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Guanine-rich segments of genomes promote the formation of a four-stranded DNA 

structure called G-quadruplex (G4 DNA). While evolutionarily conserved, guanine repeats show 

increased rates of mutagenesis and instability, and this is likely associated with G4 formation. In 

this thesis, I sought to clarify the molecular sources of genetic instability by testing the repair, 

excision, and synthesis through guanine-rich DNA. Using E. coli UDG and human SMUG1, I 

found that uracil is inefficiently repaired in proximity to G4 DNA in vitro. Investigation of E. 

coli exonuclease III and exonuclease I activity indicated that G4 DNA is a block to activity and 

complete DNA digestion. Finally, I studied the role of the Y-family translesion polymerase 

DPO4 in G4 DNA replication bypass. Consistent with known translesion synthesis activities, 

experiments using Y-family translesion polymerase DPO4 showed an increased fidelity across 

from structured DNA compared to single-stranded templates. Together these data indicate a 

possible source of increased mutagenesis around G4 DNA, suggesting that lower levels of DNA 

repair may promote base substitutions within guanine repeats. In order to limit replication 

stalling at G4 DNA, the Y-family translesion polymerases may be critical for ensuring faithful 

replication through DNA repeats and loss of such activities would increase the potential for 

recombination and genome instability at repetitive loci. 
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CHAPTER I: BACKGROUND ON G-QUADRUPLEX 

Introduction 

The human genome contains thousands of sequence motifs with tandem repeats of 

guanine that support the intracellular formation of four-stranded DNA structures called G-

quadruplex (G4 DNA). G4 DNA was originally recognized as a structure that forms at telomeres, 

but it now seems clear that guanine-rich loci throughout the human genome are not only 

abundant but also fold into G4 structures (Bochman, et al., 2012; Rhodes and Lipps, 2015). 

Those structures are highly stable, more so than duplex DNA. Relevant to disease, G4 DNA 

appears to form near or within cancer-related genes. In particular, cancer genes prone to 

rearrangements in T-cell leukemia and follicular lymphoma have been shown to adopt G4 

conformations near the DNA break points. (Nambiar, et al., 2011; Nambiar, et al., 2013; 

Williams, et al., 2015).  

In general, the minimal sequence needed to support G4 formation is at least four sets of 

three tandem guanines, each separated by one to seven non-guanine bases, shown in Figure 1A 

(Huppert and Balasubramanian, 2005; Todd, et al., 2005). The guanines present in each set 

interact through Hoogsteen bonding, forming a tetrad. Tetrads stack on top of each other to form 

the four-stranded DNA structure (Figure 1B). Hoogsteen bonds are inherently thermostable and 

each tetrad requires the presence of a monovalent cation located at the center of the tetrad. The 

monovalent cation acts on the inward facing oxygen of self-paired guanines (Bochman, et al., 

2012; Maizels, 2006; Rhodes and Lipps, 2015). Different monovalent cations present distinctive 

stabilization properties to G4, with potassium and sodium generally being the most stabilizing 

and lithium and cesium being the least (Sen and Gilbert, 1990; Phan, et al., 2006; Rhodes and 
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Lipps, 2015). Both potassium and sodium are found within the cell at concentrations that are 

supportive of spontaneous G4 DNA formation.  

The degree of G4 DNA stability depends largely on the sequence motif, stabilizing 

monovalent cations, loop size between guanines, and guanine alignment (Bochman, et al., 2012; 

Rhodes and Lipps, 2015). Structure fluidity and diversity occurs for G4 DNAs folded in vitro 

(Lee, et al., 2005). That diversity in G4 DNA conformation creates the possibility that many 

structures coexist at equilibrium (Figure 2), though structure conformation and stability is largely 

dependent on sequence, with stability dependent on the quantity of guanines present (Maizels, 

2006; Bochman, et al., 2012). G4 DNA can form within a single DNA strand forming an 

intramolecular structure (Figure 2A), or between two or four DNA strands forming an 

intermolecular structure (Figure 2B). Intramolecular G4 DNA forms independent of sequence 

concentration while intermolecular G4 DNA requires a high concentration of DNA in vitro 

(Maizels, 2006). G4 DNA structure formation can be controlled to an extent by adjusting the 

reaction temperature and ions present (Sen and Gilbert, 1990). Sen and Gilbert found that the 

formation of complex four-stranded intermolecular G4 DNA is dependent on the presence of 

sodium not potassium. The resulting structure is highly thermostable and does not require 

stabilizing salts in solution once folded, as discussed in Chapter II. This highlights the incredible 

stability of G4 DNA compared to duplexes of similar nucleotide content. 

Whether G4 DNA forms in vivo was highly debated, but it is now widely recognized to 

as a component of normal cell physiology. In order for G4 DNA to form in the cell, the guanine-

rich sequence needs to be freed from complement. While primarily double-stranded (DS) and 

condensed in nucleosomes, the processes of replication, transcription, and DNA repair does 

generate transiently single-stranded DNA (Bochman, et al., 2012; Maizels, 2006; Rhodes and 
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Lipps, 2015), providing an opportunity for alternate structure formation. Initial evidence of in 

vivo formation of G4 DNA came from studying telomeres (Schaffitzel, et al., 2001; Paeschke, et 

al., 2005). Human telomeres contain the repeat (TTAGGG)1-1500 that has the potential to form G4 

DNA (Bochman, et al., 2012; Rhodes and Lipps, 2015). Treatment of human cells with G4 DNA 

stabilizing molecules leads to telomere shortening, indicating the presence of activities that 

resolve G4 DNA during replication, while also suggesting the structures serve as a cap for the 

ends of linear chromosomes (Sun, et al. 1997; Rhodes and Lipps, 2015). However, even given 

the probable formation of G4 DNA at telomeres, the functional contributions of G4 formation at 

other genome sites is less well understood.  

Utilizing the minimal G4 definition (Figure 1A), computation analyses identified over 

300,000 potential G4-capable sequences throughout the human genome, indicating that 

telomeres are not the sole location of these sequences (Huppert and Balasubramanian, 2005; 

Todd, et al., 2005; Capra, et al., 2010; Vasquez and Wang, 2013). These studies found that G4-

capable sequences are highly conserved in humans and between different species, and the 

genomic locations are non-random (Capra, et al., 2010; Huppert and Balasubramanian, 2005; 

Todd, et al., 2005). Data showed G4-capable sequences upstream of the transcriptional start sites 

for 50% of human genes, in ribosomal DNA, and in immunoglobulin heavy-chain switch regions 

(Huppert and Balasubramanian, 2005; Todd, et al., 2005; Capra, et al., 2010; Maizels, 2006). 

Furthermore, bioinformatic analyses revealed a higher likelihood of G4-capable sequences at 

promoters for human oncogenes and regulatory genes compared to tumor-suppressor and 

housekeeping genes, and G4-capable sequences are more likely to be on the non-template strand 

(Bochman, et al., 2012). Another study found the mismatch repair protein MutSα heterodimer 

binds to G4 DNA, implying a role for the factor in Ig class switch recombination (Larson, et al., 
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2005). These data support the hypothesis that G4-capable sequences have been evolutionarily 

retained, possibly due to their ability to regulate gene expression by either blocking or enhancing 

gene transcription rates (Eddy and Maizels, 2009; Bochman, et al., 2012; Rhodes and Lipps, 

2015; Vasquez and Wang, 2013).  

Given that G4-capable sequences are found at promoter regions, it seems likely that 

pathways for the regulation of G4 DNA formation exist. Indeed, several helicases are now 

known to be associated with the unwinding G4 DNA. This includes FANCJ, PIF1, and BLM, 

and WRN, which have been associated with increased cancer risk and premature aging disease 

(Bochman, et al., 2012; Vasquez and Wang, 2013; Rhodes and Lipps, 2015). Genome instability 

during replication is probably prevented by G4 unwinding activities because the loss of FANCJ 

leads to large guanine deletions (London, et al., 2008; Wu, et al., 2008; Bochman, et al., 2012). 

Furthermore, chaperone proteins identified in S. lemnae and S. cerevisiae promote G4 DNA 

formation (Bochman, et al., 2012; Rhodes and Lipps, 2015), revealing the presence of another 

DNA structure-specific cellular activity.  

Even with chaperones and helicases regulating G4 folding, failures in those pathways are 

probably linked to improper G4 formations that lead to site-specific genome instability (Maizels, 

2015; Bochman, et al., 2012; Rhodes and Lipps, 2015; Vasquez and Wang, 2013). G4-capable 

sequences have been found within 500 bp of double-strand break sites and at hotspots for genetic 

instability in human disease (Vasquez and Wang, 2013). G4 DNA is also present at major 

translocation break sites responsible for blood cell cancers (Nambiar, et al., 2010; Nambiar, et 

al., 2013; Williams, et al., 2015). For example, a recent study found a large density of G4 DNA 

clustered at a common translocation break site t(1;19) in the oncogenic TCF3 gene, a factor 

associated with a subset of acute lymphoblastic leukemias (Williams, et al., 2015). There is also 
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evidence that G4 DNA inhibits DNA replication, leading to stalled or collapsed replication forks, 

deletions, and complex rearrangements (Rhodes and Lipps, 2015; Vasquez and Wang, 2013). In 

short, improper or unregulated formation of G4 DNA at guanine-rich loci has the potential to 

cause mutagenesis and recombination (Maizles, 2015; Shah and Mirkin, 2015). 

