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From the visual inspection of the generated plots, we can infer that the Bayesian Blocks 

algorithm tends to produce little to no change-points in datasets of lesser samples. The 

200 sample dataset produced a single bin when processed through Bayesian Blocks 

program; this is due to the inter-arrival times of scans being too similarly spaced. When 

larger inter-arrival time deviation occurs, as visible from the 400 and 1000 sample dataset 

plots, the Bayesian Blocks algorithm produces more significant change-points. This, of 

course, is not observable in Knuth's Rule plots as the bin size is constant and is 

determined over the entire dataset without utilizing a fitness function (varying bin width).  

 

When these results are examined with the raw data plotted in the background of each 

graph, a clear distinction can be immediately noticed. If the data is too uniform or is 

without any anomalies, the Bayesian Blocks algorithm produces a single or a couple of 

bins with similar heights. Therefore, we can deduce that any anomaly or inconsistency in 

the inter-arrival times of scans would cause spikes (more bins of different heights) in our 

Bayesian Blocks plots, thus suggesting that our Bayesian Blocks algorithm can be used as 

a mechanism for anomaly detection in RFID network traffic. The histograms of inter-

arrival gaps for each sample of scans we have generated are shown in Figure 12.  The 

difference in plot shapes between samples is suggestive of differences in the traffic 

characteristics for each sample.    
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Figure 12: Inter-Arrival Gap Histograms: 200 to 1000 Frames Per Sample 

 

4.2    Further Testing and Anomaly Detection 

 

To further test the concept of how the classification of inter-arrival times through 

Bayesian Blocks and Knuth’s Rule can be utilized in anomaly detection in RFID 

networks, a simple MATLAB program was developed to perform a graphical comparison 

between the two methods plotted against the raw data. The goal of the plots is to visualize 

the data and apply an anomaly detection filter all the way from 0% anomalous 
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assumption to 100%. The filter is a sliding filter, which means it sweeps the data from 

0% to 100% and plots the result accordingly. When the result is plotted in Figure 13 

below, it can be clearly seen that the Bayesian Blocks algorithm performs better than 

Knuth’s Rule given the fractional assumed anomaly rate.  

 

 

Figure 13: Histogram-based Fits to Time-Tagged Event Data and Associated Piecewise-
Constant Fits to Inter-Arrival Time Samples 

 

In Figure 13, both Knuth’s Rule and Bayesian Blocks algorithms were plotted for the 

1000 samples dataset over each other. The top graph in Figure 13 shows the data plotted 

as-is in a histogram fashion and the second graph shows the data plotted as piecewise-

constant fits to the inter-arrival time samples. It is clear from the bottom graph in Figure 

13 that the Bayesian Blocks algorithm is following the raw data more accurately than 
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Knuth’s Rule. As visible, abrupt change in inter-arrival times causes change-points to 

occur which in turn draws a bin closest to the real representation of the raw data. Since 

Knuth’s Rule decides on an optimal constant bin-width, the contour of the raw data 

cannot be followed accurately all the time; however, with Bayesian Blocks bin-width is 

variable which solves this problem. 

 

 

Figure 14: Performance Comparison Graph 
 

In the third and final graph in Figure 14, a detector sensitivity-based performance 

comparison that sweeps the lower and upper bounds of the inter-arrival times in the 

previous graph was created. The sweep starts at 0% and ends at 100%. The anomaly 

detection analysis starts by computing (from the TTE data) the minimum, mean and 

maximum inter-arrival times. It then assumes a sensitivity parameter p in [0,1], whose 
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value corresponds to an accept region [lower bound a, upper bound b] on the observed 

inter-arrival times via the following scheme:  

• lower bound a = average x – (1-p) * (average x – minimum x) 

• upper bound b = average x + (1-p) * (maximum x – average x) 

p = 0 corresponds to region [minimum x, maximum x] that accepts all samples as normal, 

while p = 1 corresponds to region [average x, average x] that rejects all samples. This is 

essentially a significance test assuming the empirical inter-arrival rate distribution. The 

performance comparison sweeps p from 0 to 1 and shows that the fraction of samples 

accepted using the Bayesian Blocks algorithm fit is “better” than the fraction accepted 

using the Knuth’s Rule fit, where “better” is in the sense of similarity to the fraction of 

samples accepted using the raw samples during that same sweep of p. This performance 

analysis can run on all our datasets; however, since the 1000 samples dataset contains 

abrupt changes (anomalies), the performance analysis works best on it. 
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Chapter 5 

FINAL OBSERVATION  

 

5.1    Conclusion and Recommendation  

 

This study presents an evaluation of the performance of Knuth’s Rule and Bayesian 

Blocks algorithms when used to model RFID traffic and detect traffic anomalies. The 

datasets used in this study consist of time series of binned RFID command counts. 

Overall, both algorithms produced piecewise constant models that detected significant 

changes in the rate of command counts over time. Hence, the resulting plots appear to 

follow the contours describing the variations in the rate found in raw data.   

 

As differences in traffic patterns are present, if the histograms of two different sets of 

RFID traces form visually different plot shapes, we safely conclude that both techniques 

could be potentially useful to model traffic produced by various RFID applications and 

detect traffic anomalies given a well-defined detector method as shown above. Based on 

our results, we believe and recommend that these algorithms be adapted and applied to 

the further design of anomaly detection systems. 
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APPENDIX A 

Bayesian Blocks and Knuth’s Rule Python Code 

import numpy as np 

from scipy import stats 

from matplotlib import pyplot as plt 

from astroML.plotting import hist 

from astroML.density_estimation import bayesian_blocks 

from astroML.density_estimation import knuth_bin_width 

 

# Experimental TTE data collected from mobile phone NFC tag 

reader 

# The un-commented set will process when this script is run 

# This data was manually imported from the mobile app's 

database 

 

# Set 1 

# 100 samples 30 sec approx between arrivals 

# data_set = [8.96, 14.72, 19.62, 26.57, 34.90, 38.15, 

45.55, 50.06, 57.85, 63.89, 70.61, 74.65, 83.11, 89.22, 

95.56, 102.73, 107.14, 113.06, 119.45, 127.06, 130.16, 

139.52, 144.62, 151.47, 158.29, 164.83, 167.57, 174.16, 

183.29, 187.27, 193.27, 200.11, 206.61, 214.12, 220.56, 

225.24, 230.35, 238.28, 243.79, 250.35, 254.13, 263.56, 

266.44, 272.70, 279.51, 285.96, 294.60, 299.90, 303.92, 

311.91, 316.85, 322.42, 328.60, 338.13, 343.96, 349.46, 

356.16, 359.12, 366.50, 371.64, 377.84, 384.33, 392.71, 

398.14, 405.36, 409.49, 415.73, 422.68, 430.55, 436.31, 

442.59, 446.96, 454.20, 458.32, 467.17, 473.58, 479.53, 

486.42, 491.56, 498.94, 503.97, 508.35, 515.45, 522.09, 

529.09, 533.46, 539.99, 545.98, 551.65, 557.11, 566.74, 

573.01, 577.75, 585.81, 591.70, 596.66, 602.69, 610.21, 

613.88, 621.25] 

# ymax = 0.0018 

 

