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Abstract

The circadian clock, responsible for coordinating organism function with daily and seasonal
changes in the day-night cycle, is controlled by a complex protein network that constitutes
a robust biochemical oscillator. Deterministic ordinary differential equation models have
been used extensively to model the behavior of these central clocks. However, due to the
small number of proteins involved in the circadian oscillations, mathematical models that
track stochastic variations in the numbers of clock proteins may reveal more complex and
biologically relevant behaviors. In this paper, we compare the response of a robust yet detailed
deterministic model for the mammalian circadian clock with its corresponding stochastic
version that takes into account low protein number noise. We then use signal analysis
techniques in order to examine differences in behavior among components of the stochastic
system oscillator. This approach reveals differences in the system response between the
stochastic and deterministic model and also allows us to extend bifurcation analysis into the
stochastic domain. From our analysis of the unfitted stochastic model, we propose novel
explanations of some previous experimental results.

Keywords: circadian clock, stochastic model, autocorrelation, wavelet analysis

1 Introduction

A wide range of organisms employ a 24-hour circadian
clock that adapts multiple system responses at the ge-
netic, physiological and behavioral level to daily changes
in the environment. At the basis of circadian rhythms is a
regular, oscillating chemical reaction that is employed at
the single cell level. In mammals, autonomous cell clocks
are embedded in a hierarchical system in which a master
pacemaker in the suprachiasmatic nucleus (SCN) entrains
a network of peripheral circadian oscillators throughout
the body [1]. Disrupted circadian rhythms can have se-
rious medical implications in humans. Circadian rhythm
disorders are related not only to disruption of sleep pat-
terns, but are also associated with cognitive impairment,
mood disturbances, and increased risk of cardiometabolic
disorders [2]. Furthermore, circadian rhythms are begin-
ning to gain critical importance in clinical settings as drug
delivery effectiveness is affected by the rhythms of single
cell metabolism that tie in the circadian networks [3].

In the last 20 years, various features of these chem-
ical clocks have been uncovered in a variety of organ-
isms [4, 5]. A set of common features have emerged from
the simpler cyanobacteria clocks to more complex mam-

1Department of Mathematics, Pomona College, Claremont CA
91711 USA, † Current address: Department of Genetics, Stanford
University, 300 Pasteur Drive, Stanford, CA 94305, USA

malian networks. It is emerging that the core circadian
clock network contains two types of components: 1) ac-
tivators such as KaiA in Synechococcus, Clc and Cyc in
Drosophila, and Clock and Bmal in mice and humans, and
2) repressors such as KaiB/KaiC in Sychococcus, Frq in
Neurospora, and Tim and Per in Drosophila and mam-
mals. For example, in mammalian cells the Period protein
(PER) creates a negative feedback loop since high lev-
els of PER protein suppress the transcription of the Per
mRNA, lowering the levels of PER protein, which then
allows continued transcription of Per mRNA [6]. The
inclusion of additional activators and delay within these
negative feedback loops complete the picture producing
a robust circadian oscillator. While in principle negative
feedback and delay are sufficient to generate oscillations,
what is not clear is the specific contribution of the var-
ious uncovered elements of circadian clock networks, as
it is also not clear what role post-transcriptional modi-
fication plays in these oscillatory patterns. Despite the
complexities of these systems, there is broad consensus
that transcriptional regulation lies at the core of the cir-
cadian oscillators [1].

The accuracy of the mammalian circadian clock can
be inferred by observing the behavior of rats in a dark
environment. Indeed, when separated from stimuli rats
are observed to continue to operate on a 24-hour cycle,
defined by when they wake up or exercise. Using this
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method, previous studies have found a strikingly small
2% fluctuation in the circadian period from day to day
[7]. This accuracy may be due to the synchronization
of the almost 20,000 individual neuron oscillators by the
SCN pacemaker [8, 9]. Yet, when measurements are made
at the level of a single neuronal cell, the PER proteins
oscillate irregularly, with periods varying up to 3 hours
from day to day [7], indicating that at the single cell level
noise and heterogeneity are well tolerated [10].

Since the biochemical networks involved in producing
circadian oscillatory patterns are rather complex even at
the single cell scale, mathematical modeling can provide a
robust framework that not only accounts for the available
experimental data but also allows us to perform in silico
experiments in scenarios where data collection is difficult
[11]. Over the past several years, mathematical models
have indeed played a central role in our understanding
of these complex, circadian mechanisms. The original,
and still quite influential, circadian model was proposed
in 1995 to explain circadian rhythms in flies [6]. Since
then, systems of ordinary differential equations (ODEs),
ranging from a core 3 equations to a detailed 180 have
been used to explore the behavior and effects of stimuli,
mutants, and drug perturbations [12, 13].

While this approach has been powerful, ODEs describe
continuous changes in concentrations assuming large pro-
tein numbers. Yet, at the single cell level internal noise
can be significant due to the low protein copy numbers
and the necessarily discrete nature of reactions that fur-
ther translates into potentially significant perturbations
in oscillation period and amplitude. While simple sys-
tems can be devised to be robust to internal noise [10], it
is not so clear that the more detailed models derived from
recent biological experiments retain the predicted ODE
robustness in the small protein number limits. Indeed,
since current evidence supports that only small numbers
of molecules are involved in circadian rhythms, many cir-
cadian models have been examined as discrete stochastic
systems [14, 10, 15, 12, 16].

In this paper, we take a similar approach and consider
a stochastic model of a fairly detailed mammalian cir-
cadian clock proposed in Relogio et al. [17] and seek to
compare the robustness of the proposed system in the
limit of small protein numbers. Of particular interest
to us is to employ computational techniques in order to
test and uncover the key underlying oscillatory architec-
ture in the stochastic regime where protein numbers are
low. This analysis would be of interest since the data
obtained from gene expression levels is necessarily noisy,
and ODE fitting to averaged signals can overlook poten-
tially important system features. Specifically, the current
analysis of circadian rhythms is often limited to on/off
or period/amplitude measurements. These types of mea-
surements are well served by deterministic systems which

are similarly limited in the types of responses that they
can produce and seek to match at best averaged data sets.
But stochastic systems, and their biological counterparts,
can display more complicated behavior with potential bi-
ological consequences. Here we study how “biochemical
noise” can alter the behavior of these systems by starting
from a deterministic set of ODEs describing two coupled
negative feedback loops of which one is described as a
robust oscillator and the second as a weaker one gen-
erated by six interacting proteins and parameterized by
[17] using a wide range of published data. We created a
stochastic model of the same system using the techniques
described in [18] and then analyzed it using methods of
signal processing analysis described in [19] and [20].

