
Illinois State University
ISU ReD: Research and eData

Theses and Dissertations

4-10-2018

Clustering biological data with self-adjusting high-
dimensional sieve
Josselyn Gonzalez
Illinois State University, jgonz16@ilstu.edu

Follow this and additional works at: https://ir.library.illinoisstate.edu/etd

Part of the Biostatistics Commons, and the Mathematics Commons

This Thesis and Dissertation is brought to you for free and open access by ISU ReD: Research and eData. It has been accepted for inclusion in Theses
and Dissertations by an authorized administrator of ISU ReD: Research and eData. For more information, please contact ISUReD@ilstu.edu.

Recommended Citation
Gonzalez, Josselyn, "Clustering biological data with self-adjusting high-dimensional sieve" (2018). Theses and Dissertations. 857.
https://ir.library.illinoisstate.edu/etd/857

https://ir.library.illinoisstate.edu?utm_source=ir.library.illinoisstate.edu%2Fetd%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.illinoisstate.edu/etd?utm_source=ir.library.illinoisstate.edu%2Fetd%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.illinoisstate.edu/etd?utm_source=ir.library.illinoisstate.edu%2Fetd%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=ir.library.illinoisstate.edu%2Fetd%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=ir.library.illinoisstate.edu%2Fetd%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.library.illinoisstate.edu/etd/857?utm_source=ir.library.illinoisstate.edu%2Fetd%2F857&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ISUReD@ilstu.edu

CLUSTERING BIOLOGICAL DATA

WITH SELF-ADJUSTING

HIGH-DIMENSIONAL

SIEVE

JOSSELYN GONZALEZ

67 Pages

Data classification as a preprocessing technique is a crucial step in the analysis and

understanding of numerical data. Cluster analysis, in particular, provides insight into the

inherent patterns found in data which makes the interpretation of any follow-up analyses

more meaningful. A clustering algorithm groups together data points according to a

predefined similarity criterion. This allows the data set to be broken up into segments

which, in turn, gives way for a more targeted statistical analysis. Cluster analysis has

applications in numerous fields of study and, as a result, countless algorithms have been

developed. However, the quantity of options makes it difficult to find an appropriate

algorithm to use. Additionally, the more commonly used algorithms, while precise, require

a familiarity with the data structure that may be resource-consuming to attain. Here, we

address this concern by developing a novel clustering algorithm, the sieve method, for the

preliminary cluster analysis of high-dimensional data. We evaluate its performance by

comparing it to three well-known clustering algorithms for numerical data: the k-means,

single-linkage hierarchical, and self-organizing maps. To compare the algorithms, we

measure accuracy by using the misclassification or error rate of each algorithm.

Additionally, we compare the within- and between-cluster variation of each clustering

result through multivariate analysis of variance. We use each algorithm to cluster Fisher’s

Iris Flower data set, which consists of 3 “true” clusters and 150 total observations, each

made up of four numerical measurements. When the optimal clustering structure is known,

we found that the k-means and self-organizing maps are the more efficient algorithms in

terms of speed and accuracy. When this structure is not known, we found that the sieve

algorithm, despite higher misclassification rates, was able to obtain the optimal clustering

structure through a truly blind clustering. Thus, the sieving algorithm functions as an

informative and blind preliminary clustering method that can then be followed-up by a

more refined algorithm. The existence of reliably efficient clustering process for numerical

data means that more time, effort, and computational resources can be spent on a more

rigorous and targeted statistical analysis.

KEYWORDS: cluster analysis, k-means, self-organizing maps, hierarchical, sieve

CLUSTERING BIOLOGICAL DATA

WITH SELF-ADJUSTING

HIGH-DIMENSIONAL

SIEVE

JOSSELYN GONZALEZ

A Thesis Submitted in Partial
Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Mathematics

ILLINOIS STATE UNIVERSITY

2018

c© 2018 Josselyn Gonzalez

CLUSTERING BIOLOGICAL DATA

WITH SELF-ADJUSTING

HIGH-DIMENSIONAL

SIEVE

JOSSELYN GONZALEZ

COMMITTEE MEMBERS:

Olcay Akman, Chair

Epaminondas Rosa

Ranee Thiagarajah

ACKNOWLEDGMENTS

I would like to express my sincerest gratitude to the members of my thesis

committee, Drs. Olcay Akman, Epaminondas Rosa, and Ranee Thiagarajah, for their

support, motivation, and invaluable advise. In particular, I want to thank Dr. Olcay

Akman for his guidance and endless patience throughout my two years at Illinois State

University. His passion for mathematical and statistical biology has been a great source of

motivation for me. I am also genuinely grateful to Drs. Epaminondas Rosa and Rosangela

Follmann for their constant encouragement and assistance.

Also, thank you to my wonderful friends for always being willing to humor my

stress-addled ramblings and to my family for their relentless and unconditional support.

Finally: les quiero agradecer especialmente a mis papás por todo el amor y apoyo que

siempre me han dado. Les quiero dar las gracias por tener confianza en mı́ y mis metas.

Seŕıa imposible realizar mis sueños sin ellos y no tuviera el valor de confrontar mis

debilidades. Los quiero mucho.

J. G.

i

CONTENTS

Page

ACKNOWLEDGMENTS i

CONTENTS ii

TABLES iv

FIGURES v

CHAPTER I: CLUSTERING: AN INTRODUCTION 1

CHAPTER II: A BEGINNER’S GUIDE TO CLUSTERING 4

Data Representation 4

Clustering Algorithm Selection 6

Cluster Validation 7

Interpretation of Results 10

CHAPTER III: TYPES OF CLUSTERING 13

Hard Clustering 13

Fuzzy Clustering 15

CHAPTER IV: SIEVE CLUSTERING 18

CHAPTER V: COMMON CLUSTERING METHODS 22

k-means Clustering Algorithm 22

Hierarchical Single-Linkage Clustering Algorithm 24

Self-Organizing Maps 25

CHAPTER VI: COMPARISON OF PERFORMANCE OF CLUSTERING ALGO-

RITHMS 31

Simulations and Results 31

Discussion 38

Conclusion 42

REFERENCES 43

APPENDIX A: PYTHON CODE 45

ii

Misclassification Rate Function 45

k-means 46

Single-Linkage Hierarchical 48

SOM 51

Sieve 55

iii

TABLES

Table Page

1. Error Statistics of the k-means Algorithm. 32

2. Error Statistics of the Single-Linkage Hierarchical Algorithm. 33

3. Error Statistics of the SOM Algorithm. 36

4. Error Statistics of the Sieve Algorithm with s = 0.1. 37

5. Error Statistics of the Sieve Algorithm with s = 0.5. 38

6. Error Statistics of the Sieve Algorithm with s = 0.9. 39

iv

FIGURES

Figure Page

1. A scatterplot matrix of the Iris Data Set. 3

2. The Iris data set in parallel coordinates. 12

3. An iteration of the sieve algorithm in 2-D. 19

4. An iteration of the sieve algorithm in 3-D. 21

5. An example of a k-means clustering of the Iris data set. 23

6. A dendogram representation of hierarchical clustering results. 25

7. An example of an SOM iteration. 27

8. Another example of an SOM iteration. 29

9. The screeplot of the single-linkage clustering of the Iris data set. 34

10. The Iris data set single-linkage dendogram. 35

11. The screeplot of the sieve clustering of the Iris data set with s = 0.1. 38

12. The screeplot of the sieve clustering of the Iris data set with s = 0.5. 39

13. The screeplot of the sieve clustering of the Iris data set with s = 0.9. 40

v

CHAPTER I: CLUSTERING: AN INTRODUCTION

Charu C. Aggarwal, a researcher for IBM and author of a number of data mining

books, describes the problem of data clustering with the following statement: “Given a set

of data points, partition them into a set of groups which are as similar as possible.” [1]

That is, the purpose of clustering is to separate a data set according to its natural data

structures. The resulting separations or partitions are called clusters.

The definition of a cluster can be stated in multiple ways. Here, we provide a

general definition: a cluster is a collection of objects which are similar to each other.

Objects belonging to different clusters are not as similar. A more rigorous definition of a

cluster requires a proximity measure and a similarity criterion. Examples of common

proximity measures used for numerical data include the Euclidean distance, the Manhattan

distance, and the discrete metric [6]. The similarity criterion then determines how similar

two objects must be to be clustered together. The results of a clustering algorithm depend

almost entirely on the chosen proximity measure and similarity criterion.

Clustering algorithms are considered unsupervised classification, which are a type of

algorithm that classifies data objects into groups based completely on the natural features

or patterns present in the data. In contrast, supervised classification, which includes

regression analysis and analysis of variance, classifies data objects based on external

information, such as labels or characteristics predefined by the user. That is, while

supervised classification requires a priori knowledge about the structure of the data,

unsupervised classification does not and is actually implemented to find structure in the

data [9].

In a 1936, biologist and statistician Ronald Fisher published what later became a

benchmark data set of Iris flower measurements for the purposes of discussing methods to

discriminate between groups present in numerical data [5]. Figure 1 depicts the scatter

plots for each of the four measurements. While Fisher’s work showed that a discriminant

analysis of data is invaluable to the development of strong predictive models or

1

classification rules, a cluster analysis is a necessary tool to confirm the existence of patterns

or discriminating features in the data. As a result, cluster analysis usually serves as a

preliminary step for other statistical algorithms and helps researchers gain meaningful

insight into the distribution of the data with which they are working. It has countless

applications in fields of study that require the analysis of large data sets such as

morphology, ecology, medical sciences, and many others.

Cluster analysis algorithms provide quick, reliable, and consistent information about

the data at hand [9]. Their usefulness has further led to the development of many types of

clustering algorithms. For numerical data, the most well-known algorithms are k-means

clustering, hierarchical (single-linkage) clustering, and self-organizing maps. Although they

are commonly used, these clustering algorithms typically require a familiarity with the

structure of the data in order to obtain optimal clustering results. In this work, we propose

the sieve method, a novel clustering algorithm we have developed as an informative

preliminary tool for data analysis or to implement as a starting point for other clustering

processes. Additionally, we compare the performances of the four algorithms by applying

them to the Iris data set. We use resulting misclassification (error) rates, test statistics,

and computing times to determine the efficiency and accuracy of the algorithms.

2

Figure 1: A scatterplot matrix of the Iris Data Set. Pairwise components are sufficient to
distinguish the I. setosa from the I. versicolor and I. virginica, but all four components
are necessary to discriminate between the three species groups. Image credit: Nicoguaro,
CC-BY-4.0.

3

CHAPTER II: A BEGINNER’S GUIDE TO CLUSTERING

The process of data clustering varies according to the particular research problem

being addressed. Each field of study may also have its own conventions. Jain [14] and Xu

[23] each provide a basic outline of the procedure for performing a typical cluster analysis.

In most cases, the best clustering of the data comes from iteratively performing these

steps, a summary of which are given below:

1. Data Representation,

2. Clustering Algorithm Selection,

3. Cluster Validation, and

4. Result Interpretation.

Data Representation

While it’s possible to perform a blind clustering of the data, the process is more

efficient and the results more valuable when the user initially identifies important patterns

and features of the data that are relevant to the research question. This step is referred to

as feature selection and it is especially crucial when clustering high-dimensional data.

