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Chronic bladder pain evokes asymmetric behavior in neurons across the left and right hemi-
spheres of the amygdala. An agent-based computational model was created to simulate the
firing of neurons over time and in response to painful bladder stimulation. Each agent rep-
resents one neuron and is characterized by its location in the amygdala and response type
(excited or inhibited). At each time step, the firing rates (Hz) of all neurons are stochas-
tically updated from probability distributions estimated from data collected in laboratory
experiments. A damage accumulation model tracks the damage accrued by neurons during
long-term, painful bladder stimulation. Emergent model output uses neural activity to mea-
sure temporal changes in pain attributed to bladder stimulation. Simulations demonstrate
the model’s ability to capture acute and chronic pain and its potential to predict changes in
pain similar to those observed in the lab. Asymmetric neural activity during the progression
of chronic pain is examined using model output and a sensitivity analysis.

Keywords: agent-based model, neuroscience, pain
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1 Introduction

Chronic visceral pain syndromes affect millions of people
in the US with crippling and debilitating chronic pain.
Urologic chronic pelvic pain, commonly diagnosed as in-
terstitial bladder pain syndrome or chronic pelvic pain
syndrome, is one of the most common chronic visceral
pain syndromes [I7), 48, 50]. Many of the most common
symptoms of chronic pain syndromes such as persistent
pain and depression [31) [5I] suggest the limbic nervous
system is a strong mediator of these conditions. The
peripheral nervous system plays a large role in urologic
pain processing [I1,[9]; however, during the transition from
acute to chronic bladder pain a network including the
prefrontal cortex, anterior cingulate, hippocampus, and
amygdala is likely recruited to sustain pain and modu-
late its affects despite a lack of constant peripheral input
[35] [49].

Recent data has indicated stable, significant changes in
the central nervous system of men and women with vis-
ceral pain syndromes [B 7, 21], 27, 28, B2 [34], 54]. One
brain region in particular, the central nucleus of the amyg-
dala (CeA), is altered in urologic chronic pelvic pain and
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has been implicated in both experiencing pain and modu-
lating pain [5] [7) 20} 29, 34 38, B9, 47]. Notably, the CeA
is one area where visceral pain is regulated differently
than somatic pain. Somatic pain is pain arising from
stimulation or perceived stimulation of soft tissue, skin,
and muscle while visceral pain is that arising from stimu-
lation or perceived stimulation of internal organs. Phar-
macological inhibition of the right CeA in mice decreases
visceral [T9] but not somatic [30] pain-like responses. Al-
though it is difficult to truly distinguish visceral and so-
matic pain in the brain due to the convergence of neurons
in the spinal cord, this observation positions the CeA as
a novel target for the treatment of chronic bladder pain.
Identifying new differences and similarities between so-
matic and visceral pain is critical to understanding the
susceptibility, symptomology, and treatment of different
pain disorders [6l [16]. Bladder-specific changes in CeA-
mediated behavior or gene expression could be targeted to
manage pain in patients who often show other comorbidi-
ties (e.g., fibromyalgia, irritable bowel syndrome, anxiety,
etc) [35].

Differences in the functions of left and right CeA in
both processing and experiencing pain has been a recent
focus of research [29] [34] [38]. Results from our work and
the work of others have described a dominance by the
right CeA in controlling somatic pain [I5] 26] [30]. Recent
data from our lab also suggest that neuronal activity is
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sensitized after bladder injury and differs between the left
and right CeA. The right CeA has a pro-nociceptive func-
tion, meaning that pain increases during excitation of the
right CeA. The left CeA has an anti-nociceptive function,
meaning that pain decreases during excitation of the left
CeA [45]. These differences may be driven in part by dif-
ferences in the excitability of neurons in CeA in response
to bladder stimulation. Lateralization of brain function
has long been appreciated and exists across nearly all bi-
ological taxa [44]. Interestingly, right hemisphere lateral-
ization of the limbic system, including the amygdala, has
been observed in birds and mammals (rodents, primates,
etc) especially in the context of stress and injury [44].
Nonetheless, the status quo in pain research is that func-
tional lateralization remains relatively unexamined and
unused from a clinical perspective.

In the current manuscript, we describe a computational
agent-based modeling approach to understand the dif-
ferences in excitability observed in preliminary electro-
physiological recordings from naive and sensitized mice.
During painful stimulation of the bladder, neurons in the
CeA can either be excited or inhibited by the stimula-
tion, determined by the changes in their firing rates. In-
hibited neurons have a higher baseline firing rate and
exhibit a decrease in firing rate during painful bladder
stimulation. Excited neurons have a lower baseline firing
rate and exhibit an increase in firing rate during painful
bladder stimulation. Neurons in the CeA also show differ-
ent physiological responses under normal conditions (non-
injury) versus after bladder injury [22] 23], 25| [26]. In the
present manuscript, this phenomenon of injury-induced
changes was investigated in the context of bladder injury
and sensitization. In laboratory experiments, mice were
treated with cyclophosphamide (CYP), a chemotherapeu-
tic drug that causes human patients to develop hemor-
rhagic cystitis, thus harming the bladder and inducing
pain [I8 [52]. Mice that were sensitized with CYP de-
veloped some symptoms (e.g., overactivity, bladder and
pelvic nociception) similar to those of human patients
with chronic bladder pain [II, B3]. The goal of these
laboratory experiments was to provide preliminary data
measuring changes in neural activity due to sensitization
to support the development of the agent-based model.