# Set 2 

# 200 samples 3 sec approx between arrivals 

# data_set = [4.01, 7.41, 10.30, 12.17, 13.87, 17.24, 

20.28, 22.74, 26.05, 29.62, 30.35, 34.72, 37.01, 39.93, 

40.63, 43.40, 44.34, 48.23, 49.88, 54.97, 58.05, 57.69, 

61.74, 63.58, 65.45, 69.68, 69.76, 74.93, 77.81, 79.36, 

83.18, 84.30, 87.93, 88.03, 93.45, 95.67, 96.37, 99.70, 

103.49, 106.72, 109.34, 109.35, 113.56, 117.38, 120.40, 

125.33, 128.68, 135.75, 136.15, 141.63, 146.55, 150.94, 
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152.72, 155.66, 160.29, 165.70, 167.71, 174.47, 178.98, 

179.85, 186.45, 190.28, 193.47, 197.00, 201.80, 203.41, 

209.36, 210.82, 216.17, 219.94, 225.69, 227.46, 231.01, 

235.05, 238.81, 244.67, 249.77, 251.71, 256.21, 260.76, 

262.67, 269.91, 272.72, 274.30, 281.77, 285.45, 288.01, 

292.23, 296.12, 300.36, 304.21, 305.45, 311.55, 313.35, 

318.04, 321.53, 325.10, 330.41, 334.40, 337.06, 344.08, 

347.95, 349.51, 352.80, 357.72, 361.95, 365.86, 372.25, 

374.81, 376.48, 381.90, 387.11, 390.73, 392.42, 397.92, 

400.76, 406.47, 408.80, 412.09, 415.87, 422.63, 427.41, 

430.22, 432.92, 438.23, 439.82, 444.99, 449.20, 453.10, 

457.36, 460.17, 466.40, 469.62, 471.54, 475.27, 479.87, 

483.35, 489.60, 491.81, 498.13, 501.20, 505.49, 509.14, 

511.08, 517.84, 520.19, 523.16, 526.38, 531.94, 535.94, 

539.88, 541.85, 549.57, 549.68, 555.36, 557.98, 561.82, 

566.68, 570.11, 573.32, 581.18, 581.62, 588.85, 591.47, 

594.38, 597.77, 603.17, 607.13, 612.36, 613.03, 617.65, 

622.44, 625.93, 629.80, 633.62, 637.40, 642.81, 647.29, 

651.36, 654.89, 656.51, 662.62, 664.94, 671.60, 675.30, 

679.15, 682.09, 685.46, 689.27, 691.51, 699.37, 699.48, 

705.80, 709.75, 711.07, 714.78, 719.71, 726.19, 728.10, 

730.91] 

# ymax = 0.0020 

 

# Set 3 

# 400 samples 3 sec approx between arrivals 

# data_set = [2.87, 6.13, 9.33, 13.45, 16.08, 19.57, 22.41, 

23.32, 27.22, 29.56, 32.81, 34.21, 36.49, 39.45, 43.75, 

46.46, 48.37, 50.68, 54.43, 54.91, 58.88, 61.20, 63.04, 

64.45, 67.42, 71.46, 74.57, 75.59, 78.33, 80.28, 84.28, 

87.03, 89.81, 93.59, 94.80, 97.61, 99.77, 102.64, 102.45, 

105.61, 110.87, 109.59, 114.36, 116.44, 120.76, 119.56, 

123.43, 124.97, 127.68, 132.02, 132.82, 135.25, 138.38, 

139.49, 142.54, 147.00, 147.62, 153.06, 155.76, 157.48, 

157.29, 162.82, 165.23, 165.16, 170.24, 170.60, 172.63, 

176.52, 179.92, 183.11, 182.47, 184.34, 190.10, 191.46, 

192.23, 196.21, 199.48, 201.12, 204.26, 206.00, 210.49, 

212.64, 212.60, 216.60, 217.65, 221.88, 225.02, 227.58, 

226.67, 230.69, 233.84, 234.74, 238.49, 240.51, 244.37, 

244.33, 250.01, 249.25, 253.17, 254.50, 261.39, 263.73, 

267.88, 272.77, 274.10, 280.99, 283.38, 287.22, 290.63, 

294.58, 299.72, 300.79, 305.90, 311.15, 311.77, 319.43, 

320.49, 324.96, 328.66, 334.76, 337.44, 339.47, 344.01, 

349.98, 350.79, 357.63, 361.40, 362.75, 366.18, 372.22, 

375.66, 377.81, 384.05, 386.27, 391.25, 395.87, 397.25, 

403.18, 407.28, 411.09, 412.23, 415.75, 421.87, 425.56, 

427.79, 432.56, 436.43, 442.27, 442.63, 448.62, 451.97, 
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455.51, 461.67, 465.11, 468.82, 473.41, 476.79, 478.42, 

484.62, 485.60, 492.41, 493.07, 499.83, 502.99, 506.87, 

510.18, 512.45, 517.91, 520.29, 527.08, 531.26, 531.50, 

537.43, 540.43, 545.37, 547.07, 550.96, 557.63, 556.46, 

560.37, 558.80, 562.87, 563.75, 564.15, 566.01, 564.89, 

566.04, 569.07, 569.01, 572.56, 573.87, 573.64, 576.05, 

577.17, 576.20, 577.60, 579.02, 578.60, 581.01, 583.58, 

585.14, 583.38, 584.77, 586.46, 588.19, 588.64, 592.69, 

590.65, 592.68, 596.88, 597.67, 596.99, 599.60, 600.80, 

602.05, 604.21, 602.33, 605.41, 605.70, 606.21, 609.15, 

609.32, 611.49, 613.02, 613.90, 613.39, 616.87, 616.95, 

618.05, 618.51, 620.58, 620.36, 621.50, 625.91, 624.74, 

628.32, 627.00, 629.27, 630.97, 629.97, 634.16, 632.62, 

636.07, 637.37, 638.51, 638.19, 637.95, 642.31, 642.71, 

643.67, 644.96, 647.26, 646.10, 649.85, 649.85, 650.19, 

651.63, 653.47, 655.09, 654.22, 656.86, 655.66, 659.40, 

658.12, 658.10, 660.66, 662.07, 661.40, 662.47, 665.46, 

665.23, 665.83, 666.84, 668.65, 671.29, 672.05, 673.27, 

672.07, 673.66, 674.49, 676.99, 678.75, 679.72, 680.15, 

680.29, 679.97, 683.76, 681.85, 685.98, 687.51, 685.25, 

687.63, 689.40, 690.53, 690.53, 691.07, 694.77, 693.89, 

696.01, 698.18, 698.32, 699.06, 700.28, 701.23, 699.59, 

703.69, 703.46, 705.75, 704.26, 706.36, 706.49, 707.83, 

708.92, 711.70, 712.21, 714.73, 714.65, 713.75, 714.56, 

717.83, 718.84, 721.06, 721.90, 723.15, 721.89, 724.24, 

726.09, 727.51, 727.44, 726.45, 730.85, 731.86, 733.72, 

735.81, 738.16, 739.96, 745.24, 745.22, 749.96, 752.46, 

754.88, 756.26, 756.36, 761.37, 762.10, 763.17, 766.56, 

769.08, 772.48, 773.27, 776.80, 778.93, 781.73, 783.61, 

786.42, 788.83, 792.80, 794.78, 795.37, 796.91, 802.81, 

803.89, 805.40, 808.85, 810.46, 814.89, 816.82, 816.85, 

821.48, 822.77, 825.29, 827.11, 831.64, 833.03, 835.55, 

838.56, 840.60, 842.50, 845.59, 846.22, 850.45, 851.96, 

852.61, 858.34, 860.50, 860.05, 864.66, 867.42, 869.26, 

871.98, 874.34, 874.94, 877.23, 880.46, 883.64, 886.53, 

886.66, 891.22, 891.66, 896.09] 