 It would be of great value to increase our understanding of how DNA repair, replication, 

and processing occurs at or near G4 structures. Disruption of any of those activities is well 

known to result in mutagenesis and genomic instability. In this thesis, I investigate how G4 DNA 

affects base excision repair, exonuclease function, and replication. The genome is under constant 

attack by both endogenous and exogenous sources of DNA damage and the cell must be able to 

repair that damage independent of DNA conformational status. In order to better define how base 

excision repair (BER) responds to lesions near G4, I investigated uracil DNA glycosylase (UDG) 

activity next to those structures. Mismatch repair (MMR) and BER both require nuclease 

activities, so I extended my analysis to include exonuclease activity assays. Finally, I tested the 

polymerization capabilities of translesion polymerase DPO4 across from G4 DNA. The goal of 

my research is to gain a better understanding of how G4 DNA effects regular DNA metabolic 

activities, specifically DNA repair, to better clarify the molecular sources of mutagenesis and 

instability at guanine-rich loci. 
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Figure 1. Generic G-Quadruplex (G4) Sequence and Structure. (A) The minimal G4-capable 

sequence used when searching the genome for potential G4 DNA locations. (B) A model of a G4 

structure.  
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Figure 2. Intramolecular and Intermolecular G4 DNA. (A) Intramolecular G4 DNA 

conformations. (B) Intermolecular G4 DNA conformations with bi-molecular conformations on 

top and multi-molecular conformations on bottom.   



11 

CHAPTER II: BASE EXCISION REPAIR SURROUNDING G4 

Introduction 

All organisms must correct DNA damage in order to preserve genome integrity and the 

faithful transmission of genetic information to the next cell generation. In this chapter, I present 

my results on how G4 DNA impacts uracil repair activities through the Base Excision Repair 

(BER) pathway. Using E. coli uracil DNA glycosylase (UDG) and human single-strand-selective 

monofunctional uracil DNA glycosylase (hSMUG1) as models, I tested the extent that G4 DNA 

affects local uracil glycosylase activity.  

Excision Repair 

All excision repair pathways share the common feature of; 1., recognizing DNA damage, 

2., excising the damage, and 3., DNA re-synthesis and ligation to repair the break. Therefore, a 

failure in lesion recognition leads to mutagenesis because repair is not initiated. In BER, 

glycosylases are the repair-initiating enzymes, and they are essential for reducing mutagenesis 

caused by the most common type of DNA damage in the genome, base damage (Krokan, et al., 

2002). When core aspects of BER are lost, there is a predisposition to cancer, immune 

deficiencies, and neurological impacts (Krokan, et al., 2002; Brenerman, et al., 2014). DNA 

glycosylases come in two flavors: monofunctional with only base cleavage ability, and 

bifunctional with both base cleavage and endonuclease abilities (Sung and Demple, 2006; 

Brenerman, et al., 2014). Glycosylases are lesion specific, and they remove the altered DNA 

base to leave an abasic site, which then initiates BER (Figure 3). The abasic site is subsequently 

cleaved by an AP endonuclease, typically AP endonuclease 1 (APE1). The DNA break is 

resynthesized by DNA polymerase β (POLβ) and ligated by Ligase IIIα (LIGIIIα) to complete 

repair (Brenerman, et al., 2014). An alternate BER pathway, termed long-patch BER, removes a 
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longer section of DNA. This occurs when POLβ or replicative polymerases synthesize a new 

DNA strand while displacing the existing strand. The displaced strand is cleaved by flap-

endonuclease FEN1 and either Ligase I or Ligase III re-joins the DNA (Sung and Demple, 

2006). The type of BER pathway utilized depends on the type of lesion present and the 

responding glycosylase (Sung and Demple, 2006).  

BER and MMR both correct genomic uracil, one of the most common types of DNA 

damage (Larson, et al., 2008; Krokan, et al., 2002). Uracil can be introduced into the human 

genome through misincorporation during replication, enzymatically by activation-induced 

cytosine deaminase (AID) activity in B cells, or from spontaneous cytosine deamination (Visnes, 

et al., 2009; Krokan, et al., 2002). Cytosine is an easy target for deamination because the reaction 

is hydrolytic (Lindahl, 1993). Spontaneous cytosine deamination in double-stranded (DS) DNA 

occurs at about 0.6% the rate of single-stranded (SS) DNA (Lindahl, 1993). As mentioned in 

Chapter I, the genome is SS during replication, transcription, or during DNA repair activities 

(Bochman, et al., 2012; Maizels, 2006; Rhodes and Lipps, 2015), and that exposes DNA to 

conditions favorable for cytosine deamination. Overall, any given cell sees 70-500 spontaneous 

cytosine deamination events per day, each with the potential to cause C→T substitutions (An, et 

al., 2005; Lindahl, 1993; Visnes, et al., 2009). This is a common source of mutagenesis in human 

cells and has the potential to accumulate in proliferating cells (Krawczak, et al., 1998; 

Brenerman, et al., 2014; Krokan, et al., 2002; Visnes, et al., 2009). Although uracil is generally 

mutagenic when introduced into the genome, it is an essential part of programmed immune 

system rearrangements (Petersen-Mahrt, et al., 2002).  

In general, uracil glycosylases function by flipping the uracil base into their active site for 

cleavage of the N-glyosidic bond between the base and deoxyribose, leaving an abasic site 
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(Brenerman, et al., 2014). Humans have several uracil glycosylases for uracil repair (Krokan, et 

al., 2002; Visnes, et al., 2009). Uracil-N-glycosylase 1 and 2 (UNG1 and UNG2) are specific to 

uracil and function in the mitochondrial and nucleus, respectively. UNG1 is the only uracil 

glycosylase acting on mitochondrial DNA, but both UNG1 and UNG2 are active on SS and DS 

DNA. Single-strand-selective monofunctional uracil DNA glycosylase (hSMUG1) cleaves uracil 

along with 5-hydroxymethyluracil (HmU). Though the name implies hSMUG1 acts exclusively 

on SS DNA, it has comparable efficiency on both DS and SS DNA. T/U mismatch DNA 

glycosylase (TDG) cleaves both uracil and thymine opposite a mismatch with a strong 

preference for uracil cleavage. Finally, methyl-CpG-binding domain Protein 4 (MBD4) also 

cleaves uracil and thymine however, MBD4 repairs uracil and thymine present due to 

deamination of cytosine and guanine (Krokan, et al., 2002; Visnes, et al., 2009).  

The importance of uracil base removal from the genome is underscored by the fact that 

organisms across all domains of life have evolved repair pathways for removal (Krokan et al., 

2002). Evidence suggests that the major glycosylases in humans are UNG2 and SMUG1, 

probably because they can excise uracil from both SS and DS DNA (Kavli, et al., 2002; An, et 

al., 2005). While they perform a similar function, they act on DNA through distinct mechanisms 

(Pettersen, et al., 2007). Knockout/knockdown studies in mice confirm this finding, indicating 

that their functions are non-overlapping and a loss of either enzyme results in increased 

mutagenesis and disease (An, et al., 2005). 

UNG2 

Among enzymes, UNG2 has one the highest catalytic efficiencies and activity is 

specifically targeted to uracil lesions (Lindahl, et al., 1977; Drohat 1999, Visnes, et al., 2009). 

Originally thought to be absent in archaea, UNG2 is the most widespread and abundant of the 
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uracil glycosylases, and present in all domains of life (Krokan, et al., 2002). UNG2 is highly 

conserved, with a striking conservation across Kingdoms. For instance, there is over 70% 

identity between the human and bacterial protein (Olsen, et al., 1989). UNG2 can remove uracil 

from U:G mismatches, which occur from the spontaneous deamination of cytosine, however, its 

major role seems to be after replication (Kavli, et al., 2002; Visnes 2009). UNG2 is upregulated 

during S-phase, degraded during the G2-phase, and co-localizes with replication foci (Kavli, et 

al., 2002; Haug, et al., 1998; Visnes, et al., 2009). APE1 produces a stimulatory effect to UNG2, 

and the presence of Mg++ increases its affinity to SS DNA 10-fold, further supporting roles in 

genome maintenance in proliferating cells (Kavli, et al., 2002; Pettersen, et al., 2007).  

SMUG1 

SMUG1 has a much lower catalytic efficiency when compared to UNG2, but in addition 

to uracil, it can excise 5-hydroxymethyluracil, 3,N4-ethenocytosine, and 5-fluorouracil lesions, in 

preferential order (Kavli, et al., 2002; Pettersen, et al., 2007). The gene is mainly confined to 

vertebrates and insects, but it is also found in some bacteria in place of UDG (Nilsen, et al., 

2001; Pettersen, et al., 2007). There is a high degree of conservation between active site and 

lesion-binding domains for both UNG and SMUG1, however there is a DNA helix wedge motif 

that is unique to SMUG1 (Figure 4) (Wibley, et al., 2003; Pettersen, et al., 2007). This DNA 

helix wedge motif inserts itself into the minor groove and makes contact with both DNA strands 

and adjacent nucleotide bases (Wibley, et al., 2003; Pettersen, et al., 2007). SMUG1 is the major 

uracil glycosylase in non-proliferating cells, and that is due to the DNA binding properties of 

SMUG1’s DNA helix wedge motif (An, et al., 2005; Kavli, et al., 2002; Pettersen, et al., 2007; 

Nilsen, et al., 2001). For example, the wedge motif allows for stabilized binding on abasic sites 

that occurs preferentially across from guanines, indicating protection against DNA breaks and 
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repair of deaminated cytosines (Wibley et al., 2003; Kavli, et al., 2002; Pettersen, et al., 2007). In 

addition, evidence indicates APE1 has a stimulatory effect on SMUG1, even though SMUG1’s 

high affinity for abasic sites may also inhibit APE1 activity (Kavli, et al., 2002; Pettersen, et al., 

2007). Furthermore, while UNG2 localizes to replication foci, SMUG1 is found evenly dispersed 

throughout the cell, and its presence will arrest cell proliferation (Nilsen, et al., 2001; Kavli, et 

al., 2002; Pettersen, et al., 2007).  