Computational and mathematical models provide a
non-invasive and humane method for studying pain and
assessing different pain management strategies [2]. In
1986, Britton and Skevington constructed a system of dif-
ferential equations describing the gate control theory of
pain [I4] 13]. Gate control theory asserts pain is mod-
ulated through the sending of signals from the spinal
cord to the brain via “nerve gates” that open or close
depending on conditions [36]. The differential equation
model reproduced observations of acute pain and pro-
vided a framework for testing the theory’s applicability

to chronic pain. Researchers have since developed com-
putational and mathematical models that extend the ba-
sic assumptions of gate control theory to include, for ex-
ample, functional properties of sub-categories of neurons
[3,/4], interactions between neurons and increasing quanti-
ties of T-cells [41], and cortical reorganization attributed
to amputation [I0]. Other recent advances in pain mod-
eling utilize artificial neural networks to explain the non-
linear processing of signals between the spinal cord and
the brain [37, 24].

In this paper, we use an agent-based computational
model to describe the behavior of individual neurons in
response to painful bladder stimulation caused by disten-
tion. Agent-based models are used increasingly in all dis-
ciplines to study emergent features of complex systems
governed by the actions and interactions of individual
agents [43, 63]. In our model, each agent represents one
neuron and the behavior (e.g., firing rate) of all neurons
are stochastically updated at each time step. The pri-
mary emergent feature of the model is a measure of blad-
der pain and our objective is to investigate the role of
specific neurons in pain modulation. Moreover, because
each agent in the model is assigned a location within the
amygdala, we use the model to assess asymmetric neural
behavior observed across the left and right hemispheres
of the CeA.

A complete description of our agent-based model is pro-
vided in Section 2. Model parameters were estimated us-
ing preliminary data from our laboratory experiments.
Section 3 provides a description of these experiments and
a summary of the statistical algorithm used to estimate
model parameters from the experimental data. Results of
model simulations and a sensitivity analysis are displayed
in Section 4. Simulations demonstrate the model’s ability
to capture acute and chronic pain and the model’s poten-
tial to predict changes in pain similar to those observed
in the lab. A discussion of these results is provided in
Section 5 and concluding remarks follow in Section 6.

2 Model Description

2.1 Purpose

The purpose of the agent-based model (ABM) is to ob-
serve system-level properties of excited and inhibited neu-
rons in the central nucleus of the amygdala (CeA) during
short and long-term bladder pain caused by bladder dis-
tention. System-level output measures pain attributed to
bladder distention. Results are useful in understanding
the role of excited and inhibited neurons in pain regula-
tion and the lateralization of these neurons in the left and
right hemispheres of the CeA.

WWW.sporajournal.org
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2.2 Agents and Scale

Agents represent individual neurons in the CeA that are
responsive to bladder pain. The model’s spatial domain
includes 324 patches, each of which marks the location of
one neuron. The space is partitioned into halves repre-
senting the left and right hemispheres of the CeA. Each
model tick represents one time step.

Each neuron (i.e., agent) possesses five variables (Ta-
ble defining its properties and behavior. First, each
neuron is assigned a location (loc) equal to either L or R,
signifying the neuron’s placement in the left or right hemi-
spheres of the CeA, respectively. Second, each neuron is
assigned a response (res) equal to either Ex (excited)
or In (inhibited). The classification of a neuron as ei-
ther excited or inhibited refers to its behavior in response
to painful bladder distention. A neuron’s location and
response are both assigned during initialization and do
not change during a simulation. Therefore, throughout a
simulation each neuron can be categorized as one of four
different types based on location and response. These
types are Left Inhibited, Left Excited, Right Inhibited,
and Right Excited.

Additionally, each neuron possesses three variables re-
lated to neural ‘damage’. A damage accumulation model
is used to track a neuron’s progress towards sensitization
caused by long-term bladder distention. A neuron’s dam-
age level (d) is a value with range [0, 100] indicating the
percent of total damage accumulated by the neuron and
is updated each time step. A damage level of 0 indicates
that the neuron has accumulated no damage. A dam-
age level of 100 indicates that the neuron has reached
its maximum damage level and is sensitized. Damage
levels between 0 and 100 indicate the neuron is partially-
damaged and is sensitizing (i.e, in the process of becoming
sensitized). A neuron’s damage level starts at zero and
increases only when the bladder has been distended for a
number of time steps exceeding ¢, the length of the neu-
ron’s damage latency period. A neuron accrues damage at
a rate of % units per time step, where tg is the length of
the neuron’s sensitizing period. Thus, when the bladder
is distended, a sensitizing neuron will become sensitized
after tg time steps. Both t;, and tg are positive integers
assigned to each neuron during initialization and do not
change during a simulation. In all simulations presented
here, each neuron was assigned a value of t; between 20
and 80 and a value of tg between 50 and 150.