2 Mathematical Model

We start by first delineating the ODE model of Relogio
et al. [17], and then we discuss our stochastic model.

2.1 The Relogio et al. ODE model

The ODE model proposed and parametrized in [17] con-
sists of five genes and their associated proteins that can
exist in complexes, nuclear and cytosolic localizations,
and different phosphorylation states for a total of 19
species. Together, these form two coupled negative feed-
back loops, with ROR, RevErb, and BMAL making up
one loop and PER and CRY the other, as highlighted in
Fig. 1.

activatory

(RBR Loop)

inhibitory

(PC Loop)

Ror

Rev-Erb

Bmal

Cry

Per

CLOCK/BMAL

nucleus

cytoplasm

PER/CRY
pool

Figure 1: A diagram of the key genes and nucleus proteins
involved in the two circadian loops. The model of [17] con-
tains 19 species, here we highlight the 5 genes, shown in blue
and red boxes to mark activatory vs. inhibitory action. The
proteins associated with the five genes can exist as both cy-
toplasmic and nucleus species. For the full set of reactions
involving transcription, translation, import/export and phos-
phorylation/dephosphorylation, see [17].
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For completeness, here we highlight the key features
included in the ODE model equations of [17].

PC Loop The PC loop contains the two key inhibitory
genes Cry and Per, which are translated in the cyto-
plasm as PERc/CRYc. After phosphorylation in the cyto-
plasm, these proteins form complexes that are imported
in the nucleus. In Fig. 1, we show a PER/CRY pool
of nuclear complexes comprising both phosphorylated
and unphosphorylated proteins that act as inhibitors on
CLOCK/BMAL activity; the PER/CRYpool thus closes
the negative feedback loop. The gene transcription reac-
tions were modeled using Michaelis-Menten kinetics and
Hill functions

Per
dy1

dt

= v1max

1 + a
(

x1

kt1

)5

1 +
(

PC
ki1

)7 (
x1

kt1

)5

+
(

x1

kt1

)5 − dy1y1 (1)

Cry
dy2

dt

= v2max

1 + d
(

x1

kt2

)7

1 +
(

PC
ki2

)4 (
x1

kt2

)7

+
(

x1

kt2

)7

1

1 + x5

ki21

− dy2y2 (2)

where we highlight that the Hill coefficients were fitted
to gene expression data and likely indicate multiple reg-
ulatory regions involved in mRNA production, whereas
di is the degradation rate of the Per or Cry mRNA. As
shown in [21], the high nonlinearities can be reduced to
obtain terms with Hill coefficients of 2 or 3 at the cost
of introducing explicit delay terms in the mRNA pro-
duction terms which adds to model complexity. Alterna-
tively nonlinearities can also be reduced by introducing
Michaelis-Menten degradation rates that lower Hill co-
efficients at the expense of adding more parameters to
the model. We retain the Relogio et al. [17] approach
due to the nice model calibration with data. The rest
of the protein concentrations in cytoplasmic forms given
by CRYc(z1), PERc(z2), PER∗

c(phosphorylated form,
z3), PER∗

c/ CRYc(z4), PERc/CRYc(z5) and nuclear
form given by PER∗

N/CRYN (x2), PERN/CRYN (x3),
PER/CRYpool(x2 + x3) are given by simple law of mass
action terms

dz1

dt
= kp2(y2 + y20) + kdz4z4 + kdz5z5

− kfz5z1z2 − kfz4z1z3 − dz1z1 (3)

dz2

dt
= kp1(y1 + y10) + kdz5z5 + kdphz3z3

− kfz5z1z2 − kphz2z2 − dz2z2 (4)

dz3

dt
= kphz2z2 + kdz4z4 − kdphz3z3 − kfz4z3z1

− dz3z3 (5)

dz4

dt
= kfz4z1z3 + kex2x2 − kiz4z4 − kdz4z4 − dz4z4 (6)

dz5

dt
= kfz5z1z2 + kex3x3 − kiz5z5 − kdz5z5 − dz5z5 (7)

dx2

dt
= kiz4z4 − kex2x2 − dx2x2 (8)

dx3

dt
= kiz5z5 − kex3x3 − dx3x3. (9)

RBR Loop This loop contains the clock genes Ror,
RevErb, and Bmal and their corresponding proteins. In
contrast to the inhibitory effect of PC proteins, the nu-
clear species ROR and REV/ERB participate in the reg-
ulation of Bmal in both inhibitory and activatory reac-
tions, as shown in Fig. 1. Similar to the PC loop, mRNA
production involves multiple nonlinearities and Michaelis-
Menten terms

Rev-Erb
dy3

dt

= v3max

1 + g
(

x1

kt3

)6

1 +
(

PC
ki3

)2 (
x1

kt3

)6

+
(

x1

kt3

)6 − dy3y3 (10)

Ror
dy4

dt

= v4max

1 + h
(

x1

kt4

)6

1 +
(

PC
ki4

)3 (
x1

kt4

)6

+
(

x1

kt4

)6 − dy4y4 (11)

Bmal
dy5

dt

= v5max

1 + I
(

x6

kt5

)2

1 +
(

x5
ki5

)5

+
(

x6

kt5

)2 − dy5y5. (12)

Similarly, the cytoplasmic protein forms REV-
ERBc(z6), RORc(z7), BMALc(z8) and nuclear
forms REV-ERBN (x5), RORN (x6), BMALN (x7),
CLOCK/BMALN (x1) are given by simple law of mass
action terms

dz6

dt
= kp3(y3 + y30)− kiz6z6 − dz6z6 (13)

dz7

dt
= kp4(y4 + y40)− kiz7z7 − dz7z7 (14)

dz8

dt
= kp5(y5 + y50)− kiz8z8 − dz8z8 (15)

dx5

dt
= kiz6z6 − dx5x5 (16)
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dx6

dt
= kiz7z7 − dx6x6q (17)

dx7

dt
= kiz8z8 + kdx1x1 − kfx1x7 − dx7x7 (18)

dx1

dt
= kfx1x7 − kdx1x1 − dx1x1. (19)

The system has 71 parameters of which 60 are derived
from biological data and listed in [17]. The remaining
11 free parameters were fitted in [17] to fine tune the
phase and amplitude relations between components of the
model. We list the values of the parameters that we var-
ied here from the reported values of Relogio et al. [17] in
the Appendix; unless otherwise stated we use the param-
eter values of Relogio et al. [17] and refer to them as “wild
type” in this study. The ODE model with these param-
eters generated oscillations with a period of 23.5 hours
while also capturing the RNA and protein peak expres-
sions in agreement with the ranges reported in the liter-
ature.