BER and G4 DNA 

Opportunities for cytidine deamination coincide with G4 formation because both are 

enhanced when DNA is single stranded (Bochman, et al., 2012; Maizels, 2006; Rhodes and 

Lipps, 2015; Lindahl, 1993). Given that uracil in the genome is potentially mutagenic, it is 

important to know how G4 DNA affects repair factors that recognize and remove uracil. 

Therefore, a better understanding of how human cells deal with G4 DNA is important for 

defining the mechanisms of sequence-specific mutagenesis. 

UNG2 activity is inhibited at uracils directly adjacent to G4 DNA but not at lesions 

located three bases away (Holton and Larson, 2015). Those findings imply that G4 DNA 

physically blocks uracil repair, but the extent of inhibition is not well defined. Here, I clarify the 

impact of G4 DNA on nearby uracil repair, testing activities of E. coli UDG and human SMUG1 

(hSMUG1) at uracils placed next to G4 tetrads in vitro. I find that glycosylase activity is reduced 

at uracils adjacent to G4 DNA, but activity is gradually restored as a function of nucleotide 

distance from the structure. Both UDG and hSMUG1 showed reduced activity at G4 DNA, 

indicating that the inhibition is not enzyme specific. In this thesis, I will present results 

supporting the model that G4 DNA promotes mutagenesis, in part, because it physically 

interferes with nearby uracil repair.  
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Methods 

Circular Dichroism (CD) – Experimental and control DNAs were synthetic 

oligonucleotides synthesized by Operon (Huntsville, AL) and Integrated DNA Technologies 

(Coralville, IA) respectively (Table 1 and Table 2). Experimental DNAs consisted of guanine-

rich oligonucleotides with single uracil substitutions at various locations surrounding guanines. 

Control DNAs consisted of experimental oligonucleotide sequence with thymine substitutions at 

guanines participating in G4 formation, with single uracil substitutions at locations identical to 

those in experimental sequences. Two additional positive controls were used consisting of the 

experimental sequence scrambled and thymine interrupted sequence scrambled. An Aviv model 

215 CD spectrometer was used and spectra was taken in a 1 cm path quarts cell at 37 °C. DNAs 

for assays were prepared at a concentration of 50 µM in 10 mM Tris-HCl pH 7.6, 1 mM EDTA, 

and 100 mM KCl. Molar ellipticity was measured from 220 to 300 nm for three scans in 1 nm 

increments with a 1 sec. averaging time for each sample. Three scans were averaged to obtain 

final reading.  

Uracil Cleavage Assay Sample Preparation – Experimental and control DNAs are 

oligonucleotide based and were tested for structure formation using CD (Table 1 and Table 2). 

Experimental (G4 containing) DNAs were folded in 950 mM NaCl and 50 mM KCl at a 

concentration of 500 mM. The folding reaction was placed in a BioRad MJ Mini Thermocycler 

(Hercules, CA) and incubated at 98 °C for 2 minutes, 60 °C for 90 minutes and 37 °C for 7 

hours. Once folded, substrates were diluted to 13 µM. Substrates were 5’ end labeled with 32P-γ-

ATP purchased from Perkin Elmer (Waltham, MA) using T4 polynucleotide kinase purchased 

from New England Biolabs (NEB) (Ipswich, MA) and passed through illustra™ Microspin™ G-

25 columns purchased from GE Healthcare (Wauwatosa, WI) to remove unincorporated label. 
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Thymine interrupted controls were 5’ end labeled with 32P-γ-ATP identical to the G4 

oligonucleotides. Once labeled, thymine interrupted controls  were annealed to their respective 

complementary oligonucleotide (Table 3) in a reaction containing five-fold excess of unlabeled 

compliment by heating to >95 °C in a water bath and allowing to drop to room temperature. 

Uracil Cleavage Assays – All cleavage assays contain 260 fmol of DNA substrate in 

both hSMUG1 and UDG reactions. Purified hSMUG1 and UDG were purchased from NEB and 

assays followed manufacture recommended reaction conditions. The amount of enzyme added to 

cleavage assays was determined empirically by assaying the units required to attain over 80% 

cleavage product on control (unstructured) oligonucleotides (about 3.6 nM UDG and about 33.5 

nM hSMUG1). Uracil excision was performed at 37 °C for 30 minutes. Cleavage of 

oligonucleotides was performed via the addition of NaOH to a final concentration of 333 mM 

and placed at 55 °C for 10 minutes. The reaction was stopped by adding a solution of 20 mM 

EDTA, 60 µg/mL Proteinase K, and 0.4% SDS incubated at 37 °C for 10 minutes followed by an 

equal volume of 90% formamide. Cleavage assays were resolved using a 7 M urea 15% PAGE 

run at 450V for 20 minutes-5.5 hours depending on the oligonucleotide used. 

Image Collection and Data Analysis – Gels were exposed to a phosphor screen and 

images captured using a Typhoon FLA 7000 (GE Healthcare). Uracil cleavage assays were 

quantified using ImageQuant TL software (GE Healthcare) by dividing the pixel density of the 

resolved cleavage product (CP) band by the pixel density of the sum of the cleavage product and 

full length (FL) bands [CP/(CP+FL)]. All uracil cleavage assays were performed a minimum of 

four times. 
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Results 

G4 DNA Formation. The model G4 DNA sequence used in this study was characterized 

by Sen and Gilbert in 1990 and determined to be an intermolecular structure (Sen and Gilbert, 

1990). A parallel multi-molecular structure forms from four separate oligonucleotides (Figure 

5A) in the presence of sodium and potassium, although there is also a variable amount of anti-

parallel, bi-molecular structure (Figure 5B). Once folded, the structure is extremely stable and 

does not require additional stabilizing salt, which is ideal for use in hSMUG1 uracil cleavage 

assay reactions because this enzyme is salt sensitive (data not shown). Complex sequences 

capable of forming intermolecular G4 DNA, like the one used here, form better in the presence 

of sodium because potassium stabilizes structure intermediates and creates more complex 

mixtures of G4 species (Sen and Gilbert, 1990). For this reason, and to ensure intermolecular G4 

DNA formation, our sequence was folded in 950 mM NaCl and only 50 mM KCl.  

The aim of this study is to establish the footprint of inhibition imparted by G4 DNA for 

UDG and hSMUG1. To accomplish this, several synthetic oligonucleotides carrying a known G4 

sequence motif were synthesized to include a single uracil substitution located 5’ of a G4 tetrad 

(5’ #U), in between two G4s (GUG #), and 3’ of G4 (3’ #U) (Table 1). Control substrates (Figure 

5C) were derived from the same model G4 DNA sequence, but guanine repeats were interrupted 

with thymine (Table 2) and paired with complement (Table 3). These sequences are annotated as 

GT DNA throughout. Two positive controls were used alongside GT DNA controls to assay 

uracil excision on unstructured DNA. First, I constructed a scrambled sequence using the base 

composition from the G4 DNA sequence, and second, using the previous scrambled sequence, I 

developed an oligonucleotide with random guanines exchanged for thymines (SCR and SCR GT 

respectively). Circular dichroism (CD) scans were performed on all sequences to ensure G4 
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DNA formation or the lack thereof (Figure 6). Even though the presence of uracil near G4 DNA 

does not affect structure formation, CD scans were used to ensure G4 DNA formation in these 

sequences (Holton and Larson, 2015). Our model G4 DNA sequences and controls displayed 

characteristic spectra showing a peak at about 265 nm in G4 substrates and about 278 nm in GT 

substrates indicating G4 DNA formation and SS DNA respectively (Balagurumoorthy, et al., 

1992; Kypr, et al., 2009).  

G4 Formation Creates an Inhibitory Footprint for UDG Activity. Recent data shows 

UDG cleavage activity is limited when the uracil lesion is located directly adjacent to G4 DNA, 

but not at lesions three nucleotides away (Holton and Larson, 2015). Here I have expanded this 

analysis, comparing the extent of UDG and hSMUG1 inhibition around a G4 DNA structure. 

Representative images of each denaturing PAGE for UDG cleavage assays at each uracil 

location are shown in Figure 7. Cleavage products (CP) will migrate faster than the full-length 

substrate (FL) and so there are two possible bands in each cleavage reaction. The percentage of 

DNA cleaved in a reaction which reflects enzyme cleavage activity, is calculated by dividing the 

pixel density of the cleavage product band by the pixel density of the sum of complete substrate 

and cleavage product bands [CP/(CP+FL)]. Quantitation of cleavage activity was attained from 

the average of four separate reactions for each uracil location, i.e., 5’, in between, or 3’ to G4 

DNA (Figure 8).  