Lastly, each neuron has a firing rate (fr) describing
the frequency in hertz (spikes per second) of the neuron’s
action potential. A neuron’s firing rate is stochastically
updated at each time step based on the bladder’s cur-
rent state (distended or not distended) and the neuron’s
location, response, and current damage level.

2.3 Global Variables

The model includes three global variables (Table. Vari-
ables p; and po control the quantity of excited and inhib-
ited neurons within the left and right hemispheres of the
amygdala. Specifically, p; denotes the proportion of neu-
rons in the left amygdala that are excited. Therefore,
1—p; denotes the proportion of neurons in the left amyg-
dala that are inhibited. Similarly, ps denotes the propor-
tion of neurons in the right amygdala that are excited
and 1 — py denotes the proportion of neurons in the right
amygdala that are inhibited. Both p; and ps are speci-
fied at the initialization of the model and do not change
during a simulation.

The third global variable, CBD, tracks the cumula-
tive number of time steps during which the bladder is
distended. Variable C'BD is initially set to zero and in-
cremented by 1 during appropriate time steps.

2.4 Model Input

The timing and duration of bladder distention during a
simulation is specified by the user as a file consisting of
zeros and ones. During the initialization, the model reads
this file and creates a vector BD, where the i *" element
of BD (denoted by BD;) is equal to the i value from
the file. A value BD; = 0 indicates that the bladder
is not distended during the i*" time step, while a value
BD; = 1 indicates that the bladder is distended during

the i " time step.

2.5 Model Processes
2.5.1 Overview

The model simulates neural behavior across the left and
right hemispheres of the amygdala over time and in re-
sponse to the bladder distention history provided by the
user. The quantity of excited and inhibited neurons in the
left and right hemispheres is determined at the model’s
initialization and does not change during a simulation.
During each time step, neural firing rates are stochas-
tically updated in response to the current state of the
bladder (distended or not distended). Individual neuron
firing rates are determined using the neuron’s location,
response, and current damage level. Damage is accrued
by neurons during long-term bladder distentions. When
damage reaches a threshold value, neurons become sensi-
tized. Parameters defining the firing rates of neurons in
the sensitized and unsensitized states were estimated from
laboratory experiments. Emergent measures of pain are
calculated as the difference in cumulative firing rates of
excited and inhibited neurons in the left and right hemi-
spheres.
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Table 1: Overview of variables assigned to each neuron.

Variable Description Value Frequency of updates
loc Neuron location in CeA Left (L) or Right (R) Assigned at initialization
res Type of response exhibited by neuron | Excited (Ex) or Inhibited (In) | Assigned at initialization
tr, Length of damage latency period integer in [20, 80] Assigned at initialization
ts Length of sensitizing period integer in [50, 150] Assigned at initialization

d Damage (percent of total damage) real number in [0, 100] Updated each time step
fr Firing rate non-negative real number Updated each time step
Table 2: Overview of global variables.
Variable Description Value Frequency of updates
P1 Prop.ortion of neurons in. left real number in [0,1] | Assigned at initialization
hemisphere that are excited
D2 PI“Op(?I"thIl of neurons in .rlght real number in [0,1] | Assigned at initialization
hemisphere that are excited
CBD Cumulative number of time steps non-negative integer | Updated each time step
during which the bladder is distended

2.5.2 Initialization

During the model’s initialization, the vector BD is estab-
lished from the input file and 324 neurons are created on
the agent space. Half of the neurons are assigned to the
left hemisphere of the amygdala (loc = L) and the other
half are assigned to the right hemisphere of the amygdala
(loc = R). Each neuron on the left hemisphere is ran-
domly assigned a response (res = Ex or In) based on
the value of p;. In particular, for each neuron in the left
hemisphere, a random number in [0, 1] is drawn using a
uniform probability distribution. If the random number
is less than or equal to pq, then the response of the neuron
is set to excited. If the random number is greater than pq,
then the response of the neuron is set to inhibited. Sim-
ilarly, each neuron on the right hemisphere is randomly
assigned a response type based on the value of py. Ad-
ditionally, all neurons are randomly assigned individual
values of t;, and tg using a uniform probability distribu-
tion over the ranges specified in Table[l] The damage (d)
of each neuron is set to 0. Lastly, global variable CBD is
set to 0.