Feature selection may involve graphically representing the data in the form of a scatterplot,

scatterplot matrix, or histogram. For example, the scatterplot matrix of the Iris data set in

Figure 1 makes clear the differences that exist between the three Iris species. While sepal

length and width are enough to separate the setosa species from the other two, the petal

measurements are necessary to discriminate the three species. Feature selection may also

involve the use of proximity matrices, matrices whose ij-th entry represents the distance or

similarity between the i-th and j-th data points. Viewing the data in this way helps make

clearer which features or dimensions provide important insight. Other feature selection and

extraction methods are Principal Component Analysis and Singular Value Decomposition,

both of which are used in dimensionality reduction [6].

4

Another factor that must be taken into consideration when selecting the features on

which to focus is the type of data making up the data set. Whether the data is numerical,

categorical, binary, string, or something else entirely determines what kind of algorithms

will be used. Many types of data exist and may be specific to a particular research area or

field of study. Hence, it is sometimes necessary to standardize the data, i.e. transform the

data so that it is dimensionless and easier to use and interpret. Such transformations,

however, may result in a loss of original information, so it is important that the chosen

transformation technique preserve as much of the information contained in the data as

possible. Again, each area of study tends to have its own conventions for the

standardization of data to address this very concern. See [6] for a thorough discussion of

standardization and transformation techniques.

A simple transformation technique that can be used to transform high-dimensional

vectors into 2-dimensional vectors is projection using an orthonormal basis. Suppose we

have a set of p-dimensional vectors {v1, · · · ,vn}. We begin the projection by choosing two

vectors w1 and w2 that are linearly independent, i.e. there does not exist a scalar c such

that w2 = cw1. These two vectors span the 2-D plane onto which we wish to orthogonally

project the data set. We first orthonormalize the basis by computing the following vectors:

ŵ1 =
w1

‖w1‖

wᵀ
2 = w2 − 〈w2, ŵ1〉ŵ1

ŵ2 =
wᵀ

2

‖wᵀ
2‖
,

where 〈·, ·〉 denotes the dot product and ‖ · ‖ is the vector norm. The new basis satisfies the

normality condition ‖ŵ1‖ = ‖ŵ2‖ = 1 and the orthogonality condition 〈ŵ1, ŵ2〉 = 0. Each

vector vi ∈ {v1, · · · ,vn} is now represented in 2-dimensions by the point

(〈vi, ŵ1〉, 〈vi, ŵ2〉).

5

Clustering Algorithm Selection

Once the important characteristics of the data are determined, the natural next step

is to design or select a clustering algorithm that works best with the data. Designing a

clustering algorithm mainly involves determining a distance or similarity measure and a

similarity criterion. The resulting clusters are entirely dependent upon these choices.

There is no universal clustering algorithm. Once again, many fields of study have

their own conventions when it comes to clustering. However, certain parameters must be

met in order for the distance or similarity measure to provide any meaningful information.

It is important to note the inverse relationship between distance and similarity despite the

interchangeable use of the terms. To state the relationship more explicitly, the smaller the

distance, the more similar two objects are and vice versa.

In order for d to be a distance measure applied to a data set {x1, x2, ..., xn}, the

following conditions must hold for indices 1 ≤ i, j, k ≤ n:

(i) d(xi, xj) = d(xj, xi),

(ii) d(xi, xj) ≥ 0,

(iii) d(xi, xk) ≤ d(xi, xj) + d(xj, xk), and

(iv) d(xi, xj) = 0 if and only if xi = xj.

Condition (i) is symmetry, i.e. the distance between any two objects will remain the same

no matter in what order the measurement is taken. Condition (ii) requires that all

distances be non-negative for there would be no applicable meaning otherwise. Condition

(iii) describes the triangle inequality, which essentially states that the shortest path

between two objects is always the most direct path. Finally, condition (iv) states that the

distance between an object and itself is always zero, making this the only time distance is

non-positive.

The most well-known and commonly used distance measure for numerical data is

the Euclidean distance in 2-dimensional space. With data objects xi = (xi1, xi2) and

6

xj = (xj1, xj2), the Euclidean distance d between any two points xi and xj is given by

d(xi,xj) =
√

(xi1 − xj1)2 + (xi2 − xj2)2.

This definition can be extended to p-dimensional space where p ≥ 1. The

generalized Euclidean distance in p-dimensions between two points xi = (xi1, xi2, ..., xip)

and xj = (xj1, xj2, ..., xjp) is given by

d(xi,xj) =

(
p∑

k=1

(xik − xjk)2

) 1
2

.

For numerical data, other examples of distance functions are the Manhattan

distance, maximum distance, and average distance. For more information or for more

examples of proximity measures for non-numerical data, see [4], [6], [15], and [23].

Once a distance or proximity measure is selected, a similarity criterion is then

stipulated. The purpose of the similarity criterion is to define how similar two objects must

be to be clustered together. This criterion may involve the optimization of a function or it

may be a numerical threshold.

Many clustering algorithms exist, even when considering only numerical data sets.

The most well-known are the k-means, hierarchical (single-linkage), and self-organizing

maps, all three of which will be discussed in detail in chapter 4.

Cluster Validation

Cluster validation is the procedure of evaluating the goodness of the results of a

clustering algorithm. It is an important step that helps the user avoid the trap of finding

patterns in random data and can be used in situations that call for a comparison of the

efficacy of clustering algorithms. This step is arguably one of the most challenging in the

clustering process. As mentioned before, the resulting clusters of any algorithm are

dependent almost entirely on the similarity measure and similarity that are chosen and are,

therefore, subjective. Hence, an objective validation process is required to prove that the

7

number of clusters is optimal and that the clusters themselves are meaningful.

Clustering validation statistics can be categorized into three classes: internal,

external, and relative criteria. In internal criteria, only the internal information of the

clustering process is used to evaluate the accuracy and efficiency of the clustering results.

That is, no external information is referenced. Internal criteria can also be used to

determine the optimal number of clusters. External criteria, on the other hand, uses

externally provided information about the data set, such as class or group labels. It is

typically used to compare the results of a clustering to a known result. For instance, in the

Iris data set, each vector of observations is labeled with the name of the Iris species to

which it belongs. Since we know the “true” cluster number in advance, this approach is

mainly used for selecting the appropriate clustering algorithm for a specific data set. In

relative criteria, the clustering results of an algorithm are analyzed by running the

algorithm with different parameter values and is generally used for determining the optimal

number of clusters. See [3], [10], and [22] for more information about clustering validation

statistics.

One example of internal cluster validation uses a one-way multivariate analysis of

variance (MANOVA). A MANOVA as performed on a clustering structure considers each

cluster as a treatment. Similar to its univariate analog, a MANOVA is used to test the null

hypothesis that there is no treatment, or cluster, effect. That is, a rejection of the null

hypothesis suggests that the separation of the data into clusters is valid. An efficient

clustering maximizes the distance between cluster groups while minimizing the distance

between points within each cluster group. In the univariate ANOVA, the test statistic that

is used to quantify the contribution of each type of variation is an Fratio. In the

multivariate case, a similar test can be performed. Define k as the total number of clusters

and nj as the number of elements in the j-th cluster. Let xji be the i-th object in the j-th

cluster, xj the arithmetic mean of the j-th cluster, and x the grand mean of the entire data

8

set. Then Wilk’s lambda statistic is defined as

Λ∗ =
|W|

|B + W|
,

where

W =
k∑

j=1

nj∑
i=1

(xji − x)(xji − x)ᵀ

is the matrix of the within-group sum of squares and cross products and

B =
k∑

j=1

(xj − x)(xj − x)ᵀ

is the corresponding between-groups matrix. As Λ∗ quantifies the amount of variation that

is contributed by the within-groups variation relative to the corrected total variation

B + W, a small (near zero) value of Λ∗ supports a rejection of the null hypothesis that

there is no treatment effect.

Another common test statistic that is used in a MANOVA is Pillai’s Trace statistic,

which is defined as

tr[B(B + W)−1].

Pillai’s Trace considers the variance contribution of B relative to the total variation and

ranges from 0 to 1. As a result, large values of Pillai’s trace are necessary for the rejection

of the null hypothesis. Other examples of test statistics used in a MANOVA test are the

Hotelling-Lawley Trace and Roy’s Maximum Root [21].

For any MANOVA test, several assumptions must be satisfied: the j-th group has

common mean vector µj for j = 1, 2, · · · , k, the entire data set has a common

variance-covariance matrix, each group is multivariate normal, and each group is

independently sampled. In a general MANOVA test, deviance from any of these

assumptions may require a transformation of the data or can inform the use of a particular

test statistic. For example, Pillai’s trace tends to be more forgiving of deviance from

9

normality while Roy’s Maximum Root is a powerful test to use when large differences exist

between a group and all the others with respect to a single characteristic [15]. It is

important to emphasize that we use the MANOVA test statistic only to detect the

differences between and similarities within clusters. We do not test for particular

treatments, but merely use a ratio of sum of squares such as the Fratio or Pillai’s Trace as a

well-established tool to detect cluster structure presence in the data.

For an in-depth discussion about one-way MANOVAs, see [15] and [21]. For a

discussion about other validity indices that are commonly used in cluster analysis, see [6]

and [9].

Interpretation of Results

Recall that the purpose of clustering a data set is to separate the data objects in a

way that is reflective of the natural structure of the data set. By doing so, one can gain an

understanding of the data that otherwise wouldn’t have been clear. It is important to note,

however, that data clustering doesn’t automatically provide solutions to whatever research

problem one is trying to solve. In fact, it is important to resist over-interpretation of the

clustering solutions. In many cases, the first attempt at clustering a data set results in a

clustering that may not be the most effective, so multiple clusterings must be done.

Visualization of the clustered data plays a large role in the interpretation of the

clustering. If the data is low-dimensional, it is easy to create scatterplots or dendograms to

compare the clustering results. Several visualization techniques have been developed for

higher-dimensional data, but interpretation may not be as straightforward. One example of

a 2-dimensional representation of a high-dimensional data set involves the use of parallel

coordinates [13]. In a parallel coordinate system, each dimension or feature of the data

objects is represented by a vertical axis that is parallel to the other dimension axes. A

single data object, then, is represented by a line intersecting each axes at its respective

dimension value. Figure 2 shows a clustered Iris data set plotted in parallel coordinates.

As useful as parallel coordinates have proven to be, for exceptionally large data sets, they

10

may lead to hard-to-read data. Further, the scaling of each axis may have an effect on the

perceived distance between data points. Another 2-dimensional coordinate system is the

Star coordinate system, as developed by Kandogan [17], in which each dimension axis

extends from a common origin and is initially placed at equal angles from each of the other

dimensions. The placement of each point, then, is the result of a spiral-shaped path

corresponding to each dimension component of the data. The angle and scaling of each

dimension, which can be adjusted to reflect the correlation between different dimensions,

again, may have a major effect on interpretation.

11

Figure 2: The Iris data set in parallel coordinates. The species setosa, versicolor, and
virginica are shown in green, blue, and purple, respectively. Each line runs through the four
component axes and represents an individual data object.

12

CHAPTER III: TYPES OF CLUSTERING

The two main types of clustering are known as hard and fuzzy clustering. Hard

clustering requires that each data object in a data set to be clustered into one and only one

cluster. This type of clustering includes partitional and hierarchical clustering, which

further breaks down into divisive and agglomerative clustering. In fuzzy clustering, each

data object may belong to one or more cluster and its presence in a cluster corresponds to

some probability or membership value.

Hard Clustering

A clustered data set in both hard and fuzzy clustering may be represented by a

k × n matrix U . Borrowing the notation from Gan [6], the matrix looks as follows:

U =



u11 u12 · · · u1n

u21 u22 · · · u2n
...

...
. . .