UDG activity is modestly inhibited compared to the thymine interrupted and SCR 

positive controls when uracil is positioned directly 5’ to G4 DNA (5’1 U) (69% compared to 

91%; Figure 8A). For uracils positioned three bases away from G4 paired guanines, cleavage 

efficiency was identical to unstructured control (Figure 8A), similar to previous results (Holton 

and Larson, 2015). Activity directly 3’ to G4 DNA is mildly inhibited compared to thymine 
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interrupted and SCR positive controls with an observed cleavage activity of 82% directly 

adjacent to G4 DNA, but when uracil is moved three bases away cleavage is essentially identical 

to unstructured controls (Figure 8C). Activity in between G4 DNA was consistently inhibited 

regardless of the nucleotide position compared to thymine interrupted and SCR positive controls, 

with observed cleavage activities of 66%, 72%, 72%, and 56% (GUG 1, GUG 2, GUG 3, and 

GUG 4 respectively) (Figure 8B). UDG inhibition was similar, but milder, compared to the study 

completed by Holton and Larson, who observed about 10% and 20% activity 5’ and 3’ to G4 

DNA, respectively. However, those studies utilized different G4-forming oligonucleotides. Full 

activity was observed on SCR control and DS thymine interrupted controls with an observed 

average cleavage activity over 90%. No significant difference in enzyme activity was observed 

between SS and DS positive controls, SCR and SCR GT respectively.  

hSMUG1 is More Sensitive to G4 DNA than UDG. The effect of G4 DNA on SMUG1 

has not been investigated until this point. hSMUG1 assays were performed identically to UDG. 

Representative images of each denaturing PAGE for hSMUG1 cleavage assays are shown in 

Figure 9. hSMUG1 cleavage activity was also calculated identically to UDG. Quantification of 

cleavage activity was attained by averaging four separate reactions, and were separated by their 

uracil placement group i.e., 5’, in between, or 3’ to G4 DNA (Figure 10). Similar to UDG, 

hSMUG1 activity was inhibited directly 3’ of G4 DNA compared to thymine interrupted and 

SCR positive controls with an observed cleavage activity of 54% (Figure 10C). At uracil lesions 

three bases away from G4, excision returned to levels indistinguishable from unstructured 

controls (Figure 10C). Activity at uracils located in between G4 tetrads was consistently 

inhibited compared to thymine interrupted and SCR positive controls regardless of uracil 

position, with observed cleavage activity of 32%, 32%, 38%, and 29% (GUG 1, GUG 2, GUG 3, 
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and GUG 4 respectively) (Figure 10B). Uracil excision activity directly 5’ to G4 DNA was 

inhibited compared to thymine interrupted and SCR positive controls, with 37% cleaved 

compared to 87% for the thymine substituted and SCR substrates (Figure 10A). Interestingly, 

SMUG1 cleavage activity was reduced to 65% at uracil placed 5 bases away from G4 DNA, 

indicating that G4 DNA inhibits SMUG1 efficiency even at this nucleotide distance (Figure 

10A). This drop in activity was much more dramatic for hSMUG1 compared to UDG, indicating 

that hSMUG1 is more sensitive to G4 DNA compared to UDG. Full activity was observed on DS 

thymine interrupted controls, with the exception of 3’ 2U, though there was still an average 

cleavage activity of over 80% observed. No significant difference in enzyme activity was 

observed between SS and DS positive controls, SCR and SCR GT respectively. 

Discussion 

 This work focused on establishing the impact of G4 DNA on bacterial UDG and human 

SMUG1 (hSMUG1), measuring precisely the nucleotide distance required to reduce the 

inhibitory effect of structure formation on uracil excision activity. G4 DNA is known to be 

associated with genomic instability (Cea, et al, et al., 2015; Maizels, 2015), so it is important to 

define the actual molecular sources of mutagenesis at sequences near those participating in 

structure formation. Previous work has shown that the activity of UDG and the human homolog 

hUNG2 is reduced directly adjacent 5’ or 3’ to G4 DNA (Holton and Larson, 2015). Here I 

expand that analysis to clarify the footprint of enzyme inhibition around G4 DNA. Consistent 

with previous work, UDG activity was reduced at uracil lesions located adjacent to G4 DNA and 

a greater inhibition 5’ compared to 3’ to G4 DNA was also observed (Figure 8A and 8C). 

However, the level of overall repair inhibition observed in this study was modest in comparison. 

Differences observed could be explained by altered reaction conditions and substrates used. 
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Specifically, the sequence used in this study leads to the formation of predominantly inter- and 

bi-molecular G4. Once folded, the structure is stable in glycosylase reaction conditions. In 

contrast, the DNAs used in experiments reported by Holton and Larson were a mixture of 

intramolecular and intermolecular structures and reactions contained either 50 mM or 100 mM 

potassium chloride or lithium chloride. Since UDG does not have apparent salt sensitivity, the 

difference in activity is most likely associated with the different structures. My results therefore 

imply that some G4s are more inhibitory to UDG activity than others. I could only test SMUG1 

activity on one type of G4, because it is salt sensitive, so it is unknown if some G4 

conformations are less inhibitory than others. However, results from my research suggest that 

uracil excision by UDG may be dependent on the specific G4 structure formed, with inter-

molecular G4’s less inhibitory than intra-molecular G4. In the cell, G4 is likely to fold within, 

rather than among, DNAs, and thus intramolecular G4 is probably more of a physiological 

conformation. This has not been established, but the synthesis of existing results on uracil 

excision activity at G4 DNAs suggest that UDG is reluctant to remove uracils next to guanines 

participating in G4 formation. The same pattern may also be present in humans since hUNG2 

results mirrored UDG (Holton and Larson, 2016), but hUNG2 activity was not tested on 

intermolecular G4. 

There are a few explanations for why G4 DNA inhibits UDG activity. First, G4 DNA 

may physically obstruct substrate recognition. UDGs have two distinctive motifs targeted to 

DNA binding, one 5’ and one 3’of the uracil (Huffman, et al., 2005). If the 3’-specific motif 

requires more room than the 5’-specific motif it is possible that G4 DNA is a barrier preventing 

efficient UDG binding and activity. As a corollary, UDG damage recognition and N-glycosyl 

bond cleavage mechanisms may be compromised in the presence of G4 DNA. It is thought that 
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UDG searches for damage in a “hopping” manner where DNA binding is short lived, unless a 

uracil is identified and flipped into the active site for excision (Stivers, et al., 1999). UDG 

slightly bends DNA upon non-specific binding, but fully bends and kinks DNA when the uracil 

is flipped into the active site (Parikh, et al., 2000; Wibley, et al., 2003; and Huffman, et al., 

2005). It is possible there is a slight asymmetry in this DNA bending, affecting lesions 

differently depending on whether they are 3’ or 5’ of G4 DNA. G4 DNA is a highly stable non-

duplex structure, and it is possible that productive DNA bending altogether is inhibited because 

of the structure. Data of UDG activity in between two G4 DNAs supports this idea (Figure 8B). 

If G4 DNA served as a barrier to UDG, you would expect positions GUG 2 and GUG 3 to have 

similar cleavage activities to 5’ 2U. Instead, all uracils positioned in between G4 DNA show a 

~60% reduction in activity compared to unstructured SCR controls, regardless of position. 

Further work on UDG mechanics at G4 DNA is required to elucidate specific cause of UDG 

inhibition near G4 DNA. It would also be of interest to investigate this phenomenon with 

hUNG2 or with substrates consisting of; A., uracils placed between guanine tetrads that are 

further apart or, B., with substrates containing multiple intramolecular structures as opposed to 

multiple sets of guanine tetrads in an intermolecular conformation.  

I have demonstrated the consequences of G4 formation on hSMUG1 cleavage activity. 

Compared to UDG, hSMUG1 is more sensitive to the presence of G4 DNA. hSMUG1 activity 3’ 

to G4 DNA returns to levels comparable to unfolded DNA three bases away, and activity 

between G4 DNAs is modest (Figure 10B and Figure 10C). Reduced activity 3’ to G4 DNA 

could be caused by a slight block in hSMUG1 DNA binding. Crystal structures of xSMUG1 

show there is disruption of the adjacent base pair 5’ to uracil by the wedge motif (Wibley, et al., 
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2003). Using our model sequence, the base pair 5’ to the uracil at position 3’ 1U would be a 

guanine participating in G4 DNA formation. 

 Even though hSMUG1 is part of the same protein family as UDG it has less than 10% 

sequence identity (Fromme, et al., 2004; Wibley, et al., 2003). Additionally, the wedge motif is 

unique to SMUG1 and the mechanism of cleavage distinct is from UDG (Pettersen, et al., 2007). 