2.2 Stochastic Model

We created a stochastic analogue to these ODEs using
methods previously described by [18]. Briefly, we seek
to study the system response as the total number of
molecules involved in the chemical reactions is reduced.
This approach introduces intrinsic noise into the sys-
tem that produces a rise in the amplitude of fluctuations
around the system response predicted by the determin-
istic model of [17]; for a system containing N molecules
the intrinsic noise amplitude is proportional to 1/

√
N .

For the stochastic model, we wrote a birth-death stochas-
tic process with a corresponding master equation and
transition probabilities between different system states.
In our setting birth corresponded to a reaction step in
which molecules were produced and death corresponded
to molecules being consumed. The transition probabili-
ties are thus proportional to the numbers of molecules and
the chemical rate constant of each reaction described in
the deterministic model. Since the ODE model is highly
nonlinear, we followed the approach of [18] and decom-
posed the ODE reactions into 46 component elementary
reactions. We then assigned a probability of occurrence
to each elementary reaction using the reaction rates terms
and parameter values from [17]. When computing reac-
tion probabilities it is necessary to convert the units from
concentrations to numbers of molecules, so we added a pa-
rameter Ω with units of volume. Ω represents the volume
in which the reactions are occurring and can be thought of
as the system size, where larger Ω implies a greater num-
ber of molecules involved. In broad strokes, the larger
value of Ω the more the behavior of the stochastic system
is expected to resemble that of the original ODEs.

As an illustration of our modeling approach we exam-
ine one elementary reaction and give its propensity that
is then used in the stochastic simulations of the model.
Specifically, an elementary reaction is the creation of the
component z5 from z1 and z2, or z1 + z2 → z5. The rate
that drives this reaction forward from the ODE equa-
tion (7) is kfz5z1z2. To compute a reaction propensity
(or probability) we convert the rate by multiplying with
the volume parameter Ω so that the propensity used in
a stochastic simulation algorithm is kfz5

Ω z1z2. The rest
of the reaction propensities were computed in a similar
fashion and representative reactions are illustrated in the
Appendix. The resulting system was then simulated us-
ing the Gillespie simulation technique [22], which asso-
ciates a probability with each reaction and draws from
an exponential distribution to compute a random reac-
tion time. This simulation algorithm generates exact so-
lutions for the stochastic birth death process underlying
our stochastic model [22].

3 Results

As a first check for the correspondence between the deter-
ministic and stochastic model we examined the qualita-
tive behavior of our stochastic model as Ω was increased.
Our simulation results shown in Fig. 2 indicate that at
least qualitatively the stochastic model resembles closely
the deterministic ODE model.

In cases where the internal noise is significant, i.e. Ω is
small, the oscillations of the stochastic model are difficult
to characterize in a non-qualitative fashion. The charac-
teristic period of an oscillatory system under stochastic
effects can be evaluated using autocorrelation analysis,
which provides a comparison tool between the determin-
istic and stochastic oscillatory regimes. We define the
autocorrelation function F (τ) for a biochemical species i
with protein numbers given by Ni using

F (τ) = 〈Ni(t+ τ)Ni(t)〉 − 〈Ni(t)〉2 (20)

where 〈·〉 denotes averaging with respect to time t. For
systems that do not oscillate F (τ) decays monotonically,
whereas for oscillatory systems the autocorrelation func-
tion shows damped oscillations. The average period of
system oscillations (T ) is marked by the location of the
first peak of F (τ), whereas phase coherence is given by the
total number of peaks in autocorrelation before it decays.
To illustrate these ideas in Fig. 3(a) we plot the stochastic
model average period for each model component against
system size, Ω. For small system size, noise is signifi-
cant and it causes sporadic model species oscillations as
illustrated from the wide spread in periods for small Ω.
Notably, different model components show different peri-
ods for small Ω. On the other hand, as the system size
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Figure 2: The behavior of the stochastic system as Ω is reduced. Top row (a), (b) shows the deterministic model; middle row
(c), (d) shows Ω = 5000; and bottom row (e), (f) shows Ω = 200. The PC cycle shows RNA amounts of Per and Cry versus
the total amount of PER and CRY protein. The RBR cycle shows RNA amounts of Ror, Bmal, and RevErb versus the total
amount of ROR, BMAL, and REVERB protein. Note that the scale is changing as we reduce Ω.
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Figure 3: Autocorrelation function and correlation half-life. (a) Plot of the average stochastic model period as a function
of Ω for all the model species. Inset. A representative autocorrelation function for CRYc species for Ω = 50 and Ω = 5000.
(b) Plot of the correlation half-life τ1/2 for each model species as a function of Ω. Correlation half-life increases linearly with
Ω indicating that periodic solutions strengthen as system size increases. All parameter values used correspond to the “wild
type” values fitted in [17].
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increases the average period for all components converges
toward the deterministic model period of ≈ 23.5 hours.
Besides the location of the peaks, autocorrelation can give
an indication of the strength of the periodic signal since
the F (τ) decay with different rates, where no decay in-
dicates a perfect periodic signal and fast decaying peaks
mark weaker periodic signals. In Fig. 3(a)(inset), we in-
deed see that F (τ) decays much faster when Ω = 50 as
opposed to Ω = 5000 for the component CRYc indicating
that the periodic signal gains significant strength as Ω
increases.