...

uk1 uk2 · · · ukn


, (III.1)

where k is the resulting number of clusters and n is the number of data points in the

original data set. Each entry in U is denoted by uji where j ∈ {1, . . . , k} and

i ∈ {1, . . . , n}. In hard clustering, each entry uji may only take a value of either 0 or a 1. If

the data point i is in the cluster j, then uji = 1. Otherwise, uji = 0.

There are two conditions that U must satisfy in hard clustering:

(1)
∑k

j=1 uji = 1, and

(2)
∑n

i=1 uji > 0.

Condition (1) states that a data object i maybe only belong to one cluster. Simply put,

only one entry may take the value of 1 within any particular column. To meet condition

(2), there must be no empty clusters, i.e. each column must contain an entry of value 1.

As mentioned, partitional and hierarchical clustering algorithms fall under hard

13

clustering. The main difference between these two types of clustering is the resulting

structure of the clustered data set. Whereas partitional clustering results in a structure

consisting of discrete partitions, hierarchical clustering results in a tree-like, nested

structure.

In partitional clustering, the goal is to find the optimal partitioning of a data set

according to some criterion function. Partitional clustering algorithms tend to be very

efficient (relative to other clustering algorithms) when applied to big data sets [6]. One of

the most common algorithms that is used in partitional clustering is the k-means

algorithm, which will be discussed in detail in the next chapter. Another partitional

clustering approach, self-organizing maps, will also be discussed later.

There are two approaches to hierarchical clustering: agglomerative and divisive. In

agglomerative hierarchical clustering, the process begins with every data object placed in

its own cluster. At each time step, the most similar cluster pairs are combined according to

the chosen similarity measure. Divisive clustering adopts the opposite approach: the

clustering begins with one large cluster containing all points that is iteratively broken up

into smaller clusters according to some optimization criterion.

The linkage of cluster pairs in agglomerative clustering can be done in a number of

ways. Examples of well-known methods are single-linkage, complete-linkage, and

centroid-linkage clustering. In single-linkage clustering, the distance between two clusters is

defined as the distance between the closest pair of points, each belonging to either cluster.

That is, at each time step, the two clusters with the closest nearest neighbors are

combined. In contrast, in complete-linkage, the two clusters containing the closest furthest

neighbors are combined. In centroid-linkage, the centroid of each cluster is calculated and

the two clusters with the closest centroids are combined. We will revisit single-linkage

hierarchical clustering in the next chapter.

No matter the approach to hierarchical clustering, the data set X is broken up into

Q partitions {H1, H2, ..., HQ} such that if subsets Ci ∈ Hm, Cj ∈ Hl, and m > l, then

14

either Ci ⊂ Cj or Ci ∩ Cj = ∅ for all i 6= j,m, l = 1, ..., Q. That is, for two subsets located

at different levels of the hierarchy, one is entirely contained in the other or both are

mutually exclusive. Dendrograms or binary trees provide a straight-forward visualization of

the nested structure of a hierarchically clustered data set.

Fuzzy Clustering

Fuzzy clustering makes use of fuzzy sets, which were defined by Zadeh [24]. These

are sets whose elements have degrees of membership within the set. Suppose X is a data

set. A fuzzy set A is formed if there exists a function fA : X → [0, 1] such that each

element a ∈ A is of the form a = fA(x), for some x ∈ X. That is, each point in X is

assigned a value between 0 and 1 which describes its degree of membership or the

probability of its placement in the set A. Fuzzy clustering, then, results in data objects

belonging to one or more clusters with their memberships in a particular cluster

corresponding to some probability.

The results of fuzzy clustering can be represented by the same matrix U defined in

equation (3.1.1). The conditions for fuzzy clustering are similar to the those for hard

clustering. Recall that for hard clustering, each entry of the k × n matrix U is of the form

uji ∈ {0, 1} where j ∈ {1, . . . , k} and i ∈ {1, . . . , n} index the clusters and data points,

respectively. For fuzzy clustering, we loosen the condition on uji such that uji ∈ [0, 1].

Then the following conditions must hold [6]:

(1)
∑k

j=1 uji = 1, and

(2)
∑n

i=1 uji > 0.

Condition (i) now requires that for each data object, the sum of its degrees of

membership across all clusters be equal to 1. Condition (ii), as before, requires there to be

no empty clusters.

One example of a fuzzy clustering algorithm is the fuzzy k-means algorithm,

sometimes referred to as the c-means algorithm in the literature. Similar to its hard

15

clustering counterpart, the goal of a fuzzy k-means algorithm is to minimize an objective

function. Suppose we have a data set D = {x1,x2, ...,xn} and let q ∈ [0, 1]. Here, q is

known as the fuzzifier and determines the “fuzziness” of the resulting clusters. Large q

values result in small membership values uji and, thus, a fuzzier clustering. The objective

function is defined as

Eq =
n∑

i=1

k∑
j=1

uqjid
2(xi, Vj),

where d(·, ·) is an inner product metric function and the Vj are the centroids, or means, of

the initial clustering of the data. This initial clustering of D is, of course, allowed to

overlap as long as all points are included in at least one cluster. At any iteration, the

degree of membership of the data point xi in the cluster j is

uji =

(
d2(xi, Vj)∑k
l=1 d

2(xi, Vl)

) 1
1−q

.

Each centroid Vj is recalculated at each time step in the following way:

Vj =

∑n
i=1 u

q
jixi∑n

i=1 u
q
ji

.

After each iteration, the membership matrices of consecutive times steps are compared. If

max
ji
|uoldji − unewji | < ε

where ε > 0 is some predefined criterion for stability, then the fuzzy k-means algorithm is

complete. Otherwise, the membership matrix using new centroids is calculated.

Fuzzy k-means algorithms tend to be more time-consuming and complex than their

hard clustering counterparts. Nevertheless, fuzzy clustering has important applications due

to its flexibility in grouping data that has its basis in uncertain parameters, such as in

studies of gene expression [7]. Other non-biological applications include consumer behavior

16

and market segmentation. See [2] for further reading on fuzzy clustering in pattern

recognition.

17

CHAPTER IV: SIEVE CLUSTERING

With this work, we introduce a novel clustering method which takes its inspiration

from the simple act of using a sieve to separate objects of different sizes. We developed the

sieve method as a simplistic approach to clustering. Just as a sieve is a mesh tool that is

used to separate finer objects from coarser objects, in our algorithm, a sieving surface is

used to separate the “finer” data objects, or the data objects satisfying our similarity

criterion, from the “coarser”, or unclustered, data set. The similarity criterion of the

algorithm is the size of the openings in the mesh, referred to here as the sieve size. As such,

a larger sieve size results in fewer clusters. The sieve method is used with numerical data

as the similarity measure that we use is the dot product.

Clustering algorithms, by definition, do not require prior knowledge about the

structure of data. However, for an efficient clustering, it is recommended that the user

familiarize themselves with the data first by using other preprocessing techniques. For

example, a k-means clustering algorithm, while efficient, requires the user to determine the

optimal number of clusters k. Clustering by self-organizing maps requires similar

knowledge. In a hierarchical algorithm, the user must know the distances between clusters

at each linkage in order to determine the optimal threshold. By contrast, our sieving

algorithm performs a truly blind clustering. The initial clustering is naive, but the

algorithm runs through multiple clusterings so as to aid the user in determining the

optimal k. Thus, the sieve algorithms works best as a preprocessing technique which can

then be followed-up by a more refined algorithm, such as a k-means or SOM.

The sieving algorithm, as it is currently defined, takes a 2-dimensional data set X as

input. A sieving size s ∈ (0, 1) is chosen by the user. In each iteration, a sieve surface is

created by randomly choosing an angle θ ∈ {1, 2, · · · , 180} to create the line y = tan(θ).

For a data object to pass through the sieve, its corresponding vector must be

near-perpendicular to the line y. That is, let the sieve surface vector be defined as

y = 〈cos θ, sin θ〉. Then all vectors x = 〈x1, x2〉 ∈ X that satisfy |y · x| ≤ s, pass through

18

the sieve. In particular, if 0 ≤ y · x ≤ s, then x is placed in the “positively” perpendicular

cluster, while the points x satisfying −s ≤ y · x < 0 are placed in the “negatively”

perpendicular cluster. At the end of each iteration, all points that have passed through the

sieve are removed from the data set, a new θ is chosen to create another sieve surface, and

points are clustered into new “positively” and “negatively” perpendicular clusters. This

process is repeated until all points in X belong to a cluster. Figure 3 is an illustration of a

sieve iteration in 2-dimensions.

Figure 3: An iteration of the sieve algorithm in 2-D. The figure shows the Iris data set
projected into 2-dimensions, shifted center around the origin, and normalized. An iteration
of the sieve process begins with a randomly chosen angle θ (in yellow), which is used to
create a sieving surface (black line segment). All points that fall within the pink region are
perpendicular or near-perpendicular to the sieve, i.e. the corresponding dot product has
a magnitude less than or equal to the sieve size s. These points are placed in a cluster
according to An the sign of the dot product and are then removed from the coarse data set.

19

The sieve methods tends to produce a relatively large number of clusters dependent

on the sieve size used, so a process similar to that of a agglomerative hierarchical algorithm

is enacted. Like in an agglomerative algorithm, the number of clusters is reduced through a

combination of cluster pairs according to a criterion. In sieve clustering, we make use of

centroid-linkage, i.e. we define the distance between two clusters as the distance between

their centroids. The clusters that share the smallest centroid distance are combined if the

MANOVA test statistic of the potential clustering is more optimal than that of the current

clustering. The process is over when the clustering optimizes this test statistic.

Although the sieve algorithm that we provide in Appendix A works with only 2-D

data, transformation of a data set using an orthogonal basis (as explained in Chapter 2)

allows the algorithm to be applicable to higher-dimensional data. An equivalent but more

involved approach is to extend the sieve algorithm to handle higher-dimensional data.

Figure 4 illustrates a 3-D representation of a sieving iteration. In the 3-D case, the sieve

surface is a plane that is tangent to a sphere centered at the origin. This tangent plane can

be created by randomly selecting a point on the surface of the sphere. Data objects that

are perpendicular and near perpendicular to the sieve surface pass through the sieve and

are clustered. A sieving algorithm can be developed for higher dimensions using a

higher-dimensional sphere.

20

Figure 4: An iteration of the sieve algorithm in 3-D. In a 3-dimensional sieving algorithm,
a sphere (yellow) can be used to create a sieve surface. (a) A point (red) on the surface of
the sphere is randomly chosen and the corresponding tangent plane functions as the sieve.
(b) As in the 2-D case, the data objects that are near-perpendicular to the sieve surface are
clustered. At the next iteration, a new point on the sphere is randomly selected and another
sieving surface is created.

21

CHAPTER V: COMMON CLUSTERING METHODS

We now provide an overview of some commonly used clustering algorithms which we

used to compare and assess the performance of the sieve algorithm.

k-means Clustering Algorithm

The k-means algorithm is a partitional clustering algorithm, so it involves an

objective function that quantifies the quality of the clustering. The optimal partitioning of

the data set is the partitioning that minimizes this objective function. The k-means

algorithm is only for numerical data sets and typically uses the Euclidean distance.

Suppose the data set to be clustered has n elements and we wish to cluster them

into k clusters. Let Cj denote the j-th cluster for j ∈ {1, · · · , k}. The standard k-means

algorithm uses an error function defined as

E =
k∑

j=1

∑
x∈Cj

d(x, µ(Cj))

where µ(Cj) is the centroid, or arithmetic mean, of the j-th cluster and d(·, ·) is the

distance measure. That is, the error function is the sum of squared differences between

each observation and its corresponding centroid. By iteratively taking the distances

between each data point x and the centroid of the cluster to which it belongs, the objective

of this algorithm is to find a partitioning of the data set that minimizes E.