2.5.3 Neural behavior though time

The following procedures occur each time step to simulate
neural behavior. First, at each time step 7, global variable
CBD is updated according to

CBD;_; +1
CBD;_,

if BD; =1,

1
if BD; =0, S

CBD,; = {

where C'BD; is the value of CBD at time step i, BD; =
1 indicates the bladder is distended at time step ¢, and

BD; = 0 indicates the bladder is not distended at time
step i. Therefore, CBD tracks the cumulative number of
time steps during which the bladder is distended.

Second, the damage of each neuron is updated. For
each neuron, damage (d) at time step ¢ is updated using
the damage accumulation model

min (d;_1 + %0, 100) if CBD; > tp,
and BD; =1,

if CBD; <tr,
or BD; =0,

where d; is the damage accrued by the neuron at time
step i, tg is the length of the neuron’s sensitization pe-
riod, CBD; is the cumulative bladder distention value at
time step ¢, t;, is the length of the neuron’s latency pe-
riod, and BD; indicates whether the bladder is distended
(BD; = 1) or not distended (BD; = 0) at time 4. There-
fore, a neuron’s damage increases only during time steps
in which the bladder is distended (BD; = 1) and the
cumulative distention period has exceeded the neuron’s
damage latency (CBD; > tr). The maximum value of
damage is 100 and indicates the neuron is sensitized. If
the bladder is not distended (BD; = 0) or the cumulative
distention period has not exceeded the neuron’s damage
latency (CBD; <= tr), the neuron’s damage level does
not change. Figure [I] displays an example bladder dis-
tention history and the corresponding accumulation of
damage for a single neuron using equation .

Lastly, during time step ¢, each neuron’s firing rate is
stochastically updated using the equation

100 — d. .
fr, = 00 — d; d;

Y
100 100

X+ (3)
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Bladder Distension

T T T T
Time

100 sensitized —>

75 —
sensitizing —>

50 —
unsensitized

b

Damage (% total)

Figure 1: Example bladder distention history (Top) and
corresponding damage level of a single neuron with la-
tency period ¢y, and sensitization period tg (Bottom). A
neuron is unsensitized when damage is zero, sensitizing
when damage is between zero and 100, and sensitized
when damage reaches a max value of 100.

where fr; is the firing rate at time ¢, X is a random vari-
able describing the firing rate of the neuron in an unsen-
sitized state, and Y is a random variable describing the
firing rate of the neuron in a sensitized state. Both ran-
dom variables X and Y are defined by truncated normal
distributions and estimated using data collected in labo-
ratory experiments (Section [3). Each random variable is
defined by a mean (u), standard deviation (o), minimum
value (min) and maximum value (maz). These param-
eters depend on the neuron’s location (Left or Right),
the neuron’s response (Excited or Inhibited) and whether
or not the bladder is distended at time ¢ (BD; = 0 or
BD; =1).

The model updates global variable C BD (equation )
and the damage (equation (2)) and firing rates (equa-
tion (3))) of all neurons each time step until the end of
the simulation. The length of a simulation (i.e., number
of time steps) is equal to the length of vector BD.

2.5.4 Emergence

The primary emergent feature of the model is the measure
of pain attributed to bladder distention. In the model,
pain is measured as the difference between the cumulative
firing rates of all excited neurons and the cumulative firing
rates of all inhibited neurons across the left and right
hemispheres of the CeA. At time step 4, pain is computed

as

P = Z Z fri — Z Z fri

loc=L,R res=Ex loc=L,R res=In

(4)
where fr; denotes the firing rate of a neuron at time 7.

2.6 Implementation

The model was coded in NetLogo (Version 6.0) [53]. This
software has a unique programming language and cus-
tomizable interface that is designed specifically for ABM
development and implementation. For access to the Net-
Logo code, please contact the corresponding author. In
NetLogo, BehaviorSpace was used to automate the simu-
lations. Statistical and graphical analyses of model out-
put were completed using R statistical software [42].

3 Parameter Estimation

3.1 Overview

Random variables X and Y describe the firing rates of
a neuron in the unsensitized and sensitized states, re-
spectively. Each random variable is assumed to have a
truncated normal distribution with mean (u), standard
deviation (¢), minimum value (min) and maximum value
(max). Values of y, o, max and min depend on the cur-
rent state of the bladder (distended or not distended) as
well as the neuron’s location (Left or Right) and response
(Excited or Inhibited). Thus, there are eight possible pa-
rameter sets defining X and eight possible parameter sets
defining Y. These parameters were estimated using data
from laboratory experiments in which the firing rates of
neurons in the CeA of naive and chemically-sensitized
mice were measured before and during painful bladder
distention.

3.2 Laboratory Experiments

A brief description of the laboratory experiments is pro-
vided here. All laboratory experiments were approved by
the Duquesne University Institutional Animal Care and
Use Committee. Prior to experimental recording, female
mice were treated three times over five days with either
saline (control treatment) or cyclophosphamide (CYP)
(sensitizing treatment). All animal experiments were
completed blinded to animal treatment. On the sixth
day, mice were prepared for bladder distention recording
experiments. Animals were anesthetized at 37°C and a
catheter was inserted into the bladder via the urethra [46].
The skull overlying the CeA was removed and a carbon-
fiber electrode was lowered into brain in 5um bursts until
single-unit spikes (action potentials) were identified for a
neuron [45]. Neuronal activity was relayed in real time to
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a computer using Spike2 data acquisition software (Ver-
sion 7, Cambridge Electronic Design).