# ymax = 0.0025 

 

# Set 4 

# 500 samples 10 sec approx between arrivals 

# data_set = [5.16, 11.43, 14.46, 17.57, 23.81, 27.75, 

33.43, 35.58, 41.81, 46.73, 49.21, 54.99, 57.40, 62.19, 

66.69, 69.17, 77.15, 78.25, 84.34, 86.50, 92.68, 97.65, 

99.17, 104.16, 108.00, 114.58, 119.30, 122.52, 128.57, 

130.55, 136.48, 140.94, 143.53, 147.53, 152.78, 157.04, 

162.51, 164.84, 169.05, 174.94, 177.75, 184.65, 185.49, 

189.97, 194.95, 199.48, 205.04, 207.42, 214.29, 219.33, 
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221.07, 224.29, 229.83, 235.12, 237.76, 242.63, 246.30, 

251.16, 256.35, 260.01, 264.38, 268.58, 275.94, 285.13, 

291.80, 301.72, 307.02, 313.70, 322.83, 331.42, 337.86, 

345.32, 352.44, 362.46, 368.13, 374.97, 384.60, 389.96, 

398.06, 408.43, 414.00, 421.02, 428.90, 436.17, 445.62, 

454.53, 461.83, 467.95, 474.59, 483.66, 492.00, 501.12, 

507.35, 514.53, 523.91, 531.04, 538.79, 545.23, 551.65, 

562.53, 566.53, 576.72, 582.79, 593.12, 599.44, 608.04, 

614.09, 623.07, 628.12, 635.97, 643.16, 651.10, 661.50, 

669.36, 674.96, 682.13, 689.66, 699.59, 707.75, 713.87, 

721.46, 727.42, 737.31, 745.85, 752.83, 761.74, 766.66, 

773.95, 784.07, 791.84, 796.83, 807.83, 815.78, 822.48, 

829.50, 838.61, 845.46, 850.38, 859.93, 868.29, 874.88, 

884.70, 890.92, 896.96, 905.10, 914.85, 923.14, 928.55, 

937.73, 943.31, 952.97, 958.89, 968.98, 975.15, 981.10, 

988.70, 999.17, 1005.34, 1015.18, 1021.33, 1026.98, 

1037.63, 1045.80, 1050.00, 1060.71, 1066.92, 1074.89, 

1080.62, 1090.16, 1098.04, 1104.79, 1111.63, 1122.56, 

1127.07, 1137.53, 1144.71, 1152.25, 1158.18, 1165.62, 

1176.03, 1181.22, 1188.61, 1195.70, 1204.01, 1214.12, 

1222.10, 1228.16, 1237.36, 1243.05, 1249.58, 1260.15, 

1264.38, 1274.80, 1280.54, 1290.83, 1296.34, 1306.65, 

1311.42, 1319.41, 1326.83, 1336.75, 1343.59, 1348.72, 

1358.46, 1364.41, 1375.26, 1381.35, 1388.84, 1396.75, 

1404.61, 1410.71, 1417.89, 1425.91, 1434.12, 1443.40, 

1450.06, 1457.02, 1466.22, 1474.42, 1481.86, 1490.43, 

1495.37, 1504.79, 1511.19, 1518.12, 1522.97, 1533.05, 

1539.57, 1546.09, 1551.80, 1558.84, 1562.57, 1570.43, 

1577.98, 1585.01, 1590.80, 1595.29, 1604.78, 1607.54, 

1616.12, 1624.21, 1629.61, 1635.83, 1643.74, 1647.63, 

1656.86, 1663.23, 1668.45, 1676.32, 1681.40, 1686.92, 

1693.35, 1701.82, 1708.41, 1714.21, 1721.74, 1726.88, 

1734.11, 1737.68, 1745.11, 1753.02, 1760.67, 1767.59, 

1771.87, 1780.21, 1783.54, 1789.96, 1797.51, 1805.52, 

1810.61, 1815.91, 1825.76, 1830.40, 1837.63, 1842.05, 

1850.54, 1857.33, 1862.15, 1870.03, 1876.23, 1881.17, 

1891.04, 1895.94, 1903.88, 1907.69, 1913.78, 1923.23, 

1928.04, 1936.29, 1941.61, 1949.79, 1954.45, 1962.24, 

1966.92, 1974.75, 1982.33, 1987.39, 1992.78, 1999.93, 

2007.88, 2012.44, 2020.85, 2026.72, 2031.45, 2037.62, 

2047.12, 2052.36, 2058.69, 2064.13, 2072.48, 2078.73, 

2083.50, 2089.37, 2098.64, 2105.54, 2111.93, 2119.09, 

2124.48, 2130.45, 2138.53, 2141.66, 2149.65, 2154.93, 

2164.53, 2170.18, 2174.27, 2183.93, 2189.26, 2193.68, 

2201.07, 2208.12, 2214.93, 2220.68, 2228.69, 2234.34, 

2241.02, 2245.78, 2252.89, 2261.30, 2265.64, 2275.36, 

2280.20, 2288.30, 2293.91, 2300.75, 2305.15, 2311.43, 
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2320.12, 2326.54, 2333.85, 2337.71, 2346.40, 2351.22, 

2358.94, 2363.00, 2369.15, 2376.16, 2385.97, 2389.87, 

2397.17, 2403.15, 2410.80, 2417.94, 2422.54, 2429.84, 

2437.20, 2440.86, 2447.82, 2454.80, 2463.74, 2469.86, 

2476.40, 2482.23, 2487.93, 2493.03, 2502.69, 2508.57, 

2512.68, 2522.43, 2527.51, 2534.78, 2541.88, 2547.14, 

2551.66, 2558.86, 2564.81, 2572.24, 2577.92, 2585.77, 

2592.75, 2599.19, 2605.61, 2611.96, 2619.52, 2626.55, 

2629.76, 2636.49, 2645.25, 2649.15, 2659.46, 2669.08, 

2677.03, 2686.41, 2698.41, 2705.86, 2716.97, 2727.76, 

2736.88, 2746.15, 2755.41, 2766.84, 2777.15, 2785.93, 

2795.26, 2806.94, 2815.16, 2823.66, 2835.89, 2843.77, 

2854.97, 2866.50, 2875.20, 2885.95, 2895.79, 2902.40, 

2913.57, 2925.32, 2935.73, 2942.55, 2954.64, 2964.76, 

2971.40, 2982.38, 2992.59, 3001.75, 3011.21, 3023.69, 

3032.39, 3042.85, 3053.77, 3060.31, 3073.16, 3083.03, 

3090.18, 3101.77, 3111.37, 3120.08, 3129.50, 3143.15, 

3149.22, 3160.22, 3171.58, 3179.62, 3189.86, 3202.36, 

3209.71, 3220.36, 3230.05, 3238.75, 3249.23, 3259.66, 

3267.80, 3280.05, 3289.57, 3300.90, 3306.95, 3320.31, 

3328.51, 3337.29, 3346.54, 3356.56, 3369.72, 3376.25, 

3389.59, 3397.11, 3407.50, 3415.58, 3426.94, 3439.09, 

3445.19, 3457.07, 3465.48, 3478.38, 3487.52, 3498.30, 

3505.51, 3516.28, 3524.17, 3535.22, 3546.70, 3557.45, 

3566.31, 3574.50, 3583.47, 3597.17, 3605.62, 3615.81, 

3624.29, 3633.03, 3645.51] 