There are two parts to a k-means clustering algorithm: initialization and iteration.

In the initialization phase, the number of desired clusters k is determined. The data set is

split into k groups. In the iteration phase, the distance between each data point x and the

k centroids are calculated, and the minimum of these distances is chosen. That is, for each

x, we find the cluster J in which the minimum is achieved,

J = arg min
1≤j≤k

d(x, µ(Cj)),

and then place x into the J-th cluster. After all points are placed in a cluster, the k

22

centroids are recalculated to reflect the current state of the clusters. The value of E is

determined and compared to the value at the previous step. The clustering is complete

when E is minimized or, equivalently, when there is no more significant change in the

centroid values or in the cluster membership of each data point from one iteration to the

next.

Figure 5: An example of a k-means clustering of the Iris data set. On the left, a 3-D plot
of the Iris data set, each species shown in a different color and symbol. On the right, the
results of a k-means clustering of the same data set. Three initial cluster centroids were
chosen, represented by larger +, ◦, and × symbols. The centroids and the cluster contents
were then iteratively adjusted to minimize average distance from the centroid. Image credit:
Chire, Public Domain.

Ultimately, the clustering result of a k-means algorithm depends on the desired

number of clusters k and on the choice of initial k groups. One way to select the optimal k

value is to try multiple values. Typically, as k increases, the average distance of all the

points in the data set X to their respective centroid decreases. At some value of k,

however, this average distance from the centroid no longer changes significantly. This is the

optimal value of k to use. To initialize the k clusters, k data points can be randomly

chosen as centroids, and the rest of the points would then be placed into one of these

clusters. A more computationally efficient way of initializing the clusters requires some a

23

priori knowledge of the data set either through observation or by performing a separate

clustering analysis. One could also choose the initial k centroids by choosing points that

are approximately equally dispersed throughout the data set. In this way, the danger of

mistakenly separating points that should be clustered together is minimized.

There are a number of variants of k-means algorithms. They are relatively simple to

run and their complexity depends on the number of iterations, number of clusters k, the

number of data points in X, and the dimension of these data points [11]. These algorithms

work relatively well with big or high-dimensional data sets.

Hierarchical Single-Linkage Clustering Algorithm

As previously discussed, single-linkage is considered an agglomerative hierarchical

method. The clustering of a data set X begins with each data object considered as a

singleton cluster. In single-linkage, the distance between two clusters is defined as the

minimum distance between a pair of data objects where one data object is in one cluster

and the other is in the other cluster [4]. That is, the distance between clusters Ci and Cj is

d(Ci, Cj) = min{d(x, y) such that x ∈ Ci, y ∈ Cj}.

This distance is referred to as the nearest-neighbor distance. At each time step in the

algorithm, the two clusters with the minimum nearest-neighbor distance are combined.

These steps are repeated until there is one large cluster containing all the data objects in

X. The user can then observe the resulting dendogram and decide on an appropriate

threshold. It is this threshold that determines the number of clusters.

The time efficiency of the algorithm depends almost entirely on the size of the data

set, so it works best with smaller data sets. As discussed in [4], the order of cluster linkage

is important in agglomerative clustering, and single-linkage in particular can result in

unbalanced cluster sizes.

24

Figure 6: A dendogram representation of hierarchical clustering results. The process began
with singleton clusters containing points A,B,C,D,E, F , and G. The closest pair of clusters
was combined at each time step.The dashed line represents the clustering threshold. At this
threshold, the final clusters are {A,B,C}, {D,E}, and {F,G}. Image credit: Henriquerocha,
Public Domain.

Self-Organizing Maps

Self-organizing maps (SOMs), also known as Kohonen maps, form a class of

partitional clustering algorithms that use artificial neural networks to generate a

low-dimensional representation of a high-dimensional data set while simultaneously

reflecting the structure of the data set in a visual way [19]. SOMs require the input of a

“training” numerical data set and, through an iterative competitive learning algorithm,

outputs a one- or two-dimensional map representing the data. This map eases the

visualization of the underlying structures of the data set as the training allows it to

preserve the similarity relationships between the original data objects and results in a

clustering of the data.

In any competitive learning system, there are input nodes and output nodes. The

input nodes are the input data objects and the output nodes are a set of units which are

each assigned a weight vector either randomly or using a priori knowledge of the data set.

More clearly, let the input nodes be denoted by i ∈ {1, . . . , n} and the output nodes by

25

j ∈ {1, . . . , k}, where n is the dimension of the data set (i.e. the number of features of each

data object) and k corresponds to the number of clusters. Then each output node j is

weighted by a vector wj ∈ Rn whose components wij are each connected to the i-th

component of the input vector x ∈ Rn. That is, for an input vector x, each of its

components xi is connected to every output node j by some weighted connection denoted

by wij. An iterative training algorithm then compares the input vector x to every weight

vector wj and seeks out the index J for which the similarity between x and wj is maximized

or, equivalently, for which the distance between the two is minimized. For node J and for

some neighborhood around node J , an update, or activation, takes place where the weights

of each node are updated in a way that makes them more similar to x. For the next time

step, a new input vector is presented to the nodes and the weight vectors of the nodes

adjust accordingly. As the algorithm progresses, the size of the updating neighborhood

around J decreases until the neighborhood contains only the node J . The algorithm is

complete when the positions of the nodes satisfy some predetermined condition of stability.

In an SOM, the output nodes are called neurons and the weighted connections

between the components of the input vector and the neurons are called synapses. That is,

for an input vector x, each of its components xi is connected to every neuron j by some

weighted synapse denoted by wij. For each input vector x, the goal is to identify the

“winning” weight vector, i.e., the weight vector that is most similar to the input vector. If

d(·, ·) is a distance measure, then the winning vector is wJ whose index is defined as

J := arg min
j
{d(x,wj)}.

Once a winning vector is determined, an activation takes place for all weight vectors

within some predetermined neighborhood of J . Let the neighborhood around J be denoted

26

by N(J). The activation function of a weight vector at iteration t+ 1 is

wj(t+ 1) =

 wj(t) + η(t)(x(t)−wj(t)) for j ∈ N(J)

wj(t) for j /∈ N(J),

where η(t) is called the learning rate. It is a monotonically decreasing function selected to

ensure that a more fine-tuned learning is taking place as the algorithm proceeds.

Commonly used learning functions are linear, inversely related to the total number of

iterations performed by the algorithm, exponential, or a power series. Figure 7 shows an

example SOM iteration and Figure 8 is a closer look at the training process.

Figure 7: An example of an SOM iteration. On this6 × 6-neuron grid, the dashed lines
represent the weighted connections, or synapses, between neurons and data objects x1,x2,
and x3. After comparing a data object to the neurons, the algorithm determines that the dark
gray neuron is the “winner”. The winning neuron undergoes an activation that makes it more
similar to the presented data object. The light gray neurons fall within some neighborhood
of the winning neuron, so they undergo an activation as well, albeit at a smaller scale. Image
credit: MartinThoma, CC0-1.0.

After the update of the appropriate weights is complete, the next iteration of the

algorithm begins with a new input vector x presented to the updated neurons.With each

27

iteration of the algorithm, the size of the neighborhood around the winning neuron

decreases until, finally, the only neuron affected by the update is the winning neuron itself.

Additionally, the learning rate η(t) also decreases for each time step, which means the

effect the update has on the winning neuron and its neighbors lessens over time. The

algorithm is considered complete when the change in the position of the neurons occurring

between time steps is below some predetermined positive number.

There are several decisions that must be made before performing an SOM. To begin

with, the number of desired clusters must be determined. This can be done, for example,

by using a separate clustering algorithm to preprocess the data. The weight vectors of each

neuron must then be initialized either by randomly assigning each entry of the vector a

value between 0 and 1 or by assigning values using prior knowledge of the structure of the

data set. The latter, if done correctly, can increase the efficiency of the SOM. For example,

if it is obvious that some data objects are significantly different from each other, it may be

more beneficial to initialize the weight vectors in a way that reflects this structure.

Next we determine the best type of neighborhood or neighborhood function to use.

Common neighborhoods are circular, square, or hexagonal in shape. For these types of

neighborhoods, every neuron within them is updated in the same exact way. The use of

neighborhood functions allows for a more customizable update. If we define a

neighborhood function by

hJj =

 η(t) for j ∈ N(J)

0 for j /∈ N(J)
,

then it specifies that each neuron within N(J) is affected in the same way by the learning

function η(t). The updating function can then be written as

wj(t+ 1) = wj(t) + hJj(x(t)−wj(t)).

28

Figure 8: Another example of an SOM algorithm iteration. (a) A 3 × 3-neuron grid is
presented with an input vector (in red). (b) The input vector is compared to each weight
vector in the map, and the winning weight vector is selected. (c) The winning vector is
updated (dark green) so that it is more similar to the input vector. All sufficiently nearby
vectors are updated as well (light green).

29

If, within the neighborhood, we want the neurons closest to the winning neuron J to be

affected more than those near the border of N(J), we can define the neighborhood function

as the product of the learning rate and another function bounded by a range of [0, 1] which

takes its maximum value only when j = J . A commonly used neighborhood function of

this type is the Gaussian neighborhood function

hJj = η(t) exp

(
−d(rJ , rj)

2

2σ2(t)

)

where rJ and rj are the positions of the the J-th and j-th neuron, respectively, and σ(t) is

some decreasing kernel width function which provides the radius of the neighborhood at

time step t. For a more detailed discussion of kernel width functions, see [20].

Finally, the last item to be set is the condition for stability of the SOM. The

condition requires that the change in position of the neurons from one time step to the

next remain less than some small, positive number ε. The value of ε determines the

stopping point of the algorithm.

Once an SOM is complete, the resulting map allows for an easy-to-understand visual

of the structure of the data set. Furthermore, the map also tells us that each input vector

x belongs to the Jth cluster.

Similar to k-means algorithms, an SOM algorithm requires knowledge of the number

of clusters in advanced. This means that some preprocessing technique or multiple SOMs

must be performed to find the optimal number of clusters. According to [23], SOMs are

also inefficient at handling outliers.

30

CHAPTER VI: COMPARISON OF PERFORMANCE OF CLUSTERING

ALGORITHMS

Simulations and Results

To compare the performances of the k-means, single-linkage hierarchical, SOM, and

sieve algorithms, we used a combination of internal, external, and relative criteria. In

particular, we used each algorithm to cluster the 4-dimensional Iris data set [5] for several

values of k and then compared misclassification rates, MANOVA test statistics and

corresponding p-values, and computational times.

All algorithms were run using Python version 3.4. The images in this section were

also created using Python. The k-means and hierarchical algorithms are packages available

in SciPy, a Python-based collection of mathematical and statistical algorithms and tools.

We ran the k-means and hierarchical algorithms using [8] and [16] as guides, respectively.

We wrote the SOM algorithm so as to focus more on the clustering than on the

visualization. Finally, we developed and wrote the sieve algorithm. All algorithms are

included in their entirety in Appendix A. In all algorithms, we used the same function to

return the cluster misclassifcation rate (code also included in Appendix A). R was used to

run the MANOVAs on the multivariate clustering results of the k-means, hierarchical, and

SOM algorithms. The test statistic that R returns is Pillai’s Trace. The sieve algorithm

works with 2-D data and requires the value of the test statistic to end the clustering

process, so we performed a MANOVA within the code using the relationship between the

Wilks’ Λ∗ test statistic for 2-D data and the F -distribution as discussed in [15] and

summarized later.