Fig. 3(a) illustrates that each model component can re-
spond differently to noise for small Ω. Thus, next we sep-
arately examine each component by computing F (τ) on
model time-courses, which are in turn obtained by Gille-
spie simulations of the stochastic system. We highlight
that at the core of autocorrelation analysis is the assump-
tion that each model component’s individual time-course
is well described by a single periodic signal disguised by
noise. Thus, we represent F (τ) as a decaying oscillator
and extract two pieces of information: 1) the period of
the underlying signal, and 2) the rate at which that signal
decays. The period is obtained by finding the location of
the first peak of the autocorrelation F (τ) for each model
species, as illustrated in Fig. 3(a). On the other hand,
we measure the rate of decay of the damped oscillator us-
ing the half-life of the oscillations of the autocorrelation
function (as defined in [18])

τ̂1/2 = τA ln 2 (21)

where τA is the standard correlation time measured as
the rate of the decay of the autocorrelation function. We
estimate τA numerically by measuring the autocorrela-
tion decay rate using the exponential function exp(−t/τA)
that best fits the decay of the autocorrelation peaks. We
remark that we expect the autocorrelation time to have
a linear relationship with the size of the system Ω, as in
[19, 18] it is shown that for their minimal circadian clock
stochastic model the following relations hold

τ̂1/2 = τA ln 2 ≈ Ω ln 2

a
=

Ωw ln 2

Ωc
(22)

where Ωc is the critical system size for the oscillations to
remain correlated in time over more than one period and
w = 2π/T . We remark that while appealing in its sim-
ple form, Ωc shown in equation (22) is difficult to obtain
analytically for our model given the high degree of nonlin-
earity. However, Ωc can be related to the total number of
molecules in the system. The total number of species Xi

is Xi = Ωxi and the maximum total number of molecules
during one period of the oscillations is

Nmax = Ω

(
s∑

i=1

xi

)
max

(23)

with s marking the total number of components in the
model. Thus for the system oscillations to remain cor-
related the total number of molecules which are present
should be larger than the critical value

N =

s∑
i=1

Xi > Ωc

(
s∑

i=1

xi

)
max

. (24)

As shown in [18], Ωc depends on the characteristic quan-
tities of the system limit cycle, which in turn are tied to
the form of the reactions prescribed for the ODE model
and consequently reaction propensities in our stochastic
version. Taken together these expressions indicate that
the correlation time or the half-life provide a measure of
the noise perturbations on the system since they directly
depend on system size (or total protein numbers). We do
not dwell on Ωc details here, but note that in subsequent
sections we choose a system size Ω = 2000 > Ωc for which
all the species oscillations have Ti ≈ Td corresponding to
a tight distribution of periods around the deterministic
period, Td ≈ 23.5.

In Fig. 3(b), we show measurements of the normal-
ized correlation half-life defined here as τ1/2 = τ̂1/2/T
for each model component and observe a linear relation
with Ω, as predicted by [19, 18]. Furthermore, we note
that each model component displays its own scaling in
correlation half-life (τ1/2) against Ω, which is to be ex-
pected since the linear relation in equation (22) depends
on the maximal total number of molecules encoded in Ωc,
however each species’ individual numbers can be either
above or below this critical number, resulting in differ-
ent slopes in Fig. 3(b). This means that each species has
its own critical system size, even through the system as
a whole can show oscillations similar to the determinis-
tic limit. This is a major point of our study, and in the
following sections we show how individual model compo-
nent sensitivity can contribute or undermine overall sys-
tem behavior in the stochastic model. To quantify these
individual model component responses for the following
section we fix Ω = 2000 and compute a normalized auto-
correlation half-life τ1/2 over a range of various parameter
values. To most closely capture experimental procedures,
we computed 10 realizations of the stochastic model per
parameter value in Sections 3.1 and 3.2 and averaged the
autocorrelation half-life over all trials. Each realization of
the model was simulated for 800 hours, in order to allow
ample sampling for the autocorrelation function analysis.

3.1 Autocorrelation analysis indicates
differences in model architecture un-
der internal noise.

In [17], two distinct oscillatory loops were postulated and
tracked in the ODE deterministic system. Using our
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stochastic model, we aim to see whether this two loop
architecture is sustained under noise with the help of the
correlation half-life, as defined above. We compute τ1/2

at Ω = 2000 for the model components individually as a
function of the Per mRNA degradation rate (dy1), a key
parameter in determining the period of oscillations [5].
At the level of resolution of a single component of the
model, there is too much information to detect any clear
patterns from autocorrelation (Fig. 4(a)). We thus sum
the components before calculating the correlation time by
grouping all alternative forms of proteins, i.e. cytosolic,
nuclear, phosphorylated, and unphosphorylated as shown
in Fig. 4(b)–(c). We note this choice of clusters is biologi-
cally motivated and not based on the results of the model.

From the clustered model results for τ1/2, we see a
clear pattern in the way that the components behave as
a function of the mRNA degradation rate. Specifically,
Per, Cry, and Ror along with their corresponding proteins
form a single cluster, while RevErb, Bmal, and their cor-
responding proteins form another (Fig. 4(b)). This sys-
tem structure that emerges from the autocorrelation cor-
responds to the two feedback loops proposed in Relogio
et al. [17], with the exception that Ror and ROR clus-
ter with the PC loop in our analysis. This indicates that
the stochastic model presents a slightly different loop de-
sign than that proposed in the oscillator paradigm of the
ODE model. This discrepancy is unexpected as we are
studying the system in intermediate Ω-values, where a
near deterministic system response seems to prevail. We
can further capture the behavior of these putative clus-
ters by summing all components in the Per, Cry, and Ror
loop (PCRor) and separately summing the components of
the RevErb and Bmal loop (RevBmal) (Fig. 4(d)). From
Fig. 4(d), we see that the decay of autocorrelation oscil-
lations of F (τ) as a function of the mRNA degradation
rate differs qualitatively between the clustered PCRor
and RevBmal loops. This analysis highlights that dif-
ferent portions of the circadian oscillator have different
amounts of built-in robustness to noise, as measured by
the decay of the autocorrelation function. Thus the struc-
ture of the mammalian oscillator might be susceptible to
the effects of noise.