# ymax = 0.0005 

 

# Set 5 

# 650 samples 5 sec approx between arrivals 

# data_set = [5.17, 7.18, 12.42, 13.75, 17.48, 24.03, 

25.46, 29.97, 34.30, 37.51, 41.18, 43.38, 46.51, 48.69, 

52.56, 55.55, 58.70, 63.68, 65.77, 70.25, 73.58, 78.42, 

80.60, 81.92, 88.69, 89.39, 95.15, 97.46, 101.36, 104.76, 

109.12, 112.25, 114.90, 119.08, 121.20, 126.33, 125.80, 

129.92, 134.41, 138.58, 142.46, 146.31, 147.44, 153.07, 

156.78, 159.44, 163.21, 165.10, 168.45, 171.69, 175.19, 

179.98, 183.25, 186.89, 187.61, 192.35, 197.21, 198.77, 

203.38, 207.41, 208.46, 214.18, 217.59, 221.36, 224.68, 

224.88, 230.14, 232.02, 236.58, 241.89, 243.99, 246.55, 

251.99, 252.07, 255.48, 259.46, 262.34, 266.37, 270.89, 

275.33, 279.35, 282.34, 283.29, 286.43, 289.97, 293.19, 

295.98, 300.78, 304.26, 308.39, 309.65, 313.76, 317.04, 

322.73, 326.28, 327.16, 333.34, 335.61, 339.00, 343.98, 

347.13, 350.29, 353.60, 356.35, 359.58, 362.42, 365.98, 

370.58, 373.18, 377.29, 380.56, 383.87, 387.31, 387.65, 

391.67, 397.25, 401.19, 409.03, 411.03, 415.75, 422.77, 
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424.98, 431.13, 436.65, 439.08, 445.67, 448.86, 453.33, 

458.95, 463.09, 468.33, 473.87, 479.95, 482.52, 486.63, 

492.06, 497.06, 503.53, 508.97, 511.86, 515.58, 521.66, 

524.37, 531.20, 536.94, 540.15, 546.04, 551.60, 555.45, 

559.73, 562.95, 567.21, 574.84, 579.61, 583.53, 588.29, 

594.33, 599.08, 602.01, 608.06, 610.41, 615.44, 619.69, 

626.81, 632.41, 633.84, 639.04, 645.35, 651.20, 656.56, 

658.44, 663.28, 669.58, 675.63, 679.08, 684.34, 689.65, 

691.98, 697.08, 703.56, 707.63, 711.50, 717.23, 723.04, 

726.83, 729.49, 737.43, 739.21, 745.60, 748.17, 754.97, 

760.38, 762.57, 767.05, 772.76, 780.31, 784.56, 787.65, 

793.44, 798.97, 802.08, 809.11, 813.11, 816.88, 822.78, 

824.32, 829.22, 836.60, 839.36, 846.54, 851.09, 856.45, 

857.79, 863.97, 869.34, 873.02, 876.57, 883.92, 888.59, 

892.07, 895.86, 904.28, 906.59, 910.06, 918.23, 921.24, 

926.11, 931.51, 936.88, 939.31, 946.76, 949.49, 955.56, 

960.80, 964.02, 967.74, 973.79, 976.67, 984.37, 987.79, 

991.39, 998.52, 1000.34, 1005.93, 1010.48, 1017.50, 

1020.66, 1027.88, 1030.46, 1034.28, 1039.52, 1043.34, 

1050.01, 1054.48, 1057.82, 1063.16, 1067.33, 1074.04, 

1079.27, 1080.93, 1082.47, 1082.07, 1083.85, 1085.89, 

1083.52, 1085.93, 1088.59, 1090.13, 1089.41, 1090.66, 

1090.71, 1094.64, 1094.93, 1094.33, 1095.28, 1098.77, 

1098.83, 1099.28, 1098.94, 1103.02, 1105.05, 1102.94, 

1105.14, 1107.53, 1109.20, 1109.52, 1111.39, 1109.84, 

1111.14, 1113.76, 1112.65, 1114.57, 1116.05, 1119.17, 

1120.21, 1120.93, 1122.54, 1120.99, 1123.73, 1125.89, 

1125.72, 1128.26, 1126.17, 1126.92, 1129.58, 1130.66, 

1132.94, 1131.84, 1136.44, 1134.45, 1137.17, 1138.58, 

1140.60, 1140.53, 1140.60, 1143.22, 1143.52, 1144.01, 

1145.31, 1147.94, 1148.35, 1150.56, 1149.96, 1151.70, 

1153.39, 1153.61, 1155.47, 1156.04, 1158.42, 1159.92, 

1160.96, 1160.37, 1161.62, 1163.84, 1163.02, 1166.39, 

1163.99, 1166.12, 1168.77, 1169.63, 1169.72, 1173.29, 

1171.04, 1173.54, 1174.98, 1177.00, 1178.18, 1177.65, 

1177.46, 1182.06, 1182.28, 1180.76, 1185.37, 1183.13, 

1184.04, 1186.70, 1189.54, 1188.00, 1191.04, 1191.60, 

1194.65, 1192.21, 1195.56, 1194.38, 1195.79, 1198.84, 

1198.81, 1199.32, 1202.28, 1203.14, 1202.74, 1204.66, 

1205.29, 1205.41, 1206.62, 1207.49, 1211.14, 1215.27, 

1220.80, 1227.40, 1233.70, 1241.37, 1246.67, 1252.59, 

1259.22, 1263.34, 1269.72, 1275.06, 1280.93, 1288.30, 

1292.65, 1298.06, 1304.20, 1311.39, 1318.20, 1325.18, 

1331.13, 1335.04, 1342.84, 1348.12, 1353.30, 1358.14, 

1365.29, 1369.45, 1375.46, 1382.07, 1388.02, 1395.61, 

1401.37, 1406.98, 1413.91, 1419.92, 1423.01, 1431.22, 

1436.07, 1444.47, 1447.45, 1454.17, 1459.96, 1465.48, 
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1470.55, 1477.87, 1485.80, 1492.07, 1494.48, 1501.59, 