The Iris data set contains 150 observations, each made up of four measurements in

centimeters: sepal length, sepal width, petal length, and petal width. Three Iris flower

species are included in this data set (setosa, virginica, and versicolor) and serve as the data

labels. There are 50 observations for each species. There are two cases for which our

misclassification function returns a 0% misclassification rate with the Iris data set: the

31

clustering results in exactly 3 clusters, each containing all 50 observations pertaining to a

particular species, or the clustering results in 150 singleton clusters. A clustering consisting

of only 1 cluster has an approximate misclassifcation rate of 66.67% since the algorithm

assumes that only one of the three species has been placed in the cluster correctly; the

algorithm considers the other 100 observations misclassified.

First, we ran the k-means algorithm. The initial k centroids are randomly chosen

from the data set. By default, the algorithm runs a k-means 20 times, each time iteratively

adjusting the centroids until the change in the error function E since the previous iteration

falls below a threshold, defined in this algorithm as 1× 10−5. The algorithm returns the

first clustering whose change falls below the threshold or the clustering that results in the

smallest change. The error statistics of the k-means clustering for k ∈ {2, 3, 4, 5} are shown

in Table 1, where MR is misclassification rate.

Table 1: Error Statistics of the k-means Algorithm.

k 2 3 4 5
MR (%) 33.33 11.33 12.0 9.33

Pillai 0.876 0.903 0.722 0.581
p-Value 2.2× 10−16 2.2× 10−16 2.2× 10−16 2.2× 10−16

Time (s) 0.0156 0.015 0.0156 0.0156

For all values of k shown in the Table 1, the results are significant. Recall that

Pillai’s Trace ranges from 0 to 1, where its value corresponds to the contribution of the

between-cluster variance to the total variance. Thus, a good clustering is indicated by a

large Pillai’s Trace test statistic since it indicates that the between-cluster variation is

larger than that of the within-clusters. Although the smallest misclassification rate occured

at k = 5, the k-means algorithm obtained a maximum Pillai’s Trace value at k = 3 at the

same level of statistical significance. It’s clear also that even as k increased, the

computational time needed to complete the clustering remained constant.

Next, we ran the single-linkage hierarchical clustering algorithm. Euclidean distance

32

was used as the distance measure. The algorithm returns a (n− 1)× 4 linkage matrix,

where n is the number of elements in the data set. Every row of this matrix represents a

particular time step. The first two columns describe which two clusters were combined at a

that time step, the third column is the distance between those two clusters, and the fourth

provides the total number of data objects in the combined cluster. This linkage matrix can

then be used to form a dendogram. The resulting number of clusters is determined by a

user-defined threshold. Table 2 shows the single-linkage clustering results of the Iris data

set. Figures 9 and 10 show the corresponding screeplot and dendogram, respectively.

Table 2: Error Statistics of the Single-Linkage Hierarchical Algorithm.

k 2 3 4 5
MR (%) 33.33 32.0 31.33 30.67

Pillai 0.907 0.892 0.890 0.882
p-Value 2.2× 10−16 2.2× 10−16 2.2× 10−16 2.2× 10−16

Time (s) 0 0.0156 0.0 0.0

The value of Pillai’s Trace test statistic is large and statistically significant for all

number of clusters k tested. The largest test statistic corresponds to k = 2. The

misclassification rate at k = 2, however, is the largest at 33.33%. In fact, all the clustering

results shown in the table show a misclassification rate of greater than 30%. In Figure 9,

the screeplot was graphed using the distance between linked clusters at each time step. A

possible elbow occurs at approximately k = 2 while another occurs at k = 4. This aligns

with the results in Table 2. The dendogram in Figure 10 shows the order of cluster-linkage

and how the final clustering results were obtained. The coloring of the linkages in the

dendogram are determined by a color threshold, which has a default value of 70% of the

maximum distance between linked clusters. The red and green indicate two groups that fall

below this threshold. The computational times for each clustering are not entirely different

since the same linkage matrix is used to obtain each clustering result.

For each value of k ∈ {2, 3, 4, 5}, we initialized the SOM algorithm with a

33

Figure 9: The screeplot of the single-linkage clustering of the Iris data set.

4× k-neuron grid. We defined the learning function η(t) and the kernel width function σ(t)

as the same exponential decreasing function dependent on the total number of iterations.

That is, we set the total number of iterations at 400, and defined

η(t) = σ(t) = exp

(
−t
400

)
.

A Gaussian neighborhood function was used for a soft competitive learning. Because

randomness is involved in the initialization of the weight vectors and in the order of the

clustering in an SOM algorithm, separate runs even under the same parameters show

different results. The results of a single instance of each k are summarized in Table 3.

With the SOM algorithm, the minimum misclassification rate and the most

significant clustering results were achieved at k = 4. The largest Pillai’s trace value

34

Figure 10: The Iris data set single-linkage dendogram. The coloring of the dendogram is
dependent on the linkage-distance threshold, set here by default at approximately 1.15, which
is 70% of the maximum distance. The red and green are the two clusters that the particular
threshold returns.

35

Table 3: Error Statistics of the SOM Algorithm.

k 2 3 4 5
MR (%) 33.33 8.67 6.67 12.0

Pillai 0.825 0.312 0.359 0.252
p-Value 2.2× 10−6 4.03× 10−11 2.58× 10−13 1.33× 10−8

Time (s) 0.0625 0.0781 0.1094 0.125

occurred at k = 2, but showed the least significant results of the clusterings. We see also

that the computational time increased steadily as k increased.

The test statistic that is used in the sieve algorithm and that is presented in

Tables 4, 5, and 6 is a ratio involving Wilks’ Λ∗ =
|W |

|W +B|
. This ratio is referred to here

as an Fratio because it has an exact F -distribution when the data set is 2-dimensional.

More explicitly, for 2-D data, our test statistic is a value

Fratio :=

(
n− k − 1

k − 1

)(
1−
√

Λ∗√
Λ∗

)
∼ F2(k−1),2(n−k−1),

where k is the number of clusters at the particular time step and n is the total number of

elements in the data set. A good clustering is indicated by a small (near zero) Λ∗, which

corresponds to a large Fratio value. The computational time included in the tables under

each k is the amount of time the algorithm took to combine two clusters to obtain k

clusters.

In order to take advantage of the relationship between Λ∗ and the easy-to-calculate

F -distribution, we first had to transform the data. After defining the data mean as the

new origin, we projected the entire 4-D data set into 2 dimensions via orthogonal

projection, as per the technique described in Chapter 2. We then normalized the data so

that all points were at an equal distance from the origin and allowed for a better

interpretation of the dot product as used in the algorithm.

The clustering of the sieve algorithm is dependent on the sieve size, i.e. a large sieve

size s results in fewer initial and final clusters. For this reason, we ran the sieve algorithm

36

for s = {0.1, 0.5, 0.9}. Tables 4-6 show the single instance results for these values of s,

respectively.

As shown in Table 4, a sieve size s = 0.1 resulted in 42 initial clusters with a

misclassification rate of 26.67%. The algorithm stopped at k = 7 where it achieved its

largest Fratio. The p-value of the F -test at k = 7 supports the significance of the clustering

despite the misclassification rate of 28.67%. The computational time of each linkage is

included in Table 4, and the total computational time was 4.08 seconds. Figure 11 is a

scree plot of the clustering process that shows the relationship between the number of

clusters and the corresponding Fratio test statistic. As clusters were linked, the Fratio value

increased as well until the algorithm terminated at k = 7.

Table 4: Error Statistics of the Sieve Algorithm with s = 0.1.

k 7 8 9 10 · · · 42
MR (%) 28.67 28.67 28.67 28.67 · · · 26.67
Fratio 46.448 39.662 35.762 32.272 · · · 6.64
p-Value 4.45× 10−5 1.73× 10−5 6.46× 10−6 2.67× 10−6 · · · 5.43× 10−10

Time (s) 0.0938 0.0938 0.0781 0.0937 · · · 0.0781
Total Computational Time: 4.08 s

We then ran the sieve algorithm for sieve size s = 0.5 (Table 5). The larger s value

resulted in fewer initial clusters with a misclassification rate of 27.33%. The algorithm

obtained the largest Fratio value at k = 2. However, the clustering at k = 2 would not be

considered statistically significant for significance levels of α < 0.05. Since k = 2 is also

associated with the largest misclassification rate, this may not be the best clustering of the

data. The error statistics support that a better clustering occurred at k = 3 with a

misclassification rate of 32.67% and statistically significant results for α < 0.01. The total

computational time was 1.76 seconds. Figure 12 is the scree plot for this clustering process.

The first possible elbow point occurs at k = 3, which further supports a better clustering.

With sieve size s = 0.9, the algorithm resulted in 16 initial clusters and terminated

at 2 clusters. The final clustering had a 33.33% misclassification rate and significant results

37

Figure 11: The screeplot of the sieve clustering of the Iris data set with s = 0.1.

Table 5: Error Statistics of the Sieve Algorithm with s = 0.5.

k 2 3 4 5 · · · 23
MR (%) 38.0 32.67 32.67 32.0 · · · 27.33
Fratio 139.046 95.877 70.722 54.684 · · · 12.866
p-Value 0.0675 0.0104 0.0023 0.001 · · · 4.11× 10−9

Time (s) 0.0781 0.0781 0.0937 0.0938 · · · 0.0312
Total Computational Time: 1.76 s

for α = 0.1. Again, we may consider the clustering at k = 3 a better fit since the same

misclassification rate is maintained and the results are significant for α ≤ 0.05. The total

computation time was 1.25 seconds. The screeplot of the clustering process in Figure 13

shows a possible elbow points at k = 3,.

Discussion

The smallest misclassification rate we recorded was achieved by the SOM algorithm

for k = 4 despite the low value of the corresponding Pillai’s Trace test statistic. Likewise,

the largest value of Pillai’s Trace occurred at k = 2 under the single-linkage hierarchical

38

Figure 12: The screeplot of the sieve clustering of the Iris data set with s = 0.5.

Table 6: Error Statistics of the Sieve Algorithm with s = 0.9.

k 2 3 4 5 · · · 16
MR (%) 33.33 33.33 32.0 32.0 · · · 32.0
Fratio 235.228 118.911 85.141 66.859 · · · 17.593
p-Value 0.0519 0.0084 0.0017 0.0004 · · · 1.12× 10−7

Time (s) 0.0815 0.0781 0.0937 0.0781 · · · 0.0312
Total Computational Time: 1.25 s

algorithm, but with a misclassification rate of 33.33%. One reason that these cluster

validation criteria seemingly provide different information is that the calculation of the test

statistic used only the internal information obtained from the clustering via a MANOVA

while the calculation of the misclassification rate required the use of externally placed data

labels (i.e. species names). The scatter plots of the Iris data set in Figure 1 show that

there is a fair amount of overlap between I. versicolor and I. virginica while I. setosa

remain mostly separate. Indeed, further analysis of the cluster structure of each algorithm

result shows that while the algorithms were relatively successful at sorting the setosa

39

Figure 13: The screeplot of the sieve clustering of the Iris data set with s = 0.9.

species into its own cluster(s), the algorithms tended to sort the versicolor and virginica

together. This would contribute to the high misclassification rates shown in Tables 1-6.