We further examined how the correlation half-life (τ1/2)
of the summed clusters in the stochastic model changed
with other model parameters studied in [17] (data not
shown), and overall we observed a qualitatively different
behavior of stochastic model loops from the original de-
terministic model. Specifically, from Fig. 4(d) it appears
that a RevBmal loop maintains high τ1/2 for a wide range
of dy1-values that we interpret as an indicator of strong
periodic signal, as large correlation half-life corresponds
to slow decay in F (τ), which in turn marks sustained os-
cillatory solutions. This use of τ1/2 as a marker of oscilla-
tory response is also supported in Fig. 3(b) where we note

an overall increase in half-lifes of all model components
for large Ω, where we know that the stochastic system
oscillates in agreement with the deterministic model. On
the other hand, in the same range of dy1 it seems that
the τ1/2 in Fig. 4(d) points to a collapse in PCRor loop
oscillations as marked by a steep decline in τ1/2-values for
dy1 > 1. In the next section, we explore in more detail the
correspondence between τ1/2 and transitions in and out
of periodic solution regimes for the stochastic model. For
now, we remark that by direct inspection of τ1/2 we see
that the autocorrelation function could be used to detect
varying sensitivity to intrinsic noise levels for each loop
with one loop showing weaker periodic signal as model
parameters are varied.

In conclusion, given the uncertainty and malleability of
parameters in a biological system, the stochastic model
indicates that two key loops emerge and respond indepen-
dently to stochastic effects. The differences between the
two loops was also observed in the deterministic system of
[17] where they showed sustained periodic behavior of the
RevBmal loop by artificially clamping a single component
of the PC loop to a constant value. Yet, the stochastic
model autocorrelation analysis presented here reveals the
distinct model component oscillatory behavior without
the need to force various components to constant values.
In fact, in the concerned parameter region of dy1, we ob-
serve that the components of the PCRor loop continue
to fluctuate in an aperiodic manner without interfering
with the oscillatory behavior of the other loop, Fig. 4(d)
(note the small bump in PCRor τ1/2 for 1 < dy1 < 4
which indicates a slightly higher half-life in PCRor fluc-
tuations while RevBmal maintains high τ1/2). We note
the connection between our qualitative observations of
τ1/2-values and bifurcation analysis in the deterministic
system; both are concerned with identifying the parame-
ter regions where the respective model is likely to oscil-
late. However, a more systematic comparison is necessary
and we pursue this next.

3.2 Bifurcations in the Stochastic Sys-
tem.

In order to probe the response of the stochastic model in
varying parameter regimes, we computed numerically us-
ing XPPAUTO [23] the bifurcation diagrams of the ODE
model in [17] (shown in Fig. 5-insets) and compared them
with our autocorrelation analysis results. When compar-
ing the deterministic bifurcation diagrams to our stochas-
tic model in near-deterministic, i.e. (Ω = 2000), condi-
tions we see a clear pattern where by the RevBmal loop
has a stronger underlying periodic signal in parameter re-
gions which are periodic in the deterministic system. This
suggests that the Hopf bifurcations in the deterministic
system are closely mirrored in the stochastic model.
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Figure 4: Autocorrelation analysis of components with Ω = 2000. On the y-axis is the correlation half-life (τ1/2), an inverse
measure of the amount of noise in the signal. On the x-axis is the parameter dy1, which describes the rate of decay of the Per
mRNA. The relation between these are shown for (a) each of the 19 components individually, (b) with alternate forms of the
same protein, i.e. cytosolic and nuclear forms of PER, summed together before analysis, (c) with only the mRNA components
represented, and (d) all components of each cluster are summed. PCRor contains Per, Cry, Ror, and their corresponding protein
forms. RevBmal contains Bmal, Rev, and their corresponding protein forms. Results shown are averages over 10 identical
trials. Wild-type parameter value for dy1 = 0.3 (hour)−1 from [17] is shown as a vertical dotted line in (c) and (d).

To quantify similarities and discrepancies in the bifur-
cation structure between the deterministic and stochas-
tic system, we quantified the location of bifurcation-
like points in the stochastic model using an “optimized-
thresholding” algorithm.

• First, we examined the behavior of the correlation
half-life τ1/2 around the Hopf bifurcation points in
the deterministic bifurcation diagrams (Fig. 5). For
the sum of all components in the system when Ω =
2000 (data not shown), a simple threshold of τ1/2 = 1
produces stochastic bifurcation values close to the de-
terministic bifurcation values. This suggests a useful
equivalence between a τ1/2 near zero and a bifurca-
tion in the deterministic system, and we sought to
extend this to lower values of Ω.

• As the values of τ1/2 are very sensitive to Ω (Fig 3)
and vary for each loop, instead of using a set arbi-
trary system threshold of τ1/2 = 1, we chose to work
with a set relative drop in τ1/2 signal from the max-
imum τ1/2. Specifically, for each Hopf bifurcation

point, we calculated the % drop between the max-
imum τ1/2 value and the τ1/2 value where system
τ1/2 = 1 for both the RevBmal and the PCRor loop
when Ω = 2000. This provides distinct thresholds
and corresponding estimated bifurcation-like points
for each loop.

• In order to ensure the useful connection between the
stochastic bifurcation-like points and the determinis-
tic Hopf bifurcation points, out of the two loops, we
chose to work with the % drop of the loop whose esti-
mated bifurcation-like point was closest to the deter-
ministic bifurcation point. We then adjusted this %
drop such that the estimated bifurcation point corre-
sponded more closely to the deterministic Hopf point
for large Ω. We next used this “optimized” % drop
threshold for both loops and all Ω-values. Note that
for small Ω, this approach can become unstable as
noise begins to dominate the measurements of τ1/2.

This adaptive strategy ensures that the bifurcation-like
points converge to the deterministic Hopf point for large
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Figure 5: Deterministic bifurcation plots vs stochastic au-
tocorrelation half-life. The autorrelation half-life (τ1/2) is
computed for each parameter value shown on the x-axis and
binned into two highlighted regions around the deterministic
Hopf points. The corresponding deterministic bifurcation di-
agrams in the same parameter range are shown in each figure
inset.

Ω and also allows for different loops to control each bifur-
cation. For example, if we examine the first bifurcation
point for dy1 in Fig. 5(c), we note that the values of τ for
the PCRor loop are higher than the RevBmal. Appropri-
ately, in Fig. 6(e), we see that the bifurcation-like point
of the PCRor loop converges to the deterministic Hopf
point. These bifurcation-like points or “stochastic bifur-
cations” allow us to examine the relative sensitivities of
each loop separately against changes in parameter values
as well as system size Ω.