Given the differences between the two enzymes, it is not surprising that there is a large 

difference between activities 5’ to G4 DNA, though the specific causes remain unclear. Since 

activity returns to maximum for uracils placed 3’ to G4 DNA, is possible the wedge motif in 

hSMUG1 plays a large role 3’ to uracil lesions and G4 DNA is acting as a barrier, preventing 

binding and cleavage. Alternatively, a significant portion of hSMUG1 could require the area 3’ 

to uracil lesions and G4 DNA is again a barrier to binding and cleavage. It cannot be fully ruled 

out that hSMUG1 activity around G4 DNA is partially influenced by sequence specificity. I 

observed a slight variation in cleavage activity depending the base that flanks uracil, consistent 

with studies showing preference for 5’ – GUT (Pettersen, et al., 2007). At uracil located 5’ 4U, 

cleavage activity increases from 5’ 3U and drops again at position 5’ 5U (Figure 9A). Position 

5’4U contains uracil within the sequence 5’ – GUT, providing an explanation for the sudden 

increase in activity. Further studies are required in order to quantify how strong this preference is 

and whether it changes as a function to distance from G4 DNA. 

Similar to UDG, hSMUG1 may possess a DNA scanning mechanism to search for and 

identify uracil lesions in DNA. While the uracil base flipping mechanism is conserved in these 

uracil glycosylases, little is known of the search mechanisms. It has been shown that UDG 

displays a hopping mechanism and recent data indicates a limited scanning ability on either 

strand of about 10 base pairs once bound however, the mechanism for SMUG1 lesion searching 
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remains unclear (Stivers, et al., 1999; Friedman and Stivers, 2010). A scanning mechanism with 

a 3’→5’ directionality could account for the increased inhibition observed at uracils placed 5’ to 

G4 DNA compared to uracils placed 3’ (Figure 10A and Figure 10C). It would be of great 

interest to investigate lesion search mechanics of hSMUG1 in future studies, and longer DNA 

substrates may be required to identify the consequence of G4 DNA on lesion identification. 

 Regardless of the specific causes, this data indicates G4 DNA is an impediment to proper 

repair of uracil by UDG and hSMUG1 (Figure 11), with increased inhibition the closer a uracil is 

to G4 DNA (Figure 8 and Figure 10). These data have different implications depending on 

whether the cell is proliferating or not. UDG is mainly present during replication with low levels 

at other stages in the cell cycle (Kavli, et al., 2002; Visnes, et al., 2009). Presumably, G4 DNA 

has an opportunity to form during replication because the DNA is transiently denatured, also 

predisposing the DNA to cytosine deamination events or misincorporation of deoxyuracil by 

replicative polymerases (Lindahl, 1993; Krokan, et al., 2002; Bochman, et al., 2012; Maizels, 

2006; Rhodes and Lipps, 2015). Should uracil appear near guanine repeats and G4 DNA, 

removal and repair is likely to be less efficient, potentially increasing mutagenesis at those sites. 

With over 300,000 G4-capable sites (Huppert and Balasubramanian, 2005; Todd, et al., 2005), 

mutations could quickly accumulate in a proliferating cell. G4 DNA also has an opportunity to 

form during transcription. Inhibition of hSMUG1 has potential repercussions for highly 

transcribed loci, since the presence of hSMUG1 inhibits cell growth and proliferation, limiting 

its involvement in replication (Pettersen, et al., 2007). SMUG1 is a much less processive enzyme 

compared to UDG, partially due the unique wedge motif and prolonged DNA binding (Wibley, 

et al., 2003; Pettersen, et al., 2007). My data argues cytosine deamination within guanine-rich 

and transcribed loci may be particularly prone to reduced repair, resulting in C→T transitions.  
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 In conclusion, I have demonstrated that UDG was modestly sensitive to the presence of 

G4 DNA folded in the oligonucleotides tested, with the reductions in activity dependent upon 

proximity to G4 DNA. Likewise, hSMUG1 was more sensitive, and activity is inhibited largely 

in the proximity to G4 DNA, suggesting that uracil bases located near guanine-rich loci capable 

of forming G4 structures may be at risk of mutagenesis. Furthermore, my data indicated UDG 

and hSMUG1 had distinct inhibition zones implicating a greater accumulation of uracil in non-

proliferating cells where hSMUG1 is most active. Inhibited uracil excision may partially account 

for the genomic instability observed at G4-capable loci.  
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Figure 3. Short Patch Base Excision Repair Pathway. Non-bulky DNA lesions like uracil are 

repaired by BER. A lesion specific glycosylase, in this case a uracil glycosylase, will cleave the 

base, leaving an abasic site. APE1 will cleave the phosphodiester bond, allowing DNA polβ to 

resynthesize the DNA, and ligation by ligase3α completes repair.  
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Figure 4. Crystal Structure of xSMUG1. SMUG1 from Xenopus laevis, which shares 66% 

sequence identity with human SMUG1, was crystalized and the structure solved. The unique 

SMUG1 wedge motif is shown as a ball-and-stick form consisting of a loop (yellow) and small 

α-helix (orange). This motif is thought to facilitate tight binding at AP sites by inserting itself 

into the minor groove. An arginine (red) in the α-helix replaces uracil after it is flipped into the 

active site, further stabilizing SMUG1 binding. A proline (green) in the loop stabilizes guanines 

on the complimentary strand indicating a large role in non-proliferating cells (1OE6). 
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Table 1.  

Cleavage Assay, Uracil-G4 Oligonucleotide Sequences. Guanines participating in G-quadruplex 

are shown in bold and italicized. The location of uracil bases is shown in bold and double 

underlined.  
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Table 2.  

Cleavage Assay, Thymine Substituted Oligonucleotide Sequences. The location of uracil bases is 

shown in bold and double underlined. The location of previous G-quadruplex sites from uracil-

G4 sequences is shown in bold and thymine bases interrupting structure formation are italicized.  
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Table 3.  

Cleavage Assay, Complement Oligonucleotide Sequences. Reverse complimentary sequences of 

thymine substituted oligonucleotides, allowing the production of double stranded control 

substrates. The location of G-quadruplex in parent (uracil-G4) molecules, is shown in bold and 

italicized for comparison. The adenosine compliment to uracil is shown bolded and underlined. 
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Figure 5. G4 DNA Model. (A) Intermolecular G-quadruplex structure composed of four 

separate oligonucleotides in parallel orientation. (B) A secondary bi-molecular G-quadruplex is 

formed, but is present as a minor product. (C) Double-stranded control substrates consisting of 

G4-capable sequence with guanine runs interrupted with thymines. Bolded bases show the 

positions where uracil is substituted in individual oligonucleotides.   
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Figure 6. Circular Dichroism Analysis of Cleavage Assay Substrates. A CD scan is shown 

for every oligonucleotide containing uracil. Ellipticity is on the y-axis and wavelength (nm) is on 

the x-axis. G4 DNA oligonucleotides are shown in solid black while thymine interrupted control 

oligonucleotides are shown in dotted grey.   
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Figure 7. UDG Cleavage Assays. A representative denaturing PAGE is shown for the resolved 

products after UDG cleavage for uracil position. Four total UDG reactions were completed for 

each substrate. The location of the uracil relative to the G tetrads is shown on top. Lanes 

alternate between G4 DNA substrates and GT control substrates. Negative controls (no enzyme) 

are annotated with (-) and UDG supplemented reactions annotated with (+).  
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Figure 8. Quantification of UDG Cleavage Assays. Average cleavage of four reactions for 

each uracil position are shown as a percentage, with standard deviation. The scrambled control is 

shown in black and its GT counterpart on each graph. G4 DNA reactions are stripped and all GT 

reactions are white.  
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Figure 9. hSMUG1 Cleavage Assays. A representative denaturing PAGE is shown for the 

resolved products after hSMUG1 cleavage for uracil position. Location name is shown on top. 

Lanes alternate between G4 DNA substrates and GT control substrates. Negative controls (no 

enzyme) are annotated with (-) and hSMUG1 supplemented annotated with (+).  
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Figure 10. Quantification of hSMUG1 Cleavage Assays. The average cleavage of four 

reactions for each uracil position are annotated in percentage with standard deviation. The 

scrambled control is shown in black and its GT counterpart on each graph. G4 DNA reactions 

are shown stripped and all GT reactions are white.  
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Figure 11. Model of G4 DNA Induced Genome Instability Concerning BER. Under B-form 

DNA conditions, uracil glycosylases retain full function. However, when G4 DNA is present 

there is inhibited activity by UDG and hSMUG1 leading to genomic instability with a greater 

effect on hSMUG1 than UDG. 
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CHAPTER III: EXONUCLEASE ACTIVITY AT G4 

Introduction 

 Nucleases are a class of enzymes that either cleave DNA polymers internally 

(endonuclease) or excise nucleotides from one end (exonuclease). These activities are essential 

for all excision repair pathways, and repair of DNA damage ultimately requires the generation of 

a free 3’ OH for repair polymerases (Mason and Cox, 2012). While a wide range of nuclease 

activities facilitate DNA repair in the cell, here I focused on characterizing activity of E. coli 

exonuclease III and exonuclease I at G-quadruplex structures.  

Exonuclease III and Exonuclease I 

 Exonuclease III (ExoIII) is a Mg++- dependent enzyme that excises nucleotides with 

3’→5’ directionality (Lovett, 2011). ExoIII disassociates frequently, leading to low processivity 

(Thomas and Olivera, 1978). While mainly an exonuclease, ExoIII also has endonuclease 

capabilities at abasic sites, cleaving the backbone 5’ to the lesion. In E. coli, ExoIII is the major 

abasic endonuclease accounting for 80% of activity, indicating it is essential in base excision 

repair (Figure 3) (Lovett, 2011; Weiss, 1976; Weiss, 1981). ExoIII is also able to excise various 

damaged bases due to radiation or oxidation and is able to degrade RNA in DNA:RNA hybrid 

molecules, further implicating its importance in DNA damage repair and replication (Lovett, 

2011; Weiss, 1981). 