The “true” number of clusters in the Iris data set is 3. It can be argued that the

error statistics of the k-means algorithm agree with this as the highest Pillai’s Trace

statistic was achieved at k = 3 even though it is associated with only the second lowest

misclassification rate. The results of the hierarchical algorithm support a clustering of

k = 2 despite the relatively high misclassification rate. While the SOM algorithm obtained

a large Pillai’s Trace at k = 2, it also reached a high misclassification rate. A clustering of

k = 4 returned the lowest misclassification rate of all four algorithms, but also a low Pillai’s

Trace. The sieve method, despite the higher misclassification rates, supported a clustering

of k = 7 at a sieve size s = 0.1, but supported k = 3 for s = 0.5 and s = 0.9.

As is made clear by Tables 4-6, the clustering outcome of the sieve algorithm is

heavily dependent on the initial clustering. While the misclassification rate experiences a

40

steady increase as the divisive procedure progresses, the test statistic that we use to

measure the the goodness of the clustering becomes more favorable as well. As was the

case with the results shown Tables 5 and 6, although the program may terminate at a

particular value of k that obtains the optimal test statistic value, this termination may

require further analysis. Of course, the outcome of the algorithm also depends on the sieve

size. Small sieve sizes s produce a large number of initial clusters. They also result in a

large number of final clusters when compared to the results of larger s values. Contrary to

our expectations, a smaller value of s did not result in significantly better misclassification

rates than the larger values. The clusterings of s = 0.5 and s = 0.9 took notably less time

and actually supported the clustering at k = 3, unlike the clustering of s = 0.1, which

terminated before reaching k = 3.

Although the k-means and SOM return lower misclassification rates than the

single-linkage hierarchical and sieving algorithms, they require the user to know ahead of

time the range of optimal k values to test. If the data is low-dimensional, it is easy to

determine k based on scatter plots or histograms. Parallel or star coordinates could be used

for slightly higher-dimensional data. For very high-dimensional data, however, it may be

necessary to run other preprocessing tests or to enact dimensionality-reduction techniques.

Any hierarchical algorithm can be graphically represented as a dendogram. Even for

higher-dimensional data, if the data set is relatively small, the dendogram is invaluable in

determining a clustering threshold and, thus, the ideal number of clusters. For larger data

sets, the linkage matrix and corresponding dendogram tend to become convoluted and

difficult to read, as is nearly the case in Figure 10. The same is true for data sets of

widely-varying data objects.

The sieving algorithm returned misclassification rates similar to those of the

hierarchical algorithm. The high misclassification rates may have been due to the initial

transformations of the data. For certain values of sieve size s, however, the algorithm was

able to determine possibly optimal values of k. The sieve algorithm, then, can be used as a

41

preliminary clustering technique to help determine a range of potentially viable values of k.

A more precise clustering algorithm, such as the k-means or SOM, could then be

implemented to obtain optimal clustering results.

Conclusion

Because clustering has limitless applications in fields that rely on data analysis, it is

important for there to be reliable algorithms for quick and easy clustering. With this

study, we introduced a new clustering method, a sieving algorithm based on the idea of

using a mesh to separate finer from coarser objects. In our algorithm, these objects are

high-dimensional data vectors that are common in ecological and biological studies and the

mesh is a high-dimensional sieve of varying mesh sizes. Using the sieving algorithm to gain

familiarity with data structure and the k-means or SOM algorithm as a follow-up method

for a more accurate analysis would be an efficient approach to tackling research questions.

As this is the preliminary attempt at sieve clustering, we studied its performance for 2-D

data. However, with the orthogonal vector transformation given in Chapter 2, it is possible

to transform any p-dimensional (p > 2) vector into a 2-D vector. It is also possible to

extend the algorithm to work with higher-dimensional data or with other data types. Our

hope is to provide researchers with tried-and-true methods to not only further their

understanding of numerical data, but to ease the process of statistical analysis.

42

REFERENCES

[1] C. C. Aggarwal, Data Clustering: Algorithms and Applications. CRC Press, Boca
Raton, FLorida, 2014.

[2] J. C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plennum
Press, New York, 1981.

[3] G. Brock, V. Pihur, S. Datta, and S. Datta, “clValid: An R Package for Cluster
Validation,” Journal of Statistical Software 25 (2008), 1–22.

[4] B. S. Everitt, Cluster Analysis. John Wiley & Sons Ltd, Chichester, West Sussex,
United Kingdom, 2011.

[5] R. A. Fisher, “The Use of Multiple Measurements in Taxonomic Problems,” Annals of
Eugenics 7.7 (1936), 179–188.

[6] G. Gan, C. Ma, and J. Wu, Data Clustering: Theory, Algorithms, and Applications.
SIAM, Philadelphia, Pennsylvania, 2007.

[7] S. Ghosh, and S. Mitra, “Gene selection using biological knowledge and fuzzy
clustering,” 2012 IEEE International Conference on Fuzzy Systems (2012), 1–9.

[8] The Glowing Python, https:
//glowingpython.blogspot.com/2012/04/k-means-clustering-with-scipy.html,
2012.

[9] A. Jain, and R. C. Dubes, Algorithms for Clustering Data. Prentice Hall, Englewood
Cliffs, New Jersey, 1988.

[10] M. Charrad, N. Ghazzali, V. Boiteau and A. Niknafs, “NbClust: An R Package for
Determining the Relevant Number of Clusters in a Data Set,” Journal of Statistical
Software 61 (2014), 1–36.

[11] J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means Clustering
Algorithm,” Journal of the Royal Statistical Society. Series C (Applied Statistics) 28,
100–108.

[12] T. J. Hastie, R. J. Tibshirani, and J. H. Friedman, The elements of statistical learning:
data mining, inference, and prediction. Springer, New York, 2009.

[13] A. Inselberg, and T. Avidan “The automated multidimensional detective,” Proceedings
1999 IEEE Symposium on Information Visualization(1999), 112–119, 151.

[14] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data Clustering: A Review,” ACM
Computing Surveys(1999), 264–323.

[15] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis. Prentice
Hall, 1998.

43

[16] Jorn’s Blog, https://joernhees.de/blog/2015/08/26/
scipy-hierarchical-clustering-and-dendrogram-tutorial/, 2015.

[17] E. Kandogan, “Star Coordinates: A Multi-dimensional Visualization Technique with
Uniform Treatment of Dimensions,” (2000).

[18] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley and Sons, 1990.

[19] T. Kohonen, Self-organizing maps. Springer, 2001.

[20] J. Lampinen and T. Kostiainen, “Self-Organizing Map in Data-Analysis - Notes on
Overfitting and Overinterpretation,” In Proceedings of ESANN (2000), 239–244.

[21] STAT 505 - Applied Multivariate Statistical Analysis,
https://onlinecourses.science.psu.edu/stat505/, 2018.

[22] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Elsevier Inc., 2009.

[23] R. Xu and D. C. Wunsh, Clustering. John Wiley & Sons Inc, 2009.

[24] L. A. Zadeh, “Fuzzy Sets,” Information and Control(1965), 338–353.

A portion of this work was published in Algebraic and Combinatorial Computational

Biology, edited by R. Robeva and M. Macauley, Copyright Elsevier (2018).

44

APPENDIX A: PYTHON CODE

The Python code for all algorithms are included in this appendix. The Python

packages NumPy and SciPy must be installed to run the code. For the graphs, Plotly and

Matplotlib must be installed. The input file “irisdata1.csv” contains 150 rows and 5

columns. Each row represents a single Iris flower. The columns correspond to sepal length,

sepal width, petal length, petal width, and species name. The data set can be found at

https://archive.ics.uci.edu/ml/machine-learning-databases/iris/.

Misclassification Rate Function

The following is the code for the misclassification rate as it appears in the k-means,

hierarchical, and SOM algorithms. That is, the following code is for 5-D data, where the

first 4 components are numerical and the final is the data label. The misclassification rate

function for the sieve algorithm is included in the sieve code.

de f m i s c l a s s (data) :

data : numerical , c l u s t e r e d data s e t

mi s s to t = 0 r

f o r i in range (l en (data)) :

c d i c t = {}

maxitem = 0

f o r j in range (l en (data [i])) :

i f data [i] [j] [4] not in c d i c t :

c d i c t [data [i] [j] [4]] = 1

e l s e :

c d i c t [data [i] [j] [4]] += 1

uncomment the f o l l o w i n g f o r p r in tout o f c l u s t e r contents

#pr in t (” Clus te r ” , i +1, ” | | ” , c d i c t)

#pr in t ()

determine with in each c l u s t e r which items were

45

most l i k e l y m i s c l a s s i f i e d , i . e . which

appear l e s s f r e q u e n t l y

f o r k in c d i c t . i tems () :

i f k [1] > maxitem :

maxitem = k [1]

maxkey = k [0]

cmiss = 0

f o r k in c d i c t . i tems () :

i f k [0] != maxkey :

cmiss += k [1]

mi s s to t += cmiss

r a t e = mis s to t / l en (xdata) ∗ 100

p r i n t(”−−−”)

p r i n t (”SUMMARY”)

p r i n t ()

p r i n t (” s i e v e c l u s t e r s = ” , l en (data))

p r i n t ()

p r i n t (” M i s c l a s s i f i c a t i o n ra t e : ” , round (rate , 3) , ”%”)

p r i n t ()

k-means

import csv

from numpy import vstack , array

import numpy as np

from sc ipy . c l u s t e r . vq import kmeans , vq

from matp lo t l i b import pyplot as p l t

#−−−

import data from csv f i l e

46

xdata = [] # without l a b e l s

namedata = [] # with l a b e l s

with open (’ i r i s d a t a 1 . csv ’) as c s v f i l e :

read = csv . r eader (c s v f i l e)

next (read , None)

f o r row in read :

f o r i in range (4) :

row [i] = f l o a t (row [i]) # convert to numerica l va lue s

xdata . append (row [: 4])

namedata . append (row [: 5])

#−−−

de f main () :

f o r k in range (1 , 6) :

computing k−means

cent ro id s , = kmeans (xdata , k)

a s s i g n each sample to a c l u s t e r

idx , = vq (xdata , c e n t r o i d s)

r e t r i v e c l u s t e r s

c l u s t e r L i s t = [[] f o r i in range (max(idx)+1)]

f o r j in range (l en (idx)) :

c l u s t e r L i s t [idx [j]] . append (namedata [j])

save f i l e in comma−de l im i t ed txt f i l e

o u t f i l e = open (” kmeans out k”+s t r (k)+”. txt ” , ”w”)

f o r i in range (l en (c l u s t e r L i s t)) :

f o r j in range (l en (c l u s t e r L i s t [i])) :

f o r l in range (l en (c l u s t e r L i s t [i] [j])) :

o u t f i l e . wr i t e (s t r (c l u s t e r L i s t [i] [j] [l])+ ” ,”)

47

o u t f i l e . wr i t e (s t r (i)+”\n”)

o u t f i l e . c l o s e ()

m i s c l a s s (c l u s t e r L i s t)

main ()

Single-Linkage Hierarchical

from matp lo t l i b import pyplot as p l t

import s c ipy . c l u s t e r . h i e ra r chy as hac

import numpy as np

import csv

#−−−

input ve c t o r s − import from csv f i l e

each row in i r i s d a t a 1 . csv i s made up o f 5 components :

4 numerica l and 1 s t r i n g value (the l a b e l o f the ob j e c t)

xdata = [] # without l a b e l s

namedata = [] # with l a b e l s

with open (’ i r i s d a t a 1 . csv ’) as c s v f i l e :

read = csv . r eader (c s v f i l e)

next (read , None)

f o r row in read :

f o r i in range (4) :

row [i] = f l o a t (row [i]) # convert to numerica l va lue s

xdata . append (row [: 4])

namedata . append (row [: 5])