With this method, we noted two key system features:
1) the bifurcations of the PCRor loop often appeared in-
dependent of that of the RevBmal loop, and, 2) that the
locations of the bifurcations points change with Ω. Specif-
ically, we noted that in some cases, the oscillatory param-
eter regions shrunk or expanded with the system size, in
other cases the opposite was true. There were even in-
stances where the acceptable parameter region appeared
to shift between the two loops, as highlighted by the rel-
ative position of the stochastic bifurcation points with
the deterministic values shown as dotted lines in Fig. 6.
These observed trends in stochastic bifurcation points are
related to the shape of the correlation half-life functions
for each parameter, as shown in Fig. 5; notably for dy1 we
saw that the PCRor loop increased faster than the RevB-
mal loop in parameter region 1, however, it also dropped
much faster than the RevBmal loop-these caused the re-
versal in bifurcation point ordering reported in Fig. 6.
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Figure 6: Bifurcations of PCRor and RevBmal loops are
distinct. Vertical dotted lines represent the locations of the
deterministic Hopf bifurcation points. Left and right panels
show results for two relevant parameter regions around the
Hopf points in the deterministic model. The lines represent
how the bifurcation analogues in the stochastic system change
with system size for the RevBmal and PCRor loop in the a)
Ror inhibition rate (ki4), b) Maximum Per transcription rate
(v1max), c) Per mRNA degradation rate (dy1), and d) Maxi-
mum RevErb transcription rate (v3max).

In the analysis of the deterministic ODEs, the location
of the Hopf bifurcation were controlled by the driver loop,
RevBmal. When this loop was oscillating or “turning” it
was able to keep the other, PCRor, loop turning as well.
In a sense this means that the “strength” of the RevBmal
loop allows the system to tolerate the failure of the other
component. Yet in the corresponding stochastic system,
this is not the case. The PCRor loop is more, and in some
case much more, sensitive to the parameter values chosen:
both in that the parameter regions where periodic-like
behavior is maintained is smaller than that of RevBmal
(Fig. 5) and in that as the system size (Ω) changes the
bifurcation-like points shift more dramatically (Fig. 6).
In the biological system, the failure of the PCRor loop
would be felt as an aperiodic regulation of gene expression
via the PC complex. We note that our stochastic model
allows us to reach an important conclusion. Namely, by
restricting the analysis to the deterministic realm, one
reaches erroneous conclusions about the prediction of the
model about the driver loop for the system. Whether or
not this is an artifact of the particular network topology is
something that remains to be explored. This conclusion
also calls into question the concept that more feedback
loops increase the robustness of oscillating behavior in
biological systems.
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4 Wavelet Analysis Reveals Tran-
sient Lapses in Periodicity.

Autocorrelation analysis, while useful in the context of
noisy data and stochastic models, has shortcomings due
to fundamental assumption that the intrinsic period and
amplitude of the time series under consideration do not
change over time. When a periodic signal presents sig-
nificant variation in amplitude and period, as our model
and typical circadian data do, then autocorrelation can-
not tell us how the period may vary as a function of time.
Thus important information can be lost if one focuses
just on autocorrelation. Wavelet based approaches can
prove more effective for determining period length along
with a measurement of the variability in period and am-
plitude in time, reviewed in [24]. Wavelet analysis aims
to decompose a signal as a sum of component waveforms.
In contrast to Fourier analysis, wavelets are localized (or
windowed) in time in such a way that the temporal du-
ration of the window is adjusted to each frequency be-
ing analyzed. We employ a continuous wavelet transform
(CWT), which for a complex valued wavelet function Ψ(t)
can be defined as

W (t, s) =

∫
1

s
Ψ∗
(
u− t
s

)
x(u)du (25)

with ψ∗ is the complex conjugate. At a time t, the period
of the signal is identified by changing the scale (s) that
maximizes the wavelet transform between the signal and
the scaled wavelet. To analyze the signal one generates
the so called wavelet ridge curves, which run along the
local maxima with respect to period, s of the absolute
value of the CWT. The absolute value of the CWT in turn
marks the signals instantaneous frequency and amplitude
at each time point.

Following [20], we use Morlet wavelets to analyze the
stochastic model. The Morlet wavelet function is given
by

Ψ(t) = exp(iw0t) exp

(
− t2

2σ2

)
, (26)

where w0 is the frequency and σ is a measure of the spread
of the support. By applying a Morlet wavelet centered
at t to our model results, we can calculate periodic de-
composition of the model time course at time t with the
advantage that wavelet analysis does not assume a sin-
gle dominant periodic signal, an assumption that causes
the autocorrelation to become biased when, for example,
there is a skipped period [20]. Following, [20] the Mor-
let wavelet applied to a data series generates a table of
complex values for varying s and t, with heat map plots
arising from consideration of the magnitude of the com-
plex values, illustrated in Fig. 7.

The local maxima of the magnitude of the wavelet
transform at each time point correspond to the ridges
illustrated both in the heat maps (blue line overlay) and
ridge strength plots in Fig. 7. Each ridge point location
on the period axis of the CWT magnitude heat map in-
dicates the dominant oscillatory period for the system at
the indicated time. We employ the algorithm of [20, 25]
to compute and plot the CWT ridges to monitor the dom-
inant period of the cell over time.

Examining the wild type behavior of the system using
the CWT magnitude and CWT ridges reveals a surpris-
ing behavior that is hidden from autocorrelation analysis.
For short time spans, the strength of the periodic signal
as measured by the ridge strength drops dramatically, il-
lustrated in Fig. 8 where we show three realizations of
the model with the same parameter values. As the Mor-
let analysis is windowed, this transition is smooth, but
this implies that the periodic behavior is punctuated by
aperiodic behavior for the stochastic model. Unlike the
above autocorrelation analysis, where one loop continues
while the other halts, both loops appear here to lapse
simultaneously as illustrated in Fig. 9.