Action potentials were recorded immediately before,
during, and after a bladder distention. Fach distention
lasted 20 seconds and action potentials were measured for
20 seconds before and after the distention. This 60 sec-
ond sequence is considered one distention trial. Between
3 and 5 distentions trials were performed for one neuron.
Bladder distention was completed through a custom me-
chanical air controller connected to the urethral catheter.
Pressures of 30 mmHg (innocuous) and 60 mmHg (nox-
ious) were delivered in sequence with at least 2 minutes
between trials. For the building of the agent based model,
only 60 mmHg data was used and is reported here. Action
potentials were counted by a custom script in Spike2 soft-
ware (Cambridge Electronic Design) using the WaveMark
feature.

The location within the CeA of each neuron was estab-
lished in the laboratory. After recording neural activity,
electric current was used to mark the recording position
of a neuron and the brain was sectioned to verify the neu-
ron’s location in the left or right hemisphere of the CeA.

3.3 Classification of Neurons Observed in
Laboratory Experiments

In the computational model, neurons are classified as one
of four types based on location (Left or Right) and re-
sponse (Excited or Inhibited). As described above, a neu-
ron’s location was established in the laboratory.

The response (Excited or Inhibited) of each neuron
was determined by applying the following statistical algo-
rithm. For each of the 171 distention trials performed in
the laboratory experiment described above, 20 measure-
ments of the neuron’s firing rate before distention and
20 measurements of the same neuron’s firing rate dur-
ing distention were recorded. A two sample t-test was
applied to each set of measurements (40 values total) to
determine if there was significant difference (p < 0.05)
in the average firing rates observed before distention and
during distention. The 171 distention trials were ranked
in ascending order according the their corresponding p-
value. A Benjamini-Hochberg controlling procedure [§]
was then performed to decrease the likelihood of a false
positive. Specifically, a critical value was calculated for
each distention trial using the following formula.

o »

If the measurements from one distention trial resulted
in a p-value greater than its critical value, then that dis-
tention trial was disregarded from further analysis. The
remaining 52 distention trials were grouped according to
the corresponding neuron ID and inspected for either an

-0.05

Critical value =

increase or decrease in the average firing rate before and
during bladder distention. If all distention trials corre-
sponding to the same neuron showed an increase in aver-
age firing rates, then the neuron was classified as Excited.
If all distention trials corresponding to the same neuron
showed a decrease in average firing rates, then the neuron
was classified as Inhibited. If any neuron exhibited an in-
crease in its average firing rate during one distention trial
and a decrease in average firing rate during a different
distention trial, then the neuron was not classified and it
was excluded from our analyses.

3.4 Determining X and Y

The procedure above yielded the classification of 18 neu-
rons, 6 of which were CYP-sensitized and 12 of which
were not. Firing rates from the 12 unsensitized neurons
were used to estimate parameters defining random vari-
able X. Of these 12 unsensitized neurons, 3 were Left
Inhibited, 2 were Left Excited, 2 were Right Inhibited,
and 5 were Right Excited. The mean, standard devia-
tion, minimum and maximum of all firing rates observed
before bladder distention and during bladder distention
for each of the four types was calculated and used to de-
fine random variable X (Table|3]). Firing rates from the 6
CYP-sensitized neurons were used to determine random
variable Y. Of these 6 CYP-sensitized neurons, 1 was
Left Inhibited, 3 were Left Excited, 1 was Right Inhibited,
and 1 was Right Excited. The mean, standard deviation,
minimum and maximum of all firing rates observed be-
fore bladder distention and during bladder distention for
each of the four types was calculated and used to define
random variable Y (Table

4 Model Simulations and Results

4.1 Simulation of Acute and Chronic

Bladder Pain

We provide an example of model output generated using
a bladder distention history with no distention for the
first 20 time steps (BD; = 0 for 1 < ¢ < 20), bladder
distention for the subsequent 230 time steps (BD; = 1
for 21 <4 < 250), and no bladder distention for the re-
maining 40 time steps (BD; = 0 for 251 < i < 290).
The model was simulated 100 times with this distention
history. In each simulation, we assumed an equal pro-
portion of excited and inhibited neurons in both the left
and right hemispheres (i.e., p1 = pa = 0.5). Figure
displays the distention history and Figure[2B displays the
corresponding measures of pain outputted by the model.
Blue lines show the maximum and minimum values of
pain over each of the 100 simulations while the black line
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Table 3: Parameters defining random variable X. Random variable X describes the firing rate of an unsensitized
neuron and is defined by a truncated normal distribution with mean, standard deviation, minimum, and maximum
values. Each of the parameter values depend on the neuron’s type and the current bladder state.