1509.40, 1513.57, 1518.06, 1527.65, 1532.95, 1538.69, 

1543.03, 1550.92, 1555.94, 1559.73, 1566.86, 1574.74, 

1578.83, 1584.58, 1590.12, 1598.32, 1602.38, 1608.99, 

1614.44, 1620.75, 1626.80, 1632.79, 1637.10, 1645.36, 

1650.80, 1655.47, 1663.80, 1669.78, 1675.86, 1679.04, 

1685.83, 1691.08, 1697.71, 1700.67, 1704.81, 1705.29, 

1709.17, 1708.68, 1711.76, 1714.61, 1715.04, 1720.72, 

1721.63, 1725.83, 1724.44, 1729.25, 1730.35, 1733.62, 

1737.06, 1738.38, 1740.94, 1742.19, 1743.37, 1748.63, 

1748.20, 1750.85, 1755.59, 1755.13, 1758.57, 1758.97, 

1761.46, 1764.48, 1766.03, 1769.84, 1772.74, 1773.28, 

1776.89, 1779.26, 1781.35, 1784.22, 1785.98, 1790.05, 

1790.46, 1794.78, 1795.91, 1798.28, 1800.86, 1800.64, 

1805.45, 1808.46, 1809.80, 1809.89, 1813.07, 1817.43, 

1817.86, 1819.48, 1823.84, 1824.41, 1826.50, 1831.27, 

1833.01, 1834.03, 1838.34, 1841.19, 1843.24, 1845.33, 

1846.41, 1848.07, 1852.82, 1855.25, 1860.01, 1864.13, 

1868.66, 1874.40, 1877.63, 1883.08, 1889.48, 1893.71, 

1897.77, 1902.39, 1907.81, 1909.73, 1917.75, 1919.81, 

1926.50, 1929.95, 1936.65, 1940.96, 1943.79, 1950.65, 

1953.33, 1956.90, 1962.42, 1966.72, 1973.77, 1977.92, 

1979.97, 1987.61, 1989.39, 1996.97, 2001.40, 2005.99, 

2009.26, 2013.31, 2019.85, 2021.77, 2027.89, 2032.90, 

2035.99, 2040.88, 2047.02, 2050.82, 2055.72, 2059.87, 

2065.02, 2068.63, 2074.95, 2080.03, 2083.22, 2088.30, 

2092.39, 2097.72, 2101.38, 2106.56, 2110.75, 2117.08, 

2123.10, 2128.45, 2130.68, 2134.96, 2140.99, 2145.23, 

2150.29, 2153.43, 2159.88, 2163.96, 2169.60, 2173.33, 

2177.80, 2181.15, 2185.61, 2191.61, 2196.87, 2201.81, 

2205.25, 2209.65, 2214.27, 2221.68, 2222.90, 2230.20, 

2231.51, 2235.54, 2238.28, 2242.41, 2245.58, 2249.39, 

2254.31, 2258.27, 2260.29, 2262.48, 2267.10, 2269.42, 

2277.18, 2281.54, 2288.22, 2294.36, 2299.19, 2308.06, 

2312.88, 2318.15, 2322.73, 2328.71, 2334.66, 2340.87, 

2347.41, 2353.79, 2360.41, 2364.51, 2369.50, 2377.96, 

2380.95, 2389.76, 2396.61, 2398.88, 2405.37, 2411.27, 

2416.40, 2425.25, 2429.50, 2437.57, 2442.05, 2448.65, 

2451.40, 2460.90] 

# ymax = 0.0014 

 

# Set 6 

# 1000 samples 10 sec approx between arrivals 

data_set = [11.39, 19.94, 28.70, 37.61, 46.22, 55.35, 

64.02, 73.03, 81.63, 90.15, 99.64, 107.63, 117.23, 125.91, 

134.28, 142.91, 152.14, 161.15, 169.60, 178.63, 186.83, 

196.08, 204.91, 213.62, 222.44, 231.24, 239.89, 248.07, 
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257.61, 266.28, 275.18, 283.63, 292.77, 301.08, 310.02, 

319.07, 327.48, 336.01, 344.61, 354.13, 362.28, 371.44, 

379.92, 388.75, 397.79, 406.27, 415.69, 424.07, 433.18, 

441.62, 450.02, 459.50, 467.81, 476.34, 485.63, 494.41, 

502.98, 511.44, 520.94, 529.37, 538.16, 547.04, 556.20, 

564.73, 573.48, 581.75, 590.58, 599.81, 608.13, 617.21, 

625.67, 634.77, 643.81, 652.59, 660.74, 670.01, 678.88, 

687.20, 696.69, 705.55, 714.20, 722.61, 730.95, 740.17, 

749.11, 757.48, 766.18, 775.31, 783.86, 793.09, 801.20, 

810.48, 818.71, 827.75, 837.05, 845.50, 854.66, 863.59, 

872.32, 880.65, 889.84, 898.71, 907.15, 915.49, 925.03, 

933.70, 942.44, 951.32, 959.58, 968.28, 976.80, 986.07, 

995.14, 1003.42, 1012.32, 1021.11, 1030.41, 1038.91, 

1046.99, 1056.38, 1064.80, 1073.45, 1082.23, 1091.67, 

1099.93, 1108.84, 1117.98, 1126.66, 1135.49, 1143.88, 

1153.20, 1161.76, 1170.32, 1179.03, 1187.81, 1196.81, 

1205.18, 1214.61, 1222.63, 1231.67, 1240.61, 1249.30, 

1257.86, 1267.01, 1275.96, 1284.44, 1292.92, 1302.38, 

1311.01, 1319.76, 1328.24, 1337.23, 1346.18, 1355.14, 

1363.90, 1365.88, 1367.46, 1370.13, 1372.59, 1373.78, 

1376.54, 1378.94, 1380.89, 1382.50, 1385.29, 1387.19, 

1389.13, 1391.09, 1393.82, 1396.04, 1398.06, 1400.02, 

1402.06, 1404.00, 1406.16, 1408.73, 1410.80, 1412.61, 

1415.11, 1417.39, 1419.03, 1421.55, 1423.55, 1425.15, 

1427.35, 1430.23, 1431.71, 1434.10, 1436.31, 1438.75, 

1440.65, 1442.83, 1444.64, 1447.00, 1449.29, 1451.02, 

1453.84, 1455.82, 1457.37, 1459.82, 1462.31, 1464.09, 

1466.11, 1468.27, 1470.93, 1472.75, 1474.66, 1476.73, 

1479.53, 1481.33, 1483.51, 1485.69, 1487.76, 1489.32, 

1491.72, 1493.70, 1495.84, 1498.62, 1500.67, 1502.94, 

1504.88, 1506.67, 1509.13, 1510.73, 1513.39, 1515.39, 

1518.09, 1519.68, 1521.66, 1524.04, 1526.65, 1528.20, 

1530.49, 1532.25, 1534.98, 1536.48, 1538.93, 1540.91, 

1543.57, 1545.59, 1547.30, 1549.43, 1552.31, 1554.47, 

1556.15, 1558.53, 1560.14, 1562.93, 1564.34, 1566.46, 

1568.73, 1570.81, 1572.80, 1575.23, 1577.79, 1579.75, 

1581.68, 1584.14, 1586.55, 1588.37, 1590.66, 1592.64, 

1594.97, 1596.37, 1599.20, 1600.88, 1603.40, 1605.21, 

1607.39, 1609.20, 1611.75, 1613.86, 1616.13, 1618.50, 

1620.47, 1622.14, 1624.40, 1626.62, 1629.11, 1631.41, 

1632.78, 1635.11, 1637.24, 1639.33, 1641.84, 1644.06, 

1646.11, 1648.15, 1650.47, 1652.41, 1654.78, 1657.12, 

1659.16, 1661.37, 1663.11, 1665.69, 1667.26, 1669.78, 

1672.01, 1673.79, 1676.06, 1677.70, 1680.67, 1682.91, 

1684.43, 1686.93, 1688.61, 1690.84, 1692.79, 1695.53, 

1697.52, 1699.70, 1701.25, 1704.00, 1706.12, 1708.20, 

1709.76, 1711.93, 1714.47, 1716.18, 1718.33, 1721.44, 
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1723.04, 1725.51, 1727.39, 1729.62, 1731.40, 1733.29, 