 Exonuclease I (ExoI) is also a 3’→5’ exonuclease dependent on Mg++, however there is a 

strong specificity for single stranded DNA (Brody, et al., 1986; Lovett, 2011). ExoI is a highly 

processive enzyme with the ability to degrade 10,000 nucleotides/minute (Lovett, 2011; Thomas 

and Olivera, 1978). It interacts with single strand binding protein, SSB, in E. coli as part of a 

large network of replication and DNA repair proteins and is also known to be part of several 
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recombination pathways (Butland, et al., 2005; Friedman-Ohana and Cohen, 1998; Thoms, et al., 

2008; Thoms and Wackernagel, 1998; Viswanathan, et al., 2001). Disruption of ExoI, leads to an 

increase in genetic rearrangements and mutation frequency, possibly due to its role in promoting 

mismatch repair (Viswanathan and Lovett, 1998; Burdett, et al., 2001; Cooper, et al., 1993; 

Viswanathan, et al., 2001).  

Exonucleases and G4 DNA 

 Exonucleases have important roles in replication and DNA repair, instances where G4 

DNA has the opportunity to form (Mason and Cox, 20012; Bochman, et al., 2012; Maizels, 

2006; Rhodes and Lipps, 2015). Since G4 DNA formation correlates with sites of genome 

instability, the impact that the structure has on repair activities is important for elucidating 

mechanisms of mutagenesis (Maizels, 2015; Bochman, et al., 2012; Rhodes and Lipps, 2015; 

Vasquez and Wang, 2013). Exonuclease activities are required for excision repair. Here I show 

that both ExoIII and ExoI are unable to excise oligonucleotides contain G4 structures compared 

to identical sequences that to not contain the structure. My data argues that the genomic 

instability present in guanine-rich loci could partially be due to inhibited excision repair.  

Methods 

Circular Dichroism – DNAs used for excision assays were oligonucleotides synthesized 

by Integrated DNA technologies (Coralville, IA) and page purified (Table 4). An Aviv model 

215 CD spectrometer was used and spectra was taken in a 1 cm path quarts cell at 37 °C. 

Substrates were prepared at a concentration of 12 µM of in 10 mM Tris-HCl pH 7.6, 1 mM 

EDTA, and 100 mM KCl. Molar ellipticity was measured from 220 to 300 nm for three scans in 

1 nm increments with a 1 s averaging time for each sample. Three scans were averaged to obtain 

final reading. 
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Sample Preparation – Oligonucleotides verified by CD scans were used in excision 

assays (Table 4). Each oligonucleotide was 5’ end labeled with 32P-γ-ATP, purchased from 

Perkin Elmer (Waltham, MA), using T4 polynucleotide kinase, from New England Biolabs 

(NEB) (Ipswich, MA). Unincorporated label was removed by column chromatography with 

illustra™ Microspin™ G-25 columns, purchased from GE Healthcare (Wauwatosa, WI).  

Exonuclease III Assays – Exonuclease III was purchased from New England Biolabs 

(NEB) (Ipswich, MA). All exonuclease III reactions contained 20 nM of substrate and were 

placed in a hot water bath with either 100 mM KCl or 100 mM LiCl and allowed to cool to room 

temperature. Exonuclease III time range assays contained 30 units of exonuclease III and 

followed manufacturer recommended reaction conditions. Reactions were placed at 37 °C for 0, 

10, 20, 30, 40, 50, or 90 minutes. Reactions were stopped at 37 °C for 10 minutes with 20 mM 

EDTA, 60 µg/mL Proteinase K, and 0.4% SDS. All exonuclease III assays were resolved with a 

7 M urea 12% PAGE run at 400V for 45 minutes. Gels were exposed to phosphor screens and 

images captured using a Typhoon FLA 7000 (GE Healthcare). 

Exonuclease I Assays – Exonuclease I was purchased from NEB. All exonuclease I 

reactions contained 20 nM of substrate and were placed in a hot water bath with either 100 mM 

KCl or 100 mM LiCl and allowed to cool to room temperature. Exonuclease I time range assays 

contained 2 units of exonuclease I and followed manufacturer recommended reaction conditions. 

Reactions were placed at 37 °C for 0, 2, 4, 6, 8, 10, or 20 minutes. Reactions were stopped with 

20 mM EDTA, 60 µg/mL Proteinase K, and 0.4% SDS at 37 °C for 10 minutes. All exonuclease 

I assays were resolved with a 7 M urea 12% PAGE run at 400V for 45 minutes. Gels were 

exposed to a phosphor screens and image captured using a Typhoon FLA 7000 (GE Healthcare). 
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Results and Discussion 

G4 DNA Formation. The G4-forming sequence I used here (5’ – 

GGGTGGGTTGGGTGGGG) has been previously characterized in N. gonorrhoeae, and G4 

formation is required for proper recombination (Cahoon and Seifert, 2009). The specific G4 

conformation was verified by circular dichroism (CD), and characterized (Cahoon and Seifert, 

2009). I used this same 17 base pair sequence (Table 4) and further verified structure formation 

by CD spectroscopy (Figure 12). As expected, the guanine-rich, G4-capable oligonucleotide 

(G4) displayed a peak of ellipticity at 265 nm, a spectrum characteristic of G-quadruplex 

formation. Controls consisted of a DNA complimentary to G4, (called G4 Com.) and a DNA 

sequence similar to the G4 DNA, but with thymines substituted to disrupt G4 formation (called 

GT). GT displayed a peak of ellipticity at 275 nm and G4 Com. displayed a peak of ellipticity at 

279 nm, which indicates single stranded DNA (Balagurumoorthy, et al., 1992; Kypr, et al., 

2009).  

Exonuclease III Activity. The G4 structure completely inhibited ExoIII activity (Figure 

13). All substrates were in the presence of either potassium, favoring G4 DNA formation, or 

lithium, which is less permissive to G4 DNA formation. While ExoIII easily excised past G4 in 

reactions containing lithium, it was unable to in the presence of potassium, even after 90 

minutes, indicating that G4 DNA inhibited activity (Figure 13A). Complete nucleotide excision 

was observed for the G4 complimentary sequence and GT sequence, and full activity was 

observed in both Li+ and K+ ionic conditions (Figure 13B and Figure 13C). This strongly 

suggests that G4 DNA blocks ExoIII activity. The presence of various sized reaction products 

reflects the dissociative properties of ExoIII (Thomas and Olivera, 1978). ExoIII participates in 

base excision repair along with other mechanisms of DNA repair (Lovett, 2011; Weiss, 1976; 
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Weiss, 1981). Because of that, inhibition of exonuclease activity could exacerbate instability at 

guanine-rich loci. 

Exonuclease I Activity. Similar to ExoIII, ExoI was reluctant to excise through G4 

DNA. Complete nucleotide excision was observed almost instantly past G4 in the presence of 

lithium however, but not potassium even after 20 minutes (Figure 14A). Identical to ExoIII 

assays, DNAs that were unstructured, or unable to form G4, were completely processed by ExoI. 

Activity was insensitive to K+ and Li+, indicating that the reduction in activity observed for G4 

(Figure 14A) is not due to the ion present, but rather due to the G4 structure (Figure 14B and 

Figure 14C). Almost instantaneous digestion of single stranded, or unstructured DNA, is 

indicative of ExoI efficiency (Lovett, 2011; Thomas and Olivera, 1978). ExoI is part of a large 

complex of proteins involved in replication, DNA repair and recombination, and my results 

indicate that impaired recombination and DNA repair at G4 DNA due to a block in ExoI activity, 

possibly accounting for at least a fraction of mutagenesis and genome observed at G4-capable 

sites.  

In conclusion, I have found that both E. coli ExoIII and ExoI activity is reduced on DNAs 

containing G4 structure, and in conditions that support the formation of G4.  Excision activity 

increases when the ion is changed to Li+, (Figure 13 and Figure 14), and so it is not the sequence 

that is inhibitory, rather the formation of G4 inhibits exonuclease activity. Furthermore, the 

presence of Li+ is not inhibitory, since full activity was observed for all DNAs tested (Figures   ). 

Since nucleases are required for all three excision repair pathways, this data provides another 

rationale for the higher levels of instability observed at guanine-rich loci. Failed DNA excision at 

G4 DNA may produces unresolved DNA breaks that promote recombination or mutagenesis. 
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Table 4. 

Exonuclease Assay Sequences. Guanines participating in G-quadruplex are shown in bold. 