Neuron Bladder Mean | Standard Deviation | Minimum | Maximum
Type State I o min max
Left Inhibited | Not Distended | 44.37 14.91 9 81
Left Inhibited Distended 24.87 15.97 2 64
Left Excited Not Distended | 14.58 4.87 2 24
Left Excited Distended 20.73 6.11 7 33
Right Inhibited | Not Distended | 27.68 11.03 10 43
Right Inhibited Distended 10.65 7.66 1 36
Right Excited | Not Distended | 12.62 9.62 0 41
Right Excited Distended 16.43 10.36 1 42

Table 4: Parameters defining random variable Y. Random variable Y describes the firing rate of a sensitized neuron
and is defined by a truncated normal distribution with mean, standard deviation, minimum, and maximum values.
Each of the parameter values depend on the neuron’s type and the current bladder state.

Neuron Bladder Mean | Standard Deviation | Minimum | Maximum
Type State I o min max
Left Inhibited | Not Distended | 26.8 7.11 15 44
Left Inhibited Distended 19.75 6.31 9 29
Left Excited Not Distended 9.47 8.16 0 30
Left Excited Distended 20.25 10.13 0 41
Right Inhibited | Not Distended | 18.60 6.79 6 31
Right Inhibited Distended 12.58 6.06 4 29
Right Excited | Not Distended | 23.08 9.73 8 43
Right Excited Distended 29.2 11.44 10 51

indicates the average value of bladder pain obtained from
the 100 simulations.

As seen in Figure [2] pain values range from —4000 to
—3000 with an average value of —3475 during the first
20 time steps when no bladder distention has occurred.
These values are considered baseline values because they
measure neural activity in the absence of pain. When the
bladder is distended at time step 20, pain values immedi-
ately increase to an average of —83. This large increase
in pain from the baseline value is interpreted as acute
pain attributed to bladder distention. During the disten-
tion, all neurons accrue damage and become sensitized.
Pain values increase to an average value of 1368 at time
step 245. Finally, when the bladder is not distended at the
end of the simulation, the average value of pain decreases
to —867. This value is still substantially higher than the
average baseline value of pain observed at beginning of
the simulation and is therefore interpreted as chronic pain
that exists when the bladder is not distended.

Figure [3| displays individual firing rates of inhibited
neurons (blue circles) and excited neurons (red circles)
in the left and right hemispheres at time steps 15, 30,
245, and 275 from one of the 100 simulations. These im-

ages aid in understanding the asymmetric neural behav-
ior in the CeA during different pain states. At all times
displayed in Figure [3] the inhibited neurons in the left
hemisphere are on average firing at a higher rate than in-
hibited neurons in the right hemisphere. This asymmetric
behavior of inhibited neurons is most apparent during the
pain-free state (time step 15). On the other hand, during
long-term and chronic pain (time steps 245 and 275), the
excited neurons in the right hemisphere are on average
firing at a higher rate than excited neurons in the left
hemisphere.

4.2 Sensitivity Analysis

Using the steps outlined in [43], a local sensitivity analy-
sis was performed to quantify the impact of global vari-
ables p; and py on pain values outputted by the model
at critical time steps. Recall that variable p; represents
the proportion of neurons in the left hemisphere that are
excited and po represents the proportion of neurons in
the right hemisphere that are excited. In the sensitivity
analysis, both variables were assumed to have a range of
[0.4,0.6] with a baseline value of 0.5. To generate sensi-
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Figure 2: Top: Bladder distention history inputted into
the model. Bottom: Corresponding pain values out-
putted by model. Maximum, minimum, and average val-
ues were obtained from 100 model simulations.
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Figure 3: Firing rates of individual neurons in the left
and right hemispheres of the CeA.

tivity values for p1, the model was simulated 100 times for
p1 valued at each the lower endpoint (R~ = 0.4), baseline
(R = 0.5), and upper endpoint (R* = 0.6) while py re-
mained at baseline value. Likewise, sensitivity values for
p2 were generated by simulating the model 100 times for
p2 valued at each the lower endpoint (R~ = 0.4), base-
line (R = 0.5), and upper endpoint (Rt = 0.6) while
p1 remained at baseline value. The sensitivity of pain
with respect to each parameter was then calculated as
St = ;i:g and S~ = £— where P~, P, P are the
average values of pain when the parameter is valued at
R™, R, R, respectively. Each simulation used the blad-
der distention history displayed in Figure and pain
was outputted at time steps 15, 30, 130, 245, and 275.

Table || displays the sensitivity values for variables p;
and po at time steps 15, 30, 130, 245, and 275. Graphs
displaying sensitivity values ST and S~ over time are
presented in Figure |4l The positive values of ST indicate
an increase in pain when each variable is increased by
0.1 and negative values of S~ indicate a decrease in pain
when each variable is decreased by 0.1. At time steps
15, 30, and 130, pain output is more sensitive to p; than
p2. This indicates that the distribution of excited and in-
hibited neurons in the left hemisphere is most influential
in pain modulation during the absence of pain and dur-
ing short-term pain events. On the other hand, at times
steps 245 and 275, pain output is more sensitive ps than
p1. This indicates that the distribution of excited and in-
hibited neurons in the right hemisphere is most influential
in pain modulation during long-term pain events.