1738.91, 1744.31, 1750.21, 1756.15, 1760.79, 1766.69, 

1772.65, 1777.57, 1783.11, 1788.26, 1794.22, 1800.14, 

1804.82, 1810.88, 1815.84, 1821.46, 1826.71, 1832.72, 

1837.95, 1843.87, 1849.35, 1854.99, 1860.47, 1865.81, 

1870.66, 1876.15, 1881.60, 1887.48, 1892.84, 1898.26, 

1904.46, 1909.02, 1915.39, 1920.15, 1925.63, 1931.02, 

1936.82, 1942.46, 1947.79, 1953.67, 1958.93, 1964.65, 

1969.70, 1974.88, 1980.91, 1986.75, 1991.78, 1997.40, 

2002.97, 2007.91, 2013.88, 2019.13, 2024.93, 2029.99, 

2036.11, 2041.33, 2047.05, 2051.98, 2057.42, 2063.50, 

2068.33, 2073.98, 2079.18, 2085.48, 2090.26, 2095.95, 

2101.19, 2106.68, 2112.99, 2117.95, 2123.65, 2129.01, 

2134.05, 2139.57, 2145.38, 2150.97, 2156.81, 2161.97, 

2167.61, 2172.78, 2178.07, 2183.94, 2189.86, 2194.46, 

2200.35, 2206.41, 2211.19, 2216.83, 2222.81, 2227.55, 

2233.85, 2238.44, 2244.48, 2250.00, 2255.72, 2261.14, 

2266.80, 2272.00, 2277.47, 2282.83, 2288.24, 2293.46, 

2298.83, 2304.98, 2310.33, 2315.90, 2321.67, 2326.35, 

2332.22, 2337.65, 2343.12, 2348.67, 2354.55, 2359.27, 

2365.44, 2370.98, 2376.53, 2381.87, 2387.52, 2392.83, 

2398.40, 2403.92, 2409.20, 2414.44, 2420.15, 2425.73, 

2431.24, 2436.28, 2441.92, 2447.93, 2453.38, 2458.88, 

2463.49, 2469.65, 2474.97, 2480.60, 2485.43, 2491.31, 

2495.34, 2500.16, 2503.93, 2508.50, 2513.31, 2517.43, 

2521.40, 2525.64, 2530.20, 2534.45, 2539.08, 2543.74, 

2547.56, 2551.99, 2556.48, 2560.40, 2564.85, 2568.85, 

2574.16, 2577.83, 2582.55, 2586.56, 2590.94, 2595.02, 

2599.27, 2604.01, 2608.18, 2612.66, 2617.04, 2621.31, 

2625.53, 2630.01, 2634.76, 2638.22, 2642.62, 2647.45, 

2651.71, 2655.53, 2660.64, 2665.04, 2668.49, 2673.34, 

2677.64, 2682.35, 2686.08, 2690.44, 2694.56, 2699.42, 

2703.25, 2707.80, 2711.88, 2716.78, 2721.02, 2724.75, 

2729.91, 2734.10, 2738.26, 2742.07, 2746.65, 2751.18, 

2756.01, 2759.61, 2764.34, 2768.42, 2773.24, 2777.18, 

2781.53, 2786.25, 2789.72, 2794.10, 2798.64, 2803.03, 

2807.25, 2811.84, 2816.47, 2820.75, 2824.50, 2829.11, 

2833.94, 2837.38, 2842.29, 2846.26, 2850.77, 2854.80, 

2859.29, 2863.69, 2868.55, 2872.46, 2876.83, 2880.91, 

2885.31, 2889.77, 2894.45, 2898.31, 2902.38, 2907.40, 

2911.81, 2919.13, 2926.68, 2934.28, 2942.32, 2949.54, 

2957.41, 2965.41, 2972.83, 2981.06, 2988.60, 2995.65, 

3003.99, 3011.57, 3019.54, 3026.40, 3034.55, 3042.19, 

3049.36, 3057.05, 3065.20, 3073.39, 3080.51, 3088.13, 

3095.60, 3103.73, 3111.71, 3119.00, 3126.78, 3134.04, 

3142.03, 3149.72, 3157.54, 3164.92, 3172.59, 3180.81, 

3188.39, 3196.34, 3203.53, 3211.62, 3218.57, 3226.61, 
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3233.99, 3241.95, 3249.30, 3256.98, 3264.92, 3272.59, 

3280.48, 3288.17, 3296.06, 3304.04, 3311.65, 3319.11, 

3326.79, 3334.23, 3342.18, 3349.67, 3357.49, 3365.28, 

3373.29, 3380.72, 3388.37, 3395.47, 3403.55, 3410.83, 

3418.53, 3426.17, 3434.08, 3441.87, 3449.49, 3457.56, 

3465.50, 3472.70, 3480.77, 3487.79, 3495.90, 3503.05, 

3511.21, 3518.48, 3526.99, 3533.82, 3542.44, 3549.82, 

3557.75, 3564.62, 3573.15, 3580.72, 3588.43, 3595.37, 

3603.75, 3611.28, 3618.98, 3626.87, 3633.89, 3642.24, 

3649.97, 3657.57, 3665.40, 3672.51, 3680.11, 3688.19, 

3695.42, 3703.91, 3711.61, 3718.46, 3719.81, 3720.63, 

3722.13, 3723.34, 3724.16, 3725.61, 3726.34, 3727.52, 

3728.53, 3729.32, 3730.81, 3731.07, 3732.03, 3733.23, 

3734.60, 3735.56, 3736.34, 3738.18, 3738.69, 3740.04, 

3741.04, 3742.12, 3742.93, 3744.54, 3745.32, 3745.96, 

3747.68, 3748.41, 3748.93, 3750.60, 3751.20, 3752.50, 

3753.08, 3754.82, 3755.37, 3757.07, 3757.63, 3758.75, 

3759.36, 3761.33, 3761.61, 3762.53, 3763.68, 3764.75, 

3766.00, 3767.40, 3767.88, 3768.83, 3769.87, 3771.47, 

3772.83, 3773.36, 3774.29, 3775.96, 3785.06, 3795.54, 

3805.50, 3814.80, 3825.26, 3834.89, 3844.46, 3854.30, 

3864.75, 3874.48, 3883.91, 3894.11, 3904.03, 3914.02, 

3923.94, 3933.34, 3944.02, 3952.98, 3963.45, 3973.08, 

3983.39, 3992.76, 4002.38, 4012.62, 4022.13, 4032.15, 

4042.75, 4052.30, 4062.40, 4072.44, 4081.94, 4091.99, 

4101.65, 4111.01, 4121.84, 4131.41, 4140.78, 4150.87, 

4161.20, 4170.46, 4180.31, 4190.20, 4200.83, 4210.37, 

4220.61, 4230.12, 4240.03, 4249.34, 4252.71, 4256.06, 

4259.53, 4262.36, 4265.56, 4269.59, 4272.22, 4275.43, 

4279.04, 4282.18, 4285.69, 4289.01, 4291.54, 4295.50, 

4298.01, 4301.58, 4304.96, 4308.52, 4311.02, 4314.11, 

4317.87, 4321.06, 4324.53, 4327.48, 4331.07, 4333.79, 

4337.30, 4340.16, 4343.93, 4346.86, 4350.05, 4353.42, 

4356.54, 4360.24, 4362.85, 4366.47, 4369.43, 4373.31, 

4375.80, 4379.17, 4382.53, 4386.17, 4389.00, 4392.79, 

4395.49, 4398.47, 4402.26, 4405.04, 4408.25, 4409.99, 

4410.81, 4411.38, 4413.04, 4413.48, 4414.82, 4415.70, 

4417.12, 4418.03, 4419.43, 4420.04, 4421.87, 4422.80, 

4424.05, 4424.94, 4425.78, 4426.72, 4427.61, 4429.20, 

4429.82, 4431.44, 4432.29, 4433.88, 4434.62, 4435.47, 

4436.17, 4437.80, 4438.83, 4439.89, 4440.58, 4441.78, 

4443.61, 4444.08, 4445.04, 4446.35, 4447.51, 4448.57, 

4449.50, 4450.34, 4451.70, 4452.68, 4454.26, 4454.97, 

4455.86, 4457.36, 4458.05, 4459.54, 4460.46, 4461.58, 

4462.12, 4463.53, 4465.15, 4466.10, 4466.56, 4467.73, 

4469.49, 4469.67, 4471.33, 4471.84, 4473.22, 4473.96, 

4476.00, 4481.29, 4486.74, 4492.11, 4497.10, 4502.92, 
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4508.08, 4513.60, 4519.36, 4524.96, 4529.44, 4535.23, 