The frequency and length of these aperiodic anomalies
appears to be modified with system size in the stochas-
tic model. To illustrate how the time spent in aperiodic
behavior changes with the system size Ω, we present his-
tograms of the ridge strength of RevBmal and PCRor
loops normalized to the mean ridge strength for each Ω
(Fig. 10). From the density plots in Fig. 10, we observe
that the variation around the mean in ridge strength in-
creases as Ω is decreasing, indicating that for small Ω the
system spends a large fraction of time with very weak
periodic signal. These observations could provide an al-
ternate explanation for some experimental results [9, 8].
In these studies, the authors observed circadian oscilla-
tion of mouse SCN cells at single cell resolution either in
tissue slices or in isolated cells. Reanalysis of this data
by Meeker et al. [20] found that while cells in slices main-
tained strong periodic behavior, isolated cells displayed
the occasional highly elongated period. Our alternate ex-
planation is that this elongated period could actually rep-
resents transient aperiodic behavior among isolated cells.
While Meeker et al. [20] was able to fit their model to
explain the data, we obtain similar behavior at the wild
type parameter values fitted by Relogio et al. [17] that
are supposed to support normal periodic behavior in the
deterministic model. This finding provides additional ev-
idence that the stochastic model displays qualitatively
different behavior than the deterministic model despite
identical parameter values, indicating that low protein
numbers can significantly alter system behavior for the
mammalian circadian oscillator.
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Figure 7: Morlet wavelet analysis of the RevBmal loop for
two Ω-values. CWT magnitude heat map and ridge strengths
are shown for (a) Ω = 100, (b) Ω = 2000.
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Figure 8: Transient lapses in stochastic model periodicity for
Ω = 400. Triplicate heat maps visualizing the Morlet wavelet
analysis are calculated from the same parameters as in [17]
for three distinct realization of the model shown in each row.
The height of the ridges for each corresponding calculation is
shown on the right column panels.
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Figure 9: Transient lapses in both loops of the stochastic
model periodicity for Ω = 400. Heat maps visualize the Morlet
wavelet analysis with parameters same as in [17]. The height
of the ridges for each corresponding calculation is shown on
the left panels.
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Figure 10: Histogram of the intensity of periodic signal for
different system sizes relative to the mean intensity for each
system size. The mean intensity is calculated across the
strongest periodic signal for each Ω. The intensities of the
strongest periodic signal at each given time are then shown
relative to this mean and assembled in a histogram. For exam-
ple, the density at 40% represents the fraction of time spent
where the intensity of the maximum periodic signal is only
40% as strong as the mean value.

5 Discussion

Circadian rhythms represent a fundamental way that or-
ganisms respond to daily changes in the environment
and, in humans, an important health consideration [2, 3].
Modeling of these chemical clocks has often focused on
deterministic systems of ODEs [6, 12, 13], but biologi-
cal data suggest that noise can influence these rhythms
[7, 10]. Given observations that molecules controlling
these rhythms are present in very low numbers [15],
stochastic models that explicitly track each protein num-
ber as they undergo reactions in time represent a com-
putational modeling strategy that can reveal biologically
relevant behavior that might not be observed in determin-
istic mathematical models that average system behavior
in the limit of large protein numbers. For example, de-
terministic and stochastic mathematical models of circa-
dian clocks have been observed in prior work to predict
qualitatively different behavior for specific mutants [26]
or display shifting periods over time [20].

In this paper, we developed a stochastic birth-death
model that builds upon a previously proposed deter-
ministic model for the mammalian circadian rhythm in
[17]. We used the Gillespie [22] algorithm to simulate the
stochastic model and then analyzed the results for vary-
ing system sizes and parameter values. We used a scaled
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correlation time quantity in order to study the strength
of periodic signal present in the stochastic model and fur-
ther employed it in order to test the robustness to noise
of various model sub-components that were postulated as
important building blocks in the ODE model. We found
that the stochastic model components could be classified
into sub-clusters that differed slightly from the clusters
proposed in the ODE model, notably with Ror cluster-
ing with the PC loop. We next used correlation half-life
to build a stochastic version of the bifurcation diagram
of the ODE model in order to test the robustness of the
Hopf points in the stochastic model for different system
sizes and with respect to different parameters. We found
that the stochastic system showed varying levels of sensi-
tivity to noise as the predicted correlation half-life Hopf
points varied when Ω was changed. Further, we noted
that the two loops of the stochastic model had differ-
ent Hopf points, and thus confirmed the independence
in their oscillatory behaviors. Biologically, this last find-
ing indicates that additional negative feedback loops do
not necessarily confer greater robustness to an oscillatory
system under noise perturbation. The opposite may be
true, in that that the flexibility and independence of a
second loop allows rapid phase changes to be made. For
example, the model used here could transiently lapse into
aperiodic behavior.

Since autocorrelation analysis loses time information,
we next performed wavelet analysis in order to test the
stochastic model variations in periods as a function of
time. We found that the stochastic model can show tran-
sient lapses in periodicity particularly in low system size
regimes. This behavior is of interest as the model was be-
ing examined in “wild type” parameter ranges where the
deterministic model showed robust oscillations. The pri-
mary goal of this work was to explore the role of intrinsic
noise that arises in the case of low protein numbers on
a detailed and robust mammalian circadian clock ODE
model. We found that the stochastic model can show
both different behavior in terms of oscillatory regimes
and lapses in periodicity when compared with the ODE
model in the same parameter ranges. Most importantly,
the stochastic model when probed through autocorrela-
tion analysis showed that under noise perturbation model
components could cluster differently between the two key
circadian clock feedback loops, indicating that system ar-
chitecture could be affected by internal noise.

The autocorrelation and wavelet analysis of our
stochastic model is likely more amenable to quantify-
ing experimental data from noisy oscillators in biochemi-
cal networks, particularly when trying to detect network
topology. It is important to note that the contrast be-
tween the two loops architecture we noted here is likely
detectable in the autocorrelation from the mRNA levels
alone, suggesting that system architecture might be un-

covered more systematically by devising models that can
capture noisy data and then examining the deterministic
limits that produce ODE that are more amenable to anal-
ysis. In this context, we expect that a stochastic modeling
approach is an important and necessary tool in examin-
ing circadian oscillator properties. Indeed, our stochastic
model analysis does not ignore fluctuations in low pro-
tein number regimes but instead relies on them in order
to test system response as various model parameters are
varied. ODE models necessarily ignore these low protein
level effects and impose a feedback structure that can
only match the biological system response in the sense of
averages, ignoring the important role of fluctuations.