Cytosines complimentary to G4 guanines are shown in bold and italicized. Thymines 

interrupting G4 guanines are underlined.  
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Figure 12. Circular Dichroism Analysis of Oligonucleotides used in Exonuclease Assays. A 

CD scan is shown for every oligonucleotide containing uracil. Ellipticity is on the y-axis and 

wavelength (nm) is on the x-axis. G4 DNA oligonucleotides are shown in solid black while 

thymine interrupted control oligonucleotides are shown in dotted grey and G4 compliment is 

shown in dotted outline grey. 
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Figure 13. Exonuclease III Activity. Representative images of ExoIII assays in G4 DNA 

destabilizing conditions (LiCl, left) or G4 DNA stabilizing conditions (KCl, right). On top of 

each gel are lanes labeled as a negative control (-EXO), a reaction at 0 minutes (0), and a triangle 

representing increasing time with a 90 minute max. (A) G4 Assays. (B) G4 Com. Assays. (C) GT 

Assays.  
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Figure 14. Exonuclease I Activity. Representative images of ExoI assays in G4 DNA 

destabilizing conditions (LiCl, left) or G4 DNA stabilizing conditions (KCl, right). On top of 

each gel are lanes labeled as a negative control (-EXO), a reaction at 0 minutes (0), and a triangle 

representing increasing time with a 20 minute max. (A) G4 Assays. (B) G4 Com. Assays. (C) GT 

Assays. 
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CHAPTER IV: DPO4 TRANSLESION DNA POLYMERASE ACTIVITY AT G4 

Introduction 

 Our DNA is vulnerable to both exogenous and endogenous sources of DNA damage. 

Damaged DNA, particularly when it is bulky, can inhibit polymerase progression and stall an 

advancing replication fork. The resulting DNA breaks promote genome instability. Using 

translesion polymerases, cells are able to bypass those replication blockades, which prevents fork 

stalling. Here, I investigated the fidelity of translesion bypass for DPO4, the model Y-family 

polymerase from Sulfolobus sulfataricus, across sequences that form G-quadruplex structures 

(G4 DNA).  

Translesion Synthesis (TLS) 

 Translesion synthesis is an activity whereby a polymerase replicates across from 

damaged DNA templates, and this is a pathway for preventing replication fork stalling during 

replication. The most common and abundant translesion polymerases are those in the Y-family, 

which include human polymerase eta, kappa, and iota, all of which have homologs across all 

domains of life (Ohmori, et al., 2001; Sale, et al., 2012). The active sites for translesion 

polymerases are larger, more flexible, and able to accommodate bulky lesions or DNA 

distortions. On undamaged DNA, this results in lower replication fidelity (Sale, et al., 2012). The 

model Y-family polymerase, DNA polymerase IV (DPO4), comes from a thermostable archaeon, 

Sulfolobus sulfataricus, and its structure was one of the first to be solved for an enzyme of this 

type (Ling, et al., 2001). DPO4 efficiently bypasses abasic sites and cys-syn cyclobutane thymine 

dimers (CPDs), along with acetyl aminoflourene adducted guanine and cisplatinated guanine 

(Sale, et al., 2012; Boudsocq, et al., 2001).  
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Translesion Synthesis of G4 DNA 

G4 DNA inhibits replication, but how the cell deals with G4 DNA during replication has 

not been defined (Weitzmann, et al., 1996). Since it is known that the Y-family translesion 

polymerases replicate across from large DNA lesions, we reasoned that they may also assist in 

replicating templates that form G4 DNA. This model enjoys some experimental support. A 

growing amount of evidence indicates translesion polymerases reduce replication fork stalling 

when replicating G4 DNA, reducing genome instability. For example, more DSBs were observed 

when polymerases eta or kappa are absent in cells capable of forming G4 DNA and treated with 

G4 DNA stabilizing ligands, indicating a role for Y-family translesion polymerases in G4 DNA 

bypass (Bétous, et al., 2009). In addition, polymerase eta has been shown to have a high affinity 

for G4 DNA in vitro, and recognizes G4 DNA found within the human c-MYC gene (Eddy, et 

al., 2015). That same study showed polymerase eta had increased fidelity across G4 DNA, 

indicating a role in G4 DNA bypass (Eddy, et al., 2015). Given evidence on polymerase eta, I 

sought to clarify the role that fidelity has on G4 DNA bypass by DPO4. Furthermore, using a 

Y12A DPO4 mutant, I asked how lowered nucleotide selectivity effected G4 DNA bypass 

capabilities (Sherrer, et al., 2010). Since DPO4 shares kinetic and structural similarities to 

polymerase eta and polymerase kappa, data could provide a general understanding of how Y-

family polymerases bypass G4 DNA (Sale, et al., 2012).  

Methods 

 DNA Templates – Polymerase extension reaction templates were synthetic 

oligonucleotides purchased from Operon (Huntsville, AL) and were page purified. Polymerase 

extension reaction primers and ladder markers were also purchased from Operon and were salt-

free purified. Primers were 5’ end labeled with 32P-γ-ATP purchased from Perkin Elmer 
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(Waltham, MA) using T4 polynucleotide kinase purchased from New England Biolabs (Ipswich, 

MA) and passed through illustra™ Microspin™ G-25 columns purchased from GE Healthcare 

(Wauwatosa, WI) to remove unincorporated label. Polymerase extension reaction template and 

primer sequences can be found in Table 5. 

 Enzymes – The wild type DPO4 vector (pET22B(+)/Dpo4-NHis) was provided by Peter 

Guengerich from the Vanderbilt University School of Medicine (Zang 2005). A Tyr12Ala point 

substitution was introduced into pET22B(+)Dpo4-NHis using site directed mutagenesis and 

verified through DNA sequencing. Both wild type DPO4 and Y12A DPO4 vectors were 

transformed into E. coli strain BL21(DE3)pLysS purchased from Promega (Madison, WI) and 

purified by Ni++ affinity chromatography at the 1 L scale (Zang 2005 and Boudsocq 2001). 

Cultures were allowed to grow to saturation in LB supplemented with 100 µg/mL ampicillin. 

Expression was induced with 0.2 mM IPTG for 3 hours at 37°C when cell cultures reached an 

OD600 of 0.3. Cultures were pelleted and resuspended in 25 mL of lysis buffer (20 mM Tris pH 

7.6, 10% glycerol, 300 mM NaCl, 0.1% PMFS and 5 mM imidazole) then placed at 85°C for 5 

minutes to inactivate E. coli proteins. Supernatant was separated by centrifugation for 30 minutes 

at 20,000 x G. 1 mL of Ni++ agarose purchased from Genscript (Piscataway, NJ) was added to 

supernatant and mixed for 30 minutes at 4°C. Protein-bound Ni++ was collected on a column and 

washed with lysis buffer, 20 column volumes of lysis buffer plus 15 mM imidazole, and 20 

column volumes of lysis buffer plus 30 mM imidazole. Proteins were eluted with 5 column 

volumes of lysis buffer plus 200 mM imidazole. Imidazole was removed with a 3-4 hour dialysis 

in 20 mM Tris, 25 mM NaCl, and 1mM DTT using a Slide-A-Lyzer® cassette purchased from 

Thermo Scientific (Waltham, MA). Protein solution was brought to 50% glycerol and a 4-20% 
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SDS PAGE was used to determine proteins to be >95% pure. Protein concertation was 

determined using a BSA standard (Berroyer, 2016).  

 Primer Extension Reactions – Reactions contained 150 fmols of 5’ end labeled primer 

and 100 fmols of template. Primer and templates were annealed and folded by placing in boiling 

water bath allowed to cool to room temperature. Folding was done in either 50 mM LiCl or KCl 

and DPO4 polymerase reaction conditions consisting of 125 µM of indicated dNTPs, 1mM DTT, 

10 mM Tris-HCl (pH 8.0), and 5 mM MgCl2. The amount of enzyme added was the amount 

required to extend control template to completion. Extension reactions were conducted at 55 °C 

for 15 minutes and stopped at 37 °C for 10 minutes with 20 mM EDTA, 60 µg/mL Proteinase K, 

and 0.4% SDS. Reactions were denatured by adding an equal reaction volume of 90% 

formamide and incubation at 90 °C for 5 minutes. Reaction products were resolved with 15% 

denaturing PAGE with 7 M urea and 0.5x TBE. Gels were imaged using a Typhoon FLA 7000 

(GE Healthcare).  

Results and Discussion 

 The goal of this part of my thesis was to characterize the activity and fidelity of Y12A 

DPO4 on templates containing G4 structures. Protein purification and characterization was 

established previously (Berroyer, 2016). The template used is modeled on a 17 base pair 

sequence (5’ – GGGTGGGTTGGGTGGGG) from N. gonorrhoeae, which folds into G4 and is 

required for proper recombination in that organism (Cahoon and Seifert, 2009). Confirmation of 

G4 DNA formation through circular dichroism was performed previously (Berroyer, 2016), and 

not shown here.  

Replication fidelity is a term used to describe the ability to correctly synthesize DNA, 

where complementary nucleotides are joined together. Translesion polymerases generally have 
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low fidelity on undamaged DNA compared to genome replication polymerases, and this is due to 

their large and flexible active sites (Sale, et al., 2012). While fidelity of DPO4 across from G4 

DNA has not been characterized, there is evidence that a human homolog, human pol eta, has 

high fidelity when replicating G4 DNA templates (Eddy, et al., 2015). The primer extension 

reactions presented here test fidelity of both wild type and Y12A DPO4 by controlling the 

nucleotides present in each individual reaction. If there is a large amount of incorporation 

observed for reactions containing only one nucleotide, the interpretation is that replication 

fidelity is low since the polymerase extension required misincorporations. The ability of Y-

family polymerases to synthesize across from G4 DNA suggests a role in G4 DNA bypass 

during replication. 

Representative images of WT DPO4 primer extension reactions are shown in Figure 16. 