4540.45, 4546.07, 4551.65, 4557.40, 4562.23, 4568.36, 

4573.07, 4578.47, 4584.39, 4589.26, 4595.31, 4600.51, 

4606.02, 4611.83, 4617.28, 4622.62, 4627.80, 4633.16, 

4638.64, 4644.34, 4649.62, 4655.43, 4660.37, 4665.88, 

4671.41, 4677.02, 4681.91, 4687.44, 4692.84, 4698.60, 

4704.10, 4709.74, 4714.68, 4720.39, 4726.03, 4731.05, 

4737.11, 4742.39, 4747.30, 4753.01, 4758.30, 4764.03, 

4769.07, 4774.98, 4779.72, 4785.87, 4791.39, 4796.45, 

4801.89, 4807.45, 4813.04, 4818.69, 4824.15, 4829.01, 

4834.69, 4839.87, 4845.12, 4851.11, 4856.55, 4861.97, 

4867.00, 4873.10, 4878.43, 4883.96, 4888.76, 4894.83, 

4900.30, 4905.46, 4911.11, 4916.08, 4926.29, 4936.23, 

4945.94, 4955.33, 4965.23, 4975.25, 4985.16, 4994.42, 

5004.63, 5014.66, 5024.13, 5033.26, 5043.88, 5053.51, 

5063.34, 5073.44, 5082.78, 5092.37, 5102.22, 5112.34, 

5122.17, 5131.58, 5141.94, 5151.84, 5161.61, 5170.55, 

5180.71, 5190.76, 5200.39, 5209.81, 5220.09, 5229.57, 

5239.28, 5249.24, 5258.74, 5269.18, 5278.93, 5288.32] 

ymax = 0.0010 

 

# First & second figure: Knuth bins & Bayesian Blocks 

fig = plt.figure(figsize=(10, 4)) 

fig.subplots_adjust(left=0.1, right=0.95, bottom=0.15) 

 

for bins, title, subplot in zip(['knuth', 'blocks'], 

["Knuth's Rule", 'Bayesian Blocks'], [121, 122]): 

 

    ax = fig.add_subplot(subplot) 

 

    # Plot a standard histogram in the background, with 

alpha transparency 

    hist(data_set, bins=25, histtype='stepfilled', 

alpha=0.1, normed=True,  

    label='Raw Data: Binned Counts') 

 

    # Plot an adaptive-width histogram on top 

    hist(data_set, bins=bins, ax=ax, color='black', 

histtype='step', normed=True, label=title) 

 

    # Control limits 

    ax.legend(prop=dict(size=12)) 

    plt.ylim(0,ymax) # Change this value based on the graph 

    plt.draw() # Draw the figure so the positon of the 

legend can be found 

    box = ax.get_position() 
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    ax.set_position([box.x0, box.y0 + box.height * 0.1, 

box.width, box.height * 0.9]) 

 

    # Put a legend below current axis 

    ax.legend(loc='upper center', bbox_to_anchor=(0.5, -

0.05), fancybox=True, shadow=True) 

# Collect and display some metrics 

bblocks = bayesian_blocks(data_set) 

kbw = knuth_bin_width(data_set) 

print("BB Change Points of Data Set: ") 

print(bblocks) 

print("Knuth Bin Width: ") 

print(kbw) 

 

# Update the final plot 

plt.show() 
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APPENDIX B 

Scargle’s Algorithm for BATSE Gamma Ray Data MATLAB Code 

% For data modes 1 and 2: 

% nn_vec is the array of cell populations. 

% Preliminary computation: 

block_length=tt_stop-[tt_start 0.5*(tt(2:end)+tt(1:end-1))’ 

tt_stop]; 

%---------------------------------------------------------- 

% Start with first data cell; add one cell at each 

iteration 

%---------------------------------------------------------- 

best = []; 

last = []; 

for R = 1:num_points 

% Compute fit_vec : fitness of putative last block (end at 

R) 

if data_mode == 3 % Measurements, normal errors 

sum_x_1 = cumsum( cell_data( R:-1:1, 1 ) )’; %sum(x/sig^2) 

sum_x_0 = cumsum( cell_data( R:-1:1, 2 ) )’; %sum(1/sig^2) 

fit_vec=((sum_x_1(R:-1:1) ) .^ 2 ) ./( 4*sum_x_0(R:-1:1)); 

else 

arg_log = block_length(1:R) - block_length(R+1); 

arg_log( find( arg_log <= 0 ) ) = Inf; 

nn_cum_vec = cumsum( nn_vec(R:-1:1) ); 

nn_cum_vec = nn_cum_vec(R:-1:1); 

fit_vec = nn_cum_vec .* ( log( nn_cum_vec ) - log( arg_log 

) ); 

end 

[ best(R), last(R)] = max( [ 0 best ] + fit_vec - ncp_prior 

); 

end 

%---------------------------------------------------------- 

% Now find changepoints by iteratively peeling off the last 

block 

%---------------------------------------------------------- 

index = last( num_points ); 

change_points = []; 

while index > 1 

change_points = [ index change_points ]; 
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APPENDIX C 

Performance Comparison MATLAB Code 

clear all; theData = 

{'1000','650','500','400','200','100'}; 

 

% Load all data sets and optimized histograms 

theTTE = cell(size(theData)); 

theKNF = cell(size(theData)); 

theBBF = cell(size(theData)); 

for d = 1:length(theData) 

  theTTE{d} = load(['TT_' theData{d} '.txt']); % N-by-1 

vector of sample times 

  theKNF{d} = load(['KN_' theData{d} '.txt']); % 3-by-M 

matrix, row 1 being unnormalized heights, row 2 being bin 

edges and row 3 being normalized heights 

  theBBF{d} = load(['BB_' theData{d} '.txt']); 

 

  % Count number of samples per bin of each fit and convert 

(unnormalized) histogram to inter-arrival-time estimates 

  mKN = nan(1,size(theKNF{d},2)-1); 

  for k = 1:length(mKN), mKN(k) = 

sum(theTTE{d}>=theKNF{d}(2,k) & 

theTTE{d}<theKNF{d}(2,k+1)+eps); end 

  xKN = diff(theKNF{d}(2,:))./theKNF{d}(1,1:end-1); 

  mBB = nan(1,size(theBBF{d},2)-1); 

  for k = 1:length(mBB), mBB(k) = 

sum(theTTE{d}>=theBBF{d}(2,k) & 

theTTE{d}<theBBF{d}(2,k+1)+eps); end 

  xBB = diff(theBBF{d}(2,:))./theBBF{d}(1,1:end-1); 

  % Compute min, mean and max of the inter-arrival time 

samples 

  xMin = min(diff(theTTE{d})); xMax = max(diff(theTTE{d})); 

xAve = mean(diff(theTTE{d})); 