#−−−

de f main () :

perform the c l u s t e r i n g

a = np . array (namedata)

48

z = hac . l i n k ag e (a [: , [0 , 1 , 2 , 3]] , ” s i n g l e ”)

determine a th r e sho ld to r e t r i e v e c l u s t e r s

max d = 0.64

idx = hac . f c l u s t e r (z , max d , c r i t e r i o n = ” d i s t anc e ”)

c r e a t e c l u s t e r e d data s e t

c l u s t e r L i s t = [[] f o r i in range (max(idx))]

f o r i in range (l en (idx)) :

c l u s t e r L i s t [idx [i] −1] . append (namedata [i])

m i s c l a s s (c l u s t e r L i s t)

save f i l e in comma−de l im i t ed txt f i l e

o u t f i l e = open (” s i n g l i n k ”+s t r (l en (c l u s t e r L i s t))+”. txt ” , ”w”)

f o r i in range (l en (c l u s t e r L i s t)) :

f o r j in range (l en (c l u s t e r L i s t [i])) :

f o r l in range (l en (c l u s t e r L i s t [i] [j])) :

o u t f i l e . wr i t e (s t r (c l u s t e r L i s t [i] [j] [l])+ ” ,”)

o u t f i l e . wr i t e (s t r (i)+”\n”)

o u t f i l e . c l o s e ()

#−−−

uncomment the f o l l o w i n g to c r e a t e a dendogram

’ ’ ’

change l a b e l format f o r neate r dendogram

f o r i in a :

i [4] = i [4] [5 :]

p l t . f i g u r e (f i g s i z e =(30 , 10))

p l t . t i t l e (’ S ing l e−Linkage H i e r a r c h i c a l C lu s t e r i ng Dendrogram of the I r i s Flower Data Set ’)

p l t . x l a b e l (’ I r i s Spec ie s ’)

p l t . y l a b e l (’ Distance ’)

49

hac . dendrogram (

z ,

l e a f r o t a t i o n =−90. , # r o t a t e s the x a x i s l a b e l s

l e a f f o n t s i z e =5.5 , # font s i z e f o r the x a x i s l a b e l s

l a b e l s = a [: , 4] # x l a b e l s

)

#p l t . axh l ine (y=max d , c=”k ”) # p l o t s the th r e sho ld

p l t . show ()

’ ’ ’

#−−−

uncomment the f o l l o w i n g to c r e a t e a s c r e e p l o t

’ ’ ’

f i g , axes = p l t . subp lo t s (1 , 1)

axes . p l o t (range (1 , l en (z)+1) , z [: : −1 , 2])

determine p o s s i b l e elbow/knee po in t s

knee = np . d i f f (z [: : −1 , 2] , 2)

axes . p l o t (range (2 , l en (z)) , knee)

num clust1 = knee . argmax () + 2

axes . t ex t (num clust1 , z [: : −1 , 2] [num clust1 −1] , ’ p o s s i b l e \n<− knee point ’)

part1 = hac . f c l u s t e r (z , num clust1 , ’ maxclust ’)

m = ’\n(Method : {}) ’ . format (” S ing le−Linkage ”)

p l t . s e tp (axes , t i t l e =’ S c r e e p l o t {} ’ . format (m) ,

x l a b e l =’Number o f Cluste r s ’ ,

y l a b e l =’{}\ nCluster Distance ’ . format (m))

p l t . t i g h t l a y o u t ()

p l t . show ()

’ ’ ’

50

main ()

SOM

import math

from decimal import ∗

import random

import csv

import numpy as np

import p l o t l y as py

#−−−

di s t ance func t i on − euc l i d ean in Rˆ4

de f d i s t (l i s t a , l i s t b) :

i f l en (l i s t a) == len (l i s t b) :

d = 0

f o r i in range (l en (l i s t a)) :

d += (l i s t a [i] − l i s t b [i])∗∗2

re turn d ∗∗ (0 . 5)

e l s e :

p r i n t (” Error : Vectors are not the same dimension ! ”)

l e a r n i n g ra t e − exp decay

de f l e a rn (t) :

i f t == 0 :

re turn 1

e l s e :

r e turn 1 ∗ math . exp(−t /400)

rad iu s o f neighborhood func t i on − exp decay

de f rad iu s (t) :

i f t == 0 :

51

r e turn 1

e l s e :

r e turn 1 ∗ math . exp(−t /400)

#−−−

de f c e n t r o i d v e c t o r (data) :

c e n t r o i d l i s t = []

f o r i in range (l en (data)) :

c en t r o i d = []

f o r k in range (2) :

sum clust = 0

f o r j in range (l en (data [i])) :

sum clust += data [i] [j] [k]

c en t r o i d . append (round (sum clust / l en (data [i]) , 4))

c e n t r o i d l i s t . append (c en t r o id)

re turn c e n t r o i d l i s t

##

SOM CLUSTERING # # # # #

##

randomly i n i t i a l i z e the weight ve c t o r s

determine number o f neurons (i . e . how many c l u s t e r s ?)

dim1 = 1

determine l ength o f weigth ve c t o r s

(i . e . l ength o f numerica l input ve c t o r s)

dim2 = 4

w = []

f o r i in range (dim1) :

vect = []

52

f o r j in range (i n t (dim2)) :

vect . append (random . random ())

w. append (vect)

#−−−

input ve c t o r s − import from csv f i l e

xdata = []

namedata = []

with open (’ i r i s d a t a 1 . csv ’) as c s v f i l e :

read = csv . r eader (c s v f i l e)

next (read , None)

f o r row in read :

f o r i in range (4) :

row [i] = f l o a t (row [i]) # convert to numerica l va lue s

xdata . append (row [: 4]) # numerical , no l a b e l s

namedata . append (row [: 5]) # numerical , with l a b e l s

#−−−

de f main () :

begin i t e r a t i o n s

f o r t in range (4 0 0) :

present a random input vec to r to neurons

xin = random . cho i c e (xdata)

i n i t i a l i z e min d i s t by some r i d i c u l o u s number

min d i s t = 50

determine winning neuron

t h i s i s the neuron c l o s e s t to input vec to r

f o r k in range (dim1) :

i f m in d i s t > d i s t (xin , w[k]) :

53

min d i s t = d i s t (xin , w[k])

min wt = k # s t o r e index o f winning vec to r

update a l l neurons − us ing neighbor c r i t e r i a − s o f t compet i t ive

f o r i in range (dim1) :

f o r j in range (dim2) :

d i f f = xin [j] − w[i] [j]

nhood = math . exp(−(d i s t (w[i] ,w[min wt])∗∗2) / (2∗ (rad iu s (t)∗∗2)))

w[i] [j] = w[i] [j] + l e a rn (t) ∗ nhood ∗ d i f f

#−−−

return c l u s t e r s

somClusters = [[] f o r j in range (dim1)]

f o r i in range (l en (xdata)) :

min d i s t = 100

f o r j in range (dim1) :

i f m in d i s t > d i s t (xdata [i] ,w[j]) :

m in d i s t = d i s t (xdata [i] , w[j])

min index = j

somClusters [min index] . append (xdata [i])

l a b e l the data o b j e c t s

f o r i in range (dim1) :

f o r j in range (l en (somClusters [i])) :

f o r k in range (l en (xdata)) :

i f somClusters [i] [j] == namedata [k] [: 4] :

somClusters [i] [j] . append (namedata [k] [4])

#−−−

get summary s t a t i s t i c s o f c l u s t e r i n g r e s u l t s

m i s c l a s s (somClusters)

54

save f i l e in comma−de l im i t ed txt f i l e

o u t f i l e = open (” som k”+s t r (dim1)+”. txt ” , ”w”)

f o r i in range (l en (somClusters)) :

f o r j in range (l en (somClusters [i])) :

f o r l in range (l en (somClusters [i] [j])) :

o u t f i l e . wr i t e (s t r (somClusters [i] [j] [l])+ ” ,”)

o u t f i l e . wr i t e (s t r (i)+”\n”)

o u t f i l e . c l o s e ()

main ()

Sieve

import math

import random

import csv

import numpy as np

from sc ipy . s t a t s import f

import p l o t l y as py

import p l o t l y . g raph obj s as go

from matp lo t l i b import pyplot as p l t

#−−−

di s t ance func t i on − euc l i d ean in Rˆ2

de f d i s t (l i s t a , l i s t b) :

i f l en (l i s t a) == len (l i s t b) :

d = 0

f o r i in range (l en (l i s t a)) :

d += (l i s t a [i] − l i s t b [i])∗∗2

re turn d ∗∗ (. 5)

e l s e :

55

pr in t (” Error : Vectors are not the same dimension ! ”)

#−−−

vector p r o j e c t i o n in to 2D

de f pro j (data) :

data : datase t as l i s t where f i n a l component i s l a b e l

d e f i n e independent ve c t o r s − can be random

w1 = [1 , 2 , 3 , 4]

w2 = [3 , 1 , 5 , 7]

orthonormal b a s i s time

w1 hat = w1 / np . l i n a l g . norm(w1)

x2 = w2 − np . dot (w2 , w1 hat) ∗ w1 hat

w2 hat = x2 / np . l i n a l g . norm(x2)

w1 hat = w1 hat . t o l i s t ()

w2 hat = w2 hat . t o l i s t ()

2−D data

data 2d = []

f o r i in range (l en (data)) :

v = data [i] [: 4] # without l a b e l

x var = np . dot (v , w1 hat)

y var = np . dot (v , w2 hat)

data 2d . append ([round (x var , 3) ,

round (y var , 3) , data [i] [4]]) # with l a b e l

r e turn data 2d

#−−−

de f normal ize (data , dim) :

data : datase t as l i s t , f i n a l component i s l a b e l

dim : l ength o f numerica l vector , i . e . without l a b e l

56

normdata = []

f o r i in range (l en (data)) :

v = data [i] [: dim] # without l a b e l

normv = v / np . l i n a l g . norm(v)

normv = normv . t o l i s t ()

f o r j in range (l en (normv)) :

normv [j] = round (normv [j] , 4) # round to 4 dec p l a c e s

normv . append (data [i] [dim]) # with l a b e l

normdata . append (normv)

re turn normdata

#−−−

m i s c l a s s i f i c a t i o n ra t e f o r 2D c l u s t e r s

de f m i s c l a s s (data) :

data : numerical , c l u s t e r e d data s e t

mi s s to t = 0

f o r i in range (l en (data)) :

c d i c t = {}

maxitem = 0

f o r j in range (l en (data [i])) :

i f data [i] [j] [2] not in c d i c t :

c d i c t [data [i] [j] [2]] = 1

e l s e :

c d i c t [data [i] [j] [2]] += 1

uncomment f o r p r in tout o f c l u s t e r content

#pr in t (” Clus te r ” , i +1, ” | | ” , c d i c t)

#pr in t ()

determine with in each c l u s t e r which items were

57

most l i k e l y m i s c l a s s i f i e d , i . e . which

appear l e s s f r e q u e n t l y

f o r k in c d i c t . i tems () :

i f k [1] > maxitem :

maxitem = k [1]

maxkey = k [0]

cmiss = 0

f o r k in c d i c t . i tems () :

i f k [0] != maxkey :

cmiss += k [1]

mi s s to t += cmiss

r a t e = mis s to t / l en (xdata) ∗ 100

p r i n t(”−−−−−−−−−−−−−”)

p r i n t (”SUMMARY”)

p r i n t ()

p r i n t (” s i e v e c l u s t e r s = ” , l en (data))

p r i n t ()

p r i n t (” M i s c l a s s i f i c a t i o n ra t e : ” , round (rate , 3) , ”%”)

p r i n t ()