WT DPO4 is able to complete extension in the presence of all four nucleotides and can 

misincorporate several nucleotides shown in individual single nucleotide lanes in GT control 

template primer extension (Figure 16A). Full extension of G4 experimental template by WT 

DPO4 drops significantly, however a faint band is still present in four-nucleotide reaction 

(Figure 16B). Single nucleotide lanes showing misincorporation also drops significantly when 

across G4 DNA with no produced past the 39th position expect in the presence of cytosine where 

a long smear is present indicative of different length products (Figure 16B). These experiments 

indicate WT DPO4 has low fidelity on unstructured DNA templates and increased fidelity on 

structured DNA allowing for bypass of G4 DNA as shown in cytosine lane of Figure 16B. This 

data is in line with data on human polymerase eta showing increased fidelity across if G4 DNA 

(Eddy, et al., 2015).  
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Representative images of Y12A DPO4 primer extension reactions are shown in Figure 

17. Similar to WT, Y12A DPO4 is able to complete extension in the presence of all four 

nucleotides and can misincorporate several nucleotides as shown in single nucleotide lanes in GT 

control template primer extension (Figure 17A). Unlike WT however, there is incomplete 

extension of G4 experimental template in reaction containing all four nucleotides, observed as a 

short smear of bands (Figure 17B). The level of misincorporation also apparently drops, with no 

extension past the 38th position with the exception of the thymine lane, where a faint band is 

observed, and cytosine, where it appears extension stops after second run of guanines. The 

mutation Y12A in DPO4 decreases sugar selectivity and increases nucleotide misincorporation 

(Sherrer, et al., 2010), implying that synthesis of G4 templates is likely high fidelity. 

The importance of the 39th position in G4 DNA template is due to the possible structures 

present in solution. The first guanine run in the template contains four guanines while all others 

contain three. This creates the possibility that either the first guanine or the fourth guanine are 

participating in G4 DNA formation while the other is not. The second guanine in the first run of 

guanines at the 39th position should participate in G-quadruplex formation regardless of the 

specific structure that forms, so synthesis products at or past the 39th position must be the result 

of structure bypass by the polymerase.  

In conclusion, my results suggest that WT DPO4 synthesis fidelity increases when 

templates form G4 DNA structures, indicating that structured templates are synthesis substrates 

and that the Y-family polymerases may be recruited during replication to ensure accurate bypass.  

This not only prevents fork collapse, but also reduces the potential for mutagenesis at guanine-

rich loci. That model is supported by results showing incomplete extension by Y12A DPO4 on 

the G4 DNA template, when any nucleotide other than cytosine was supplied to the reaction 
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(Figure 16B). In other words, the loosening of restrictions on nucleotide usage through Y12A 

substitution mutagenesis did not permit structure bypass by the DPO4 polymerase. Furthermore, 

when reactions were supplied with only cytosine nucleotides, synthesis through the G4-folded 

template was observed, but not when reactions were supplemented with the one of the other three 

nucleotides (Figure 15B). During genome replication, the Y-family polymerases may be 

recruited when replication forks stall at G4 DNA structures. High-fidelity synthesis across from 

G4-folded guanines permits fork progression and accurate replication to reduce the potential for 

mutagenesis. Therefore, in addition to DNA damage bypass, the Y-family polymerases may be 

important for accurate replication through repetitive DNA sequences. 
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Table 5. 

Primer Extension Template and Ladder Marker Sequences. Guanines participating in G-

quadruplex are shown in bold.  
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Figure 15. WT DPO4 Fidelity at G4 DNA. Representative images of extension reactions are 

shown with the template annotated along the top and the running start primer length. Complete 

extension products are marked with an arrow. Nucleotide contents for each reaction/lane are 

annotated along the bottom. The last lane contains a ladder. (A) Single nucleotide extension 

reactions of WT DPO4 on unstructured control template. Primer was 38 nucleotides long and 

ladder contains both 38 and 39 oligonucleotide lengths. (B) Single nucleotides extension 

reactions of WT DPO4 on structured experimental template. Primer was 37 nucleotides long and 

ladder contained 37, 38, and 39 oligonucleotide lengths. 
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Figure 16. Y12A DPO4 Fidelity at G4 DNA. Representative images of extension reactions are 

shown with the template annotated along the top and the running start primer length. Complete 

extension products are marked with an arrow. Nucleotide contents for each reaction/lane are 

annotated along the bottom. The last lane contains a ladder. (A) Single nucleotide extension 

reactions of Y12A DPO4 on unstructured control template. Primer was 38 nucleotides long and 

ladder contains 38, 39, 42, 43, and 44 oligonucleotide lengths. (B) Single nucleotides extension 

reactions of Y12A DPO4 on structured experimental template. Primer was 37 nucleotides long 

and ladder contained 37, 38, and 39 oligonucleotide lengths. 
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CHAPTER V: CONCLUSIONS 

 Guanine-rich areas in the genome support the formation of a thermostable four-stranded 

structure called G-quadruplex DNA (G4 DNA). Guanine-rich regions in the genome are 

preserved in promoter regions, ribosomal DNA, and immunoglobulin heavy-chain switch regions 

and are highly conserved within the human population and between different species suggesting 

a role in DNA metabolism (Huppert and Balasubramanian, 2005; Todd, et al., 2005; Capra, et 

al., 2010; Maizels, 2006). Even so, areas capable of G4 DNA formation are prone to higher 

mutagenesis rates and have increased genomic instability, though causes are not fully understood 

(Maizels, 2006; Maizels, 2015; Bochman, et al., 2012; Rhodes and Lipps, 2015; Vasquez and 

Wang, 2013). In this investigation, I assayed various repair capabilities on oligonucleotides 

containing a single G4 DNA structure, providing molecular rationale for the increases in 

mutagenesis observed at guanine-rich loci. 

 In Chapter II, I investigated the ability of base excision repair to remove uracil around G4 

DNA using two major uracil DNA glycosylases; E. coli UDG and human SMUG1 (Visnes, et 

al., 2009; Kavli, et al., 2002; Pettersen, et al., 2007). Uracil is one of the most common form of 

lesions in the genome and mutagenesis would quickly accumulate if repair mechanisms were 

impaired (Krokan, et al., 2002). These data suggest inhibited repair of uracil by UDG adjacent to 

G4 DNA and in between two G4 DNAs in close proximity of each other (Figure 8). Inhibited 

repair of uracil by UDG suggests a possible accumulation of point substitutions during 

replication, where UDG is most active. Data here also suggests large inhibition of hSMUG1 in 

between two G4 DNAs in close proximity of each other as well as three bases away 3’ and over 

five bases away 5’ to G4 DNA (Figure 10). Inhibited repair of uracil by hSMUG1 suggests a 

possible accumulation of point substitutions in highly transcribed regions of non-proliferation 
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cells, where hSMUG1 is most active. Together these data can possibly account for a fraction of 

the mutagenesis and genomic instability observed at G4-capable sequences.  

 In Chapter III, I investigated the ability of E. coli exonuclease III (ExoIII) and 

exonuclease I (ExoI) to excise DNA containing a G4 structure. ExoIII is able to facilitate repair 

of damaged nucleotide bases due to radiation and oxidation and is the major abasic site 

endonuclease for BER in E. coli (Lovett, 2011; Weiss, 1976; Weiss, 1981). ExoI is part of a 

large network of proteins involved in replication and DNA repair, specifically mismatch repair, 

and is shown to be an important component in recombination (Butland, et al., 2005; Friedman-

Ohana and Cohen, 1998; Thoms, et al., 2008; Thoms and Wackernagel, 1998; Viswanathan, et 

al., 2001; Viswanathan and Lovett, 1998; Burdett, et al., 2001; Cooper, et al., 1993). These data 

indicate ExoIII and ExoI are unable to excise past G4 DNA even after extended periods of time 

(Figure 13 and Figure 14 respectively). This suggests G4 DNA is a block to normal exonuclease 

activity, and given their roles in DNA repair pathways, could possible account for a fraction of 

the mutagenesis and genomic instability observed at G4-capable sites.  

 Finally in Chapter IV, I investigated the bypass ability and fidelity requirements of 

thermostable translesion polymerase DPO4 past G4 DNA (Ling, et al., 2001; Sale, et al., 2012; 

Boudsocq, et al., 2001). Misincorporation ability was inhibited and complete extension on 

structured templates was observed in small quantities compared to unstructured control templates 

indicating DPO4 is able to bypass G4 DNA and fidelity is increased across structures (Figure 

16). Sugar selectivity requirements were investigated using Y12A DPO4 mutant known to have a 

mutation that decreases sugar selectivity (Sherrer, et al., 2010). When compared to WT DPO4, 

extensions with Y12A DPO4 on structured DNA resulted in no complete extension and reduced 

ability to extend in cytosine indicating sugar selectivity capabilities are important in G4 DNA 
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bypass (Figure 17). Together these data indicated fidelity is an important component to G4 DNA 

bypass  

 In conclusion, G4 DNA is an impediment to normal DNA repair activities, including base 

excision repair, mismatch repair, and recombination. Increased mutagenesis at G4-capable sites 

could in large part be due to inhibited repair activities investigated in this work. Investigations on 

how the cell is able to accommodate an impediment to DNA metabolic activities are still 

underway though here I elucidated the involvement of Y-family translesion polymerases. Further 

work on G-quadruplex structures is required for a complete understanding of the consequences it 

presents on the genome as well as how the cell is able to maintain genome integrity in spite of it.  
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