  % Perform anomaly detection analysis 

  p = linspace(0,1,10001); F = nan(3,length(p)); 

  for i = 1:length(p) 

    xUB = xAve + (1-p(i))*(xMax-xAve); xLB = xAve - (1-

p(i))*(xAve-xMin); 

    F(1,i) = sum(mKN(xKN<xLB | xKN>xUB)); 

    F(2,i) = sum(mBB(xBB<xLB | xBB>xUB)); 

    F(3,i) = sum(diff(theTTE{d})<xLB | 

diff(theTTE{d})>xUB); 

  end 
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  F = F/(length(theTTE{d})-1); 

   

  figure(d); 

  % Show the (unnormalized) histogram fits to the time-

tagged-event data 

  subplot(2,3,[1 2]); 

  [x1,y1] = stairs([theKNF{d}(2,1) theKNF{d}(2,:)],[0 

theKNF{d}(1,:)]); 

  [x2,y2] = stairs([theBBF{d}(2,1) theBBF{d}(2,:)],[0 

theBBF{d}(1,:)]); 

  plot(x1,y1,'-k.',x2,y2,'-r.','LineWidth',2); 

  xlabel('time (sec)'); ylabel('number of arrivals (per 

bin)'); 

  legend({'KN-fit','BB-fit'},'Location','NorthWest'); 

  % Also show per-fit bin edges and the actual arrival 

times 

  hold on; 

  plot(theTTE{d},zeros(size(theTTE{d})),'b.'); 

  for k = 1:size(theKNF{d},2), plot(theKNF{d}(2,k)*[1 

1],ylim,'k:'); end 

  for k = 1:size(theBBF{d},2), plot(theBBF{d}(2,k)*[1 

1],ylim,'r:'); end 

  hold off; 

  title(['Two Histogram-Based Fits to the Length-' 

theData{d} ' Time-Tagged-Event Data']); 

 

  % Show the per-fit estimates against the actual inter-

arrival time data 

  subplot(2,3,[4 5]); 

  plot(theTTE{d}(1:end-1),diff(theTTE{d}),'b.'); 

  xlabel('time (sec)'); ylabel('inter-arrival times 

(sec)'); 

  % Also show per-fit bin edges and the actual inter-

arrival times 

  hold on; 

  [x1,y1] = stairs([theKNF{d}(2,1) theKNF{d}(2,:)],[0 

(theKNF{d}(1,1:end-1)./diff(theKNF{d}(2,:))).^-1 0]); 

  [x2,y2] = stairs([theBBF{d}(2,1) theBBF{d}(2,:)],[0 

(theBBF{d}(1,1:end-1)./diff(theBBF{d}(2,:))).^-1 0]); 

  plot(x1,y1,'-k.',x2,y2,'-r.','LineWidth',2); 

  legend('raw','KN-fit','BB-fit','Location','SouthWest');  

  for k = 1:size(theKNF{d},2), plot(theKNF{d}(2,k)*[1 

1],ylim,'k:'); end 

  for k = 1:size(theBBF{d},2), plot(theBBF{d}(2,k)*[1 

1],ylim,'r:'); end 

  hold off; 



- 58 - 

  title(['Associated Piecewise-Constant Fits to the Inter-

Arrival-Time Samples']); 

   

  % Show the anomaly detection results 

  subplot(2,3,[3 6]); plot(p,F(3,:),'-b',p,F(1,:),'-

k',p,F(2,:),'-r','LineWidth',2); 

  xlabel('detector sensitivity'); ylabel('fraction 

anomalous'); 

  legend({'raw','KN-fit','BB-fit'},'Location','NorthWest'); 

  title('Performance Comparison'); 

end 

 

  



- 59 - 

 

VITA 

 

Alaa (Al) Alkadi is an experienced senior research and development embedded systems 

and software engineer with an ABET accredited electrical engineering B.S. degree from 

the University of North Florida. Al's expertise includes: designing, implementing, and 

extending a backbone framework for advanced security applications by integrating 

various technologies. These technologies include web and mobile GUI applications; 

video capture, analysis, archiving and streaming; PLC and other automation controllers; 

IP based sensors and output devices; custom drivers, third party SDKs, and open source 

projects. Al specializes in cross platform software development in Qt (Windows and 

Linux), C#, C/C++, Embedded C and Assembly, Python, XSL/XSLT, Java and VB.NET. 


	UNF Digital Commons
	2017

	Anomaly Detection in RFID Networks
	Alaa Alkadi
	Suggested Citation


	Title Page
	Acknowledgement
	Contents
	Figures
	Tables
	Abstract
	Chapter 1: Introduction
	1.1 Motivation
	1.2 Background of the Study
	1.3 Bayesian Blocks
	1.4 Knuth's Rule
	1.5 Problem Statement
	1.6 Objective of the Study

	Chapter 2: RFID Background
	2.1 What are RFID Devices?
	2.2 RFID Tags
	2.3 RFID Readers
	2.4 Application of NFC in Today's World
	2.4.1 Financial Transactions
	2.4.2  Transportation
	2.4.3 Entertainment and Hospitality

	2.5 RFID Standards
	Figure 1: ISO 18000 Standards and EPCglobal Tag Classes

	2.6 Performance of RFID Systems
	Figure 2: Degradation of Reader/Tag Power with Radial Distance
	Figure 3: Degradation of Reader/Tag Power for Various Materials
	Figure 4. Degradation of Reader/Tag Information Transfer Rate for Different Materials
	Table 1: Lgain for Different Materials

	2.7 Importance of Anomaly Detection in RFID Networks
	2.8 Bayesian Statistics
	2.9 Applications of Bayesian Statistics
	2.9.1 Lack of Accurate Prior Data
	2.9.2 Mid-Sized Problems with Multiple Sources of Evidence
	2.9.3 Joint Huge Probability Models
	2.9.4 Bayesian Blocks
	2.9.5 Scargle's Algorithm
	2.9.6 Application to Astronomy
	Figure 5: The Characterization of the Superimposed TTEs
	Figure 6: The Characterization of the Four Individual TTEs

	2.9.7 Knuth's Algorithm
	2.9.8 Related Works
	Figure 7: Normalized RFID Command Count



	Chapter 3: The Experiment
	3.1 Method of Experimentation

	Chapter 4: The Outcome
	4.1 Results and Discussion
	Table 2: Descriptive Statistics for Study Samples
	Figure 8: Output of Bayesian Blocks and Knuth's Algorithm for the 200 Sample Set
	Figure 9: Output of Bayesian Blocks and Knuth's Algorithm for the 400 Sample Set
	Figure 10: Output of Bayesian Blocks and Knuth's Algorithm for the 500 Sample Set
	Figure 11: Blocks and Knuth's Algorithm forthe 1000 Sample Set
	Figure 12: Inter-Arrival Gap Histograms: 200 to 1000 Frames Per Sample

	4.2 Further Testing and Anomaly Detection
	Figure 13: Histogram-based Fits to Time-Tagged Event Data and Associated Piecewise-Constant Fits to Inter-Arrival Time Samples
	Figure 14: Performance Comparison Graph


	Chapter 5: Final Observation
	5.1 Conclusion and Recommendation

	References
	Appendix A: Bayesian Blocks and Knuth's Rule Python Code
	Appendix B: Scargle's Algorithm for BATSE Gamma Ray Data MATLAB Code
	Appendix C: Performance Comparison MATLAB Code
	Vita