4.3 Model Predictions of Pain During In-
hibition of the Left and Right CeA

In this section, we assess the model’s predictive capa-
bility by comparing pain values outputted by the model
with the behavioral responses of mice during painful blad-
der distention. In previously published laboratory exper-
iments, optogenetic inhibition of neural activity in one
hemisphere only was achieved by applying light stimula-
tion to neurons in either the left or right CeA to decrease
neural activity [45]. Figure [5|displays the percent change
in pain-like responses compared to the average baseline
value obtained when no inhibition occured. These ex-
periments showed that optogenetic inhibition of the left
CeA caused an increased in pain-like responses to blad-
der distention in unsensitized female mice. In contrast,
optogenetic inhibition of the right CeA did not change
pain-like responses in unsensitized mice. Overall, these
data suggest the left CeA has an anti-nociceptive output
at baseline. When this anti-nociceptive output is inhib-
ited (using optogenetics), bladder pain increases. On the
other hand, the right CeA is likely inactive at baseline
so inhibition does not change the spontaneous output of
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Table 5: Sensitivity of pain with respect to global variables p; and p,. Sensitivities ST and S~ were calculated using

measurements of pain at time steps 15, 30, 130, 245, and 275.

Variable | Time t =15 Time ¢ = 30 Time ¢ = 130 Time t = 245 Time ¢t = 275
» ST =9735.15 ST = 8283.22 ST = 7205.54 ST =6724.45 ST = 6685.70
! ST =-9627.66 | ST =—7589.11 | ST = —-6571.78 | ST = —6150.93 | S~ = —5871.26
» ST =6609.61 ST = 4891.26 ST =6193.34 ST =17091.35 ST =6786.03
2 ST =—-6979.88 | ST = —4925.62 | ST = —6468.30 | ST = —7116.24 | ST = —7134.70
Sensitivity (S*) Sensitivity (S-)
g T A —— Py °1B —— Dy
o - p2 o - p2
c g £ g
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Figure 4: Sensitivity of pain with respect to global variables p; and ps. Panel A illustrates changes in sensitivity
value ST over time. Panel B illustrates changes in sensitivity value S~ over time.

these neurons and the overall output is likely similar to
what would be seen with no optogenetic manipulation.
In the model, these optogenetic experiments were repli-
cated by inputting the bladder distention history seen
in Figure 2] and outputting pain at time step 30. Time
step 30 was chosen because it corresponds to the a time
at which all neurons are unsensitized. To simulate the
inhibition of neurons in one of the hemispheres, pain was
calculated as the difference in the cumulative firing rates
of all excited and all inhibited neurons in the other hemi-
sphere only. During inhibition of the left hemisphere, pain

was calculated as
Z fri — Z Z fri

R § :
Pi =
loc=R res=In

loc=R res=Ex

(6)

where ¢ = 30. Similarly, during inhibition of the right
hemisphere, pain was calculated as

ey Y oY Yo

loc=L res=Ez loc=L res=In

where i = 30.

The model reproduced results similar to those ob-
served in the lab. Figure [6] displays measures of pain
at time step 30 from 100 simulations of the model in

which pain was calculated using both hemispheres (equa-
tion ), left hemisphere only (equation ), and right

(7)

hemisphere only (equation @) Solid dots represent av-
erage values of pain with error bars indicating +2 stan-
dard deviations. Inhibition of the left hemisphere re-
sulted in a statistically significantly higher pain output
(449.1 £ 98.2) compared to pain values generated using
both hemispheres (—68.7 £ 160.9), P < 0.001. On the
other hand, pain values generated by the model during
inhibition of the right hemisphere were significantly lower
(—509.7 & 121.8) than pain values generated using both
hemispheres (—68.7 £ 160.9), P < 0.001. The decrease
in pain during inhibition of the right hemisphere suggests
pain is reduced but still present. Pain elimination would
be expected only when pain values are within baseline
range of —4000 to —3000.