#−−−

retu rn s a vec to r o f c l u s t e r means

de f c e n t r o i d v e c t o r (data) :

c e n t r o i d l i s t = []

f o r i in range (l en (data)) :

c en t r o i d = []

f o r k in range (2) :

sum clust = 0

58

f o r j in range (l en (data [i])) :

sum clust += data [i] [j] [k]

c en t r o i d . append (round (sum clust / l en (data [i]) , 4))

c e n t r o i d l i s t . append (c en t r o id)

re turn c e n t r o i d l i s t

#−−−

c a l c u l a t e the within−c l u s t e r sum of squares and c r o s s products

de f SSW(data , c e n t r o i d v e c t o r) :

sswComp = []

f o r k in range (2) :

ssw = 0

quant = 0

f o r i in range (l en (data)) :

f o r j in range (l en (data [i])) :

quant += (data [i] [j] [k]− c e n t r o i d v e c t o r [i] [k])∗∗2

sswComp . append (quant)

re turn sswComp

#−−−

c a l c u l a t e the between−c l u s t e r s sum of squares

de f SSB(data , c e n t r o i d v e c t o r) :

f i n d the mean o f the c e n t r o i d s

grandMean = []

f o r k in range (2) :

sum comp = 0

num elem = 0

f o r i in range (l en (data)) :

sum comp += len (data [i]) ∗ c e n t r o i d v e c t o r [i] [k]

59

num elem += len (data [i])

grandMean . append (round (sum comp/num elem , 4))

f i n d the SSB

ssbComp = []

f o r k in range (2) :

ssb = 0

quant = 0

f o r i in range (l en (data)) :

d i f f = c e n t r o i d v e c t o r [i] [k]−grandMean [k]

quant = len (data [i]) ∗ (d i f f)∗∗2

ssb += quant

ssbComp . append (ssb)

re turn [grandMean , ssbComp , num elem]

#−−−

sum of squares and cros s−products o f a MANOVA

used to c a l c u l a t e the Wilks lambda t e s t s t a t i s t i c

only f o r 2−d data

de f SSCP(data) :

component SSB and SSW

c e n t r o i d L i s t = c e n t r o i d v e c t o r (data)

grandMean , ssb , dataNum = SSB(data , c e n t r o i d L i s t)

ssw = SSW(data , c e n t r o i d L i s t)

cros s−product c o n t r i b u t i o n s

between

cpb = 0

f o r i in range (l en (data)) :

b1 = c e n t r o i d L i s t [i] [0] − grandMean [0]

60

b2 = c e n t r o i d L i s t [i] [1] − grandMean [1]

cpb += len (data [i]) ∗ b1∗b2

with in

cpw = 0

f o r i in range (l en (data)) :

f o r j in range (l en (data [i])) :

w1 = data [i] [j] [0] − c e n t r o i d L i s t [i] [0]

w2 = data [i] [j] [1] − c e n t r o i d L i s t [i] [1]

cpw += w1∗w2

sum of squares & cros s−product matr i ce s

B = np . array ([[s sb [0] , cpb] , [cpb , ssb [1]]])

W = np . array ([[ssw [0] , cpw] , [cpw , ssw [1]]])

c a l c u l a t e the Wilks lambda

Lambda = np . l i n a l g . det (W)/np . l i n a l g . det (W+B)

c a l c u l a t e the t e s t s t a t i s t i c

i f l en (data) >= 2 :

df1 = dataNum−l en (data)−1

df2 = len (data)−1

Frat io = (df1 / df2)∗((1−math . s q r t (Lambda))/ math . s q r t (Lambda))

e l i f l en (data) == 1 :

Frat io = 0

return Frat io

#−−−

input ve c t o r s − import from csv f i l e

each row in i r i s d a t a 1 . csv i s made up o f 5 components :

4 numerica l and 1 s t r i n g value (the l a b e l o f the ob j e c t)

xdata = [] # without l a b e l s

61

namedata = [] # with l a b e l s

with open (’ i r i s d a t a 1 . csv ’) as c s v f i l e :

read = csv . r eader (c s v f i l e)

next (read , None)

f o r row in read :

f o r i in range (4) :

row [i] = f l o a t (row [i]) # convert to numerica l va lue s

xdata . append (row [: 4])

namedata . append (row [: 5])

###

Sieve C lu s t e r i ng # # # # # #

###

def main () :

prepare the data f o r s i e v i n g − t rans f o rmat i ons

s h i f t the o r i g i n to the mean so that i t i s the

” cente r ” o f our data c loud

get data mean (4−D)

datamean = []

f o r j in range (l en (xdata [0])) :

compsum = 0

f o r i in range (l en (xdata)) :

compsum += xdata [i] [j]

datamean . append (round (compsum / len (xdata) , 4))

s h i f t the r e s t o f the data a c co r d in g in g l y

to do th i s , subt rac t mean from each data ob j e c t

trnamedata = []

f o r i in range (l en (xdata)) :

62

t rx = []

f o r j in range (l en (xdata [0])) :

t rx . append (round (xdata [i] [j]−datamean [j] , 4))

t rx . append (namedata [i] [4])

trnamedata . append (t rx)

p r o j e c t i o n o f data in to 2−D and norma l i za t i on

t rdata 2d = normal ize (pro j (trnamedata) , 2)

#trdata 2d = pro j (trnamedata)

#−−−

SIEVE TIME

c r e a t e a copy o f the data

coar s e = trdata 2d [:]

s e t the s i z e o f the s i eve , s s \ in (0 , 1)

s s = 0 .9

p r i n t (” S i eve s i z e = ” , ss , end = ”\n\n”)

i n i t i a l i z e l i s t to s t o r e s i e v i n g r e s u l t s

s i e v e C l u s t = []

i n i t i a l i z e a s e t o f a l l p o s s i b l e theta to choose from

t h e t a l i s t = l i s t (range (0 , 180))

s e t a counter f o r number o f i t e r a t i o n s

t = 0

w i l l run i t e r a t i o n s u n t i l e i t h e r a l l po in t s have gone

through the s i e v e or u n t i l we reach 150 i t e r a t i o n s

whi l e l en (coa r s e) > 0 and t < l en (xdata) :

when there i s only one element l e f t to be c lu s t e r ed , no po int

in running through i t e r a t i o n s

i f l en (coa r s e) == 1 :

63

s i e v e C l u s t . append ([coa r s e [0]])

coa r s e . remove (coa r s e [0])

int roduce a s i e v e

remove from t h e t a l i s t so that i t cannot be chosen again

theta = random . cho i c e (t h e t a l i s t)

t h e t a l i s t . remove (theta)

convert from degree s to rad ians

theta = math . rad ians (theta)

c r e a t e a s i e v e s u r f a c e vec to r

on each s i d e o f s i e v e sur face , a l l po in t s pe rpend i cu l a r

or near−perpend i cu la r run through the s i e v e and

are removed from the data c loud

posperp = []

negperp = []

every element in coa r s e data s e t i s t r ea t ed as a vec to r and

i s compared to the s i e v e s u r f a c e vec to r

i f pe rpend i cu l a r (p lus /minus s i e v e s i z e) , then they are

placed in to posperp / negperp

f o r i in coa r s e :

i f math . f abs (np . dot ([math . cos (theta) , math . s i n (theta)] ,

i [: 2])) <= ss :

vec to r i s posperp i f dot product i s nonnegat ive

i f np . dot ([math . cos (theta) , math . s i n (theta)] ,

i [: 2]) >= 0 :

posperp . append (i)

e l s e :

negperp . append (i)

64

coa r s e . remove (i)

to ensure the re are no empty c l u s t e r s , check the l eng th s

o f posperp / negperp be f o r e appending to s i eve−c l u s t e r e d l i s t

i f l en (posperp) > 0 :

s i e v e C l u s t . append (posperp)

i f l en (negperp) > 0 :

s i e v e C l u s t . append (negperp)

one i t e r a t i o n has been performed , add to counter

t += 1

m i s c l a s s (s i e v e C l u s t)

#−−−

cacu l a t e the e r r o r s t a t s o f the i n i t i a l c l u s t e r i n g

Frat io = SSCP(s i e v e C l u s t)

FList = [Frat io]

p va l = 1− f . cd f (Frat io , (l en (xdata)− l en (s i e v e C l u s t)−1) ,

l en (s i e v e C l u s t)−1)

p r i n t (” I n i t i a l Frat io = ” , Frat io)

p r i n t (”p−Value = ” , p va l)

p r i n t (”\n Time Elapsed = ” , end1−s t a r t)

c e n t r o i d L i s t = c e n t r o i d v e c t o r (s i e v e C l u s t)

i n i t i a l i z e boolean − w i l l terminate loop when

Frat io i s maximized

proceed = True

whi le (proceed == True) & (l en (s i e v e C l u s t) > 1) :

minDist = 50

i d e n t i f y the c l o s e s t pa i r o f c l u s t e r s

uses centro id−l i n k ag e

65

f o r i in range (l en (c e n t r o i d L i s t)) :

f o r j in range (l en (c e n t r o i d L i s t)) :

i f (i != j) & (d i s t (c e n t r o i d L i s t [i] ,

c e n t r o i d L i s t [j]) <= minDist) :

minDist = d i s t (c e n t r o i d L i s t [i] ,

c e n t r o i d L i s t [j])

idx1 = i

idx2 = j

combine the c l o s e s t c l u s t e r s

newClust = s i e v e C l u s t [idx1]+ s i e v e C l u s t [idx2]

s ieveClustNew = s i e v e C l u s t [:]

s ieveClustNew . remove (s i e v e C l u s t [idx1])

s ieveClustNew . remove (s i e v e C l u s t [idx2])

s ieveClustNew . append (newClust)

c a l c u l a t e new Frat io

FratioNew = SSCP(sieveClustNew)

i f the new Frat io i s l a r g e r than the current , the

combining proce s s w i l l cont inue

i f FratioNew >= Frat io :

s i e v e C l u s t = sieveClustNew

c e n t r o i d L i s t = c e n t r o i d v e c t o r (s ieveClustNew)

Frat io = FratioNew

FList . append (Frat io)

end2 = time . time ()

m i s c l a s s (s i e v e C l u s t)

p va l = 1− f . cd f (Frat io , (l en (xdata)− l en (s i e v e C l u s t)−1) ,

l en (s i e v e C l u s t)−1)

66

pr in t (” Frat io = ” , Frat io)

p r i n t (”p−Value = ” , p va l)

e l s e :

proceed = False

#−−−

s c r e e p l o t !

n = len (s i e v e C l u s t)

rFLi s t = FList . s o r t (r e v e r s e = True)

p l t . p l o t (range (n , n+len (FList)) , FList)

p l t . t i t l e (” S ieve C lu s t e r i ng S c r e e p l o t with s = ” + s t r (s s) +

”\ nFrat io vs Number o f C lu s t e r s ”)

p l t . x l a b e l (”Number o f C lu s t e r s ”)

p l t . y l a b e l (” Frat io ”)

p l t . show ()

main ()

67

	Illinois State University
	ISU ReD: Research and eData
	4-10-2018

	Clustering biological data with self-adjusting high-dimensional sieve
	Josselyn Gonzalez
	Recommended Citation

	tmp.1531331288.pdf.Corq8