Finally, we highlight that despite a significant amount
of modeling in this field, the key network motifs compris-
ing the circadian oscillator are still debated. Recently,
using a carefully parametrized ODE model in [27], a large
computational effort was put into systematically clamp-
ing all possible combinations of gene-subsets to their os-
cillation mean values in the model in order to uncover
the necessary and sufficient sub-networks needed for self-
sustained circadian oscillations. Our analysis shows that
a stochastic model might vary in its response and loop
architecture when compared with its deterministic equiv-
alent ODE model, so one must be careful when drawing
conclusions about system architecture that rely solely on
ODE model analysis. We propose that stochastic versions
of these models should also be examined and compared
with noisy data when trying to assess overall network
topology.

Appendix

Wild type parameters

The model has 71 parameters as described in [17], of
which 11 were fitted. In Table 1 we list the parameter
values used in [17] that are relevant to our study in Sec-
tion 3.2. We refer to these values as “wild type” param-
eter values in the manuscript since they yield wild type
circadian oscillations for the ODE model.

Reaction propensities

In Table 2 we show some illustrative elementary reac-
tions for the stochastic model along with their reaction
propensities (or probabilities) as used for the Gillespie
simulations.
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Parameter Description Value

dy1 Degradation rate for Per mRNA (hour−1) 0.3
ki4 Ror-inhibition rate (a.u) 0.4
v1max Per transcription rate (a.u.-hour−1) 1
v3max RevErb transcription rate (a.u.-hour−1) 1.9

Table 1: “Wild type” parameter values for the stochastic model.

Reaction Description Probability of Reaction

Gi
vimaxf(x1,x5,x6)→ Myi Transcription of gene (Gi) into mRNA (Myi) wa = vimaxf(x1, x5, x6)Ω

Myi
kpj→ Pzj Cytoplasmic protein(Pzj) production wb = kpjMyi

Pzj + Pzi
kfzc→ Pzc Cytoplasmic complex (Pzc) formation wc = kfzcPziPzj/Ω

Pzj
kizj→ Pxi Nuclear protein shuttling wd = kizjPzjΩ

Table 2: Representative reactions for the stochastic model. The function f(x1, x5, x6) represents a Michaelis-Menten
rate term, as described in Section 2.1 with protein nuclear forms REV-ERBN (x5), RORN (x6), CLOCK/BMALN (x1).

References

[1] Joseph S Takahashi. Transcriptional architecture of
the mammalian circadian clock. Nature Reviews Ge-
netics, 2016.

[2] Sahar Farajnia, Tom Deboer, Jos HT Rohling, Jo-
hanna H Meijer, and Stephan Michel. Aging of the
suprachiasmatic clock. The Neuroscientist, 2013.

[3] Yuanwei Huang, Qiuyan Yu, Yan Liu, Zhenli Zhu,
Li Wang, Haidong Wang, and Ke Li. Efficacy
and safety of chronomodulated chemotherapy for pa-
tients with metastatic colorectal cancer: a system-
atic review and meta-analysis. Asia-Pacific Journal
of Clinical Oncology, 2016.

[4] William Bechtel. From molecules to networks: Adop-
tion of systems approaches in circadian rhythm re-
search. In New Challenges to Philosophy of Science,
pages 211–223. Springer, 2013.

[5] Carrie L Partch, Carla B Green, and Joseph S Taka-
hashi. Molecular architecture of the mammalian cir-
cadian clock. Trends in cell biology, 2013.

[6] Albert Goldbeter. A model for circadian oscillations
in the drosophila period protein (per). Proceedings
of the Royal Society of London. Series B: Biological
Sciences, 261(1362):319–324, 1995.

[7] Erik D Herzog, Sara J Aton, Rika Numano,
Yoshiyuki Sakaki, and Hajime Tei. Temporal preci-
sion in the mammalian circadian system: a reliable
clock from less reliable neurons. Journal of biological
rhythms, 19(1):35–46, 2004.

[8] Alexis B Webb, Nikhil Angelo, James E Huettner,
and Erik D Herzog. Intrinsic, nondeterministic cir-
cadian rhythm generation in identified mammalian
neurons. Proceedings of the National Academy of
Sciences, 106(38):16493–16498, 2009.

[9] Andrew C Liu, David K Welsh, Caroline H Ko,
Hien G Tran, Eric E Zhang, Aaron A Priest, Ethan D
Buhr, Oded Singer, Kirsten Meeker, Inder M Verma,
et al. Intercellular coupling confers robustness
against mutations in the scn circadian clock network.
Cell, 129(3):605–616, 2007.

[10] Naama Barkai and Stanislas Leibler. Biological
rhythms: Circadian clocks limited by noise. Nature,
403(6767):267–268, 2000.

[11] Olga A Podkolodnaya, Natalya N Tverdokhleb, and
Nikolay L Podkolodnyy. Computational modeling of
the cell-autonomous mammalian circadian oscillator.
BMC Systems Biology, 11(1):27, 2017.

[12] Didier Gonze and Albert Goldbeter. Circadian
rhythms and molecular noise. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 16(2):026110–
026110, 2006.

[13] Jae Kyoung Kim and Daniel B Forger. A mechanism
for robust circadian timekeeping via stoichiometric
balance. Molecular systems biology, 8:630, 2012.

[14] Martha W Merrow, Norman Y Garceau, and Jay C
Dunlap. Dissection of a circadian oscillation into dis-
crete domains. Proceedings of the National Academy
of Sciences, 94(8):3877–3882, 1997.

www.sporajournal.org 2017 Volume 3(1) page 98

http://www.sporajournal.org


Stochastic Circadian Clock Morgens, Shtylla

[15] Kiho Bae, Choogon Lee, Paul E Hardin, and
Isaac Edery. dclock is present in limiting amounts
and likely mediates daily interactions between the
dclock–cyc transcription factor and the per–tim com-
plex. The Journal of Neuroscience, 20(5):1746–1753,
2000.

[16] Darren J. Wilkinson. Stochastic modelling for quan-
titative description of heterogeneous biological sys-
tems. Nat Rev Genet, 10(2):122–133, February 2009.

[17] Angela Relógio, Pal O Westermark, Thomas Wal-
lach, Katja Schellenberg, Achim Kramer, and
Hanspeter Herzel. Tuning the mammalian circadian
clock: robust synergy of two loops. PLoS computa-
tional biology, 7(12):e1002309, 2011.
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