5 Discussion

Our agent-based model incorporates several important bi-
ological features including stochasticity and neural sensi-
tization, but it does not yet include interaction between
neurons. The central nucleus of the amygdala (CeA) is
comprised of interconnected neurons that send and re-
ceive information with one another as well as other parts
of the amygdala. In our current model, neurons act in-
dependently in response to painful bladder stimuli. This
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Figure 5: Measurements of pain recorded in mice dur-
ing optogenetic inhibition of the left or right CeA. Op-
togenetic inhibition (with halorhodopsin) of the left CeA
caused an increase in bladder pain suggesting an on-going
anti-nociceptive output from the left CeA in naive mice.
Left CeA effects are statistically significantly different
from right CeA optogenetic inhibition (t-test P = 0.013;
n = 8 — 9) and significantly different from baseline (one-
sample t-test compared to hypothetical value of 100%
(pink dotted line); P = 0.029). In contrast, optoge-
netic inhibition of the right CeA did not significantly
change bladder pain-like effects compared to baseline (one
sample t-test compared to hypothetical value of 100%;
P = 0.53). Error bars represent mean +1 standard error.
Data adapted from Sadler et al. [45].
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Figure 6: Measurements of pain predicted by the model
during inhibition of the left or right CeA. Pain values
at time step 30 generated by 100 model simulations using
neural activity during no inhibition of the CeA, inhibition
of the right CeA, and inhibition of the left CeA. Circles
represent average values and bars indicate £+2 standard
deviations. Asterisks denote a significant change in aver-
age pain output during inhibition (P < 0.001).

simplifying assumption is not biologically plausible, but
it allowed us to focus on the function of each neuron and
its role in pain, rather than focusing on the connectivity
and interdependence of neurons. Enhancing the model
by including more complex features, such as connectivity
and the ability of neurons to transmit signals to one an-
other, is feasible within the framework of our agent-based
model and will be explored in future work.

Despite its simplicity, the model has the ability to
simulate acute and chronic pain attributed to prolonged
painful stimuli (Figure . The majority of mathemat-
ical and computational models of pain focus on acute
pain and do not include features necessary for explaining
chronic pain [2, [40]. In our model, chronic pain emerges
from the sensitization of neurons. This is accomplished
by assigning a damage variable to each neuron and us-
ing a damage accumulation model to track the neuron’s
progress towards sensitization caused by long-term blad-
der distention. As far as we know, our use of a damage
accumulation model to account for neural sensitization
is new. The model is formulated such that neural dam-
age accrues during periods of bladder distention; however,
damage is never repaired in the absence of distention. Ac-
counting for damage repair is a simple modification to the
model (for example see [12]), but requires additional bio-
logical assumptions. Further laboratory experiments are
needed to determine if sensitization can wane over time
and, if so, under what conditions.

Our agent-based model serves as a theoretical frame-
work for assessing asymmetric neural activity in the left
and right hemispheres of the CeA. Figure [3]illustrates the
differences in firing rates of excited and inhibited neurons
across left and right hemispheres at critical times during
pain progression. A main advantage of using an agent-
based model to describe neural behavior in the CeA is the
ability to utilize mathematical tools, such as a sensitivity
analysis, to quantify the importance of select parame-
ters on model output. Our sensitivity analysis revealed
that measures of pain are more sensitive to neural be-
havior in left hemisphere (as controlled by p;) during the
absence or onset of pain whereas measures of pain were
more sensitive to neural behavior in the right hemisphere
(as controlled by ps) during long-term and chronic pain
(Figure [4). Both the graphical displays of model output
and the sensitivity analysis provide a means of assessing
asymmetric neural behavior related to pain that could
not be inferred from the laboratory data alone.

The model’s ability to generate changes in pain similar
to those observed in the laboratory during optogenetic
inhibition experiments (described in Sadler et al. [45]) is
encouraging and demonstrates potential for the model to
aid future laboratory studies. Both the laboratory experi-
ments (Figure and model predictions (Figure@ showed
that inhibition of the left hemisphere in unsensitized mice
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leads to a significant increase in pain during bladder dis-
tention. This increase in pain suggests the left hemisphere
of the CeA is responsible for anti-nociceptive output dur-
ing painful bladder distention. On the other hand, the
model predicted that inhibition of the right hemisphere
in unsensitized mice would reduce, but not eliminate pain
during bladder distention, suggesting that the right hemi-
sphere of the CeA is responsible for pro-nociceptive out-
put. The corresponding lab experiments showed no sig-
nificant change in pain during optogenetic inhibition of
the right hemisphere. While the model predictions and
laboratory outcomes were not identical, both showed the
persistence of pain during inhibition of the right CeA.
Overall, the similarities in results from the lab experi-
ments and corresponding model simulations support the
continued use and refinement of the model.

6 Conclusions

We used preliminary laboratory data to develop and pa-
rameterize an agent-based model of neural activity in the
central nucleus of the amygdala as it evolves in response
to painful bladder stimuli. Given an individual’s history
of bladder distention, the model simulates the firing of
individual neurons and uses system-level output to mea-
sure bladder pain. The model is simple in design, but has
the ability to simulate neural sensitization and the devel-
opment of chronic pain over time. Model predictions of
bladder pain were shown to be similar to those observed in
independent laboratory experiments, thus validating the
model’s potential for future use in pain prediction. The
model and analyses presented in this paper complement
ongoing laboratory studies to assess differences in neural
behavior across the left and right hemispheres. Future
work will aim to enhance the model with more complex
and biologically plausible features, including connectivity
of neurons.
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